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Abstract. We prove that if F is a foliation of a compact manifold M
with all leaves compact submanifolds, and the transverse saturated category
of F is finite, then the leaf space M/F is compact Hausdorff. The proof is

surprisingly delicate, and is based on some new observations about the geom-
etry of compact foliations. The transverse saturated category of a compact
Hausdorff foliation is always finite, so we obtain a new characterization of the

compact Hausdorff foliations among the compact foliations as those with finite
transverse saturated category.

1. Introduction.

A compact foliation is a foliation of a manifold M with all leaves compact subman-

ifolds. For codimension one or two, a compact foliation F of a compact manifold M

defines a fibration of M over its leaf space M/F which is a Hausdorff space, and has the

structure of an orbifold [27], [11], [12], [33], [10].

A compact foliation F with Hausdorff leaf space is said to be compact Hausdorff.

Millett [22] and Epstein [12] showed that for a compact Hausdorff foliation F of a

manifold M , the holonomy group of each leaf is finite, a property which characterizes

them among the compact foliations. If every leaf has trivial holonomy group, then a

compact Hausdorff foliation is a fibration. Otherwise, a compact Hausdorff foliation is a

“generalized Seifert fibration”, where the leaf space M/F is a “V-manifold” [29], [17],

[22]. In addition, M admits a Riemannian metric so that the foliation is Riemannian.

For codimension three and above, the leaf space M/F of a compact foliation of a

compact manifold need not be a Hausdorff space. This was first shown by an example of

Sullivan [30] of a flow on a compact 5-manifold whose orbits are circles, and the lengths

of the orbits are not bounded above. Subsequent examples of Epstein and Vogt [13],

[35] showed that for any codimension greater than two, there are examples of compact

foliations of compact manifolds whose leaf spaces are not Hausdorff, and for which the

“bad set” of leaves with infinite holonomy have arbitrary countable hierarchy. Also, Vogt

gave a remarkable example of a 1-dimensional, compact C0-foliation of R3 with no upper

bound on the lengths of the circle leaves in [36]. The results described below apply to

the case of compact C1-foliations of compact manifolds.

A compact foliation whose leaf space is non-Hausdorff has a closed, non-empty sat-

urated subset, the bad set X1 ⊂ M , which is the union of the leaves whose holonomy

group is infinite. The image of X1 in the leaf space M/F consists of the points which
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do not have the Hausdorff separation property for the quotient T1 topology on M/F .

That is, for a leaf L0 ⊂ X1 with image point [L0] ∈ M/F there exists a leaf L1 ⊂ M

so that any open neighborhoods in M/F of [L0] and [L1] must have non-trivial inter-

section. The work by Edwards, Millett and Sullivan [10] established many fundamental

properties of the geometry of the leaves of a compact foliation near its bad set, yet there

is no general structure theory for compact foliations, comparable to what is understood

for compact Hausdorff foliations. The results of Sections 4, 5 and 6 of this work provide

new insights and techniques for the study of these foliations. In particular, we introduce

in Definition 5.1 the notion of a tame point for the bad set X1, which is a key idea for

this work.

The transverse Lusternik-Schnirelmann (LS) category of foliations was introduced in

the 1998 thesis of Colman [4], [8]. The key idea is that of a transversally categorical open

set. Let (M,F) and (M ′,F ′) be foliated manifolds. A homotopy H : M ′ × [0, 1] →M is

said to be foliated if for all 0 ≤ t ≤ 1 the map Ht sends each leaf L′ of F ′ into another leaf

L of F . An open subset U of M is transversely categorical if there is a foliated homotopy

H : U × [0, 1] → M such that H0 : U → M is the inclusion, and H1 : U → M has image

in a single leaf of F . Here U is regarded as a foliated manifold with the foliation induced

by F on U . In other words, an open subset U of M is transversely categorical if the

inclusion (U,FU ) ↪→ (M,F) factors through a single leaf, up to foliated homotopy.

Definition 1.1. The transverse (saturated) category cat∩| (M,F) of a foliated

manifold (M,F) is the least number of transversely categorical open saturated sets re-

quired to cover M . If no such finite covering exists, then cat∩| (M,F) = ∞.

The transverse category cat∩| (M,F) of a compact Hausdorff foliation F of a compact

manifold M is always finite [8], as every leaf admits a saturated product neighborhood

which is transversely categorical. For a non-Hausdorff compact foliation, our main result

is that there is no transversely categorical covering of the bad set.

Theorem 1.2. Let F be a compact C1-foliation of a compact manifold M with

non-empty bad set X1. Then there exists a dense set of tame points Xt
1 ⊂ X1. Moreover,

for each x ∈ Xt
1, there is no transversely categorical saturated open set containing x.

Corollary 1.3. Let F be a compact C1-foliation of a compact manifold M . If

M admits a covering by transversely categorical open saturated sets, then F is compact

Hausdorff.

Recall that a foliation is geometrically taut if the manifold M admits a Riemannian

metric so that each leaf is an immersed minimal manifold [28], [31], [15]. Rummler

proved in [28] that a compact foliation is Hausdorff if and only if it is taut, and thus we

can conclude:

Corollary 1.4. A compact C1-foliation of a compact manifold M with

cat∩| (M,F) <∞ is geometrically taut.

The idea of the proof of Theorem 1.2 is as follows. The formal definition of the bad

set X1 in Section 3 is that it consist of leaves of F such that every open neighborhood of



1017(139)

Compact foliations with finite transverse LS category 1017

the leaf contains leaves of arbitrarily large volume. This characterization of the bad set

intuitively suggests that it should be a rigid set. That is, any foliated homotopy of an

open neighborhood of a point in the bad set should preserve these dynamical properties,

hence the open neighborhood cannot be continuously retracted to a single leaf. The

proof of this statement is surprisingly delicate, and requires a very precise understanding

of the properties of leaves in an open neighborhood of the bad set. A key result is

Proposition 5.2, an extension of the Moving Leaf Lemma in [10], which establishes the

existence of “tame points”.

The overview of the paper is as follows: The first two sections consist of background

material, which we recall to establish notations, and also present a variety of technical

results required in the later sections. In Section 2 we give some basic results from

foliation theory, and in Section 3 we recall some basic results about compact foliations,

especially the structure theory for the good and the bad sets. In Section 4 we establish

a key homological property for compact leaves under deformation by a homotopy. The

techniques introduced in this section are used again in later sections. The most technical

results of the paper are contained in Section 5, where we prove that tame points are dense

in the bad set. Finally, in Section 6 we prove that an open saturated set containing a

tame point is not categorical. Theorem 1.2 follows immediately from Propositions 5.2

and 6.3.

2. Foliation preliminaries.

We assume that M is a compact smooth Riemannian manifold without boundary of

dimension m = p + q, that F is a compact C1-foliation of codimension-q, and that the

leaves of F are smoothly immersed compact submanifolds, so that F is more precisely a

C1,∞-foliation. For x ∈M , denote by Lx the leaf of F containing x.

We recall below some well-known facts about foliations, and introduce some con-

ventions of notation. The books [3], [14], [16] provide excellent basic references; our

notation is closest to that used in [3]. Note that the analysis of the bad sets in later

sections requires careful estimates on the foliation geometry; not just in each leaf, but

also for nearby leaves of a given leaf. This requires a careful description of the local

metric geometry of a foliation, as given in this section.

2.1. Tangential and normal geometry.

Let TF denote the tangent bundle to F , and let Π: Q → M denote its normal

bundle, identified with the subbundle TF⊥ ⊂ TM of vectors orthogonal to TF . The

Riemannian metric on TM induces Riemannian metrics on both TF and Q by fiberwise

restriction. For a vector v⃗ ∈ TxM , let ∥v⃗∥ denote its length in the Riemannian metric.

Then for v⃗ ∈ TxF the length in the induced leafwise metric is also denoted by ∥v⃗∥.

For ϵ > 0, let T ϵM ⊂ TM denote the disk subbundle of vectors with length less

than ϵ, and let T ϵF ⊂ TF and Qϵ ⊂ Q be the corresponding ϵ-disk subbundles of TF
and Q, respectively.

Let dM : M ×M → [0,∞) be the distance function associated to the Riemannian

metric on M . Given r > 0 and a set K ⊂M , let

BM (K, r) = {y ∈M | dM (K, y) < r}. (1)
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For a leaf L ⊂ M , let dL : L × L → [0,∞) be the distance function on L for the

restricted Riemannian metric on L. That is, for x, x′ ∈ L the distance dL(x, x′) is the

infimum of the lengths of piece-smooth leafwise paths between x and x′. As L is compact,

the manifold L with the metric dL is a complete metric space, and the distance dL(x, x′)

is realized by a leafwise geodesic path from x to x′. We introduce the notation dF for

the collection of leafwise distance functions, where dF (x, y) = dL(x, y) if x, y ∈ L, and

otherwise dF (x, y) = ∞. Given r > 0 and a set K ⊂ L, let

BF (K, r) = {y ∈M | dF (K, y) < r} ⊂ L. (2)

Let exp = expM : TM → M denote the exponential map for dM which is well-

defined as M is compact. For x ∈ M , we let expM
x : TxM → M denote the exponential

map at x.

For x ∈ L, we let expF
x : TxL → L denote the exponential map for the leafwise

Riemannian metric. Then expF
x maps the ball BTxL(0, r) of radius r in TxL onto the set

BF (x, r).

We next choose ϵ0 > 0 so that it satisfies a sequence of conditions, as follows. For

each x ∈ M , the differential D0⃗ expM
x : TxM ∼= T0⃗(TxM) → TxM is the identity map.

It follows that there exists ϵx > 0 such that the restriction expM
x : T ϵx

x M → M is a

diffeomorphism. As M is compact, there exists ϵ0 > 0 such that for all x ∈ M , the

restriction expM
x : T ϵ0

x M → M is a diffeomorphism onto its image. Thus, ϵ0 is less than

the injectivity radius of the Riemannian metric on M (See [1], [9] for details of the

properties of the injectivity radius of the geodesic map).

We also require that ϵ0 > 0 be chosen so that for all x ∈M :

(ϵ1) The open ball BM (x, ϵ0) is a totally normal neighborhood of x for the metric dM .

This means that for any pair of points y, z ∈ BM (x, ϵ0) there is a unique geodesic

contained in BM (x, ϵ0) between y and z. In particular, BM (x, ϵ0) is geodesically

convex (See [9, p. 72]).

(ϵ2) The leafwise exponential map expF
x : T ϵ0

x F → Lx is a diffeomorphism onto its

image.

(ϵ3) BF (x, ϵ0) ⊂ Lx is a totally normal neighborhood of x for the leafwise metric dF .

Let expQ
x : Qx →M denote the restriction of expM

x to the normal bundle at x. Then

for all x ∈M , expQ
x : Qϵ0

x →M is a diffeomorphism onto its image. We also require that

ϵ0 > 0 satisfy:

(ϵ4) For all x ∈M , expQ
x : Qϵ0

x → M is transverse to F , and that the image expQ
x (Qϵ0

x )

of the normal disk has angle at least π/4 with the leaves of the foliation F .

We use the normal exponential map to define a normal product neighborhood of a

subset K ⊂ L for a leaf L. Given 0 < ϵ ≤ ϵ0, let Q(K, ϵ) → K denote the restriction

of the ϵ-disk bundle Qϵ → M to K. The normal neighborhood N (K, ϵ) is the image of

the map, expQ : Q(K, ϵ) → M . If K = {x} is a point and 0 < ϵ < ϵ0, then N (x, ϵ) is a

uniformly transverse normal disk to F .



1019(141)

Compact foliations with finite transverse LS category 1019

The restriction of the ambient metric dM to a leaf L need not coincide (locally) with

the leafwise geodesic metric dF – unless the leaves of F are totally geodesic submanifolds

of M . In any case, the Gauss Lemma implies that the two metrics are locally equivalent.

We require that ϵ0 > 0 satisfy:

(ϵ5) For all x ∈M , and for all y, y′ ∈ BF (x, ϵ0), then dF and dM are related by

dM (y, y′)

2
≤ dF (y, y′) ≤ 2 dM (y, y′). (3)

Let dvol denote the leafwise volume p-form associated to the Riemannian metric on

TF . Given any bounded, Borel subset A ⊂ L for the leafwise metric, define its leafwise

volume by vol (A) =
∫
A
dvol .

Let L ⊂ M be a compact leaf, then there exists 0 < ϵL < ϵ0 such that the normal

geodesic map expQ : Q(K, ϵL) → M is a diffeomorphism onto the open neighborhood

N (K, ϵL). We thus obtain a normal projection map along the normal geodesic balls to

points in L, which we denote by ΠL : N (K, ϵL) → L. Note that the restriction of ΠL to

L is the identity map.

Let F|N (K, ϵL) denote the restricted foliation whose leaves are the connected com-

ponents of the leaves of F intersected with N (K, ϵL). The tangent bundle to F|N (K, ϵL)

is just the restriction of TF to N (K, ϵL), so for x′ ∈ N (K, ϵL) and x = ΠL(x′), the dif-

ferential of ΠL induces a linear isomorphism DFΠL : Tx′F → TxL. Then the assumption

(ϵ4) on ϵ0 in Section 2.1, implies that DFΠL satisfies a Lipschitz estimate for some

constant C, which is the identity when restricted to the leaf tangent bundle TL.

We use this observation in two ways. For L ⊂ M a compact leaf, assume that

0 < ϵL ≤ ϵ0 satisfies, for x ∈ L and x′ ∈ N (K, ϵL) such that x = ΠL(x′):

(ϵ6) for the leafwise Riemannian volume p-form dvol F

dvol F |x′

2
≤ (DFΠL)∗(dvol F |x) ≤ 2 (dvol F |x′); (4)

(ϵ7) for the leafwise Riemannian norm ∥ · ∥F and v⃗′ ∈ Tx′F ,

∥v⃗′∥F
2

≤ ∥DFΠL(v⃗′)∥F ≤ 2 (∥v⃗′∥F ). (5)

2.2. Regular foliation atlas.

We next recall some basic properties of foliation charts. A regular foliation atlas for

F is a finite collection {(Uα, ϕα) | α ∈ A} so that:

(F1) U = {Uα | α ∈ A} is a covering ofM by C1,∞-coordinate charts ϕα : Uα → (−1, 1)m

where each Uα is a convex subset with respect to the metric dM .

(F2) Each coordinate chart ϕα : Uα → (−1, 1)m admits an extension to a C1,∞-coordi-

nate chart

ϕ̃α : Ũα → (−2, 2)m where Ũα is a convex subset containing the 2ϵ0-neighborhood

of Uα, so BM (Uα, ϵ0) ⊂ Ũα. In particular, the closure Uα ⊂ Ũα.
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(F3) For each z ∈ (−2, 2)q, the preimage P̃α(z) = ϕ̃−1
α ((−2, 2)p × {z}) ⊂ Ũα is the

connected component containing ϕ̃−1
α ({0} × {z}) of the intersection of the leaf of

F through ϕ−1
α ({0} × {z}) with the set Ũα.

(F4) Pα(z) and P̃α(z) are convex subsets of diameter less than 1 with respect to dF .

The construction of regular coverings is described in Chapter 1.2 of [3].

If the tangent bundle TF and normal bundle Q = TF⊥ to F are oriented, then we

assume that the charts in the regular covering preserve these orientations.

The inverse images

Pα(z) = ϕ−1
α ((−1, 1)p × {z}) ⊂ Uα

are smoothly embedded discs contained in the leaves of F , called the plaques associated

to the given foliation atlas. The convexity hypotheses in (F4) implies that if Uα∩Uβ ̸= ∅,

then each plaque Pα(z) intersects at most one plaque of Uβ . The analogous statement

holds for pairs Ũα ∩ Ũβ ̸= ∅. More generally, an intersection of plaques Pα1(z1) ∩ · · · ∩
Pαd

(zd) is either empty, or a convex set.

Recall that a Lebesgue number for the covering U is a constant ϵ > 0 so that for each

x ∈M there exists U ∈ U with BM (x, ϵ) ⊂ U . Every covering of a compact Riemannian

manifold (in fact, of a compact metric space) admits a Lebesgue number. We also require

that ϵ0 > 0 satisfy:

(ϵ8) 2ϵ0 is a Lebesgue number for the covering {Uα | α ∈ A} of M by foliation charts.

Then for any x ∈ M , the restriction of F to BM (x, ϵ0) is a product foliation, and by

condition (F1) the leaves of F | BM (x, ϵ0) are convex discs for the metric dF .

For each α ∈ A, the extended chart ϕ̃α defines a C1-embedding

t̃α = ϕ̃−1
α ({0} × ·) : (−2, 2)q → Ũα ⊂M

whose image is denoted by T̃α. We can assume that the images T̃α are pairwise disjoint.

Let tα denote the restriction of t̃α to (−1, 1)q ⊂ (−2, 2)q, and define Tα = tα(−1, 1)q.

Then the collection of all plaques for the foliation atlas is indexed by the complete

transversal

T =
∪
α∈A

Tα.

For a point x ∈ T , let Pα(x) = Pα(t−1
α (x)) denote the plaque containing x.

The Riemannian metric on M induces a Riemannian metric and corresponding dis-

tance function dT on each extended transversal T̃α. For α ̸= β and x ∈ Tα, y ∈ Tβ we

set dT (x, y) = ∞.

Given x ∈ T̃α and r > 0, let BT (x, r) = {y ∈ T̃α | dT (x, y) < r}.

Given a subset Z ⊂ Uα let ZP denote the union of all plaques in Uα having non-

empty intersection with Z. We set ZT = ZP ∩ Tα. If Z is an open subset of Uα, then

ZP is open in Uα and ZT is an open subset of Tα.
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Given any point w ∈ (−1, 1)p, we can define a transversal Tα(w) = ϕ−1
α ({w} ×

(−1, 1)). There is a canonical map ψw : Tα(w) → Tα(0) = Tα defined by, for y ∈ (−1, 1)q,

ψw(ϕ−1
α (w × {y})) = ϕ−1

α (0 × {y}). (6)

The Riemannian metric on M induces also induces a Riemannian metric and dis-

tance function on each transversal Tα(w). By mild abuse of notation we denote all such

transverse metrics by dT . Then by the uniform extension property of the foliation charts,

there exists a constant CT ≥ 1 so that for all α ∈ A, w ∈ (−1, 1)p and x, y ∈ Tα(w),

dT (x, y)

CT
≤ dT (ψw(x), ψw(y)) ≤ CT dT (x, y). (7)

We use the maps (6) to translate points in the coordinate charts Uα to the “center”

transversal Tα. The constant CT is a uniform estimate of the normal distortion introduced

by this translation.

We will also consider the normal geodesic ϵ-disk N (y, ϵ) at y = ϕ−1
α (w×0⃗), defined as

the image of the map expQ
y : Qϵ

y → N (y, ϵ), which for 0 < ϵ ≤ ϵ0 is uniformly transverse

to F .

Assume that the image N (y, ϵ) ⊂ Uα, then we can project it to the transversal Tα
along the plaques in Uα. Denote this projection by ΠF

α : N (y, ϵ) → Tα. We also assume

that the constant CT ≥ 1 is sufficiently large so that for all y ∈M , for all 0 < ϵ ≤ ϵ0, for

all α with N (y, ϵ) ⊂ Uα and for all z, z′ ∈ N (y, ϵ) we have

dM (z, z′)

CT
≤ dT (ΠF

α (z),ΠF
α (z′)) ≤ CT dM (z, z′). (8)

2.3. Transverse holonomy.

The main result of this section is the definition of the module of uniform continuity

function for elements of Hn
F , and its application in Lemma 2.1.

We first recall the definition of the holonomy pseudogroup of F . A pair of indices

(α, β) is said to be admissible if Uα∩Uβ ̸= ∅. Let Tαβ ⊂ Tα denote the open set of plaques

of Uα which intersect some plaque of Uβ . The holonomy transformation hαβ : Tαβ → Tβα
is defined by y = hαβ(x) if and only if Pα(x) ∩ Pβ(y) ̸= ∅. The finite collection

H1
F = {hαβ : Tαβ → Tβα | (α, β) admissible}. (9)

generates the holonomy pseudogroup HF of local homeomorphisms of T .

A plaque chain of length n, denoted by P, is a collection of plaques

{Pα0(z0),Pα1(z1), . . . ,Pαn(zn)}

satisfying Pαi(zi) ∩ Pαi+1(zi+1) ̸= ∅ for 0 ≤ i < n. Each pair of indices (αi, αi+1) is

admissible, so determines a holonomy map hαiαi+1 such that hαiαi+1(zi) = zi+1. Let hP
denote the composition of these maps, so that

hP = hαn−1αn ◦ · · · ◦ hα1α2 ◦ hα0α1 .
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Let Hn
F = {hP | P has length at most n} ⊂ HF denote the collection of maps

obtained from the composition of at most n maps in H1
F .

Each generator hαβ : Tαβ → Tβα is the restriction of the transition map h̃αβ : T̃αβ →
T̃βα defined by the intersection of the extended charts Ũα∩Ũβ . The domain Tαβ ⊂ T̃αβ is

precompact with BT̃ (Tαβ , ϵ0) ⊂ T̃αβ , so hαβ is a uniformly continuous homeomorphism

on its domain. That is, given any 0 < ϵ < ϵ0, there is a module of continuity µαβ(ϵ) > 0

such that for all x ∈ Tαβ

BT̃ (x, µαβ(ϵ)) ⊂ T̃αβ and h̃αβ(BT̃ (x, µαβ(ϵ))) ⊂ BT̃ (hαβ(x), ϵ).

For the admissible pairs (α, α) we set µαα(ϵ) = ϵ. Given 0 < ϵ ≤ ϵ0, define

µ(ϵ) = min{µαβ(ϵ) | (α, β) admissible} (10)

so that 0 < µ(ϵ) ≤ ϵ. Then for every admissible pair (α, β) and each x ∈ Tαβ the

holonomy map hαβ admits an extension to a local homeomorphism h̃αβ defined by the

holonomy of F , which satisfies h̃αβ(BT̃ (x, µ(ϵ))) ⊂ BT̃ (hαβ(x), ϵ).

For an integer n > 0 and 0 < ϵ ≤ ϵ0 recursively define µ(1)(ϵ) = µ(ϵ) and µ(n)(ϵ) =

µ(µ(n−1)(ϵ)), so that µ(n) denotes the n-fold composition. Then define

µ(n, ϵ) = min{ϵ, µ(ϵ), µ(µ(ϵ)), . . . , µ(n)(ϵ)}. (11)

Note that 0 < µ(ϵ) ≤ ϵ implies µ(n, ϵ) ≤ µ(n)(ϵ) ≤ ϵ.

Lemma 2.1. Given a plaque chain P of length n, and 0 < ϵ ≤ ϵ0 set δ = µ(n, ϵ).

Then for any x in the domain of hP , there is an extension to a local homeomorphism

h̃P defined by the holonomy of F whose domain includes the closure of the disk BT̃ (x, δ)

about x in T̃ , and

h̃P(BT̃ (x, δ)) ⊂ BT̃ (hP(x), ϵ). (12)

That is, µ(n, ϵ) is a module of uniform continuity for all elements of Hn
F .

Proof. For each 0 ≤ i < n, µ(n, ϵ) ≤ µ(i, ϵ) hence there is an extension of

hi = hαi−1αi ◦ · · · ◦ hα0α1

to h̃i whose domain includes the disk BT̃ (x, δ) about x. The image hi(BT̃ (x, δ)) is

contained in a ball of radius at most µ(n − 1, ϵ), so that we can continue the extension

process to hi+1. □

2.4. Plaque length and metric geometry.

We make two observations about the metric leafwise geometry of foliations [26]. In

particular, the technical result Proposition 2.3 below is a key fact for our proof of the

main result of this work.

Let γ : [0, 1] → L be a leafwise C1-path. Its leafwise Riemannian length is denoted

by ||γ||F .
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The plaque length of γ, denoted by ||γ||P , is the least integer n such that the image

of γ is covered by a chain of convex plaques

{Pα0(z0),Pα1(z1), . . . ,Pαn(zn)}

where γ(0) ∈ Pα0(z0), γ(1) ∈ Pα1(z1), and successive plaques Pαi(zi) ∩Pαi+1(zi+1) ̸= ∅.

Proposition 2.2. For any leafwise C1-path γ, ||γ||P ≤ ⌈(||γ||F/ϵ0)⌉. Moreover,

if γ is leafwise geodesic, then ||γ||F ≤ ||γ||P + 1.

Proof. Let N = ⌈(||γ||F/ϵ0)⌉ be the least integer greater than ||γ||F/ϵ0. Then

there exist points 0 = t0 < t1 < · · · < tN = 1 such that the restriction of γ to each

segment [ti, ti+1] has length at most ϵ0. The diameter of the set γ([ti, ti+1]) is at most ϵ0,

hence there is some Uαi ∈ U with γ([ti, ti+1]) ⊂ Uαi hence γ([ti, ti+1]) ⊂ Pα(zi) for some

zi. Thus, the image of γ is covered by a chain of convex plaques of length at most N .

Conversely, suppose γ is a leafwise geodesic and {Pα0(z0),Pα1(z1), . . . ,Pαn(zn)} is

a plaque chain covering the image γ([0, 1]). Each plaque Pαi(zi) is a leafwise convex

set of diameter at most 1 by the assumption (F4) in Section 2.2, so ||γ||F ≤ (n + 1) ≤
||γ||P + 1. □

The extension property (F2) in Section 2.2 implies that for all α ∈ A and z ∈
(−1, 1)q, the closure Pα(z) is compact, hence has finite leafwise volume which is uniformly

continuous with respect to the parameter z. Hence, there exist constants 0 < Cmin ≤
Cmax such that

Cmin ≤ vol (Pα(z)) ≤ Cmax, ∀α ∈ A, ∀z ∈ [−1, 1]q. (13)

We note a consequence of this uniformity which is critical to the proof of the main

theorem.

Proposition 2.3. Let M be a compact manifold. Then there exists a monotone

increasing function v : [0,∞) → [0,∞) such that if L is a compact leaf, then vol (L) ≤
v(diam (L)). Conversely, there exists a monotone increasing function R : [0,∞) → [0,∞)

such that if L is a compact leaf, then diam (L) ≤ R(vol (L)).

Proof. The holonomy pseudogroup of F has a finite set of generators, hence has

a uniform upper bound on the growth rate of words. This implies that given r > 0, there

exists a positive integer e(r) such that any subset of a leaf with leaf diameter at most r

can be covered by no more that e(r) plaques. Thus, if L is a leaf with diameter at most

r, then L has volume at most v(r) = Cmax · e(r).
Now suppose that L is a compact leaf with diameter r = diam (L). Then, for any

pair of points x, y ∈ L, there exists a length minimizing geodesic segment γ : [0, 1] → L

of length r = dF (x, y), with γ(0) = x and γ(1) = y. Let BF (γ, ϵ0) denote the leafwise ϵ0-

tubular neighborhood of the image of γ, defined by (2). Recall that the restricted metric

dF on leaves has uniformly bounded geometry. Then as ϵ0 is assumed in assumption

(ϵ2) of Section 2.1 to be less than the injectivity radius for the leafwise metric, and γ
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is a length-minimizing geodesic, there is a constant V0 > 0 so that the leafwise volume

vol (BF (γ, ϵ0)) ≥ V0 · r. Thus, vol (L) > V0 · diam (L), and then set R(v) = v/V0. □

2.5. Captured leaves.

The main result is Proposition 2.6, which shows that given a compact leaf L of F ,

and another compact leaf L′ which is sufficiently close to L at some point, where how

close depends on vol (L′), then L′ is “captured” by the holonomy of L. We require some

preliminary definitions and observations before giving the proof of this key fact.

Let L ⊂M be a compact leaf, and recall that in Section 2.1 the constant 0 < ϵL ≤ ϵ0
was defined so that there is a projection map ΠL : N (L, ϵL) → L along the transverse

geodesic ϵL-disks to L.

Next, recall that Proposition 2.2 shows that for any leafwise C1-path γ, we have the

upper bound ||γ||P ≤ ⌈(||γ||F/ϵ0)⌉ for the number of plaques required to cover γ.

Suppose that L is a compact leaf, and x ∈ L is a fixed basepoint, then for any y ∈ L

there is a leafwise geodesic γx,y : [0, 1] → L from x to y with ∥γ∥F ≤ diam (L). Thus,

γx,y can be covered by at most ⌈(||γ||F/ϵ0)⌉ plaques.

For n > 0, the number µ(n, ϵ0) ≤ ϵ0 was defined in (11), and the constant CT ≥ 1

was introduced in (7) and (8) as a bound on the distortion of the projection maps

ΠF
α0

: N (x, ϵ0) → Tα0 . Introduce the function ∆(r, ϵ) as given in the following:

Definition 2.4. For 0 < ϵ ≤ ϵ0 and r > 0,

∆(r, ϵ) ≡ µ(⌈r/ϵ0⌉ + 2, ϵ/CT )

CT
. (14)

We scale both the domain variable ϵ and the range value of µ by CT so that we

have uniform estimates for pairs of points in any geodesic normal ball in the chart, a fact

which will be used in the proofs of Lemma 2.5 and Proposition 2.6.

Lemma 2.5. Given 0 < ϵ ≤ ϵ0, and a leafwise C1-path γ : [0, 1] → L of length at

most r, the transverse holonomy along γ defines a smooth embedding

hγ : N (γ(0),∆(r, ϵ)) → N (γ(1), ϵ) , hγ(γ(0)) = γ(1).

Proof. For n = ||γ||P , let P = {Pα0(z0),Pα1(z1), . . . ,Pαn(zn)} be a covering of

γ by a plaque chain, with zi ∈ Tαi for 0 ≤ i ≤ n, as in the proof of Proposition 2.2. Set

x = γ(0) and y = γ(1), then x ∈ Pα0(z0) and y ∈ Pαn(zn).

The constant CT was chosen so that for the projection ΠF
α0

: N (x, ϵ0) → Tα0 , and

for x′ ∈ N (x, ϵ0), the condition (8) implies that

dM (x, x′)

CT
≤ dT (ΠF

α0
(x),ΠF

α0
(x′)) ≤ CT dM (x, x′). (15)

Likewise, for y′ ∈ N (y, ϵ0) we have

dM (y, y′)

CT
≤ dT (ΠF

αn
(y),ΠF

αn
(y′)) ≤ CT dM (y, y′). (16)
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Given x′ ∈ N (x,∆(r, ϵ)) then by (15), for x0 = ΠF
α0

(x) ∈ Tα0 and x′0 = ΠF
α0

(x′) ∈
Tα0 , we have

dT (x0, x
′
0) ≤ CT ∆(r, ϵ) = µ

(⌈ r
ϵ0

⌉
+ 2,

ϵ

CT

)
.

Then by Lemma 2.1 and the inclusion (12), we have that dT (hP(x),hP(x′)) ≤ ϵ/CT .

Observe that hP(x) = ΠF
αn

(γ(1)) and so we set hγ(x′) = (ΠF
αn

)−1(hP(x′)). Then

formula (16) implies that dM (hγ(x),hγ(x′)) ≤ ϵ, and so hγ(x′) ∈ N (y, ϵ) as was to be

shown. □

We apply Lemma 2.5 to obtain the following “captured leaf” property.

Proposition 2.6. Let L be a compact leaf of F , with the constant 0 < ϵL ≤ ϵ0
as introduced in Section 2.1. Given Λ > 0 , there exists 0 < δΛ ≤ ϵL so that if L′ is a

compact leaf with volume vol (L′) ≤ Λ and L′ ∩N (L, δΛ) ̸= ∅, then L′ ⊂ N (L, ϵL).

Proof. Let R(Λ) be the constant introduced in Proposition 2.3, so that vol (L′) ≤
Λ implies that diam (L′) ≤ R(Λ), and set δΛ = ∆(R(Λ), ϵL/2). Note that µ(n, ϵ) ≤ ϵ

implies δΛ ≤ ϵL/2 ≤ ϵ0/2.

Recall that by condition (ϵ1) in Section 2.1, given any two points y, z ∈ BM (x, ϵ0),

there is a unique geodesic for the metric dM between y and z.

Given that L′ ∩ N (L, δΛ) ̸= ∅, there exists x ∈ L such that there exists y′ ∈
L′ ∩ N (x, δΛ). Let Ky′ ⊂ L′ ∩ BM (x, ϵ0) be the connected component containing y′.

Then there exists a point y ∈ Ky′ which minimizes dM (x, y), and by the choice of y′ we

have dM (x, y) ≤ ϵL/2 ≤ ϵ0/2. This implies that y is an interior point for Ky′ hence the

geodesic from x to y is contained in BM (x, ϵ0) and intersects Ky′ orthogonally. Thus,

x ∈ N (y, δΛ).

Let z ∈ L′, then there is a leafwise geodesic path γy,z : [0, 1] → L′ with ∥γy,z∥F ≤
R(Λ), y = γy,z(0) and z = γy,z(1). Then by Lemma 2.5, the holonomy map

hγy,z : N (y, δΛ) → N (z, ϵL) is well-defined.

As x ∈ L ∩ N (y, δΛ) then x′ = hγy,z (x) ∈ Lx ∩ N (z, ϵΛ). Thus, z ∈ BM (x′, ϵΛ) ⊂
N (L, ϵL).

It follows that L′ ⊂ N (L, ϵL), as was to be shown. □

Proposition 2.6 has the following useful consequence.

Corollary 2.7. Let L0 be a compact leaf of F . Given Λ > 0, there exists 0 <

δΛ < ϵL0 so that if L1 is a compact leaf with volume vol (L1) < Λ and L1∩N (L0, δΛ) ̸= ∅,
then L1 ⊂ N (L0, ϵL0). Moreover, the projection map ΠL0 : N (L0, ϵL0) → L0 restricted

to L1 is a covering map onto L0. Furthermore, if the tangent bundle TF is orientable,

then vol (L1) ≤ 2 d∗ vol (L0) where d∗ is the homological degree of the covering map

ΠL0
: L1 → L0.

Proof. Let δΛ be as defined in Proposition 2.6, then L1 ⊂ N (L0, ϵL0) follows.

By the assumption (ϵ4) in Section 2.1, the leaves of F are uniformly transverse to

the fibers of ΠL0 : N (L0, ϵL0) → L0, so the restriction to L1 is a covering map. As L0
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and L1 are compact, the map ΠL0 : L1 → L0 is onto. Assume that the tangent bundle

TF is oriented, then we can choose a positively-oriented Riemannian volume form on the

leaves of F , whose restriction to a leaf L is denoted by ωL. We have that vol (L) =
∫
L
ωL,

so the closed p-form vol (L)−1 · ωL on L is dual to the fundamental class [L]. Thus, the

homological degree d∗ of ΠL0 : L1 → L0 is given by

d∗ =

∫
L1

Π∗
L0

(vol (L0)−1 · ωL0) = vol (L0)−1 ·
∫
L1

Π∗
L0

(ωL0). (17)

Condition (ϵ6) of Section 2.1 gives that for x′ ∈ L1 and x = ΠL0(x′) ∈ L0 we have

1

2
· ωL1 |x′ ≤ Π∗

L0
(ωL0)|x ≤ 2 · ωL1 |x′ , (18)

and thus

1

2
· vol (L1) =

1

2
·
∫
L1

ωL1 ≤
∫
L1

Π∗
L0

(ωL0) ≤ 2 ·
∫
L1

ωL1 = 2 · vol (L1). (19)

By (17) we have d∗ · vol (L0) =
∫
L1

Π∗
L0

(ωL0) and thus vol (L1) ≤ 2 d∗ · vol (L0). □

3. Properties of compact foliations.

In this section, F is assumed to be a compact foliation of a manifold M without

boundary. The geometry of compact foliations has been studied by Epstein [11], [12],

Millett [22], Vogt [33], [34], [35] and Edwards, Millett and Sullivan [10]. We recall some

of their results.

3.1. The good and the bad sets.

Let vol (L) denote the volume of a leaf L with respect to the Riemannian metric

induced from M . Define the volume function on M by setting v(x) = vol (Lx). Clearly,

the function v(x) is constant along leaves of F , but need not be continuous on M .

The bad set X1 of F consists of the points y ∈ M where the function v(x) is not

bounded in any open neighborhood of y. By its definition, the bad set X1 is saturated.

Note also that

X1 =

∞∪
n=1

X1 ∩ vol −1(0, n].

The leaves in the intersection X1 ∩ vol −1(0, n] have volume at most n, while v(x) is not

locally bounded in any open neighborhood of y ∈ X1, therefore each set X1 ∩vol −1(0, n]

has no interior. By the Baire category theorem, X1 has no interior.

The complement G = M∖X1 is called the good set. The holonomy of every leaf L ⊂
G is finite, thus by the Reeb Stability Theorem, L has an open saturated neighborhood

consisting of leaves with finite holonomy. Hence, G is an open set, X1 is closed, and the

leaf space G/F is Hausdorff.

Inside the good set is the open dense saturated subset Ge ⊂ G consisting of leaves

without holonomy. Its complement Gh = G∖Ge consists of leaves with non-trivial finite
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holonomy.

3.2. The Epstein filtration.

The restriction of the volume function v(x) to X1 again need not be locally bounded,

and the construction of the bad set can be iterated to obtain the Epstein filtration:

M = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xα ⊃ · · · .

The definition of the sets Xα proceeds inductively: Let α > 1 be a countable ordinal,

and assume that Xβ has been defined for β < α. If α is a successor ordinal, let α = γ+ 1

and define Xα to be the closed saturated set of y ∈ Xγ where the function v(x) is not

bounded in any relatively open neighborhood of y ∈ Xγ in Xγ .

If α is a limit ordinal, then define Xα =
∩

β<αXβ .

For β < α, the set Xα is nowhere dense in Xβ . Note that since each set M ∖Xα is

open, the filtration is at most countable. The filtration length of F is the ordinal α such

that Xα ̸= ∅ and Xα+1 = ∅.

Vogt [35] showed that for any finite ordinal α, there is a compact foliation of a

compact manifold with filtration length α. He also remarked that given any countable

ordinal α, the construction can be modified to produce a foliation with filtration length

α. Such examples show that the bad set X1 and the subspaces Xα need not be finite

unions or intersections of submanifolds; they may have pathological topological structure,

especially when the filtration length is an infinite ordinal.

3.3. Regular points.

A point x ∈ X1 is called a regular point if the restricted holonomy of F|X1 is trivial

at x. Equivalently, the regular points are the points of continuity for the restricted

volume function v|X1 : X1 → R. If X1 ̸= ∅, then the regular points form an open and

dense subset of X1 ∖X2. We recall a key result of Edwards, Millett, and Sullivan (see

Section 5 of [10]).

Proposition 3.1 (Moving Leaf). Let F be a compact foliation of an oriented

manifold M with orientable normal bundle. Suppose that X1 is compact and non-empty.

Let x ∈ X1 be a regular point. Then there exists a leaf L ⊂ Ge and a smooth isotopy

h : L× [0, 1) → Ge such that :

• For all 0 ≤ t < 1, ht : L→ Lt ⊂M is a diffeomorphism onto its image Lt.

• Lx is in the closure of the leaves
∪

t>1−δ Lt for any δ > 0.

• lim supt→1 vol (Lt) = ∞.

While the “moving leaf” Lt limits on X1, the moving leaf cannot accumulate on

a single compact leaf of X1. This follows because a compact leaf L admits a relative

homology dual cycle, which for ϵ > 0 sufficiently small and x ∈ L, is represented by

the transverse disk BT (x, ϵ). This disk intersects L precisely in the point x, hence the

relative homology class [BT (x, ϵ), ∂BT (x, ϵ)] is Poincaré dual to the fundamental class

[L]. Assuming that {Lt} limits on L, for t < 1 sufficiently close to 1, each Lt ⊂ N (L, ϵ)
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and so the intersection number [Lt ∩BT (x, ϵ)] = [Lt]∩ [BT (x, ϵ), ∂BT (x, ϵ)] is constant.

Thus the leaves {Lt} have bounded volume as t→ 1, which is a contradiction.

It is precisely this “non-localized limit behavior” for leaves with unbounded volumes

approaching the bad set which makes the study of compact foliations with non-empty bad

sets so interesting, and difficult. There seem to be no results in the literature describing

how these paths of leaves must behave in the limit.

3.4. Structure of the good set.

Epstein [12] and Millett [22] showed that for a compact foliation F of a manifold

V , then

v(x) is locally bounded ⇔ V/F is Hausdorff ⇔ the holonomy of every leaf is finite.

By definition, the leaf volume function is locally bounded on the good set G, hence

the restriction of F to G is compact Hausdorff, and all leaves of F|G have finite holonomy

group. Epstein and Millett showed there is a much more precise structure theorem for

the foliation F in an open neighborhood of a leaf of the good set:

Proposition 3.2. Let V denote an open connected component of the good set G,

and Ve = V ∩ Ge the set of leaves with no holonomy. There exists a “generic leaf”

L0 ⊂ Ve, such that for each x ∈ V with leaf Lx containing x,

1. there is a finite subgroup Hx of the orthogonal group O(q) and a free action αx of

Hx on L0,

2. there exists a diffeomorphism of the twisted product

ϕx : L0 ×Hx Dq → Vx (20)

onto an open saturated neighborhood Vx of Lx (where Dq denotes the unit disk in

Rq ),

3. the diffeomorphism ϕx is leaf preserving, where L0×Hx Dq is foliated by the images

of L0 × {w} for w ∈ Dq under the quotient map Q : L0 × Dq → L0 ×Hx Dq,

4. ϕx maps L0/Hx
∼= L0 ×Hx

{0} diffeomorphically to Lx.

In particular, if x ∈ Ve then Hx is trivial, and ϕx is a product structure for a neighborhood

of Lx.

The open set Vx is called a standard neighborhood of Lx, and the 4-tuple

(Vx, ϕx,Hx, αx) is called a standard local model for F . Note that, by definition, Vx ⊂ G

hence Vx ∩X1 = ∅.

The Hausdorff space G/F is a Satake manifold; that is, for each point b ∈ G/F and

π(x) = b the leaf Lx has an open foliated neighborhood Vx as above, and ϕx : L0×HxDq →
Vx induces a coordinate map φb : Dq/Hx → Wb, where Wb = π(Vx). The open sets

Wb ⊂ G/F are called basic open sets for G/F . Note also that π is a closed map

[12], [22].
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4. Properties of foliated homotopies.

In this section, we study some of the geometric and topological properties of a

foliated homotopy of a compact leaf. These results play an essential role in our proof

of Proposition 6.3, and hence of Theorem 1.2. The main result of this section yields an

upper bound on both the volumes of the compact leaves and the topological degrees of

the covering maps which arise in a homotopy of a compact leaf. Note that the results

of this section apply for all C1-foliations of a manifold M . We first recall a “stability”

result from the work [18].

Theorem 4.1 ([18, Corollary 1.4]). Let F be a C1 foliation of a compact manifold

M . Let L be a compact leaf, and H : L× [0, 1] →M be a foliated homotopy for which H0

is the inclusion map. Then for all 0 ≤ t ≤ 1, the image Ht(L) is contained in a compact

leaf Lt of F , and moreover, the map Ht : L→ Lt is surjective.

The following technical result is at the heart of the proof of Theorem 1.2.

Proposition 4.2. Let F be a C1 foliation of a manifoldM , and let L be a compact

leaf. Suppose that H : L× [0, 1] →M is a foliated homotopy for which H0 is the inclusion

map, and let Lt denote the compact leaf containing Ht(L). Assume that both the tangent

bundle TF and the normal bundle Q to F are oriented. Then there exists d∗ > 0,

depending on H and L, such that

1 ≤ deg(Ht : L0 → Lt) ≤ d∗. (21)

Moreover, there exists an integer k ≥ 0 such that

vol (Lt) ≤ 4kd∗ · vol (L), for all 0 ≤ t ≤ 1. (22)

Proof. Let 0 ≤ t ≤ 1, then there exists 0 < ϵt = ϵLt ≤ ϵ0 such that we have

a normal ϵt-bundle projection map ΠLt : N (Lt, ϵt) → Lt. The subset N (Lt, ϵt) ⊂ M is

open, and H is uniformly continuous, so there exists δt > 0 such that Hs(L) ⊂ N (Lt, ϵt)

for all t − δt < s < t + δt. For such s, the map Hs : L0 → Ls is onto, so the leaf

Ls ⊂ N (Lt, ϵt), hence the restriction ΠLt : Ls → Lt is a covering map.

The maps Hs,Ht : L0 → N (Lt, ϵt) are homotopic in N (Lt, ϵt), hence for their in-

duced maps on fundamental classes, their degrees satisfy

deg(Ht : L0 → Lt) = deg(ΠLt : Ls → Lt) · deg(Hs : L0 → Ls). (23)

The homological degree of a covering map equals its covering degree, thus the covering

degree of ΠLt : Ls → Lt divides the homological degree of deg(Ht : L0 → Lt).

The collection of open intervals {It = (t − δt, t + δt) | 0 ≤ t ≤ 1} is an open

covering of [0, 1], so there exists a finite set {0 = t0 < t1 < · · · < tk−1 < tk = 1} so

that the collection {Iti | 0 ≤ i ≤ k} is a finite covering of [0, 1]. Choose a sequence

{0 < s1 < · · · < sk−1 < 1} such that

tℓ−1 < sℓ < tℓ, tℓ − δtℓ < sℓ < tℓ−1 + δtℓ−1
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and hence sℓ ∈ Itℓ−1
∩ Itℓ . Thus for the choices of the constants δt for each 0 < ℓ < k,

we have the inclusions Lsℓ ⊂ N (Ltℓ−1
, ϵtℓ−1

)∩N (Ltℓ , ϵtℓ). Thus, there are finite covering

maps

ΠLtℓ−1
: Lsℓ → Ltℓ−1

, ΠLtℓ
: Lsℓ → Ltℓ , for each 1 ≤ ℓ < k − 1. (24)

The collection of maps (24) is called a geometric correspondence from L0 to L1. We have

shown:

Lemma 4.3. Let F be a C1 foliation of M , L a compact leaf of F , and H : L ×
[0, 1] → M a foliated homotopy for which H0 is the inclusion map. Then there exists a

geometric correspondence from L0 = L to L1 = H1(L).

Introduce the following integer constants associated to a correspondence (24), for

0 < ℓ < k:

aℓ = deg(ΠLtℓ−1
: Lsℓ → Ltℓ−1

) (25)

bℓ = deg(ΠLtℓ
: Lsℓ → Ltℓ). (26)

Note that aℓ and bℓ are equal to the covering degrees of the covering maps in (25) and

(26), and that a1 = 1 as the leaf Ls1 must be a diffeomorphic covering of L0. Then the

choice of each ϵt ≤ ϵ0 we can apply the Condition (ϵ6) of Section 2.1 and the estimate

(19) in the proof of Corollary 2.7, to obtain for 1 ≤ ℓ < k,

aℓ
2

· vol (Ltℓ−1
) ≤ vol (Lsℓ) ≤ 2aℓ · vol (Ltℓ−1

)

bℓ
2
· vol (Ltℓ) ≤ vol (Lsℓ) ≤ 2bℓ · vol (Ltℓ).

Combine these sequences of upper and lower estimates to obtain the estimate:

4−k b1 . . . bk−1

a1 . . . ak−1
· vol (L0) ≤ vol (L1) ≤ 4k

a1 . . . ak−1

b1 . . . bk−1
· vol (L0). (27)

Set d∗ = (a1 . . . ak−1)/(b1 . . . bk−1) and we obtain the estimate (22) for t = 1. The

uniform bound (21) follows from the argument above, considering only the homological

degrees of the covering maps and ignoring the volume estimates. A minor modification of

the above arguments also yields these estimates for the values 0 < t < 1. This completes

the proof of Proposition 4.2. □

5. Tame points in the bad set.

In this section, we introduce the concept of a “tame point” in the bad set X1, which

is a point x ∈ X1 that can be approached by a path in the good set. The main result

of this section proves the existence of tame points, using a more careful analysis of the

ideas of the Moving Leaf Proposition 3.1. Tame points are used in section 6 for studying

the deformations of the bad set under foliated homotopy.

Recall that the “good set” G ⊂ M is the union of leaves whose holonomy group is
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finite, and its complement is the bad set X1 ⊂M which is the union of the points y ∈M

where the leaf volume function v(x) is not bounded in any open neighborhood of y. Then

there is an open dense saturated subset Ge ⊂ G consisting of leaves without holonomy.

The bad set X1 is closed, saturated and has no interior. A point x1 ∈ X1 is said to

be regular if the restriction to X1 of leaf volume function v : X1 → R+ is continuous at

x1. Equivalently, x1 ∈ X1 is a regular point if the holonomy of the restriction of F to

X1 is trivial in some relatively open neighborhood of x1 ∈ X1.

Definition 5.1. A regular point x1 ∈ X1 is tame if there exists ϵ > 0 and a

transverse C1-path

γ : [0, 1] → (N (x1, ϵ) ∩Ge) ∪ {x1} (28)

with γ(t) ∈ Ge for 0 ≤ t < 1, γ(1) = x1 and such that v(γ(t)) tends uniformly to infinity

as t→ 1.

Let Xt
1 ⊂ X1 denote the subset of tame points.

Since the restricted path γ : [0, 1) → Ge lies in the set of leaves without holonomy, it

follows that there is a foliated isotopy Γ: Lγ(0) × [0, 1) → Ge such that Γt(γ(0)) = γ(t).

Thus, a tame point x is directly approachable by a family of moving leaves whose volumes

tend uniformly to infinity.

In the examples constructed by Sullivan [30], it is easy to see that every regular point

is a tame point. In general, though, Edwards, Millet, and Sullivan specifically point out

that their proof of the Moving Leaf Proposition 3.1 in [10] does not claim that a regular

point is a tame point. The problem is due to the possibility that the complement of the

bad set need not be locally connected in a neighborhood of a point in the bad set. In

their proof, the moving leaf is defined by a curve that follows an end ω of the good set

out to infinity, passing through points where the volume is tending to infinity along the

way. This end ω of the good set is contained in arbitrarily small ϵ-neighborhoods of the

bad set, but they do not control the behavior of the end. Thus, the existence of a tame

point is asserting the existence of a “tame end” of the good set on which the volume

function is unbounded, and which is defined by open neighborhoods of some point in the

bad set.

Proposition 5.2. Let F be a compact, C1-foliation of a manifold M , and assume

that the tangent bundle TF and the normal bundle Q to F are oriented. Then the set of

tame points Xt
1 is dense in X1.

The proof of this result involves several technical steps, so we first give an overview of

the strategy of the proof. Let x1 ∈ X1 be a regular point, and L1 the leaf through x1. We

use a key result in the proof of the Moving Leaf Lemma to obtain an open neighborhood

U of x1 in its transversal space, on which the volume function is unbounded. We then

choose a regular point x∗ ∈ U ∩ X1 which is sufficiently close to x1, so that the leaf

L∗ through x∗ is a diffeomorphic covering of the leaf L1. Moreover, the point x∗ is

approachable by a path in the good set. Then we argue by contradiction, that if the

leaf volume function does not tend uniformly to infinity along this path, then each leaf
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through a point in the set U ∩G is also a covering space of L1 with uniformly bounded

covering degree, from which we conclude that the volume function is bounded on the

leaves through points in U , contrary to choice. It follows that x∗ is a tame point which is

arbitrarily close to x1. The precise proofs of these claims requires that we first establish

some technical properties of the foliation F in a normal neighborhood of L1.

5.1. Technical preliminaries.

The leaf L1 is compact, hence has finitely-generated fundamental group. Thus, we

can choose a finite generating set {[τ1], . . . , [τk]} for π1(L1, x1), where [τi] is represented

by a smooth closed path τi : [0, 1] → L1 with basepoint x1. Let ∥τi∥ denote the path

length of τi. Then set

DL1 = 2 max {diam (L1), ∥τ1∥, . . . , ∥τk∥} . (29)

Recall that in Section 2.1, given a compact leaf L the constant 0 < ϵL ≤ ϵ0 was

defined so that there is a projection map ΠL : N (L, ϵL) → L along the transverse geodesic

ϵL-disks to L. Set ϵ1 = ϵL1 so that the normal projection map ΠL1 : N (L1, ϵ1) → L1

is well-defined. Then set ϵ2 = ∆(DL1 , ϵ1) where ∆(DL1 , ϵ1) is defined in Definition 2.4.

Then by Lemma 2.5, for any path σ : [0, 1] → L1 with σ(0) = x1 and ∥σ∥ ≤ DL1 the

transverse holonomy maps are defined for all 0 ≤ t ≤ 1,

hσ : N (x1, ϵ2) → N (σ(t), ϵ1). (30)

In particular, the holonomy map hi along each closed path τi is defined on the transverse

disk N (x1, ϵ2). That is, the transverse holonomy along τi is represented by a local

homeomorphism into

hi : N (x1, ϵ2) → N (x1, ϵ1). (31)

The assumption that x1 ∈ X1 is a regular point implies that the germinal holonomy

at x1 of the restricted foliation F|X1 is trivial. Thus we can choose 0 < 2δ ≤ ϵ2
sufficiently small, so that each holonomy map hi restricted to X1 ∩ N (x1, 2δ) is the

identity map. It follows that the holonomy of F restricted to the closure

Z1 = X1 ∩N (x1, δ) = X1 ∩N (x1, δ) ⊂ X1 ∩N (x1, 2δ) (32)

is trivial. Hence, every point in Z1 is a regular point of the bad set. It follows that

the saturation ZF of Z1 is a fibration over the closed set Z1, and that the leaf volume

function v(y) is uniformly continuous and hence bounded on the compact set Z1. Thus,

we may assume that δ is sufficiently small so that ZF ⊂ N (L1, ϵ1). That is, for each

z ∈ Z1 the leaf Lz ⊂ N (L1, ϵ1).

Next consider the properties of the normal projection ΠL1 : N (L1, ϵ1) → L1 when

restricted to leaves in N (L1, ϵ1). The restriction πz ≡ Π|Lz : Lz → L1 is a covering

projection, which is a diffeomorphism as F|Z1 has no holonomy, and by the assumption

that ϵ1 ≤ ϵ0, the estimate (5) implies the map πz is a quasi-isometry with expansion

constant bounded by 2.

Note that N (x1, 2δ) is contained in the normal transversal N (x1, ϵ1), so by definition
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for z ∈ Z1 we have πz(z) = x1, and thus given a path σ : [0, 1] → L1 with σ(0) = x1,

there is a lift σz : [0, 1] → Lz with σz(0) = z and πz ◦ σz(t) = σ(t) for all 0 ≤ t ≤ 1. In

particular, the closed loop τi lifts via πz to a closed loop τzi : [0, 1] → Lz with endpoints

z. The homotopy classes of the lifts, {[τz1 ], . . . , [τzk ]}, yield a generating set for π1(Lz, z),

which have a uniform bound ∥τzi ∥ ≤ DL1 on their path lengths.

For an arbitrary point y0 ∈ N (x1, δ) and path σ : [0, 1] → L1 with σ(0) = x1 and

path length ∥σ∥ ≤ DL1 , by the choice of δ the transverse holonomy map in (30) is

defined at y0 hence there is a lift of the path σ to a path σy : [0, 1] → Ly ∩ N (L1, ϵ1)

with σy(0) = y0 and πy ◦ σy(t) = σ(t) for all 0 ≤ t ≤ 1. This lifting property need not

hold for paths longer than DL1 , as there may be leaves of F which intersect the normal

neighborhood N (L1, δ) but are not contained in N (L1, ϵ1).

We observe a technical point about the distances in the submanifold N (x1, ϵ1) ⊂M .

The inclusion N (x1, ϵ1) ⊂ M induces a Riemannian metric on N (x1, ϵ1) which then

defines a path-length distance function on this subspace. Unless N (x1, ϵ1) is a totally

geodesic submanifold of M , the induced distance function on N (x1, ϵ1) need not agree

with the restricted path-length metric from M . For y ∈ N (x1, ϵ1) and 0 < λ ≤ ϵ1, let

BT (y, λ) ⊂ N (x1, ϵ1) denote the open ball of radius λ about y for the induced Riemannian

metric on N (x1, ϵ1).

Now consider an arbitrary point y ∈ N (x1, δ) and assume that Ly ⊂ N (L1, δ),

so that Ly is in the domain of the projection ΠL1 : N (L1, ϵ1) → L1. Given a path

σ : [0, 1] → Ly with σ(0) = y, then Lemma 2.5 implies that there exists 0 < λ < δ, which

depends on the length ∥σ∥, so that for y′ ∈ BT (y, λ) there is a path σy′
: [0, 1] → Ly′

satisfying ΠLy (σ(t)) = ΠLy (σy′
(t)) for 0 ≤ t ≤ 1. We call the path σy′

a lifting of σy

from Ly to Ly′ .

5.2. Proof of Proposition 5.2.

We first recall a key fact from the proof in [10] of the Moving Leaf Proposition 3.1,

whose proof was in turn based on ideas of Montgomery [24] and Newman [25] (In par-

ticular, Figure 3 on page 23 of [10] and the arguments following it are pertinent).

Lemma 5.3. For δ > 0 sufficiently small, there is an open connected component U

of N (x1, δ)∖Z1 on which the volume function v(y) is unbounded on the open neighborhood

U ∩N (x1, δ/2).

Next, fix a choice of regular point x1 ∈ X1 and sufficiently small constant δ > 0 as

above so that (32) holds, then choose a point y0 ∈ U ∩ N (x1, δ/2). Let x∗ ∈ Z1 be a

closest point to y0 for the induced metric on N (x1, δ). That is, consider the sequence of

closed balls BT (y0, λ) ⊂ N (x1, δ) ∖ Z1 for λ > 0, expanding until there is a first contact

with the frontier of U , then x∗ is contained in this intersection. Let δ0 ≤ δ/2 denote

the radius of first contact, hence δ0 equals the distance from y0 to x∗ in the induced

path-length metric on N (x1, ϵ1). Then BT (y0, δ0) ⊂ U and x∗ ∈ BT (y0, δ0)∩Z1 (This is

illustrated in Figure 1 below). Let L∗ = Lx∗ denote the leaf containing x∗.

We claim that x∗ is a tame point. As δ > 0 was chosen to be arbitrarily small, and

the regular points are dense in the bad set, the proof of Proposition 5.2 then follows from

this claim.
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Figure 1. A tame point in the bad set.

By the choice of BT (y0, δ0) ⊂ U , there is a path γ : [0, 1] → N (x1, δ) such that

γ(0) = y0, γ(1) = x∗ and γ[0, 1) ⊂ BT (y0, δ0). The complement of X1 is the good

set, hence the image γ[0, 1) ⊂ G. The set of leaves with holonomy Gh in G is a union

of submanifolds with codimension at least 2 by Proposition 3.2. Thus, by a small C1-

perturbation of the path γ in U , we can assume that its image is disjoint from the set

Gh. That is, γ(t) ∈ Ge for all 0 ≤ t < 1, and γ(1) ∈ L∗. Let Lt denote the leaf

containing γ(t).

We claim that the volumes of the leaves Lt tend uniformly to infinity. Assume not,

so there exists a constant Vmax > 0 and a sequence 0 < t1 < · · · < tn · · · → 1 such that

xn = γ(tn) → x∗ and the volumes of the leaves Ln = Lxn are bounded above by Vmax.

We show this yields a contradiction to our assumptions. What we show in the following

is that if there exists a leaf Ly for y ∈ U ∩ Ge sufficiently close to L∗ with prescribed

bounded volume, then using Proposition 2.6 and Corollary 2.7, we show this implies that

all leaves intersecting U have bounded volume, which yields the contradiction.

Proposition 5.4. For Vmax > 0, there is an ϵ∗ > 0 so that if there exists y ∈
U ∩ Ge such that d(y, x∗) < ϵ∗ and vol (Ly) ≤ Vmax, then for all y′ ∈ U , the leaf Ly′

containing y′ has the volume bound vol (Ly′) ≤ 2Vmax.

Proof. By Proposition 2.3, there is a function R : [0,∞) → [0,∞) such that if

L ⊂M satisfies vol (L) ≤ Vmax then diam (L) ≤ D∗ ≡ R(Vmax).

Recall that δ was chosen so that 2δ ≤ ϵ2 where ϵ2 = ∆(DL1 , ϵ1) was defined after

(29), and so that (32) holds, hence ZF ⊂ N (L1, ϵ1). Thus by the choice x∗ ∈ BT (y0, δ0)∩
Z1, we have that L∗ = Lx∗ ⊂ N (L1, ϵ1). Let π∗ = πx∗ : L∗ → L1 denote the normal

projection, whose restriction to L∗ is a covering map, which is a diffeomorphism as

x∗ ∈ Z1.

We next choose y ∈ U ∩Ge which is sufficiently close to L∗ so that Ly ⊂ N (L1, ϵ1)

and the holonomy maps of L∗ based at x∗ are defined on Ly. This will imply that Ly is

a finite covering of L∗.

For each 1 ≤ i ≤ k, let τ∗i : [0, 1] → L∗ be the lift of τi with basepoint x∗. By the

definition of DL1 in (29) and the estimate (5), each lifted path has bounded length ∥τ∗i ∥ ≤
DL1 and their homotopy classes {[τ∗1 ], . . . , [τ∗k ]} form a generating set for π1(L∗, x∗).
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Denote the holonomy along τ∗i by h∗
i .

As L∗ ⊂ N (L1, ϵ1), there exists 0 < ϵ3 ≤ ϵ2 be such that N (L∗, ϵ3) ⊂ N (L1, ϵ1).

Set ϵ∗ = ∆(DL1
, ϵ3).

By assumption, there exists y ∈ U ∩Ge ∩ BT (x∗, ϵ∗) with vol (Ly) ≤ Vmax, and by

the choice of ϵ∗ we have Ly ⊂ N (L∗, ϵ3). Then the holonomy h∗
i along τ∗i is represented

by a map

h∗
i : N (x∗, ϵ∗) → N (x∗, ϵ3) ⊂ N (x1, ϵ2). (33)

Moreover, the bound ∥τ∗i ∥ ≤ DL1 implies that the map h∗
i extends to a map

h∗
i : N (x∗, ϵ2) → N (x∗, ϵ1). (34)

As Ly is a compact leaf, its intersection with the transversal N (x∗, ϵ3) is a finite set,

denoted by

Fy = Ly ∩N (x∗, ϵ3). (35)

Then for each 1 ≤ i ≤ k, by (34) the holonomy map h∗i satisfies h∗i (Fy) ⊂ Ly∩N (x∗, ϵ3) =

Fy. Thus, the finite set of points Fy is permuted by the action of a set of generators for

π1(L∗, x∗). Thus, compositions of the generators are defined on the set Fy. That is, for

any w ∈ π1(L∗, x∗) the holonomy h∗w along w contains the finite set Fy in its domain.

Let H∗ ⊂ π1(L∗, x∗) denote the normal subgroup of finite index consisting of all words

whose holonomy fixes every point in Fy.

Let z ∈ Fy. For each w ∈ H∗, the holonomy h∗
w map is defined at z, and so must

be defined on some open neighborhood z ∈ V w
z ⊂ U of z, where the diameter of the

set V w
z depends on z and w. As y ∈ U ∩ Ge the leaf Ly ⊂ Ge is without holonomy, so

the restriction of h∗
w to the open set V w

z must fix an open neighborhood in N (x∗, ϵ1) of

z ∈ Uw
z ⊂ V w

z . Thus, the fix-point set of h∗
w contains an open neighborhood of Fy in

N (x∗, ϵ1). Since y ∈ Ly ∩ N (x∗, ϵ3) = Fy, we have in particular that there is an open

neighborhood y ∈ Uw
y ⊂ U ∩BT (x∗, ϵ∗) contained in the fixed-point set for h∗

w.

We next use these conclusions for the holonomy of the leaf L∗ to deduce properties

of the holonomy for the leaf L1. Recall that N (L∗, ϵ3) ⊂ N (L1, ϵ1), and each path

τ∗i in L∗ is the lift of the path τi in L1 via the covering map π∗ ≡ Π|L∗ : L∗ → L1.

Thus, the holonomy map h∗
i on N (x∗, ϵ3) is the restriction of the map hi to N (x∗, ϵ3).

Consequently, the restriction of hi to the open set BT (x∗, ϵ3) ⊂ N (x1, ϵ2) equals the

restriction in (33) of h∗
i to N (x∗, ϵ∗). In particular, hw is defined on and fixes the open

set Uw
y ⊂ BT (x∗, ϵ∗).

Let {w1, . . . , wN} be a set of generators for H∗. Let mℓ denote the word length of

wℓ with respect to the generating set {[τ∗1 ], . . . , [τ∗k ]}, and set m∗ = max{m1, . . . ,mN}.

Fix a choice of w = wℓ ∈ H∗. Then the closed path representing w in L∗ can be

lifted to a path τyw in the leaf Ly, and as Ly ⊂ N (L1, ϵ1), its length is bounded above

by ∥τyw∥ ≤ m∗ · 2DL1 . We show that hw is defined on U , and U ⊂ Fix(hw). This

implies that there is a uniform bound on the diameter of the leaves Ly′ for y′ ∈ U , from

which it follows that there is an upper bound on the function vol (Ly′) for y′ ∈ U , which

contradicts the choice of U .
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We first show that Ly′ is a finite covering of L1 with the same index as the covering

Ly → L1.

Choose 0 < δ∗ ≤ ∆(2m∗DL1
, ϵ∗) ≤ ϵ∗ such that BT (y, δ∗) ⊂ Uw

y .

The open set U ⊂ N (x1, δ)∖Z1 is connected, hence is path connected. Thus, given

any point y′ ∈ U there is a continuous path σ : [0, 1] → U ∩ Ge such that σ(0) = y and

σ(1) = y′. Then choose a sequence of points 0 = t0 < t1 < · · · < tm = 1 such that for

yi = σ(ti), we have σ([ti, ti+1]) ⊂ BT (yi, δ∗). See Figure 2 below.

Figure 2. A path chain in the good set.

We show that σ([0, 1]) ⊂ Fix(hw) using induction on the index i. For i = 0, y0 = y

and by assumption, the disk BT (y, δ∗) ⊂ Uw
y ⊂ Fix(hw) so σ([0, t1]) ⊂ Fix(hw).

Now assume σ([0, tn]) ⊂ Fix(hw), hence yn = σ(tn) ∈ Fix(hw). The closed path τ∗w
in L∗ representing w is the lift of a closed path τw in L1, which lifts to a closed path τyn

w

in Lyn . As τyn
w ⊂ N (L1, ϵ1) we have that ∥τyn

w ∥ ≤ 2m∗DL1 . Then the holonomy map

hw for w fixes yn so near yn it is defined by a map

hyn
w : N (yn, δ∗) → N (yn, ϵ∗).

As the points of U ∩Ge determine leaves without holonomy, the set of fixed-points

for hyn
w is an open subset of N (yn, δ∗) ∩ U ∩ Ge. The set of fixed-points is also al-

ways a (relatively) closed subset, hence Fix(hyn
w ) contains the connected component

of N (yn, δ∗) ∩ U ∩ Ge which contains the point yn. By assumption we have that

σ([tn, tn+1]) ⊂ N (yn, δ∗) ∩ U ∩Ge, hence

σ([tn, tn+1]) ⊂ Fix(hyn
w ) ⊂ Fix(hw). (36)

Thus, by induction we conclude that y′ ∈ Fix(hw).

The choice of y′ ∈ U was arbitrary, and thus U ⊂ Fix(hw). We conclude that Ly′ is

a finite covering of L1 and isotopic to Ly, hence vol (Ly′) ≤ 2Vmax. This completes the

proof of Proposition 5.4. □

6. Proof of Main Theorem.

In this section, we show that for a compact foliation of a compact manifold, a

categorical open set cannot contain a tame point in the bad set. A categorical set must
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be connected, so we may assume that M is connected. For a connected manifold M ,

there is a finite covering (of degree d ≤ 4) M̃ →M for which the lifted foliation F̃ is again

compact, and has oriented tangent and normal bundles. We then apply the following

two elementary results to reduce to the oriented case.

Lemma 6.1. Let π̃ : M̃ →M be a finite covering with foliation F̃ whose leaves are

finite coverings of the leaves of F . Let U ⊂ M be a transversely categorical saturated

open set, and H : U × [0, 1] → M a foliated homotopy to the leaf L1 ⊂ M of F . Let

Ũ ⊂ M̃ be an open subset such that the restriction π̃|Ũ → U is a homeomorphism. Then

there exists a foliated homotopy H̃ : Ũ × [0, 1] → M̃ such that π̃ ◦ H̃t = Ht ◦ π̃ for all

0 ≤ t ≤ 1, where H̃t(Ũ) ⊂ L̃1 for a finite covering L̃1 of L1.

Proof. The covering map π̃ has the unique local lifting of paths property, so

in particular has the homotopy lifting property, which yields the existence of the lifted

homotopy H̃. □

Lemma 6.2. Let π̃ : M̃ → M be a finite covering of degree 1 < d < ∞, with

foliation F̃ whose leaves are finite coverings of the leaves of F . Let L̃ ⊂ M̃ be a leaf of

F̃ , and let x̃ ∈ L̃ with x = π̃(x̃). Then x̃ is a tame point in the bad set for F̃ , if and only

if x is a tame point in the bad set for F .

Proof. Suppose that x is a tame point for F , then for ϵ > 0 there exists a

continuous path γ : [0, 1] → M with γ(1) = x, as in Definition 5.1. The map π̃ has the

unique local lifting of paths property, so there exists a unique path γ̃ : [0, 1] → M̃ with

γ̃(1) = x̃. Moreover, for each 0 ≤ t < 1 the leaf L̃t containing γ̃(t) is a finite covering

of the leaf Lt ⊂ M containing γ(t) where the degree π̃ : L̃t → Lt has degree at most d.

Thus, the volume vol(Lt) tends to infinity as t → 1, and thus the same holds for the

volume function ṽol(L̃t) in M̃ . Thus, x̃ is a tame point in the bad set for F̃ . Conversely,

if x̃ is tame point for F̃ then the proof that x is a tame point for F follows similarly. □

Here is the main result of this section.

Proposition 6.3. Let F be a compact C1-foliation of a compact manifold M . If

V ⊂ M is a saturated open set which contains a tame point, then V is not transversely

categorical.

Proof. As a consequence of Lemma 6.2, we can assume in the following that both

the tangent bundle TF and the normal bundle Q to F are oriented.

Let x1 ∈ X1 be a tame point, V ⊂ M an open set with x1 ∈ V , and suppose

there exists a leafwise homotopy H : V × [0, 1] → M with H0 the inclusion map, and

H1(V ) ⊂ L∗ for some leaf L∗. We show that this yields a contradiction.

Recall that for x ∈M , we let v(x) denote the volume of the leaf Lx containing x.

As x1 is a tame point, there is a smooth path γ : [0, 1] → V such that γ(1) = x1,

γ(t) ∈ Ge for 0 ≤ t < 1, and the volume v(γ(t)) of the leaf Lt containing the point γ(t)

satisfies limt→1 v(γ(t)) = ∞.
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Define a map ϕ : [0, 1] × [0, 1] → M by setting ϕs(t) = ϕ(s, t) = Hs(γ(t)). Denote

by Ls,t the leaf containing ϕ(s, t). The key to obtaining a contradiction is to analyze the

behavior of the leaf volume function v(ϕ(s, t)) = vol (Ls,t).

Set xt = γ(t). Then xt ∈ Ge for 0 < t ≤ 1, while x1 ∈ X1 is the given tame point.

As remarked after Definition 5.1, the restricted path γ : [0, 1) → Ge lies in the set of

leaves without holonomy, hence for the leaf L0 containing x0 = γ(0), there is a foliated

isotopy Γ: L0 × [0, 1) → Ge such that Γt(x0) = xt. In particular, each map Γt : L0 → Lt

has homological degree 1.

Also note that for t = 0, and each 0 ≤ s ≤ 1, the map Hs : L0 = L0,0 → Ls,0 is

surjective by Theorem 4.1. Let ds,0 denote its homological degree. The path of leaves

s 7→ Ls,0 starting at L0 has an upper bound DL0 on their volumes by Proposition 4.2,

and moreover, there is an upper bound

d0 = sup{ds,0 | 0 ≤ s ≤ 1}. (37)

For L1 the leaf containing the tame point x1 = γ(1) ∈ X1, and each 0 ≤ s ≤ 1,

the map Hs : L1 = L0,1 → Ls,1 is also surjective by Theorem 4.1. Let ds,1 denote its

homological degree. The path of leaves s 7→ Ls,1 starting at L1 has an upper bound DL1

on their volumes by Proposition 4.2, and moreover, there is an upper bound

d1 = sup{ds,1 | 0 ≤ s ≤ 1}. (38)

Set

DL = max{DL0 , DL1}. (39)

The set V is saturated, so for each 0 ≤ t < 1, the leaf Lt ⊂ V as γ(t) ∈ V . Thus, we

can define a continuous 2–parameter family of maps Φ: [0, 1]× [0, 1)×L0 →M by setting

Φs,t(y) = Hs(Γt(y)) for y ∈ L0. It is important to recall the usual caution with the study

of compact foliations: the path of leaves t 7→ Lt with unbounded volumes cannot limit

on a compact leaf in the bad set. Thus, the paths s 7→ Ls,t must become more chaotic

as t → 1, and correspondingly, the family of maps Φs,t is not defined for t = 1. On the

other hand, we are given that the path γ(t) limits on x1 and so the trace Φs,t(x0) extends

to the continuous map ϕ(s, t) = Hs(γ(t)) for t = 1. We use this extension of Φs,t(y) for

y = x0 to show that the map extends for all y ∈ L0 which gives a contradiction.

The idea of the proof of the existence of this extension is to use the techniques for

studying a homotopy of compact leaves introduced in Section 4, to control the degrees

of the maps on the fundamental classes of the leaves, induced by the maps Φs,t. This

will in turn yield bounds on the volumes of these leaves, which yields bounds on their

diameters. We can thus use Proposition 2.6 to conclude that for t∗ < 1 sufficiently close

to t = 1, for each 0 ≤ s ≤ 1, the image Φs,t∗(L0) is contained in a uniform normal

neighborhood of Hs(L1). Then the conclusion (43) of Lemma 6.4 for s = 0 contradicts

the assumption that limt→∞ vol (L0,t) = ∞. The proof of these assertions in the next

subsection completes the proof of Proposition 6.3. □
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6.1. Details of the proof.

We now give the details required to fill out the above sketch of the proof of Propo-

sition 6.3. First, observe that Φ1,t : L0 → L∗, for 0 ≤ t < 1, is a family of homotopic

maps, hence its homological degree is constant. Thus, for all 0 ≤ t < 1,

deg(H1 : L0 → L∗) = deg(Φ1,0 : L0 → L1,0)

= deg(Φ1,t : L0 → L1,t)

= deg(Γt : L0 → Lt) · deg(H1 : Lt → L1,t = L∗)

= deg(H1 : Lt → L1,t).

It follows that

deg(H1 : Lt → L1,t) ≤ d0 , ∀ 0 ≤ t < 1. (40)

Let D = R(2d0d1DL) be the maximum diameter of a leaf with volume at most 2 d0 d1DL,

where we recall that d0, d1 and DL are defined, respectively, in (37), (38), and (39).

For each 0 ≤ s ≤ 1, recall that Ls,1 is the leaf containing Hs(x1), and let 0 < ϵ′s =

ϵLs,1 ≤ ϵ0 be such that the normal projection ΠLs,1 : N (Ls,1, ϵ
′
s) → Ls,1 is well-defined.

Set δ′s = ∆(D, ϵ′s).

Let L be a compact leaf such that vol (L) ≤ 2 d0 d1DL and L ∩ N (Ls,1, δ
′
s) ̸= ∅,

then by the choice of D and δ′s, Proposition 2.6 implies that L ⊂ N (Ls,1, ϵ
′
s). Thus,

the restriction ΠLs,1 : L → Ls,1 is well-defined and a covering map, and moreover by

Corollary 2.7 we have the estimate

vol (L) ≤ 2 deg(ΠLs,1 : L→ Ls,1) · vol (Ls,1) ≤ 2 deg(ΠLs,1 : L→ Ls,1) ·DL. (41)

The next step is to choose a finite covering of the trace of the path xs,1 = Hs(x1)

with respect to the constants δ′s. For each s, N (Ls,1, δ
′
s) is an open neighborhood of Ls,1,

so for ϕ(s, t) = Hs(γ(t)) there exists λs > 0 such that

ϕ([s− λs, s+ λs] × [1 − λs, 1]) ⊂ N (Ls,1, δ
′
s). (42)

Choose a sequence 0 = s0 < s1 < · · · < sN−1 < sN = 1 of points such that for

λn = λsn the collection of open intervals {In = (sn − λn, sn + λn) | n = 0, 1, . . . , N} is

an open covering of [0, 1].

Set δ′′n = δ′sn and ϵ′′n = ϵ′sn for 0 ≤ n ≤ N , and λ∗ = min{λn | n = 0, 1, . . . , N} > 0.

Here is the key result:

Lemma 6.4. For 0 ≤ s ≤ 1 and 1 − λ∗ ≤ t < 1 we have that

vol (Ls,t) ≤ 2 d0 d1DL. (43)

Proof. For each 1 ≤ n ≤ N , set ξ0 = 0 and ξN+1 = 1, and for 1 ≤ n ≤ N choose

points

ξn ∈ (sn−1, sn−1 + λn−1) ∩ (sn − λn, sn).
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Then the closed intervals {[ξ0, ξ1], [ξ1, ξ2], . . . , [ξN−1, ξN ], [ξN , ξN+1]} form a closed

cover [0, 1].

Let µ satisfy 1 − λ∗ ≤ µ < 1, and let Lµ = Γµ(L0) be the leaf through γ(µ). The

technical idea of the proof of (43) is to compare the homological degrees of the maps

Hξi |Lµ : Lµ = L0,µ → Lξi,µ (44)

Hξi |L1 : L1 = L0,1 → Lξi,1 (45)

using a downward induction argument on n, starting with n = N , and showing there is

a uniform bound on the ratios of their degrees for all 1 − λ∗ ≤ µ < 1.

For n = N , by (42) we have that

ϕ([1 − ξN , 1] × [µ, 1]) ⊂ ϕ([1 − λN , 1] × [1 − λN , 1]) ⊂ N (L1,1, δ
′′
N )

and thus for each 1 − ξN ≤ s ≤ 1 the point ϕ(s, µ) ∈ N (L1,1, δ
′′
N ).

Note that L1,µ = L1,1 = L∗, thus for s < 1 sufficiently close to 1 we have Hs(Lµ) ⊂
N (L1,1, ϵ

′′
N ) as the homotopy Hs is uniformly continuous when restricted to the compact

leaf Lµ.

Let rN be the infimum of r such that r ≤ s ≤ 1 implies Ls,µ ⊂ N (L1,1, ϵ
′′
N ). The

above remark implies rN < 1. We claim that rN < ξN .

Assume, to the contrary, that rN ≥ ξN . Let rN < r < 1. Then for r ≤ s ≤ 1,

Ls,µ ⊂ N (L1,1, ϵ
′′
N ) and so the normal projection ΠL1,1 : Ls,µ → L1,1 is well-defined and

a covering map. The restriction

H : Lµ × [r, 1] → N (L1,1, ϵ
′′
N )

yields a homotopy between Hr : Lµ → Lr,µ and H1 : Lµ → L1,µ = L1,1. Thus,

deg(ΠL1,1 ◦Hr : Lµ → Lr,µ → L1,1) = deg(ΠL1,1 ◦H1 : Lµ → L1,µ → L1,1)

= deg(H1 : Lµ → L1,1)

as ΠL1,1 : L1,µ → L1,1 is the identity. The upper bound (40) implies deg(H1 : Lµ →
L1,1) ≤ d0, hence the covering degree of ΠL1,1 : Lr,µ → L1,1 is bounded above by d0, as

it is an integer which divides deg(H1 : Lµ → L1,1). By Corollary 2.7 it follows that

vol (Lr,µ) ≤ 2 d0 · vol (L1,1) ≤ 2 d0 ·DL. (46)

The leaf volume function is lower semi-continuous, hence we also have that

vol (LrN ,µ) ≤ lim
r→rN+

vol (Lr,µ) ≤ 2 d0 ·DL.

Thus, the estimate (46) holds for all rN ≤ r ≤ 1 and 1 − λ∗ ≤ µ < 1.

As we assumed that rN ≥ ξN ≥ λN we have that ϕ(rN , µ) ∈ N (L1,1, δ
′′
N ), hence

Proposition 2.6 implies that LrN ,µ ⊂ N (L1,1, ϵ
′′
N ). By the uniform continuity of Hs

restricted to Lµ at s = rN , there is r < rN such that r < s ≤ rN implies Ls,µ ⊂
N (L1,1, ϵ

′′
N ). This contradicts the choice of rN as the infimum of such r, hence we must
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have that rN < ξN .

This proves the first statement of the inductive hypothesis for n = N , which is that

the estimate (46) holds for all ξN ≤ r ≤ 1 and 1 − λ∗ ≤ µ < 1.

We next consider the ratios of covering degrees for a pair of leaves in adjacent normal

neighborhoods. For ξN ≤ s ≤ 1, we have ϕ(s, 1) ∈ N (L1,1, δ
′′
N ) and vol (Ls,1) ≤ DL

hence Ls,1 ⊂ N (L1,1, ϵ
′′
N−1), and so the normal projection restricts to a covering map

ΠL1,1 : Ls,1 → L1,1. Moreover, this implies that both LξN ,µ and LξN ,1 are coverings of

L1,1, and their homological degrees are denoted by

αµ
N = deg(ΠL1,1 : LξN ,µ → L1,1) (47)

aN = deg(ΠL1,1
: LξN ,1 → L1,1). (48)

Note that as sN−1 < ξN , the leaves LξN ,µ and LξN ,1 are also coverings of LsN−1,1.

We compare their homological degrees. By the uniform continuity of Hs restricted to

the curve γ(t), for 0 ≤ s ≤ 1, the path t 7→ ϕ(s, t) has limit xs,1 = Hs(x1). By

Proposition 2.6, the volume bound (46) for 1 − ξN ≤ s ≤ 1 and 1 − λ∗ ≤ t < 1

implies that

Hs(Lt) = Ls,t ⊂ N (Ls,1, ϵ
′
s). (49)

Thus, there is a well-defined limit

deg (Φs,1 : L0 → Ls,1) ≡ lim
t→1

{
deg

(
ΠLs,1 ◦ Φs,t : L0 → N (Ls,1, ϵ

′
s) → Ls,1

)}
.

The terminology deg (Φs,1 : L0 → Ls,1) is a small abuse of notation, as given y ∈ L0 there

is no assurance that t 7→ Φs,t(y) has a limit at t = 1; it is only given that the image

is trapped in the open neighborhood N (Ls,1, ϵ
′
s), and the images are homotopic for t

sufficiently close to 1.

Then for 1 − λs ≤ t < 1, define

Ξ(s, t) =
deg (Φs,1 : L0 → Ls,1)

deg (Φs,t : L0 → Ls,t)
. (50)

We now apply this discussion in the case s = ξN where we have the volume bound

(46). It again follows from Proposition 2.6 that for 1 − λ∗ ≤ t < 1, and noting that

sN = 1,

HξN (Lt) = LξN ,t ⊂ N (LsN ,1, ϵ
′′
N ) ∩N (LsN−1,1, ϵ

′′
N−1). (51)

Thus, for 1 − λ∗ ≤ µ ≤ t < 1 the maps

ΠL1,1
◦ ΦξN ,µ ∼ ΠL1,1

◦ ΦξN ,t : L0 → N (L1,1, ϵ
′′
N )

are homotopic, hence

deg(ΠL1,1 ◦ ΦξN ,µ) = deg(ΠL1,1 ◦ ΦξN ,t). (52)
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For t sufficiently close to 1 the map ΠL1,1 ◦ ΦξN ,t on the left-hand-side of (52) factors

ΠL1,1 ◦ ι ◦ ΠLξN ,1
◦ ΦξN ,t : L0 → N (LξN ,1, ϵ

′
ξN−1

) → LξN ,1 ⊂ N (L1,1, ϵ
′′
N ) → L1,1

while the map ΠL1,1 ◦ ΦξN ,µ on right-hand-side of (52) factors

ΠL1,1 ◦ ΦξN ,µ : L0 → LξN ,µ → L1,1.

Identifying the degrees of these maps in our terminology, we obtain from (52) that

deg(ΦξN ,µ : L0 → LξN ,µ) · αµ
N = deg(ΠL1,1 ◦ ΦξN ,µ)

= deg(ΠL1,1 ◦ ΦξN ,t) = deg(ΦξN ,1 : L0 → LξN ,1) · aN

and so

αµ
N = Ξ(ξN , µ) · aN . (53)

Thus, the ratio (50) gives the relation between the homological degrees of the maps in

(47) and (48). This completes the proof of the first stage of the induction for the proof

of Lemma 6.4.

The general inductive hypotheses involves two statements: Given 0 ≤ n ≤ N , we

first assume that:

for all 0 ≤ n ≤ N, for all ξn ≤ s ≤ 1 and 1 − λ∗ ≤ t ≤ 1, then vol (Ls,t) ≤ 2 d0 d1 ·DL.

(54)

Given (54), then for n ≤ ℓ ≤ N and 1 − λ∗ ≤ µ ≤ 1 define the integers aℓ, bℓ, α
µ
ℓ , βµ

ℓ .

Lξℓ,1 ⊂ N (Lsℓ,1, ϵ
′′
ℓ ), aℓ = deg

(
ΠLsℓ,1

: Lξℓ,1 → Lsℓ,1

)
Lξℓ,1 ⊂ N (Lsℓ−1,1, ϵ

′′
ℓ−1), bℓ = deg

(
ΠLsℓ−1,1 : Lξℓ,1 → Lsℓ−1,1

)
Lξℓ,µ ⊂ N (Lsℓ,1, ϵ

′′
ℓ ), αµ

ℓ = deg
(

ΠLsℓ,1
: Lξℓ,µ → Lsℓ,1

)
Lξℓ,µ ⊂ N (Lsℓ−1,1, ϵ

′′
ℓ−1), βµ

ℓ = deg
(

ΠLsℓ−1,1 : Lξℓ,µ → Lsℓ−1,1

)
For notational convenience, set bN+1 = βµ

N+1 = 1 and a0 = αµ
0 = 1. Second, we assume

that:

for all n ≤ ℓ ≤ N, and 1 − λ∗ ≤ µ ≤ 1, then
αµ
ℓ

aℓ
= Ξ(ξℓ, µ) =

βµ
ℓ

bℓ
. (55)

We show that if (54) and (55) are true for n, then the corresponding statements are true

for n− 1.

The choice of λs > 0 so that (42) holds implies that

ϕ([sn−1 − λn−1, sn−1 + λn−1] × [1 − λ∗, 1]) ⊂ N (Lsn−1,1, δ
′′
n−1)

and hence ϕ(s, t) ∈ N (Lsn−1,1, δ
′′
n−1) for all ξn−1 ≤ s ≤ ξn and 1 − λ∗ ≤ t < 1.

For s = ξn the hypothesis (54) implies that for all 1 − λ∗ ≤ t < 1,
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vol (Lξn,t) ≤ 2 d0 d1 ·DL andi hence Lξn,t ⊂ N (Lsn−1,1, ϵ
′′
n−1). (56)

Thus, the restriction ΠLsn−1,1 : Lξn,t → Lsn−1,1 is a covering map. The key to the proof

of the inductive step is to obtain a uniform estimate for the homological degree of this

covering map.

Lemma 6.5. For all 1 − λ∗ ≤ t < 1, βt
n · deg (Hξn : L0,t → Lξn,t) ≤ d0 d1.

Proof. Consider the diagram

where the integer next to a covering map indicates its homological degree.

The maps Hξn : L0,1 → Lξn,1 and Hsn−1 : L0,1 → Lsn−1,1 are homotopic through

maps into N (Lsn−1,1, ϵ
′′
n−1), hence

deg
(
Hsn−1 : L0,1 → Lsn−1,1

)
= bn · deg (Hξn : L0,1 → Lξn,1) . (57)

As deg
(
Hsn−1 : L0,1 → Lsn−1,1

)
= ds,1 ≤ d1 and the degrees of the maps are positive

integers, it follows that 1 ≤ bn ≤ d1.

For n ≤ ℓ < N and 1 − λ∗ ≤ t < 1, the maps Hξℓ : L0,t → Lξℓ,t and Hξℓ+1
: L0,t →

Lξℓ+1,t are homotopic through maps into N (Lsℓ,1, ϵ
′′
ℓ ), hence

αt
ℓ · deg (Hξℓ : L0,t → Lξℓ,t) = βt

ℓ+1 · deg
(
Hξℓ+1

: L0,t → Lξℓ+1,t

)
. (58)

Likewise, for n ≤ ℓ < N , the maps Hξℓ : L0,1 → Lξℓ,1 and Hξℓ+1
: L0,1 → Lξℓ+1,1 are

homotopic through maps into N (Lsℓ,1, ϵ
′′
ℓ ), hence

aℓ · deg (Hξℓ : L0,1 → Lξℓ,1) = bℓ+1 · deg
(
Hξℓ+1

: L0,1 → Lξℓ+1,1

)
. (59)

It follows from equation (58) that

deg (H1 : L0,t → L1,t) =
αt
N

βt
N+1

· deg (HξN : L0,t → LξN ,t)

=
αt
N−1α

t
N

βt
Nβ

t
N+1

· deg
(
HξN−1 : L0,t → LξN−1,t

)
...

=
αt
n . . . α

t
N−1α

t
N

βt
n+1 . . . β

t
Nβ

t
N+1

· deg (Hξn : L0,t → Lξn,t)
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=
αt
n . . . α

t
N

βt
n . . . β

t
N

· βt
n · deg (Hξn : L0,t → Lξn,t)

so that by the inductive hypothesis (55) we have

βt
n · deg (Hξn : L0,t → Lξn,t) =

βt
n . . . β

t
N

αt
n . . . α

t
N

· deg (H1 : L0,t → L1,t)

=
bn . . . bN
an . . . aN

· deg (H1 : L0,t → L1,t) . (60)

Using (57) we obtain

deg (H1 : L0,1 → L1,1) =
an . . . aN
bn . . . bN

· deg
(
Hsn−1 : L0,1 → Lsn−1,1

)
(61)

so that

bn . . . bN
an . . . aN

=
deg

(
Hsn−1 : L0,1 → Lsn−1,1

)
deg (H1 : L0,1 → L1,1)

≤ d1. (62)

and hence combining (40) , (60) and (62) we obtain

βt
n · deg (Hξn : L0,t → Lξn,t) ≤ d1 · deg (H1 : L0,t → L1,t) ≤ d0 d1. (63)

This completes the proof of Lemma 6.5. □

Fix 1 − λ∗ ≤ µ < 1. Let rn−1 ≤ ξn be the infimum of r satisfying r ≤ ξn such

that r ≤ s ≤ ξn implies that Ls,µ ⊂ N (Lsn−1,1, ϵ
′′
n−1). As Lξn,µ ⊂ N (Lsn−1,1, ϵ

′′
n−1), the

continuity of Hs at s = ξn implies that rn−1 < ξn. We claim that rn−1 < ξn−1.

Assume, to the contrary, that rn−1 ≥ ξn−1. Let rn−1 < r < ξn, then for r ≤ s ≤ ξn,

Ls,µ ⊂ N (Lsn−1,1, ϵ
′′
n−1) and so the normal projection ΠLsn−1,1 : Ls,µ → Lsn−1,1 is well-

defined and a covering map. The restriction

H : Lµ × [r, ξn] → N (Lsn−1,1, ϵ
′′
n−1)

yields a homotopy between Hr : Lµ → Lr,µ and Hξn : Lµ → Lξn,µ. Thus,

deg(ΠLsn−1,1 ◦Hr : Lµ → Lr,µ → Lsn−1,1) = deg(ΠLξn−1,1
◦Hξn : Lµ → Lξn,µ → Lξn−1,1).

It follows from the estimate (63) that

deg(ΠLsn−1,1
: Lr,µ → Lsn−1,1) ≤ deg(ΠLsn−1,1

◦Hr : Lµ → Lr,µ → Lsn−1,1) ≤ d0 d1
(64)

hence

vol (Lr,µ) ≤ 2 d0 d1 · vol (Lsn−1,1) ≤ 2 d0 d1 ·DL. (65)

The leaf volume function is lower semi-continuous, hence we also have that
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vol (Lrn−1,µ) ≤ lim
r→rn−1+

vol (Lr,µ) ≤ 2 d0 d1 ·DL. (66)

Thus, the estimate (65) holds for all rn−1 ≤ r ≤ 1 and 1 − λ∗ ≤ µ < 1.

As we assumed that rn−1 ≥ ξn−1 ≥ sn−1 − λn−1 we have that ϕ(rn−1, µ) ∈
N (Lsn−1,1, δ

′′
n−1) hence Lrn−1,µ ⊂ N (Lsn−1,1, ϵ

′′
n−1). By the continuity of Hs at s = rn−1

there is r < rn−1 such that r < s ≤ rn−1 implies Ls,µ ⊂ N (Lsn−1,1, ϵ
′′
n−1). This contra-

dicts the choice of rn−1 as the infimum of such r, hence we must have that rn−1 < ξn−1.

This proves the first statement of the inductive hypothesis for n− 1.

The second inductive statement (55) follows exactly as before.

Thus, we conclude by downward induction that (43) holds for all 1−λ∗ ≤ t < 1 and

all 0 ≤ s ≤ 1.

This completes the proof of Lemma 6.4, and so completes the proof of Proposi-

tion 6.3. □
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