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Abstract. We study the critical nonlinear Schrödinger equations

i∂tu+
1

2
∆u = λ|u|2/nu, (t, x) ∈ R+ × Rn,

in space dimensions n ≥ 4, where λ ∈ R. We prove the global in time existence
of solutions to the Cauchy problem under the assumption that the absolute
value of Fourier transform of the initial data is bounded below by a positive
constant. Also we prove the two side sharp time decay estimates of solutions

in the uniform norm.

1. Introduction and main results.

We consider the initial value problem for the following nonlinear Schrödinger equa-

tion i∂tu+
1

2
∆u = λ|u|2/nu, (t, x) ∈ R+ × Rn,

u(0, x) = u0(x), x ∈ Rn
(1.1)

in space dimensions n ≥ 4, where λ ∈ R. In the case of 1 ≤ n ≤ 3, asymptotic behavior

of small amplitude solutions to (1.1) has been studied in [2], [5], [7], [8], [14] and etc.

The first breakthrough in asymptotic behavior of small solutions to (1.1) with n = 1 was

obtained in [14] by introducing the final state

ei|x|
2/2t−i(π/4)t−1/2e−iλ|û+(x/t)|2 log tû+

(
x

t

)
for given small final data û+. More precisely, existence of small solutions was shown in

the neighborhood of final state to define the map W+ : û+ ∈ H3,0 ∩H2,1 → u(0) ∈ L2,

where

Hm,s = {ϕ ∈ L2; ∥(1−∆)m/2(1 + |x|2)s/2ϕ∥L2 < ∞}.
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This result was extended in n = 2, 3 in [5] by modifying the phase corrections. In

[2], the result concerning the regularity of solutions in [14] was improved as the map

W+ : û+ ∈ H3,0 ∩ H2,1 → u(0) ∈ H0,1 ∩ H1,0. On the other hand, the initial value

problem was treated in [7] and existence and uniqueness of the scattering data u− was

shown for any small initial data û0 ∈ H0,δ ∩Hδ,0, n/2 < δ < 1+2/n. Therefore the map

W−1
− : û0 ∈ H0,δ ∩ Hδ,0 → û− ∈ L2 is defined. This fact with the result of [2] means

that the map W−1
− W+ : û+ ∈ H3,0 ∩H2,1 → û− ∈ L2 is defined in the case of n = 1. In

[8], by using another final state such that

Fei(|ξ|
2/2)tû+(ξ)e

−iλ|û+(ξ)|2 log t

the results mentioned in the above were improved as W−1
− W+ : û+ ∈ Hα,0 → û− ∈ Hδ,0,

where

n

2
< δ < α < min

{
n, 2, 1 +

n

2

}
which enables us to define the inverse operator of W−1

− W+. This inequality requires

n ≤ 3. However as far as we know, there are no results in the case of n ≥ 4 even if the

existence of W+. Our purpose in this paper is to show the sharp asymptotics and time

decay of solutions to (1.1) in the uniform norm for higher space dimensions n ≥ 4. Our

second result below shows that existence of the map

W−1
+ : e(i/2)|ξ|

2

û0 ∈ L∞ ∩ Ḣσ,0 → û+ ∈ L∞ ∩ Ḣβ,0,
n

2
< β < σ <

n

2
+ 1.

By the factor e(i/2)|ξ|
2

, we shift t = 0 to t = 1, then we do not know existence of the

operator W−1
− W+.

Cubic nonlinear Klein–Gordon equation is considered as a relativistic version of cubic

nonlinear Schrödinger equation and asymptotic behavior of small solutions was studied

in [4], [9] and [10]. Recently, in [13] final state problem was solved for the nonlinearity

|u|u. However the Cauchy problem in higher space dimensions is still an open problem.

Thus scattering problem is not developed in the case of nonlinear Klein–Gordon equation

as compared with the case of nonlinear Schrödinger equation.

As in the proof of [7], we multiply both sides of (1.1) by FU(−t) to obtain

i∂tFU(−t)u = λt−1FM(−t)F−1|FM(t)U(−t)u|2/nFM(t)U(−t)u,

where U(t) is the Schrödinger evolution group, M(t) = ei|x|
2/2t for t ̸= 0,

(Dtϕ)(x) =
1

(it)n/2
ϕ

(
x

t

)
is the dilation operator, F denotes the Fourier transformation, where we have used the

formulas U(t) = M(t)DtFM(t) and U(−t) = M(−t)F−1D−1
t M(−t). We decompose the

nonlinear term of the above equation into the main term

λt−1|FU(−t)u|2/nFU(−t)u
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and the remainder term R, then we have the ordinary differential equation

i∂tFU(−t)u = λt−1|FU(−t)u|2/nFU(−t)u+R.

The difficulty comes from the lack of regularity of the first term on the right-hand side

of the above equation. To avoid this difficulty, we consider the problem in the closed

subset of the function space satisfying the restriction |FU(−t)u| ̸= 0. Therefore we do

not consider the problem in the space FU(−t)u ∈ Lp, 1 < p < ∞. Previous works for

(1.1) were based on Hs space for FU(−t)u, where s > n/2. Function spaces which do

not necessarily include L2 were used in [12], [6].

We introduce some function spaces and notations. Let L∞ denote the usual Lebesgue

space with the norm ∥ϕ∥L∞ = ess. supx∈Rn |ϕ(x)|. The homogeneous Sobolev space Ḣm
r

is defined by

Ḣm
r = {ϕ; ∥ϕ∥Ḣm

r
= ∥(−∆)m/2ϕ∥Lr < ∞},

m ≥ 0, where ∥ϕ∥rLr =
∫
Rn |ϕ(x)|rdx. Denote ⟨t⟩ =

√
1 + t2. For simplicity, we write

Ḣm
2 = Ḣm. By Ḃs

p,q we denote the homogeneous Besov space with semi-norm

∥ϕ∥Ḃs
p,q

=

(∫ ∞

0

x−1−γq sup
|y|≤x

∑
|θ|=[s]

∥∂θ(ϕy − ϕ)∥qLpdx

)1/q

,

where s = [s] + γ, 0 < γ < 1, ϕy(x) = ϕ(x + y), 1 ≤ p, q ≤ ∞ and [s] is the largest

integer less than s. Different positive constants might be denoted by the same letter C

if it does not cause any confusion.

To state our results, we use the function space

X = {u;FU(−t− 1)u ∈ C([0,∞);Y), ∥u∥X < ∞},

where Y = L∞ ∩ Ḣσ, n/2 < σ < n/2 + 2 and

∥u∥X = sup
0≤t<∞

∥FU(−t− 1)u(t)∥L∞ + (t+ 1)−γ∥FU(−t− 1)u(t)∥Ḣσ

with a small γ satisfying (1/n)(σ − n/2) > γ > 0. We note here that the Hölder class of

order σ − n/2 is included in Y.

Theorem 1.1. We assume that the initial data satisfy

ρ

2
≤ inf

ξ∈Rn
|û0(ξ)| ≤ ∥û0∥L∞ ≤ ρ

and ∥e(i/2)|ξ|2 û0∥Ḣσ ≤ ρ2 with n/2 < σ < n/2 + 1. Then there exists a ρ0 > 0 such that

the Cauchy problem (1.1) has a unique solution u ∈ X for all 0 < ρ ≤ ρ0. Moreover the

time decay estimate

1

5
ρ(t+ 1)−n/2 ≤ inf

x∈Rn
|u(t)| ≤ ∥u(t)∥L∞ ≤ 7

5
ρ(t+ 1)−n/2
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holds for all t > 0.

Remark 1.1. Typical example of the data could be the following

û0(ξ) = e(−i/2)|ξ|2ρ

(
1− ρ2

⟨ξ⟩

)
since by a direct calculation

∥e(i/2)|ξ|
2

û0∥Ḣσ =

∥∥∥∥ρ(1− ρ2

⟨ξ⟩

)∥∥∥∥
Ḣσ

≤ Cρ3 ≤ ρ2

and

ρ− ρ3 ≤ inf
ξ∈Rn

|û0(ξ)| ≤ ∥û0∥L∞ ≤ ρ.

Theorem 1.2. Let u be the solution constructed in Theorem 1.1. Then there exists

a unique final state û+ ∈ L∞ ∩ Ḣβ, n/2 < β < σ < n/2 + 1, such that the asymptotics∥∥∥∥u(t)− ei|x|
2/2(t+1)−i(nπ/4)(t+ 1)−n/2e−iλ|û+(x/(t+1))|2/n log(t+1)û+

(
x

t+ 1

)∥∥∥∥
L∞

≤ C(t+ 1)−n/2−(2/n)(δ−γ)(ρ2 + ρ(2/n+2)(2/n)+1 log(t+ 1))

and

∥(FU(−t− 1)u)(t)− û+e
−iλ|û+|2/n log(t+1)∥Ḣβ

≤ Cρ4/n+2(t+ 1)(−1/2)(σ−β)+γ log(t+ 1)

hold for all t > 0. Furthermore we have

1

5
ρ ≤ inf

ξ∈Rn
|û+(ξ)| ≤ ∥û+∥L∞ ≤ 7

5
ρ,

where δ ∈ (0, (1/2)(σ − n/2)), 0 < γ < (σ − β)/n.

To explain our results, we look for the solution of (1.1) in the form

u(t, x) = (i(t+ 1))−n/2ei|x|
2/2(t+1)h(t), h(0) = ρ. (1.2)

By a direct calculation, h(t) satisfies the ordinary differential equation

ih′ = λ(t+ 1)−1|h|2/nh.

We change the dependent variable h = reiw, r = |h|, w = arg h, with r(0) = ρ > 0,

w(0) = 0, then we have

ir′ − rw′ = λ(t+ 1)−1r2/n+1,

which gives us the ordinary differential equations
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r′ = 0, r(0) = ρ

and

w′ + λ(t+ 1)−1r2/n = 0, w(0) = 0.

The explicit solution is as follows

r(t) = ρ, w(t) = −λρ2/n log(t+ 1).

Thus the solution of (1.1) in the form (1.2) is represented as

u(t, x) = ρ(i(t+ 1))−n/2ei|x|
2/2(t+1) exp(−iλρ2/n log(t+ 1)). (1.3)

This solution does not belong to L2. However we have

|u(t, x)| = ρ(t+ 1)−n/2

and

∥U(−t− 1)u(t)∥Ḣσ = 0.

Therefore our results contain the special solution (1.3).

2. Local existence.

In the next lemma we show the estimates of the remainder terms

R1 = |V(t+ 1)φ|2/nV(t+ 1)φ− |φ|2/nφ,

R2 = (V∗(t+ 1)− 1)|V(t+ 1)φ|2/nV(t+ 1)φ,

where we denote φ = FU(−1− t)u and V(t+1) = FM(t+1)F−1, V∗(t+1) = V(−t−1).

Lemma 2.1. Assume that

2

5
ρ ≤ inf

ξ∈Rn
|φ(t, ξ)| ≤ ∥φ(t)∥L∞ ≤ 6

5
ρ

and ∥φ(t)∥Ḣσ ≤ ρ2 with n/2 < σ < n/2 + 2. Then there exists a small ρ > 0 such that

the estimate

∥R1∥L∞ + ∥R2∥L∞ ≤ Cρ2+2/n(t+ 1)−δ

is true for all t ≥ 0, where δ ∈ (0, (1/2)(σ − n/2).

Proof. By the Sobolev embedding inequality

∥ϕ∥L∞ ≤ ∥ϕ̂∥L1 ≤ C(∥ϕ̂∥Ḣ0,n/2−ν + ∥ϕ̂∥Ḣ0,n/2+ν )

= C(∥ϕ∥Ḣn/2−ν + ∥ϕ∥Ḣn/2+ν )
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with small ν > 0. Also we have

∥(V(t+ 1)− 1)φ∥Ḣn/2−ν

= ∥F(M(t+ 1)− 1)F−1φ∥Ḣn/2−ν

≤ (t+ 1)−σ1/2∥F| · |σ1F−1φ∥Ḣn/2−ν = (t+ 1)−σ1/2∥φ∥Ḣn/2−ν+σ1

for 0 ≤ σ1 ≤ 2. Similarly,

∥(V(t+ 1)− 1)φ∥Ḣn/2+ν ≤ (t+ 1)−σ2/2∥φ∥Ḣn/2+ν+σ2

for 0 ≤ σ2 ≤ 2. We take n/2 + ν + σ2 = n/2− ν + σ1 = σ, then we find

∥(V(t+ 1)− 1)φ∥L∞

≤ C∥(V(t+ 1)− 1)φ∥Ḣn/2−ν + C∥(V(t+ 1)− 1)φ∥Ḣn/2+ν

≤ C(t+ 1)−δ∥φ∥Ḣσ (2.1)

for all t ≥ 0, with δ ∈ (0, (1/2)(σ − n/2)), if n/2 < σ < n/2 + 2. Also we write

∥V(t+ 1)φ∥L∞ ≤ ∥φ∥L∞ + ∥(V(t+ 1)− 1)φ∥L∞

≤ ∥φ∥L∞ + C(t+ 1)−δ∥φ∥Ḣσ . (2.2)

Hence the first term is estimated as

∥R1∥L∞ ≤ C(∥V(t+ 1)φ∥2/nL∞ + ∥φ∥2/nL∞ )∥(V(t+ 1)− 1)φ∥L∞

≤ C(t+ 1)−δ(∥φ∥L∞ + (t+ 1)−δ∥φ∥Ḣσ )
2/n∥φ∥Ḣσ

≤ C(t+ 1)−δρ2/n+2

if n/2 < σ < n/2 + 2.

Let us consider the estimate of R2. In the same way as above we have

∥(V∗(t+ 1)− 1)|V(t+ 1)φ|2/nV(t+ 1)φ∥L∞

≤ C(t+ 1)−δ∥|V(t+ 1)φ|2/nV(t+ 1)φ∥Ḣσ , (2.3)

where δ ∈ (0, (1/2)(σ − n/2)), n/2 < σ < n/2 + 2. By a generalized Leibniz rule (see

Lemmas A1–A4 in the appendix of [11], also Lemma 2.2 in [3]) we have

∥uv∥Ḣσ
r
≤ C∥u∥Lq1∥v∥Ḣσ

r1

+ C∥v∥Lq2 ∥u∥Ḣσ
r2

for σ ≥ 0, 1/r = 1/q1 + 1/r1 = 1/q2 + 1/r2, 1 < q1, q2 ≤ ∞, 1 < r1, r2 < ∞. Hence

taking q1 = q2 = ∞, r1 = r2 = 2 we find

∥|u|2/nu∥Ḣσ = ∥u1/nu1/nu∥Ḣσ

≤ C∥u∥2/nL∞∥u∥Ḣσ + C∥u∥1+1/n
L∞ (∥u1/n∥Ḣσ + ∥u1/n∥Ḣσ ).

Let σ = m+ ν, m ∈ N, ν ∈ [0, 1). We let µ = 1/n. By the Leibniz rule we find
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∥∂m
xj
uµ∥Ḣν ≤ C

m∑
k=1

∥uµ−k∂m−k
xj

(∂xju)
k∥Ḣν ,

with µ = 1/n. We use the Gagliardo–Nirenberg interpolation inequality (see Theorem

2.44 in [1])

∥u∥Ḣα
p
≤ C∥u∥1−α/s

Lq ∥u∥α/s
Ḣs

r

for 1 < q, r ≤ ∞, 0 < α < s, s/p = (s − α)/q + α/r. In particular, choosing q = ∞,

r = 2σ, s = 1, we find

∥u∥Ḣν
2σ/ν

≤ C∥u∥1−ν
L∞ ∥u∥ν

Ḣ1
2σ

and taking q = ∞, r = 2, s = σ, we have

∥u∥Ḣα
2σ/α

≤ C∥u∥1−α/σ
L∞ ∥u∥α/σ

Ḣσ

for 0 < α < σ. Therefore we get

∥uµ−k∥Ḣν
2σ/ν

≤ C∥uµ−k∥1−ν
L∞ ∥uµ−k∥ν

Ḣ1
2σ

≤ C∥uµ−k∥1−ν
L∞ ∥uµ−k−1∥νL∞∥u∥ν

Ḣ1
2σ

≤ C∥uµ−k∥1−ν
L∞ ∥uµ−k−1∥νL∞∥u∥ν−ν/σ

L∞ ∥u∥ν/σ
Ḣσ

.

Hence

∥uµ−k∂m−k
xj

(∂xju)
k∥Ḣν

≤ C∥uµ−k∥L∞∥u∥k−1

Ḣ1
2σ

∥u∥Ḣσ+1−k
2σ/(σ+1−k)

+ C∥uµ−k∥Ḣν
2σ/ν

∥u∥k−1

Ḣ1
2σ

∥u∥Ḣm+1−k
2σ/(m+1−k)

≤ C∥uµ−k∥L∞∥u∥k−1
L∞ ∥u∥Ḣσ + C∥uµ−k∥1−ν

L∞ ∥uµ−k−1∥νL∞∥u∥k−1+ν
L∞ ∥u∥Ḣσ .

Thus we obtain

∥|u|2/nu∥Ḣσ ≤ C∥u∥2/nL∞∥u∥Ḣσ + C

m∑
k=1

∥u∥2/n+k+1
L∞

(
inf

x∈Rn
|u|

)−k−1

∥u∥Ḣσ .

We apply the above estimate with u = V(t+ 1)φ to get for n ≥ 2

∥|V(t+ 1)φ|2/nV(t+ 1)φ∥Ḣσ

≤ C∥V(t+ 1)φ∥2/nL∞∥V(t+ 1)φ∥Ḣσ

+ C
m∑

k=1

∥V(t+ 1)φ∥2/n+k+1
L∞

(
inf

x∈Rn
|V(t+ 1)φ|

)−k−1

∥V(t+ 1)φ∥Ḣσ .

Our assumption says that

inf
x∈Rn

|V(t+ 1)φ| ≥ inf
ξ∈Rn

|φ| − C(t+ 1)(−1/2)(σ−n/2)∥V(t+ 1)φ∥Ḣσ
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≥ 2

5
ρ− C(t+ 1)(−1/2)(σ−n/2)ρ2 ≥ 1

3
ρ.

Therefore by (2.2)

∥|V(t+ 1)φ|2/nV(t+ 1)φ∥Ḣσ

≤ Cρ2/n∥V(t+ 1)φ∥Ḣσ = Cρ2/n∥φ∥Ḣσ ≤ Cρ2/n+2. (2.4)

Substitution of (2.4) into (2.3) yields

∥R2∥L∞ ≤ Cρ2/n+2(t+ 1)−δ.

Lemma 2.1 is proved. □

To prove local existence we introduce the function space XT such that

XT = {v ∈ C([0, T ];L∞ ∩C); ∥v∥XT < ∞},

where

∥v∥XT
= sup

0≤t≤T
(∥FU(−t− 1)v(t)∥L∞ + ∥FU(−t− 1)v(t)∥Ḣσ ),

with n/2 < σ < n/2 + 2. We are now in a position to prove the local existence theorem.

Lemma 2.2. Assume that the initial data satisfy

ρ

2
≤ inf

ξ∈Rn
|û0(ξ)| ≤ ∥û0∥L∞ ≤ ρ

and ∥ei(1/2)|ξ|2 û0∥Ḣσ ≤ ρ2 with n/2 < σ < n/2 + 2. Then there exist a time T such that

the Cauchy problem (1.1) has a unique solution in XT satisfying the estimates

2

5
ρ ≤ inf

0≤t≤T
inf

ξ∈Rn
|(FU(−t− 1)u)(t, ξ)| ≤ sup

0≤t≤T
∥FU(−t− 1)u∥L∞ ≤ 6

5
ρ.

Proof. Let us consider the linearized problem corresponding to the Cauchy prob-

lem (1.1)

i∂tu+
1

2
∆u = λ|v|2/nv, u(0, x) = u0(x), (2.5)

where v ∈ XT ,

sup
0≤t≤T

∥FU(−t− 1)v(t)∥L∞ ≤ 6

5
ρ, sup

0≤t≤T
∥FU(−t− 1)v(t)∥Ḣσ ≤ 6

5
ρ2.

Consider the integral equation associated with (2.5)

φ(t) = φ(0)− iλ

∫ t

0

FU(−τ − 1)F (U(τ + 1)F−1φ̃(τ)) dτ,
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where

F (ϕ) = |ϕ|2/nϕ, φ(t) ≡ FU(−t− 1)u(t), φ̃(t) ≡ FU(−t− 1)v(t).

Then using the factorization formulas

U(t+ 1)F−1 = M(t+ 1)Dt+1V(t+ 1),

FU(−t− 1) = V∗(t+ 1)D−1
t+1M(t+ 1),

with V(t+ 1) = FM(t+ 1)F−1 and V∗(t+ 1) = V(−t− 1) we get

φ(t) = φ(0)− iλ

∫ t

0

(τ + 1)−1V∗(τ + 1)F (V(τ + 1)φ̃(τ)) dτ.

As in the estimate (2.4), we obtain

∥φ(t)∥Ḣσ ≤ ∥e(i/2)|ξ|
2

û0∥Ḣσ + Cρ2/n+2

∫ t

0

(τ + 1)−1dτ, (2.6)

since φ(0) = FU(−1)u0 = e(i/2)|ξ|
2

û0(ξ). Hence we find there exists a time T = T (ρ) > 0

such that

sup
0≤t≤T

∥φ(t)∥Ḣσ ≤ ∥e(i/2)|ξ|
2

û0∥Ḣσ + Cρ2/n+2 log(T + 1)

≤ ρ2 + Cρ2/n+2 log(T + 1) ≤ 6

5
ρ2.

We also have by Lemma 2.1

|φ(t, ξ)| ≤ ρ+ Cρ2/n+1

∫ t

0

(τ + 1)−1dτ + Cρ2/n+2

∫ t

0

(τ + 1)−1−(1/2)(σ−n/2)dτ

≤ ρ+ Cρ2/n+1 log(T + 1) + Cρ2/n+2

and

|φ(t, ξ)| ≥ 1

2
ρ− Cρ2/n+1

∫ t

0

(τ + 1)−1dτ − Cρ2/n+2

∫ t

0

(τ + 1)−1−(1/2)(σ−n/2)dτ

≥ 1

2
ρ− Cρ2/n+1 log(T + 1)− Cρ2/n+2.

Hence, there exists a time T = T (ρ) > 0 such that

sup
0≤t≤T

∥φ(t)∥L∞ ≤ ρ+ Cρ2/n+1 log(T + 1) ≤ 6

5
ρ.

Therefore the mapping S defined by u = Sv transforms XT into itself. Also the lower

bound

inf
0≤t≤T

inf
ξ∈Rn

|φ(t, ξ)| ≥ 2

5
ρ
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is true. Let φ1 and φ2 be solutions to the integral equations

φj(t) = e(i/2)|ξ|
2

û0 − iλ

∫ t

0

(τ + 1)−1V∗(τ + 1)F (V(τ + 1)φ̃j(τ)) dτ.

Then

φ1(t)− φ2(t)

= −iλ

∫ t

0

(τ + 1)(−n/2)(2/n)V∗(τ + 1)(F (V(τ + 1)φ̃1(τ))− F (V(τ + 1)φ̃2(τ))) dτ.

Therefore as above, by Lemma 2.1, we find that

∥φ1(t)− φ2(t)∥Ḣσ + ∥φ1(t)− φ2(t)∥L∞

≤ Cρ2/n log(T + 1)(∥φ̃1(t)− φ̃2(t)∥Ḣσ + ∥φ̃1(t)− φ̃2(t)∥L∞)

which implies there exists a time T such that S is a contraction mapping in XT . Lemma

2.2 is proved. □

3. Proof of Theorem 1.1.

We prove Theorem 1.1 by showing a-priori estimates of the local solutions obtained

in Lemma 2.2. We now state our results.

Lemma 3.1. Assume that the assumptions of Theorem 1.1 hold. Also suppose that

sup
t∈[0,T ]

(t+ 1)−γ∥φ(t)∥Ḣσ ≤ 6

5
ρ2

for some T > 0, where γ is small positive number satisfying 5ρ2/n < γ < (1/n)(σ−n/2).

Then the estimate

2

5
ρ < inf

t∈[0,T ]
inf

ξ∈Rn
|φ(t, ξ)| ≤ sup

t∈[0,T ]

∥φ(t)∥L∞ <
6

5
ρ

is true for sufficiently small ρ > 0, where φ(t) = FU(−t− 1)u(t).

Proof. By the contrary we may assume that there exists a first time T > 0 such

that

inf
t∈[0,T ]

inf
ξ∈Rn

|φ(t, ξ)| = 2

5
ρ

or

sup
t∈[0,T ]

∥φ(t)∥L∞ =
6

5
ρ.

We represent the solution of (1.1) in the form φ(t) = FU(−t − 1)u(t) = reiw, r = |φ|,
w = argφ, then applying the factorization formulas U(t+1)F−1 = M(t+1)Dt+1V(t+1),
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FU(−t− 1) = V∗(t+ 1)D−1
t+1M(t+ 1), with V(t+ 1) = FM(t+ 1)F−1 and V∗(t+ 1) =

V(−t− 1), we find {
∂tr = g1(t),

∂tw = −λ(t+ 1)−1r2/n − g2(t),

where

g1(t) = λ(t+ 1)−1 Im(e−iw(R1 +R2)),

g2(t) = r−1λ(t+ 1)−1 Re(e−iw(R1 +R2))

with the remainder terms

R1 = |V(t+ 1)φ|2/nV(t+ 1)φ− |φ|2/nφ,

R2 = (V∗(t+ 1)− 1)|V(t+ 1)φ|2/nV(t+ 1)φ.

By Lemma 2.1, we have

∥g1(t)∥L∞ ≤ Cρ2/n+2(t+ 1)γ−δ−1,

where δ ∈ (0, (1/2)(σ − n/2)). Hence integrating equation ∂tr = g1(t) we find

inf
t∈[0,T ]

inf
ξ∈Rn

|φ(t, ξ)| = inf
t∈[0,T ]

inf
ξ∈Rn

r(t)

≥ inf
ξ∈Rn

|û0(ξ)| − Cρ2/n+2(t+ 1)γ−δ ≥ 1

2
ρ >

2

5
ρ

and

sup
t∈[0,T ]

∥φ(t)∥L∞ ≤ 11

10
ρ <

6

5
ρ.

This is a desired contradiction and the lemma is proved. □

Lemma 3.2. Assume that the assumptions of Theorem 1.1 are true. Let the esti-

mates

2

5
ρ ≤ inf

t∈[0,T ]
inf

ξ∈Rn
|φ(t, ξ)| ≤ sup

t∈[0,T ]

∥φ(t)∥L∞ ≤ 6

5
ρ

hold for some T > 0. Then the estimate

sup
t∈[0,T ]

(t+ 1)−γ∥φ(t)∥Ḣσ <
6

5
ρ2

is valid for sufficiently small ρ > 0 and 5ρ2/n < γ, where φ(t) = FU(−t− 1)u(t).

Proof. By the contrary we assume that there exists the first time T such that
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sup
t∈[0,T ]

(t+ 1)−γ∥φ(t)∥Ḣσ =
6

5
ρ2.

We now turn to the integral equation

φ(t) = φ(0)− iλ

∫ t

0

(τ + 1)−1V∗(τ + 1)F (V(τ + 1)φ(τ))dτ.

As in estimate (2.4) we get

∥φ(t)∥Ḣσ ≤ ∥φ(0)∥Ḣσ + Cρ2/n
∫ t

0

(τ + 1)−1∥φ(τ)∥Ḣσdτ

≤ ∥φ(0)∥Ḣσ + Cρ2/n+2

∫ t

0

(τ + 1)γ−1dτ

≤ ρ2
(
1 + ρ2/n

1

γ
(t+ 1)γ

)
<

6

5
ρ2(t+ 1)γ ,

if 5ρ2/n < γ. This is a desired contradiction, which completes the proof of the lemma. □

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2 we have a priori estimates of

solutions in the space XT . Therefore the global in time existence of small solutions

follows. The desired time decay of solutions can be obtained by factorization technique

∥u(t)∥L∞ = ∥Dt+1V(t+ 1)φ∥L∞

≤ (t+ 1)−n/2∥φ(τ)∥L∞ + C(t+ 1)−n/2−δ∥φ∥Ḣσ

≤ 6

5
ρ(t+ 1)−n/2 + Cρ2(t+ 1)γ−n/2−δ ≤ 7

5
ρ(t+ 1)−n/2

and

inf
x∈Rn

|u(t)| = inf
x∈Rn

|Dt+1V(t+ 1)φ|

≥ (t+ 1)−n/2 inf
x∈Rn

∣∣∣∣φ( x

t+ 1
, t

)∣∣∣∣− C(t+ 1)−n/2−δ∥φ∥Ḣσ

≥ 2

5
ρ(t+ 1)−n/2 − Cρ2(t+ 1)γ−n/2−δ ≥ 1

5
ρ(t+ 1)−n/2,

where δ ∈ (0, (1/2)(σ − n/2)). □

4. Proof of Theorem 1.2.

We have the existence of the final states in Theorem 1.2 by the lemma below. Denote

y(t) = eiλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτφ(t).

Lemma 4.1. Let the initial data satisfy the assumptions of Theorem 1.1 and u be the

solution constructed in Theorem 1.1. Then there exists a unique final state y+ ∈ L∞∩Ḣβ

with n/2 < β < σ − 2γ, 5ρ2/n < γ < (1/n)(σ − n/2) such that
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∥y(t)− y+∥L∞ ≤ Cρ2/n+2(t+ 1)−δ+γ ,

∥y(t)− y+∥Ḣβ ≤ Cρ2/n+2(t+ 1)(−1/2)(σ−β)+γ

for all t > 0, where δ ∈ (0, (1/2)(σ − n/2)) and

1

5
ρ ≤ inf

ξ∈Rn
|y+(ξ)| ≤ ∥y+∥L∞ ≤ 7

5
ρ.

Proof. Multiplying both sides of (1.1) by FU(−t − 1) via the factorization for-

mulas we obtain

i∂tφ(t) = λ(t+ 1)−1|φ(t)|2/nφ(t) + λ(t+ 1)−1(R1 +R2), (4.1)

where φ(t) = FU(−t− 1)u and the remainder terms

R1 = |V(t+ 1)φ|2/nV(t+ 1)φ− |φ|2/nφ,

R2 = (V∗(t+ 1)− 1)|V(t+ 1)φ|2/nV(t+ 1)φ.

We multiply both sides of (4.1) by eiλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτ

i∂ty = λeiλ
∫ t
0
(τ+1)−1|φ|2/ndτ (t+ 1)−1(R1 +R2)

from which it follows that

|y(t, ξ)− y(s, ξ)| ≤ |λ|
∫ t

s

(τ + 1)−1|R1 +R2| dτ.

By Lemmas 3.1 and 3.2 we have

∥φ(t)∥L∞ ≤ 6

5
ρ, ∥φ(t)∥Ḣσ ≤ 6

5
ρ2(t+ 1)γ

for all t > 0, where 5ρ2/n < γ < (1/n)(σ − n/2). As in the proof of Lemma 2.1, we get

∥y(t)− y(s)∥L∞ ≤ C

∫ t

s

(τ + 1)−1|R1 +R2| dτ

≤ Cρ2/n+2

∫ t

s

(τ + 1)−1−δ+γdτ ≤ Cρ2/n+2(s+ 1)−δ+γ

and

∥y(t)− y(s)∥Ḣβ

≤ C

∫ t

s

(τ + 1)−1∥R1 +R2∥Ḣβ dτ

≤ Cρ2/n+2

∫ t

s

(τ + 1)−1−(1/2)(σ−β)+γdτ ≤ Cρ2/n+2(s+ 1)(−1/2)(σ−β)+γ

for all t ≥ s > 0. Hence there exists a unique limit y+ ∈ L∞ ∩ Ḣβ such that
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∥y(t)− y+∥L∞ ≤ Cρ2/n+2(t+ 1)−δ+γ

and

∥y(t)− y+∥Ḣβ ≤ Cρ2/n+2(t+ 1)(−1/2)(σ−β)+γ

for all t ≥ 0. Since (2/5)ρ ≤ |y(0, ξ)| ≤ (6/5)ρ and

|y(0, ξ)|+ |y+(ξ)− y(0, ξ)| ≥ |y+(ξ)| ≥ |y(0, ξ)| − |y+(ξ)− y(0, ξ)|,

we have the estimates

1

5
ρ ≤ 2

5
ρ− ∥y+ − y(0)∥L∞

≤ inf
ξ∈Rn

|y+(ξ)|

≤ ∥y+∥L∞ ≤ 6

5
ρ+ ∥y+ − y(0)∥L∞ ≤ 7

5
ρ.

This completes of the proof of the lemma. □

The asymptotics of solutions in Theorem 1.2 follows from the lemma below.

Lemma 4.2. Let u be the solution constructed in Theorem 1.1. Then there exists

a unique final state û+ ∈ L∞ ∩ Ḣβ with n/2 < β < σ < n/2 + 2 such that the following

estimates

∥u(t)−M(t+ 1)Dt+1û+e
−iλ|û+|2/n log(t+1)∥L∞

≤ Cρ2(t+ 1)−n/2−δ+γ + Cρ(2/n+2)(2/n)+1(t+ 1)−n/2−(2/n)(δ−γ) log(t+ 1)

and

∥FU(−t− 1)u(t)− û+e
−iλ|û+|2/n log(t+1)∥Ḣβ

≤ Cρ4/n+2(t+ 1)(−1/2)(σ−β)+γ log(t+ 1)

hold for all t > 0. Furthermore we have

1

5
ρ ≤ inf

ξ∈Rn
|û+(ξ)| ≤ ∥û+∥L∞ ≤ 7

5
ρ,

where δ ∈ (0, (1/2)(σ − n/2)), 0 < γ < (σ − β)/n.

Proof. We consider the asymptotics of

φ(t) = FU(−t− 1)u(t) = e−iλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτy(t).

We put

Ψ(t) =

∫ t

0

(τ + 1)−1(|φ(τ)|2/n − |φ(t)|2/n) dτ
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then

Ψ(t)−Ψ(s) =

∫ t

s

(τ + 1)−1(|φ(τ)|2/n − |φ(t)|2/n) dτ

− (|φ(t)|2/n − |φ(s)|2/n) log(s+ 1)

for 0 < s < τ < t. Hence by Lemma 4.1

∥Ψ(t)−Ψ(s)∥L∞

≤ C

∫ t

s

(τ + 1)−1∥y(τ)− y(t)∥2/nL∞dτ + C∥y(t)− y(s)∥2/nL∞ log(s+ 1)

≤ Cρ(2/n+2)(2/n)

∫ t

s

(τ + 1)−1−(2/n)(δ−γ)dτ

+ Cρ(2/n+2)(2/n)(s+ 1)(−2/n)(δ−γ) log(s+ 1)

≤ Cρ(2/n+2)(2/n)(s+ 1)(−2/n)(δ−γ) log(s+ 1)

and in the same way as in the proof of Lemma 2.1, we have by Lemma 4.1

∥Ψ(t)−Ψ(s)∥Ḣβ ≤ C

∫ t

s

(τ + 1)−1∥|y(τ)|2/n − |y(t)|2/n∥Ḣβdτ

+ C∥|y(τ)|2/n − |y(t)|2/n∥Ḣβ log(s+ 1)

≤ Cρ2/n−1

∫ t

s

(τ + 1)−1∥y(τ)− y(t)∥Ḣβdτ

+ Cρ2/n−1∥y(τ)− y(t)∥Ḣβ log(s+ 1)

≤ Cρ4/n+1

∫ t

s

(τ + 1)−1−(1/2)(σ−β)+γdτ

+ Cρ4/n+1(s+ 1)(−1/2)(σ−β)+γ log(s+ 1)

≤ Cρ4/n+1(s+ 1)(−1/2)(σ−β)+γ log(s+ 1).

Therefore there exists a unique Ψ+ ∈ L∞ ∩ Ḣβ such that

∥Ψ(t)−Ψ+∥L∞ ≤ Cρ(2/n+2)(2/n)(t+ 1)(−2/n)(δ−γ) log(t+ 1) (4.2)

and

∥Ψ(t)−Ψ+∥Ḣβ ≤ Cρ4/n+1(t+ 1)(−1/2)(σ−β)+γ log(t+ 1). (4.3)

Since

Ψ(t) =

∫ t

0

(τ + 1)−1|φ(τ)|2/ndτ − |φ(t)|2/n log(t+ 1)

we have
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0

(τ + 1)−1|φ(τ)|2/ndτ − |φ(t)|2/n log(t+ 1)−Ψ+

∥∥∥∥
L∞

≤ Cρ(2/n+2)(2/n)(t+ 1)(−2/n)(δ−γ) log(t+ 1)

and ∥∥∥∥ ∫ t

0

(τ + 1)−1|φ(τ)|2/ndτ − |φ(t)|2/n log(t+ 1)−Ψ+

∥∥∥∥
Ḣβ

≤ Cρ4/n+1(t+ 1)(−1/2)(σ−β)+γ log(t+ 1).

Hence ∥∥∥∥∫ t

0

(τ + 1)−1|φ(τ)|2/ndτ − |y+|2/n log(t+ 1)−Ψ+

∥∥∥∥
L∞

≤ Cρ(2/n+2)(2/n)(t+ 1)(−2/n)(δ−γ) log(t+ 1) (4.4)

and ∥∥∥∥ ∫ t

0

(τ + 1)−1|φ(τ)|2/ndτ − |y+|2/n log(t+ 1)−Ψ+

∥∥∥∥
Ḣβ

≤ Cρ4/n+1(t+ 1)(−1/2)(σ−β)+γ log(t+ 1). (4.5)

We have

∥φ(t)− e−iλ|y+|2/n log(t+1)−iλΨ+y+∥L∞

= ∥e−iλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτy(t)− e−iλ|y+|2/n log(t+1)−iλΨ+y+∥L∞

= ∥e−iλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτ (y(t)− y+)

+ (e−iλ
∫ t
0
(τ+1)−1|φ(τ)|2/ndτ − e−iλ|y+|2/n log(t+1)−iλΨ+)y+∥L∞

≤ ∥y(t)− y+∥L∞

+ C

∥∥∥∥∫ t

0

(τ + 1)−1|φ(τ)|2/ndτ − |y+|2/n log(t+ 1)−Ψ+

∥∥∥∥
L∞

∥y+∥L∞ .

We apply Lemma 4.1 and (4.4) to the right hand side of the above to find

∥φ(t)− e−iλ|y+|2/n log(t+1)−iλΨ+y+∥L∞

≤ Cρ2/n+2(t+ 1)−(δ−γ) + Cρ(2/n+2)(2/n)+1(t+ 1)(−2/n)(δ−γ) log(t+ 1).

We let û+ = e−iλΨ+y+ ∈ L∞ ∩ Ḣβ . Then we get

∥φ(t)− û+e
−iλ|û+|2/n log(t+1)∥L∞ ≤ Cρ(2/n+2)(2/n)+1(t+ 1)(−2/n)(δ−γ) log(t+ 1). (4.6)

Similarly, we have

∥φ(t)− û+e
−iλ|û+|2/n log(t+1)∥Ḣβ ≤ Cρ4/n+2(t+ 1)(−1/2)(σ−β)+γ log(t+ 1). (4.7)
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This is the second estimates of the lemma. By the factorization formula u(t) = M(t +

1)Dt+1V(t+ 1)φ we obtain

u(t)−M(t+ 1)Dt+1(û+e
−iλ|û+|2/n log(t+1))

= M(t+ 1)Dt+1(V(t+ 1)− 1)φ+M(t+ 1)Dt+1(φ(t)− û+e
−iλ|û+|2/n log(t+1)).

By (2.1) and (4.6) we find

∥u(t)−M(t+ 1)Dt+1û+e
−iλ|û+|2/n log(t+1)∥L∞

≤ Cρ2(t+ 1)−n/2−(δ−γ) + Cρ(2/n+2)(2/n)+1(t+ 1)−n/2−(2/n)(δ−γ) log(t+ 1)

which implies the first estimates of the lemma. □
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