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Abstract. We investigate a second order elliptic differential operator

Aβ,µ on a bounded, open set Ω ⊂ Rd with Lipschitz boundary subject to a
nonlocal boundary condition of Robin type. More precisely we have 0 ≤ β ∈
L∞(∂Ω) and µ : ∂Ω → M (Ω), and boundary conditions of the form

∂A
ν u(z) + β(z)u(z) =

∫
Ω
u(x)µ(z)(dx), z ∈ ∂Ω,

where ∂A
ν denotes the weak conormal derivative with respect to our differen-

tial operator. Under suitable conditions on the coefficients of the differential
operator and the function µ we show that Aβ,µ generates a holomorphic semi-

group Tβ,µ on L∞(Ω) which enjoys the strong Feller property. In particular, it

takes values in C(Ω). Its restriction to C(Ω) is strongly continuous and holo-
morphic. We also establish positivity and contractivity of the semigroup under

additional assumptions and study the asymptotic behavior of the semigroup.

1. Introduction.

In the 1950s Feller [19], [20], [21] described all diffusion processes in one dimension;

in particular, he characterized the boundary conditions which lead to generators of what

today is called a Feller semigroup. Besides the classical Dirichlet, Neumann and Robin

boundary conditions, also certain nonlocal boundary conditions can occur. In higher

dimensions, it was Venttsel’ [37] who first described the boundary conditions satisfied

by the functions in the domain of the generator of a Feller semigroup. Naturally, the

converse question of which of these boundary conditions actually lead to generators of

Feller semigroups has recieved a lot of attention. The starting point for that question

is the article by Sato and Ueno [32], who proved that this is the case if and only if a

certain auxiliary problem (which is a generalization of the Dirichlet problem, involving

the boundary condition in question; cf. Equation (3.1) below) is solvable for sufficiently

many right-hand sides. Some concrete examples of boundary conditions for which one

obtains a generator of a Feller semigroup were already contained in [32], [37]; more

refined results were obtained by Taira, see [35] and the references therein, Skubachevskĭı

[33], [34] and Galakhov and Skubachevskĭı [22].

In this article, we are concerned with diffusion equations with certain non-local

boundary conditions of Robin type. Let us describe this in more detail. We consider a

bounded, open set Ω ⊂ Rd with Lipschitz boundary. As far as our boundary condition

is concerned, we make the following assumptions.
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Hypothesis 1.1. We are given a real-valued function 0 ≤ β ∈ L∞(∂Ω), where ∂Ω

is endowed with surface measure σ. Moreover, we are given a map µ : ∂Ω → M (Ω), the

space of complex-valued measures on Ω, which satisfies the following conditions.

(a) For every function f ∈ Bb(Ω), the space of all bounded and Borel measurable

functions on Ω, the map z 7→ ⟨f, µ(z)⟩ :=
∫
Ω
f(x)µ(z)(dx) is measurable;

(b) for some p > d− 1 with p ≥ 2 we have
∫
∂Ω

∥µ(z)∥p dσ(z) < ∞ and

(c) there exists a positive and bounded measure τ on Ω such that for every z ∈ ∂Ω the

measure µ(z) is absolutely continuous with respect to τ .

In (a), it actually suffices to assume that the map z 7→ ⟨f, µ(z)⟩ is measurable for

all f ∈ C(Ω). The measurability for those f which are merely bounded and measurable

follows by a monotone class argument, cf. the proof of Lemma 6.1 in [25]. We will see

later on that if instead of (a) we assume

(a′) For every f ∈ Bb(Ω) the map z 7→ ⟨f, µ(z)⟩ is continuous

then parts (b) and (c) in Hypothesis 1.1 are automatically satisfied.

Assuming Hypothesis 1.1 we can define the operator ∆β,µ on L∞(Ω) by

D(∆β,µ) := {u ∈ H1(Ω) ∩ C(Ω) : ∆u ∈ L∞(Ω),

∂νu(z) + β(z)u(z) = ⟨u, µ(z)⟩ ∀ z ∈ ∂Ω},
∆β,µu = ∆u.

Here H1(Ω) is the usual Sobolev space and the normal derivative ∂νu has to be under-

stood as follows.

Definition 1.2. For a function u ∈ H1(Ω), we write tru for its trace in L2(∂Ω).

Let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω) and let h ∈ L2(∂Ω). We say that ∂νu = h if

Green’s formula ∫
Ω

∆uvdx+

∫
Ω

∇u∇vdx =

∫
∂Ω

h tr vdσ

holds for all v ∈ H1(Ω).

In what follows we will not distinguish between a function u ∈ H1(Ω) and its trace

tru in integrals over the boundary ∂Ω.

With this definition of the normal derivative the operator ∆β,µ is well-defined. In-

deed, if u ∈ D(∆β,µ) then u ∈ C(Ω) whence

h(z) := ⟨u, µ(z)⟩ − β(z)u(z)

defines a function h ∈ L2(∂Ω). Since furthermore u ∈ H1(Ω) and ∆u ∈ L∞(Ω) ⊂ L2(Ω)

it makes sense to say that ∂νu = h. This condition is the Robin boundary condition we

are interested in with local part β tru and non-local part ⟨u, µ(·)⟩.
We also consider the part ∆C

β,µ of ∆β,µ in C(Ω) given by
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D(∆C
β,µ) := {u ∈ H1(Ω) ∩ C(Ω) : ∆u ∈ C(Ω),

∂νu+ βu|∂Ω = ⟨u, µ(·)⟩}

∆C
β,µu = ∆u.

One of our main results is the following generation theorem.

Theorem 1.3. Assuming Hypothesis 1.1, the operator ∆β,µ generates a holomor-

phic semigroup (Tβ,µ(t))t>0 on L∞(Ω) which satisfies the strong Feller property. In

particular, this semigroup leaves the space C(Ω) invariant. Its restriction to C(Ω) is a

strongly continuous and holomorphic semigroup whose generator is ∆C
β,µ.

We refer to Section 2 for the definition of holomorphic semigroups which are not

strongly continuous at 0 and for an explanation of the strong Feller property. We will

actually prove Theorem 1.3 in more generality, replacing the Laplacian with a general

second order strictly elliptic differential operator with measurable coefficients.

We will also establish positivity and contractivity of the semigroup Tβ,µ under ad-

ditional assumptions on β and µ, see Section 5. In the case of Theorem 1.3, where we

consider the Laplacian, the conditions are as follows. If the measures µ(z) are positive

for all z ∈ ∂Ω then the semigroup Tβ,µ is positive; i.e. each Tβ,µ(t) leaves the positive

cone L∞(Ω)+ of L∞(Ω) invariant. If additionally we have that

µ(z,Ω) ≤ β(z) for almost all z ∈ ∂Ω, (1.1)

then the semigroup Tβ,µ is sub-Markovian, i.e. Tβ,µ is positive and Tβ,µ(t)1 ≤ 1 for all

t > 0. If equality holds in (1.1) then Tβ,µ is Markovian, i.e. Tβ,µ(t) is positive and

Tβ,µ(t)1 = 1. In these situations we will also study the asymptotic behavior of the

semigroup Tβ,µ. In the sub-Markovian, non-Markovian case the semigroup converges in

operator norm to 0, whereas in the Markovian case the orbits converge to an equilibrium.

Let us compare our results to the existing literature. First of all, in this article we

consider less restrictive assumptions on the coefficients and the domain. Indeed, in the

above mentioned references, the domain and the coefficients of the operator are assumed

to be smooth (i.e. C∞ or a suitable Hölder continuity), whereas here we consider coeffi-

cients which are merely measurable and a domain with Lipschitz boundary. Moreover, we

prove our generation result for general boundary conditions and study additional proper-

ties, such as positivity and the Markov property, afterwards, whereas in [33], [34], [22],

[35] there are a priori assumptions imposed on the coefficients in the boundary condition

which ensure these properties. On the other hand, the quoted result treat more general

boundary conditions which cover also, e.g., viscosity phenomena on the boundary.

Possibly the most important novelty in this article is that we obtain a holomor-

phic semigroup on C(Ω), even on L∞(Ω). So far, holomorphic semigroups for diffu-

sion processes with nonlocal boundary conditions were only established on the Lp-scale

(1 ≤ p < ∞), see [36]. To the best of our knowledge, the only other article which

establishes holomorphy of the semigroup on C(Ω) for diffusion operators with non-local

boundary conditions is our previous article [8], where we have treated non-local Dirichlet

boundary conditions. We should note that the two problems are rather different. Indeed,
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the non-local Robin boundary condition considered here falls in the so-called ‘transversal

case’, where, due to the normal derivative, the non-local term has lower order than the

rest of the boundary condition. This is not the case for the non-local Dirichlet boundary

condition which falls in the so-called ‘non-transversal case’. Also the strategy for the

proof is rather different. The proof of Theorem 1.3 is based on a perturbation result by

Greiner, which we explain in Section 3. We will actually present a slight generalization of

Greiner’s result which establishes additional properties of the perturbed semigroup. We

should mention that Greiner’s perturbation result cannot be used in the case of non-local

Dirichlet boundary conditions where the maximum principle plays an essential role.

The holomorphy of the semigroup together with the compactness allows us to study

the asymptotic behavior of the semigroup in Section 6.

Non-local Robin boundary conditions of the above form occur in several concrete

situations, for example in heat control, where the heat is measured in the interior and

the control is via the boundary, see [13], [24].

The structure of this article is as follows. After some preliminaries in Section 2,

we present Greiner’s boundary perturbation, along with our modifications, in Section 3.

Section 4 contains results on elliptic differential operators with local Robin boundary

conditions which are needed subsequently. In Section 5 we prove our main generation

result. Section 6 contains our results concerning the asymptotic behavior of the semigroup

and Section 7 is devoted to the special situation where all measures µ(z) are absolutely

continuous with respect to Lebesgue measure. There we will see that our conditions for

positivity and sub-Markovianity are necessary in this situation. The concluding Section 8

contains some examples where Hypothesis 1.1 is satisfied, in particular, we prove that it

is satisfied whenever condition (a′) is fulfilled. In the appendix we present some general

results on the asymptotic behavior of positive semigroups, which we use in Section 6.

2. Preliminaries.

2.1. Semigroups that are not necessarily strongly continuous.

In this article, we shall consider semigroups on the space L∞(Ω), where Ω is a

bounded open subset of Rd. By a result of Lotz [27] (see also [6, Corollary 4.3.19]), a

strongly continuous semigroup on L∞(Ω) necessarily has a bounded generator. As we

are concerned with second order differential operators, we will encounter semigroups that

are not strongly continuous. Since this is not a standard situation, we recall the relevant

definitions and results here. Let us start with the following definition, taken from [6,

Section 3.2].

Definition 2.1. Let X be a Banach space. A semigroup is a strongly continuous

mapping T : (0,∞) → L (X) such that

(a) T (t+ s) = T (t)T (s) for all t, s > 0;

(b) there exist constants M > 0 and ω ∈ R such that ∥T (t)∥ ≤ Meωt for all t > 0;

(c) if T (t)x = 0 for all t > 0, it follows that x = 0.

We say that T is of type (M,ω) to emphasize that (b) holds with these constants. A

semigroup of type (1, 0) is called contraction semigroup. If additionally we have
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T (t)x → x as t → 0

for all x ∈ X, then T is called strongly continuous.

Clearly, the condition T (t)x → x as t → 0 for every x ∈ X implies condition (c)

above and it is not difficult to see that it also implies condition (b) (see [18, I, Proposition

5.5]). Thus, our definition of strongly continuous semigroup coincides with the classical

definition used, e.g., in [18, I, Definition 5.1]. However, even without strong continuity,

we can associate a generator with a semigroup. Indeed, if T is a semigroup of type (M,ω),

then there exists a unique operator G such that (ω,∞) is contained in the resolvent set

ρ(G) of G and

R(λ,G)x =

∫ ∞

0

e−λtT (t)x dt

for all x ∈ X and λ > ω, see [6, Equation (3.13)]. The operator G is called the generator

of T . Note that in the case of strongly continuous semigroups this is equivalent to the

usual ‘differential’ definition of the generator, see [18, II, Theorem 1.10].

A semigroup T is called holomorphic, if there is some angle θ ∈ (0, π/2] such that T

has a holomorphic extension to the sector

Σθ :=
{
reiφ : r > 0, |φ| < θ

}
which is bounded on Σθ ∩ {z ∈ C : |z| ≤ 1}, see [6, Definition 3.7.1].

The generators of holomorphic semigroups can be characterized as follows.

Theorem 2.2. An operator G on X generates a holomorphic semigroup if and

only if there exists a constant ω ∈ R such that {λ ∈ C : Reλ > ω} ⊂ ρ(G) and

sup
Reλ>ω

∥λR(λ,G)∥ < ∞.

Proof. [28, Proposition 2.1.11] or [6, Corollary 3.7.12 and Proposition 3.7.4]. □

The following Lemma is taken from [28, Proposition 2.1.4].

Lemma 2.3. Let T be a holomorphic semigroup with generator G. Then we have

T (t)x → x if and only if x ∈ D(G).

It follows from Lemma 2.3 that a holomorphic semigroup is strongly continuous if

and only if its generator is densely defined. Recalling from [28, Proposition 2.1.1] that

D(G) (and hence also D(G)) is invariant under T , a second corollary of Lemma 2.3 is

that every holomorphic semigroup T restricts to a strongly continuous and holomorphic

semigroup on D(G).

2.2. Transition kernels and the strong Feller property.

In the study of Markov processes it is important that the transition semigroup

consists of kernel operators, as these give the transition probabilities of the process. We

recall the relevant definitions and results and introduce the strong Feller property which
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is important for the ergodic theory of Markov processes. In this subsection, K is a

compact metric space and B(K) denotes the Borel σ-algebra on K. Later on, we will

consider K = Ω.

A (bounded) kernel on K is a map k : K × B(K) → C such that

(i) the map x 7→ k(x,A) is Borel-measurable for all A ∈ B(K),

(ii) the map A 7→ k(x,A) is a (complex) measure on B(K) for each x ∈ K and

(iii) we have supx∈K |k|(x,K) < ∞, where |k|(x, ·) denotes the total variation of the

measure k(x, ·).

Let X = C(K) or X = Bb(K). We call an operator T ∈ L (X) a kernel operator if

there exists a kernel k such that

Tf(x) =

∫
K

f(y) k(x, dy) (2.1)

for all f ∈ X and x ∈ K. As there is at most one kernel k satisfying the above equation,

we call k the kernel associated with T . Conversely T is called the operator associated

with k.

Let us note that every bounded operator on C(K) is a kernel operator, since given

T ∈ L (X) we can set k(x, ·) := T ∗δx ∈ M (K) for every x ∈ K. Standard arguments

(cf. [25, Proposition 3.5]) show that k is indeed a kernel and it is then easy to see that

T is associated with k. On the other hand, not every bounded operator on Bb(K) is a

kernel operator. We have the following characterization.

Lemma 2.4. Let T ∈ L (Bb(K)). The following are equivalent.

(i) T is a kernel operator.

(ii) T is pointwise continuous, i.e. if fn is a bounded sequence converging pointwise to

f , then Tfn converges pointwise to Tf .

Proof. The implication ‘(i) ⇒ (ii)’ follows from the dominated convergence theo-

rem. For the converse, put k(x,A) := (T1A)(x), where 1A denotes the indicator function

of the set A ∈ B(K). Using (ii), we see that k(x, ·) is a measure, thus k is a kernel. By

the density of simple functions in Bb(K) with respect to the supremum norm, we easily

see that T is associated with k. □

Let us note that given a kernel operator T on C(K), we can always extend T to

a kernel operator T̃ on Bb(K) by defining (T̃ f)(x) by the right-hand side of (2.1) for

f ∈ Bb(K). The operator T̃ is called the canonical extension of T . The operator T may

have other extensions to a bounded operator on Bb(K), but T̃ is the only one which is a

kernel operator.

Definition 2.5. A kernel operator T on Bb(K) is called strong Feller operator if

Tf ∈ C(K) for every f ∈ Bb(K). A kernel operator T on C(K) is called strong Feller

operator if its canonical extension T̃ is a strong Feller operator.
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Let us now consider a bounded, open set Ω ⊂ Rd and put K := Ω. In what follows,

we will be concerned with operators T ∈ L (L∞(Ω)) which take values C(K). It would

be tempting to also call such an operator a strong Feller operator, but there are some

subtleties in this situation. Let us explain this a little bit.

The concept of ‘strong Feller operator’ is only useful for kernel operators. Give an

operator T ∈ L (L∞(Ω)) which takes values in C(K), we can consider the restriction

S := T |C(K) of T to C(K). As observed above, S is a kernel operator and thus has

a canonical extension S̃ to L (Bb(K)). Now let ι : Bb(K) → L∞(Ω) map a bounded

measurable function to its equivalence class modulo equality almost everywhere. Then

the obvious question is whether T ◦ ι = S̃. Example 5.4 in [8] shows that this need not

be the case without further assumptions. The problem is that T ◦ ι need not be a kernel

operator. However, using the characterization of kernel operators in 2.4, we obtain

Lemma 2.6. Let T ∈ L (L∞(Ω)) take values in C(Ω) and let ι : Bb(Ω) → L∞(Ω)

be as above. Then T ◦ ι is a kernel operator if and only if for every bounded sequence

(fn) ⊂ L∞(Ω) converging almost everywhere to f , we have Tfn(x) → Tf(x) for all

x ∈ Ω. In this case, T ◦ ι is a strong Feller operator.

We define:

Definition 2.7. An operator T ∈ L (L∞(Ω)) is called strong Feller operator if

(a) Tf ∈ C(Ω) for every f ∈ L∞(Ω) and

(b) for every bounded sequence (fn) ⊂ L∞(Ω) converging pointwise almost everywhere

to f , we have Tfn → Tf pointwise.

3. Greiner’s boundary perturbation revisited.

An important tool in this article is boundary perturbation of the generator of a

holomorphic semigroup, established by Greiner in his seminal article [23]. As a matter

of fact, we need some extensions of Greiners results whose proofs follow along the lines

of Greiners article with minor modifications. More precisely, we will consider semigroups

which are not necessarily strongly continuous. Besides being interesting in its own right,

this will allow us to establish under appropriate assumptions the strong Feller property

for the perturbed semigroup. Likewise, other modifications allow us to prove compact-

ness, positivity and domination for the perturbed semigroup. In an effort of being self

contained and for the convenience of the reader we provide complete proofs.

Throughout this section, we make the following assumption.

Hypothesis 3.1. We are given complex Banach spaces (X, ∥ · ∥X), (D, ∥ · ∥D) and

(∂X, ∥·∥∂X), where D is continuously embedded into X. We identify D with its image in

X and frequently consider the closure D of D in X. Moreover, we are given a continuous

maximal operator A : D → X, a continuous boundary operator B : D → ∂X and a

boundary perturbation Φ : D → ∂X. We assume that all of these mappings are linear

and continuous. Moreover, we assume the following.

(a) The boundary operator B is surjective;
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(b) the boundary perturbation Φ is compact;

(c) the operator A0 := A|kerB generates a holomorphic semigroup on X and we have

D(A0) = D. We denote by ω a real number such that any λ ∈ C with Reλ > ω

belongs to ρ(A0).

In comparison to Greiner’s original work, the main difference in our assumption

is that we do not assume the operator A0 to be densely defined in X. Consequently,

the semigroup T generated by A0 need not be strongly continuous. However, since

D(A0) = D, it follows from Lemma 2.3 that for every f ∈ D the orbit t 7→ T (t)f

is strongly continuous on [0,∞) and T restricts to a strongly continuous holomorphic

semigroup on D.

Given the above maps, we define the perturbed operator AΦ by

D(AΦ) := {u ∈ D : Bu = Φu}, AΦu = Au.

We can now formulate our version of Greiner’s result.

Theorem 3.2. Assuming Hypothesis 3.1, the operator AΦ generates a holomorphic

semigroup on X which restricts to a strongly continuous and holomorphic semigroup

on D.

We prepare the proof of Theorem 3.2 with some preliminary results.

Lemma 3.3. Assume that λ ∈ ρ(A0). Then D = D(A0)⊕ ker(λ−A).

Proof. If u ∈ D(A0) ∩ ker(λ − A), then u ∈ D(A0) satisfies A0u = λu. As

λ ∈ ρ(A0) we must have u = 0. Now let u ∈ D be arbitrary. Since λ− A0 is surjective,

we find u0 ∈ D(A0) with (λ − A)u = (λ − A0)u0. Consequently u − u0 ∈ ker(λ − A)

whence u = u0 + (u− u0) ∈ D(A0) + ker(λ−A). □

In our framework we can formulate well-posedness of the following boundary value

problem (3.1).

Lemma 3.4. Let λ ∈ ρ(A0). Then for every h ∈ ∂X the problem{
λu−Au = 0,

Bu = h
(3.1)

has a unique solution u =: Sλh in D. The operator Sλ : ∂X → D is continuous,

BSλ = I∂X and SλB is the projection onto ker(λ−A) along D(A0).

Proof. By Lemma 3.3 the map B defines a continuous bijection between ker(λ−
A) and ∂X. As a consequence of the open mapping theorem Sλ := (B|ker(λ−A))

−1 is a

continuous linear operator from ∂X to ker(λ − A). Obviously, u := Sλh solves (3.1). If

ũ was another solution, we must have u− ũ ∈ kerB ∩ ker(λ− A) = {0} by Lemma 3.3.

This proves uniqueness. The last assertions are obvious from the definition. □
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Lemma 3.5. Let λ ∈ ρ(A0). Then for u ∈ D one has u ∈ D(AΦ) if and only if

(I − SλΦ)u ∈ D(A0). In this case

(λ−AΦ)u = (λ−A0)(I − SλΦ)u

for every u ∈ D(AΦ). In particular, if (I − SλΦ) : D → D is invertible, we have

λ ∈ ρ(AΦ) and

R(λ,AΦ) = (I − SλΦ)
−1R(λ,A0). (3.2)

Proof. Let us first assume that u ∈ D(AΦ), i.e. u ∈ D and Bu = Φu. Since

BSλ = I∂X by Lemma 3.4, we find B(I − SλΦ)u = Bu−BSλΦu = Bu−Φu = 0. Thus

(I − SλΦ)u ∈ kerB and consequently (I − SλΦ)u ∈ D(A0).

Conversely, if we assume that u−SλΦu ∈ D(A0), then u = (I−SλΦ)u+SλΦu ∈ D,

as Sλ takes values in D, and Bu = BSλΦu = Φu since BSλ = I∂X . Thus u ∈ D(AΦ).

Let us now assume that u ∈ D(AΦ) or, equivalently, that (I − SλΦ)u ∈ D(A0).

Then

(λ−A0)(I − SλΦ)u = (λ−A)u− (λ−A)SλΦu = (λ−A)u

since Sλ takes values in ker(λ−A). This implies (3.2). □

We now obtain the following criterion to prove that AΦ generates a holomorphic

semigroup.

Proposition 3.6. Assume that there is some ρ > ω such that for λ ∈ C with

Reλ > ρ the map I − SλΦ is invertible with

C := sup
Reλ>ρ

∥(I − SλΦ)
−1∥L (D) < ∞.

Then AΦ generates a holomorphic semigroup on X.

Proof. Set

M := sup
Reλ>ρ

∥λR(λ,A0)∥ < ∞

since A0 generates a holomorphic semigroup. As a consequence of Lemma 3.5, for Reλ >

ρ we have λ ∈ ρ(AΦ) and

∥λR(λ,AΦ)∥ = ∥λ(I − SλΦ)
−1R(λ,A0)∥ ≤ ∥(I − SλΦ)

−1∥∥λR(λ,A0)∥ ≤ CM.

By Theorem 2.2, this implies that AΦ generates a holomorphic semigroup on X. □

We can now prove the main result of this section.

Proof of Theorem 3.2. In view of Proposition 3.6, making use of the Neumann

series, it suffices to prove that SλΦ → 0 in L (D) as Reλ → ∞. Since Φ : D → ∂X is

compact it suffices to prove that Sλh → 0 as Reλ → ∞ for every h ∈ ∂X.
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To prove this, let h ∈ ∂X and fix µ ∈ ρ(A0). We put

uλ := Sλh, uµ := Sµh and u = uλ − uµ.

Note that uλ, uµ, u ∈ D and that u ∈ D(A0). Since uλ ∈ ker(λ−A) and uµ ∈ ker(µ−A)

we have

(λ−A0)u = −(λ−A)uµ = (µ− λ)uµ

and hence u = (µ− λ)R(λ,A0)uµ. Consequently,

uλ = uµ − λR(λ,A0)uµ + µR(λ,A0)uµ → uµ − uµ + 0 = 0

as Reλ → ∞, since λR(λ,A0)f → f for every f ∈ D(A0) = D. □

We can now establish some additional properties of the operator AΦ and the semi-

group generated by it. We start with compactness.

Corollary 3.7. In the situation of Theorem 3.2, if A0 has compact resolvent,

then so does AΦ.

Proof. This follows immediately from the identity (3.2) and the ideal property

of compact operators. □

Next we address positivity of the semigroup. Most often we will be concerned with

Banach lattices such as C(Ω) or L∞(Ω). However, we will occasionally (for example in

the following corollaries) also consider closed subspaces of such spaces and therefore need

the notion of positivity also in a more general setting. To that end, we assume that our

Banach space X is the complexification of a real ordered Banach space XR. This means

that in the real Banach space XR a positive, proper, closed cone X+ is given, i.e. we have

X+ +X+ ⊂ X+, R+ ·X+ ⊂ X+ and X+ ∩ (−X+) = {0}. For u ∈ X we write u ≥ 0 if

u ∈ X+. An operator S : X → X is called positive if SX+ ⊂ X+, we write S ≥ 0. Given

two operators S1, S2 : X → X, we write S1 ≤ S2 if S2 − S1 ≥ 0. A semigroup T on X is

called positive if T (t) ≥ 0 for all t > 0.

If Y ⊂ X is a closed subspace of X, then Y+ := Y ∩ X+ is a closed, proper cone,

such that YR := Y ∩XR becomes an ordered Banach space. Note that we do not assume

that our cone is generating, i.e. we do not necessarily have that X+ −X+ = XR.

Corollary 3.8. Assume in addition to Hypothesis 3.1 that X is the complexifica-

tion of a real ordered Banach space and that A0 generates a positive semigroup. If there

is a ρ > ω such that for λ ∈ R with λ > ρ the operator SλΦ is positive, then also the

semigroup generated by AΦ is positive.

Proof. If the semigroup T generated by A0 is positive then we have R(λ,A0) ≥ 0

for λ > ω, as the resolvent is given as the Laplace transform of the semigroup. For

sufficiently large λ ∈ R we have ∥SλΦ∥ < 1 and SλΦ positive. Thus, by the Neumann

series,
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(I − SλΦ)
−1 =

∞∑
n=0

(SλΦ)
n

is a positive operator. It follows from (3.2) that R(λ,AΦ) is positive for sufficiently

large λ. It follows from the Post–Widder inversion formula [6, Theorem 1.7.7] that the

semigroup generated by AΦ is positive. □

Next we want to compare different perturbations of our operator A. We can ob-

tain different perturbations by either using different boundary operators B or by using

different boundary perturbations Φ.

Corollary 3.9. Let X,D, ∂X and A be as in Hypothesis 3.1 and assume that

X and ∂X are complexifications of real ordered Banach spaces. Moreover, assume that

we are given maps B1, B2 : D → ∂X and Φ1,Φ2 : D → ∂X such that Hypothesis 3.1 is

satisfied for the operators A,B1,Φ1 and the operators A,B2,Φ2. We write Aj
0 := A|kerBj

and Sj
λ := (Bj |ker(λ−A))

−1 for j = 1, 2. Finally, we assume that

(a) The semigroup generated by Aj
0 is positive for j = 1, 2;

(b) 0 ≤ Φ1 ≤ Φ2;

(c) For some ρ > ω and all λ > ρ we have 0 ≤ S1
λ ≤ S2

λ;

(d) If u ∈ D is positive, then B2u ≤ B1u.

Then for the semigroups T1 generated by A1
Φ1

and T2 generated by A2
Φ2

we have 0 ≤
T1(t) ≤ T2(t) for all t > 0.

Proof. Let us first note that since the operators Φj and Sj
λ are positive for λ > ρ

and j = 1, 2, it follows from Corollary 3.8 that T1 and T2 are positive semigroups. It

follows from (b) and (c) that

(I − S1
λΦ1)

−1 =
∞∑

n=0

(S1
λΦ1)

n ≤
∞∑

n=0

(S2
λΦ2)

n = (I − S2
λΦ2)

−1

for all λ > ω. Now fix f ≥ 0 and λ > ρ. We put uj := R(λ,Aj
0)f . Then (λ−A)(u1−u2) =

0 and B1u1 = B2u2 = 0. Using our assumption (d) and the fact that u1 ≥ 0, we see that

B2(u1 − u2) = B2u1 −B1u1 ≤ 0.

Consequently, as u1 − u2 = S2
λ(B2(u1 − u2)) and S2

λ is positive u1 − u2 ≤ 0. This proves

R(λ,A1
0) ≤ R(λ,A2

0). Combining this with the above and Equation (3.2), we find

R(λ,A1
Φ1

) = (I − S1
λΦ1)

−1R(λ,A1
0) ≤ (I − S2

λΦ2)
−1R(λ,A2

0) = R(λ,A2
Φ2

)

for all sufficiently large λ. By the Post–Widder inversion formula [6, Theorem 1.7.7] it

follows that T1 ≤ T2. □
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Our last topic is the strong Feller property for the semigroup generated by the

perturbed operator.

Corollary 3.10. Assume in addition to Hypothesis 3.1 that X = L∞(Ω) and

D = C(Ω) for some open and bounded Ω ⊂ Rd. If A0 generates a strong Feller semigroup

on X, then so does AΦ.

Proof. By the proof of [8, Corollary 5.8] it suffices to prove that for sufficiently

large Reλ the operator R(λ,AΦ) is a strong Feller operator. But this follows from

(3.2): The hypothesis implies that R(λ,A0) is a strong Feller operator, in particular it

maps L∞(Ω) to C(Ω). Since U := (I − SλΦ)
−1 is a bounded linear operator on C(Ω)

also R(λ,AΦ) maps L∞(Ω) to C(Ω). Moreover, if fn is a bounded sequence in L∞(Ω)

converging pointwise almost everywhere to f , then R(λ,A0)fn is a bounded sequence

which converges pointwise to R(λ,A0)f . Since U is bounded on C(Ω) we have for x ∈ Ω

R(λ,AΦ)fn(x) = ⟨UR(λ,A0)fn, δx⟩ = ⟨R(λ,A0)fn, U
∗δx⟩

→ ⟨R(λ,A0)f, U
∗δx⟩ = R(λ,AΦ)f(x),

where we have used dominated convergence. □

4. Local Robin boundary conditions.

In this section we collect some results on elliptic operators with local Robin boundary

conditions which we will need in the next section when we establish our results concerning

non-local boundary conditions.

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary. As we are talking

about positive semigroups, we will consider real-valued spaces Lp(Ω), C(Ω), Cb(Ω) and

Bb(Ω) throughout. Only when we are concerned with holomorphic semigroups we need

spaces of complex-valued functions, in which case we pass to the complexification of these

spaces. Concerning the coefficients of our operator we make the following assumptions.

Hypothesis 4.1. We are given bounded, real-valued, measurable functions aij ,

bj , cj , d0 on Ω for i, j = 1, . . . , d. The diffusion coefficients a = (aij) are assumed to be

bounded and strictly elliptic, i.e. there is a constant η > 0 such that for all ξ ∈ Rd and

almost all x ∈ Ω we have

d∑
i,j=1

aij(x)ξiξj ≥ η|ξ|2.

With these assumptions we define the operator A : H1(Ω) → D(Ω)′ by

A u := −
d∑

i,j=1

Di(aijDju)−
d∑

j=1

Dj(bju) +
d∑

j=1

cjDju+ d0u.

Here, H1(Ω) denotes the usual Sobolev space of order one, D(Ω) = C∞
c (Ω) is the space of

all test functions and D(Ω)′ is the space of all distributions. We introduce the continuous
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bilinear form a : H1(Ω)×H1(Ω) → R given by

a[u, v] :=

d∑
i,j=1

∫
Ω

aijDiuDjv dx+

d∑
j=1

∫
Ω

bjuDjv + cj(Dju)v dx+

∫
Ω

d0uv dx

for u, v ∈ H1(Ω). Thus ⟨A u, φ⟩ = a[u, φ] for all u ∈ H1(Ω) and φ ∈ D(Ω).

If u ∈ H1(Ω), we say that A u ∈ L2(Ω) if there exists a function f ∈ L2(Ω) such

that ⟨A u, φ⟩ = [f, φ] for all φ ∈ D(Ω). Here, and in what follows,

[f, g] :=

∫
Ω

fg dx

denotes the scalar product in L2(Ω). If A u ∈ L2(Ω) the function f above is unique and

we identify A u and f .

Next we define the weak conormal derivative by testing against functions in H1(Ω)

rather than functions in D(Ω) only.

Definition 4.2. Let u ∈ H1(Ω) be such that A u ∈ L2(Ω). For a function

h ∈ L2(∂Ω) we say that h is the weak conormal derivative of u and write ∂A
ν u := h if

the Green formula

a[u, v]− [A u, v] =

∫
∂Ω

hv dσ

holds for all v ∈ H1(Ω).

Under our assumptions on the coefficients the weak conormal derivative, if it exists,

is unique. It depends on the operator A only through the coefficients a = (aij) and

bj . Moreover, if the coefficients and the boundary of Ω are smooth enough the weak

conormal derivative coincides with the usual conormal derivative

∂A
ν u =

d∑
j=1

( d∑
i=1

aijDiu+ tr bju
)
νj

where ν = (ν1, . . . , νd) is the unit outer normal of Ω. In particular, ∂A
ν 1 =

∑d
j=1 tr bjνj .

For a proof of these facts and more information we refer to [1, Section 8.1].

Next we endow our differential operator with Robin boundary conditions, given

through a real function β ∈ L∞(∂Ω). For now, we do not (as in Hypothesis 1.1) assume

that β ≥ 0, but this assumption will be used later on (in Theorem 4.10) to obtain

analyticity of the semigroup via Gaussian estimates.

To define the differential operator with Robin boundary conditions, we employ the

theory of bilinear forms, defining aβ : H1(Ω)×H1(Ω) → R by

aβ [u, v] := a[u, v] +

∫
∂Ω

βuv dσ.

The associated operator A 2
β on L2(Ω) is given by
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D(A 2
β ) := {u ∈ H1(Ω) : ∃ f ∈ L2(Ω) with aβ [u, v] = [f, v] ∀ v ∈ H1(Ω)},

A 2
β u := f.

Testing against test functions we see that A 2
β u = A u for all u ∈ D(A 2

β ). By the

definition of the weak conormal derivative we obtain the following description of the

domain:

D(A 2
β ) = {u ∈ H1(Ω) : A u ∈ L2(Ω) and ∂A

ν u+ β tru = 0}.

Thus A 2
β is the realization of A with Robin boundary condition. We immediately obtain

the following generation result.

Proposition 4.3. Assume Hypothesis 4.1 and let β ∈ L∞(∂Ω). Then the operator

−A 2
β generates a positive, strongly continuous semigroup T 2

β on L2(Ω).

Proof. Using Lemma 4.7 below and the fact that the trace is a compact operator

from H1(Ω) to L2(∂Ω), we see that the form aβ is elliptic, i.e. there are constants α > 0

and ω ≥ 0 such that

aβ [u, u] + ω∥u∥2L2(Ω) ≥ α∥u∥H1(Ω).

Thus, by standard results from the theory of quadratic forms ([31, Section 1.4]) −A 2
β

generates a holomorphic semigroup T 2
β . The positivity of T 2

β follows from [31, Theorem

2.6] noting that aβ [u
+, u−] = 0 for all u ∈ H1(Ω). □

We next investigate when the semigroup T 2
β is sub-Markovian. We will use the

following lemma.

Lemma 4.4. Let g ∈ L2(Ω) and h ∈ L2(∂Ω) be such that∫
Ω

gv dx+

∫
∂Ω

hv dσ ≥ 0 (4.1)

for all 0 ≤ v ∈ H1(Ω). Then g ≥ 0 a.e. on Ω and h ≥ 0 a.e. on ∂Ω. Moreover, if in

(4.1) identity holds for all v ∈ H1(Ω), then g = 0 a.e. on Ω and h = 0 a.e. on ∂Ω.

Proof. By (4.1) we have
∫
Ω
gvdx ≥ 0 for all 0 ≤ v ∈ C∞

c (Ω). Thus g ≥ 0 almost

everywhere on Ω. Given a function φ ∈ C(∂Ω), we find a sequence vn ∈ C∞(Ω) such

that vn|∂Ω → φ in C(∂Ω), 0 ≤ vn ≤ ∥φ∥∞ in Ω and such that vn is supported in a

relatively open set Un ⊂ Ω with Un ⊃ Un+1 and
∩

n∈N Un = ∂Ω. Choosing v = vn in

(4.1) and letting n → ∞, we infer from dominated convergence that
∫
∂Ω

hφdσ ≥ 0. As

φ ∈ C(∂Ω) was arbitrary, the claim follows. □

Proposition 4.5. Assume Hypothesis 4.1 and let β ∈ L∞(∂Ω). We additionally

assume that bj ∈ W 1,∞(Ω) for j = 1, . . . , d.

(a) The semigroup T 2
β is sub-Markovian if and only if
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d∑
j=1

Djbj ≤ d0 almost everywhere on Ω and (4.2)

d∑
j=1

tr(bj)νj + β ≥ 0 almost everywhere on ∂Ω. (4.3)

(b) The semigroup T 2
β is Markovian if and only if

d∑
j=1

Djbj = d0 almost everywhere on Ω and (4.4)

d∑
j=1

tr(bj)νj + β = 0 almost everywhere on ∂Ω. (4.5)

Proof. (a) The semigroup T 2
β is sub-Markovian if and only if the Beurling–Deny–

Ouhabaz criterion holds, i.e.

aβ [u ∧ 1, (u− 1)+] ≥ 0

for all u ∈ H1(Ω), see [31, Chapter 2] and [29, Corollary 2.8] or [17] for the case where

the form is not necessarily accretive. Recall that for u ∈ H1(Ω) the functions u ∧ 1 and

(u− 1)+ also belong to H1(Ω) and

Dj(u ∧ 1) = 1{u<1}Dju and Dj(u− 1)+ = 1{u>1}Dju.

Thus Di(u ∧ 1)Dj(u− 1)+ = 0 and (u− 1)+Dj(u ∧ 1) = 0. We see that

aβ [u ∧ 1, (u− 1)+]

=

∫
Ω

d∑
j=1

bjDj(u− 1)+ dx+

∫
{u>1}

d0(u− 1)+ dx+

∫
∂Ω

β(u− 1)+ dσ

=−
∫
Ω

d∑
j=1

(Djbj)(u− 1)+ dx+

∫
∂Ω

d∑
j=1

bjνj(u− 1)+ dσ

+

∫
Ω

d0(u− 1)+ dx+

∫
∂Ω

β(u− 1)+ dσ.

The latter is positive if (4.2) and (4.3) hold whence T 2
β is sub-Markovian in this case.

This shows sufficiency of these two conditions.

Conversely, if the semigroup T 2
β is sub-Markovian, the Beurling–Deny–Ouhabaz cri-

terion yields∫
Ω

(
d0 −

d∑
j=1

Djbj

)
(u− 1)+dx+

∫
∂Ω

( d∑
j=1

bjνj + β
)
(u− 1)+dσ ≥ 0
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for all u ∈ H1(Ω). Choosing u = 1+ v with 0 ≤ v ∈ H1(Ω), Lemma 4.4 shows that (4.2)

and (4.3) are valid.

(b) A Markovian semigroup is in particular sub-Markovian whence the inequalities

(4.2) and (4.3) are satisfied. If T 2
β is sub-Markovian, then it is Markovian if and only if

1 ∈ ker(−A 2
β ). Note that

−A 1 =
d∑

j=1

Djbj − d0.

Thus (4.4) is necessary for T 2
β to be Markovian. If (4.4) holds, then for v ∈ H1(Ω) we

have

a[1, v]− [A 1, v] =

d∑
j=1

∫
Ω

(bjDjv + d0v) dx =

d∑
j=1

∫
∂Ω

bjνjv dσ,

where we used an integration by parts. Thus saying ∂A
ν 1+ β = 0, i.e. 1 ∈ D(−A 2

β ), is

equivalent to

d∑
j=1

∫
∂Ω

bjνjv dσ = −
∫
∂Ω

βv dσ

for all v ∈ H1(Ω) and hence to (4.5). □

In order to apply the abstract results of Section 3, we need some results about the

following elliptic problem, which are also used implicitly in the proof of Theorem 4.10.{
λu+ A u = f on Ω,

∂A
ν u+ βu = h on ∂Ω.

(4.6)

Obviously, aβ defines a continuous sesquilinear mapping onH1(Ω). By [15, Corollary 2.5]

it is also elliptic, i.e. there are some ω, α > 0 such that aβ [u, u]+ω∥u∥2L2(Ω) ≥ α∥u∥2H1(Ω).

With this information at hand, one can prove existence and uniqueness of solutions

to (4.6) by means of the Lax–Milgram Theorem. Indeed, considering the continuous

functional F on H1(Ω), given by F (v) =
∫
Ω
fv dx+

∫
∂Ω

hv dσ, it follows from the Lax–

Milgram Theorem that for λ > ω there is a unique u ∈ H1(Ω) such that

aβ [u, v] + λ[u, v] = F (v)

for all v ∈ H1(Ω). From [30, Theorem 3.14(iv)] we obtain the following result concerning

regularity of the solution.

Proposition 4.6. Assume Hypothesis 4.1, fix q > d and λ > ω. Then there exist

constants γ > 0 and C > 0 such that whenever f ∈ Lq/2(Ω) and h ∈ Lq−1(∂Ω) the

unique solution u of (4.6) belongs to Cγ(Ω) and we have

∥u∥Cγ(Ω) ≤ C
(
∥f∥Lq/2(Ω) + ∥h∥Lq−1(∂Ω)

)
.
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The following lemma is easy to prove, see e.g. [9, Lemma 2.3].

Lemma 4.7. Let X1, X2, X3 be Banach spaces such that X1 is reflexive. Let T :

X1 → X3 be compact, S : X1 → X2 be injective. Then, given ε > 0 there exists a

constant c > 0 such that

∥Tx∥X3 ≤ ε∥x∥X1 + c∥Sx∥X2

for all x ∈ X1.

We use this lemma to prove the following domination result.

Proposition 4.8. Assume Hypothesis 4.1 and let β1, β2 ∈ L∞(∂Ω) be such that

β1 ≤ β2. There exists ω so that both aβ1
+ ω and aβ2

+ ω are coercive and such that

for λ > ω the following holds. Let 0 ≤ f ∈ L2(Ω), 0 ≤ h ∈ L2(∂Ω). For j = 1, 2, let

uj ∈ H1(Ω) be the unique solution of{
λu+ A u = f on Ω,

∂A
ν u+ βju = h on ∂Ω.

Then 0 ≤ u2 ≤ u1.

Proof. We first show positivity for weak solutions u of (4.6). To that end consider

f ≤ 0 and h ≤ 0 for now. If u solves (4.6) we have

λ[u, v] + aβ [u, v] = [f, v] +

∫
∂Ω

hv dσ

for all v ∈ H1(Ω). Setting v := u+ and noting that aβ [u, u
+] = aβ [u

+, u+] by the locality

of aβ , we find

λ[u+, u+] + aβ [u
+, u+] = [f, u+] +

∫
∂Ω

hu+ dσ ≤ 0.

As aβ + ω is coercive we have that aβ [u
+, u+] + ω∥u+∥2L2(Ω) ≥ α∥u+∥2H1(Ω) for some

α > 0. Together with λ > ω it follows that ∥u+∥H1(Ω) ≤ 0, whence u ≤ 0.

We can prove the domination similarly. This time we fix f ≥ 0 and h ≥ 0. The

solution uj (j = 1, 2) satisfies the equation

λ[uj , v] + aβj [uj , v] = [f, v] +

∫
∂Ω

hv dσ

for all v ∈ H1(Ω). Subtracting these equations we find for a positive v that

λ[u2 − u1, v] + a[u2 − u1, v] =

∫
∂Ω

(β1u1 − β2u2)v dσ ≤
∫
∂Ω

β2(u1 − u2)v dσ,

since u1 ≥ 0 by the above. Testing against v := (u2 − u1)
+, we find
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λ[(u2 − u1)
+, (u2 − u1)

+] + a[(u2 − u1)
+, (u2 − u1)

+]

≤−
∫
∂Ω

β2

(
(u2 − u1)

+
)2
dx ≤ ∥β2∥L∞(∂Ω)

∫
∂Ω

(
(u2 − u1)

+
)2
dσ.

Applying Lemma 4.7 with X1 = H1(Ω), X2 = L2(Ω) and X3 = L2(∂Ω) where T :

H1(Ω) → L2(∂Ω) is the trace operator (which is compact) and S : H1(Ω) → L2(Ω) is

the natural embedding, given ε > 0 we find a constant c > 0 such that

∥β2∥L∞(∂Ω)

∫
∂Ω

(
(u2 − u1)

+
)2
dσ ≤ ε∥(u2 − u1)

+∥2H1(Ω) + c∥(u2 − u1)
+∥2L2(Ω)

= ε

∫
Ω

∣∣∇(u2 − u1)
+
∣∣2dx+ (c+ ε)

∫
Ω

(
(u2 − u1)

+
)2
dx.

Using the ellipticity of a we deduce that, for a suitable constant α > 0, we have

(λ+ α− ω)∥(u2 − u1)
+∥2L2(Ω) + α

∫
Ω

∣∣∇(u2 − u1)
+
∣∣2dx

≤ ε

∫
Ω

∣∣∇(u2 − u1)
+
∣∣2dx+ (c+ ε)∥(u2 − u1)

+∥2L2(Ω).

Choosing ε = α/2 and λ0 > ω+c+ε+1, it follows that for λ > λ0 we have (u2−u1)
+ = 0,

i.e. u2 ≤ u1. □

Proposition 4.8 yields in particular the following monotonicity property.

Corollary 4.9. Assume Hypothesis 4.1 and let β1, β2 ∈ L∞(Ω) be such that

β1 ≤ β2. Then 0 ≤ T 2
β2
(t) ≤ T 2

β1
(t) for all t ≥ 0.

Proof. Proposition 4.8 shows that for large λ we have 0 ≤ (λ + A 2
β2
)−1 ≤ (λ +

A 2
β1
)−1. This implies the claim in view of Euler’s formula. □

For our next result, we assume again that 0 ≤ β as in Hypothesis 1.1. Under this as-

sumption, we will show that the semigroup T 2
β on L2(Ω) always leaves the space L∞(Ω)

invariant, even if T 2
β is not sub-Markovian. This follows from Gaussian estimates for

the semigroup T 2
β which can be proved under the assumption that 0 ≤ β. It seems to

be unknown whether this is necessary for the Gaussian estimates. As a second conse-

quence of the Gaussian estimates, we see that the restriction Tβ of T 2
β to L∞(Ω) is a

holomorphic semigroup, by which we mean that the C-linear extension of T 2
β |L∞(Ω) to

the complexification L∞(Ω;C) of L∞(Ω) is holomorphic.

Of course the generator of Tβ is the part Aβ of −A 2
β in L∞(Ω), i.e.

D(Aβ) = {u ∈ H1(Ω) ∩ L∞(Ω) : A u ∈ L∞(Ω), ∂A
ν u+ βu = 0},

Aβu = −A u.

We will also see that the semigroup T 2
β has leaves the space C(Ω) invariant and restrincts

to a strongly continuous semigroup on that space. Naturally, the generator of TC
β is the

part AC
β of −A 2

β in C(Ω), i.e.
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D(AC
β ) = {u ∈ H1(Ω) ∩ C(Ω) : A u ∈ C(Ω), ∂A

ν u+ β tru = 0},

AC
β u = −A u.

As a consequence of the strong continuity of TC
β we find that D(AC

β ) is dense in C(Ω).

Theorem 4.10. Assume Hypothesis 4.1 and let 0 ≤ β ∈ L∞(∂Ω). Then T 2
β leaves

the space L∞(Ω) invariant. Its restriction Tβ to L∞(Ω) is a holomorphic semigroup on

L∞(Ω). Each operator Tβ(t), t > 0, is compact and enjoys the strong Feller property. In

particular, C(Ω) is invariant under Tβ. The restriction TC
β of T 2

β to C(Ω) is a strongly

continuous and holomorphic semigroup.

Proof. It was proved in [14, Corollary 6.1] (see also [10, Theorem 4.9]) that

the semigroup T 2
β has Gaussian estimates so that T 2

β extrapolates to a consistent family

of semigroups T q
β on Lq(Ω) for q ∈ [1,∞]. In particular, T 2

β leaves the space L∞(Ω)

invariant and restricts to a semigroup Tβ on this space. By [10, Theorem 5.3] the

semigroup Tβ is holomorphic on L∞(Ω). Moreover, by the proof of [30, Theorem 4.3]

Tβ(t)L
∞(Ω) ⊂ C(Ω) for all t > 0. It was also seen in that theorem that Tβ(t) is

compact for all t > 0. We now show that Tβ(t) is strongly Feller for t > 0. Since

T 2
β is ultracontractive by [3, 7.3 Criterion (v)] it follows that T 2

β (t)L
q(Ω) ⊂ L∞(Ω)

and hence T 2
β (t)L

q(Ω) ⊂ T 2
β (t/2)L

∞(Ω) ⊂ C(Ω) for some q ∈ (2,∞). By the closed

graph theorem, T 2
β (t) is a bounded operator from Lq(Ω) to C(Ω). Now the strong Feller

property, as defined in Definition 2.7, follows from the dominated convergence theorem.

It follows from [30, Theorem 4.3] that the restriction of the semigroup to C(Ω) is strongly

continuous. □

5. Non-local boundary conditions.

We are now prepared to prove the main results of this article. We begin by setting

up the framework in which we apply Greiner’s boundary perturbation. In contrast to

the last section, in this section only consider complex Banach spaces in order to handle

(possibly) complex valued functions µ : ∂Ω → M (Ω).

We assume throughout Hypotheses 1.1 and 4.1. In particular, we assume throughout

that 0 ≤ β ∈ L∞(∂Ω). We then define

D := {u ∈ C(Ω) ∩H1(Ω) : A u ∈ L∞(Ω), ∂A
ν u ∈ Lp(∂Ω)},

where p > d− 1 is as in Hypothesis 1.1(b). Endowed with the norm

∥u∥D := ∥u∥C(Ω) + ∥u∥H1(Ω) + ∥A u∥L∞(Ω) + ∥∂A
ν u∥Lp(∂Ω)

D is a Banach space which is continuously embedded into X = L∞(Ω). Since D(AC
β ) ⊂

D, it follows from Theorem 4.10 thatD is dense in C(Ω). We define our maximal operator

A : D → X by Au := −A u which is linear and continuous. We set ∂X := Lp(∂Ω) and

consider the boundary operator B : D → ∂Ω defined via Bu = ∂A
ν u+ βu where β is as

in Hypothesis 1.1. Finally, given µ as in Hypothesis 1.1, the function Φ : D → ∂X is

given by
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(Φu)(z) :=

∫
Ω

u(x)µ(z)(dx).

Making use of the results of Section 3 we can now prove our main generation result

for the operator Aβ,µ, defined by

D(Aβ,µ) =
{
u ∈ C(Ω) ∩H1(Ω) : A u ∈ L∞(Ω), ∂A

ν u+ βu = ⟨u, µ(·)⟩
}
,

Aβ,µ = −A u.

The following result contains Theorem 1.3 from the introduction as a special case.

Theorem 5.1. Assume Hypotheses 1.1 and 4.1. Then the operator Aβ,µ generates

a holomorphic semigroup Tβ,µ on L∞(Ω) which satisfies the strong Feller property. In

particular, it leaves the space C(Ω) invariant. Its restriction to this space is a strongly

continuous and holomorphic semigroup whose generator is AC
β,µ, the part of Aβ,µ in C(Ω).

Proof. Noting that the operator Aβ,µ is exactly the perturbed operator AΦ,

where A and Φ are as defined above, the claim follows immediately from Theorem 3.2

and Corollary 3.10 once we verified that the maps A,B and Φ satisfy Hypothesis 3.1.

(a) The operator B : D → ∂X is surjective.

Pick ω such that a+ω is coercive and fix λ > ω. Given h ∈ ∂X = Lp(∂Ω), it follows

from Proposition 4.6 that the unique solution u ∈ H1(Ω) of the problem{
λu+ A u = 0,

∂A
ν u+ βu = h

belongs to C(Ω). Moreover, A u = −λu ∈ C(Ω) ⊂ L∞(Ω). Thus, u ∈ D and Bu = h,

proving that B is surjective.

(b) The boundary map Φ is compact.

Let (un)n∈N be a bounded sequence in C(Ω), say ∥un∥C(Ω) ≤ M for all n ∈ N. Since
µ(z) ≪ τ by Hypothesis 1.1(c), for every z ∈ ∂Ω we find a Radon–Nikodym density

φz ∈ L1(Ω, τ) of µ(z) with respect to τ , i.e. we have∫
Ω

f(x)µ(z)(dx) =

∫
Ω

fφz dτ

for all f ∈ C(Ω). In particular, (Φun)(z) = ⟨un, φz⟩L∞(τ),L1(τ). Since the sequence un is

bounded in L∞(τ) and L1(τ) is separable, it follows from the Banach–Alaoglu theorem

that we find a weak∗-convergent subsequence, say unk
⇀∗ u for some u ∈ L∞(τ). In

particular,

(Φunk
)(z) =

∫
Ω

unk
φz dτ →

∫
Ω

uφz dτ

for all z ∈ ∂Ω, i.e. Φun has a subsequence which converges pointwise. Note that we have

|(Φun)(z)| ≤ M∥µ(z)∥.
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As a consequence of Hypothesis 1.1(b) the functions Φun have a p-integrable majorant

and it follows from the dominated convergence theorem that Φun has a subsequence

which converges in Lp(∂Ω).

(c) The operator A0 is exactly the part of −A 2
β in L∞(Ω). It follows from Theorem

4.10 that A0 generates an holomorphic semigroup onX = L∞(Ω) which enjoys the strong

Feller property and whose domain is dense in C(Ω). □

We next prove some additional properties of the semigroup Tβ,µ making use of the

corollaries to Theorem 3.2.

Proposition 5.2. Assume Hypotheses 1.1 and 4.1 and let Tβ,µ be the semigroup

generated by Aβ,µ according to Theorem 5.1.

(a) Tβ,µ is compact.

(b) If µ(z) is a positive measure for almost every z ∈ ∂Ω, then the semigroup Tβ,µ is

positive.

Proof. (a) Follows immediately from Corollary 3.7, noting that the semigroup

generated by A0 is compact as a consequence of Theorem 4.10.

(b) By Theorem 4.10, the semigroup generated by A0 is positive. If µ(z) is positive

for almost every z ∈ ∂Ω, then the map Φ is positive. Note that for the solution map Sλ

the function Sλh is the unique solution of the boundary value problem{
λu+ A u = 0,

∂A
ν u+ βu = h.

Thus, by Proposition 4.8, Sλ is positive for λ > ω. Altogether SλΦ is positive and it

follows from Corollary 3.8 that Tβ,µ is positive. □

Next we characterize when Tβ,µ is Markovian.

Proposition 5.3. Assume in addition to Hypotheses 1.1 and 4.1 that µ(z) is a

positive measure for almost every z ∈ ∂Ω. The following are equivalent.

(i) The semigroup Tβ,µ is Markovian.

(ii) We have

d∑
j=1

Djbj = d0 almost everywhere on Ω and (5.1)

µ(z)(Ω) = β(z) +
d∑

j=1

νj(z)bj(z) for almost all z ∈ ∂Ω. (5.2)

Proof. Since Tβ,µ is positive, (i) is equivalent to 1 ∈ kerAβ,µ. Observe that

−A 1 =
∑d

j=1 Djbj − d0. Thus −A 1 = 0 if and only if (5.1) holds. In that case,

integration by parts yields for v ∈ H1(Ω) that
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a[1, v]− [A 1, v] =
d∑

j=1

∫
Ω

bjDjv + d0vdx =
d∑

j=1

∫
∂Ω

bjνjv dσ.

Thus 1 ∈ D(Aβ,µ) if and only if

d∑
j=1

∫
∂Ω

bj(z)νj(z)v(z) dσ(z) =

∫
∂Ω

(
− β(z) + ⟨µ(z),1⟩

)
v(z) dσ

for all v ∈ H1(Ω). This is equivalent to (5.2). □

If we merely have inequalities in (5.1) and (5.2), then the semigroup is sub-Markovian

as we show next. In the proof, we use the following monotonicity result.

Proposition 5.4. Assume Hypothesis 4.1 and let β1, β2 ∈ L∞(∂Ω) with β2 ≤ β1.

Moreover, let functions µ1, µ2 : ∂Ω → M (Ω) be given such that 0 ≤ µ1(z) ≤ µ2(z) for

almost all z ∈ ∂Ω and such that µ1, µ2 satisfy Hypothesis 1.1 with the same p. Then

0 ≤ Tβ1,µ1(t) ≤ Tβ2,µ2(t)

for all t ≥ 0.

Proof. The semigroups Tβ1,µ1 and Tβ2,µ2 are obtained from the same maximal

operator A but using different boundary perturbations Φj : u 7→ ⟨µj(·), u⟩ and boundary

operators Bj : u 7→ ∂A
ν u + βju. We clearly have B2u ≤ B1u and 0 ≤ Φ1u ≤ Φ2u for

u ≥ 0. Moreover, if we write Sj
λ := (Bj |ker(λ−A))

−1, then we have S1
λ ≤ S2

λ by Proposition

4.8. Thus Corollary 3.9 yields the claim. □

Proposition 5.5. Assume in addition to Hypotheses 1.1 and 4.1 that µ(z) is

positive for almost all z ∈ ∂Ω and that bj ∈ W 1,∞(Ω) for j = 1, . . . , d. If

d∑
j=1

Djbj ≤ d0 almost everywhere on Ω and (5.3)

µ(z)(Ω) ≤ β(z) +
d∑

j=1

tr(bj)(z)νj(z) for almost all z ∈ ∂Ω (5.4)

then the semigroup Tβ,µ is sub-Markovian.

Proof. Assume at first that
∑d

j=1 Djbj = d0. Let us define β0(z) := µ(z)(Ω) −∑d
j=1 tr bj(z)νj(z). By Proposition 5.3 the semigroup Tβ0,µ is Markovian. As a conse-

quence of Proposition 5.4 we have 0 ≤ Tβ,µ(t) ≤ Tβ0,µ(t) for all t > 0 which clearly im-

plies that Tβ,µ is sub-Markovian. That Tβ,µ is still sub-Markovian when
∑d

j=1 Djbj ≤ d0
follows from a standard perturbation result:

Denote by Ãβ,µ the operator where d0 is replaced by d̃0 :=
∑d

j=1 Djbj . Then the

semigroup T̃β,µ generated by Ãβ,µ is sub-Markovian by what has been proved so far.

Note that Aβ,µ + (d0 − d̃0) = Ãβ,µ, so that Ãβ,µ is a bounded and positive perturbation
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of Aβ,µ. Using a perturbation result for resolvent positive operators [6, Proposition

3.11.12] we find that R(λ,Aβ,µ) ≤ R(λ, Ãβ,µ) for large enough λ and the domination

of the semigroups follows from the Post–Widder inversion formula [6, Theorem 1.7.7].

Alternatively, the domination property can be inferred from the Dyson–Phillips formula

for the perturbed semigroup, see [26, Example 3.4] for a version which covers our setting.

□

As a further consequence of Proposition 5.4 we have

0 ≤ Tβ,0(t) ≤ Tβ,µ(t) (5.5)

for all t > 0 in the case where µ(z) is a positive measure for almost every z ∈ ∂Ω. We note

that for µ ≡ 0 we have Tβ,0(t) = Tβ(t), where Tβ is the semigroup on L∞(Ω), defined

in Section 4 for local Robin boundary conditions. It thus follows from Proposition 4.5

that condition (5.3) is necessary for Tβ,µ to be sub-Markovian. It seems not so easy to

show that also condition (5.4) is necessary for this. Also concerning the positivity of

the semigroup Tβ,µ it seems unclear if the condition that µ(z) is a positive measure for

almost every z ∈ ∂Ω is necessary. However, in Section 8 we will give a proof of necessity

in the special case where every measure µ(z) is absolutely continuous with respect to the

Lebesgue measure.

6. Asymptotic behavior.

Throughout this section we assume Hypotheses 1.1 and 4.1 so that Tβ,µ is a semi-

group on L∞(Ω). It is our aim to describe its asymptotic behavior as t → ∞. Since

Tβ,µ(t)L
∞(Ω) ⊂ C(Ω) for all t > 0 it suffices to study TC

β,µ, the restriction to C(Ω),

which is a strongly continuous semigroup. We also assume throughout that µ(z) ≥ 0 for

almost all z ∈ ∂Ω so that the semigroup is positive.

For the definition of spectral bound and irreducibility we refer to Appendix A. The

asymptotic behavior of TC
β,µ is determined by the spectral bound s(AC

β,µ) of its generator

(see Appendix A). We first show that the spectrum is not empty.

Proposition 6.1. Assume that µ(z) ≥ 0 for almost all z ∈ ∂Ω. Then s(AC
β,µ) >

−∞. Moreover, s(AC
β,µ) is an eigenvalue of AC

β,µ with positive eigenfunction.

Proof. We first show that s(AC
β,0) ≤ s(AC

β,µ). As a consequence of Proposi-

tion 5.4 we have 0 ≤ TC
β,0(t) ≤ TC

β,µ(t). Taking Laplace transforms, it follows that

0 ≤ R(λ,AC
β,0) ≤ R(λ,AC

β,µ) for all large enough λ. By [6, Theorem 5.3.1] for a posi-

tive semigroup the abscissa of the Laplace transform coincides with the spectral bound.

Thus, if we assume that s(AC
β,0) > s(AC

β,µ) we have 0 ≤ R(λ,AC
β,0) ≤ R(λ,AC

β,µ)

for all λ > s(AC
β,0). By [6, Proposition 3.11.2] we have s(AC

β,0) ∈ σ(AC
β,0) and

hence supλ>s(AC
β,0)

∥R(λ,AC
β,0)∥ = ∞. Consequently, also ∥R(λ,AC

β,µ)∥ is unbounded

as λ ↓ s(AC
β,0). It thus follows that s(A

C
β,0) ∈ σ(AC

β,µ), a contradiction to our assumption

s(AC
β0
) > s(AC

β,µ).

The operator AC
β,0 is the part of −A 2

β in C(Ω), defined before Theorem 4.10. It

follows from Proposition A.4 that the semigroup generated by −A 2
β is irreducible. Since
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the resolvent of that operator is compact, it follows from de Pagter’s Theorem (see

[16, Theorem 3] or [7, C-III Theorem 3.7.(c)]) that s(−A 2
β ) > −∞. But we have

s(AC
β,0) = s(−A 2

β ) since the resolvents are compact and consistent, see [2, Proposition

2.6]. □

Note that the semigroup TC
β,µ is compact and hence immediately norm continu-

ous whence spectral bound and growth bound coincide. Thus, if s(Aβ,µ) < 0, then

∥TC
β,µ(t)∥ ≤ Me−εt for all t > 0 and suitable constants M > 0, ε > 0, i.e. the semigroup

is exponentially stable. If, on the other hand, s(AC
β,µ) > 0 then there exists ε > 0, M > 0

such that ∥TC
β,µ(t)∥ ≥ Meεt for all t > 0. Finally, if s(Aβ,µ) = 0, then the semigroup

converges if it is bounded. This is not easy to decide, though. However, we have a precise

criterion for the semigroup to be sub-Markovian. In that case, we obtain the following

result from Theorem A.1.

Proposition 6.2. Assume that µ(z) ≥ 0 and

µ(z)(Ω) ≤ β(z) +
d∑

j=1

tr bjνj(z) (6.1)

for almost every z ∈ ∂Ω and

d∑
j=1

Djbj ≤ d0 (6.2)

almost everywhere. Then there exist a positive projection P ∈ L (C(Ω)) with finite rank

and M > 0, ε > 0 such that

∥TC
µ,β(t)− P∥L (C(Ω)) ≤ Me−εt

for all t > 0.

In the situation of Proposition 6.2, if s(AC
β,µ) = 0, there exists a function 0 < u = Pu,

i.e. a positive function in the kernel of AC
β,µ. If the semigroup is Markovian, then 1

is such a function. It is interesting to know when it is the only one (up to a scalar

multiple). If TC
β,µ is irreducible, then this is the case. Unfortunately, it is not easy to

prove irreducibility on C(Ω). However, it follows from the domination property (5.5)

that TC
β,µ is irreducible whenever TC

β,0 is so. As for the latter semigroup, a particular

case will be settled in Theorem 7.3. We also remark that in [11] it is shown that TC
β,0

is irreducible whenever Ω is connected, bj = 0 and aij = aji for i, j = 1, . . . , d, see [11,

Section 2] and in particular Corollary 2.5 of that reference.

Theorem 6.3. Assume that µ(z) ≥ 0 and

0 ≤ µ(z)(Ω) = β(z) +
d∑

j=1

tr bjνj(z)



1547

Diffusion with nonlocal Robin boundary conditions 1547

for almost all z ∈ ∂Ω and
∑d

j=1 Djbj = d0. Assume further that TC
β,0 is irreducible.

Then there exist a strictly positive measure ρ on Ω and constants ε,M > 0 such that for

P ∈ L (C(Ω)), given by

Pf =

∫
Ω

f dρ · 1

for all f ∈ C(Ω), we have

∥TC
β,µ(t)− P∥L (C(Ω)) ≤ Me−εt

for all t > 0.

Proof. By Proposition 5.2 the semigroup TC
β,µ is Markovian and hence 1 is a

fixed vector of the semigroup. As a consequence of (5.5), TC
β,µ is irreducible. Now the

claim follows from Theorem A.2. □

We next prove exponential stability in the sub-Markovian case.

Theorem 6.4. Assume that µ(z) ≥ 0 for almost all z ∈ ∂Ω and that (6.1) and

(6.2) hold. Moreover, assume that TC
β,0 is irreducible. If in (6.1) or (6.2) the inequality

is strict on some set of positive measure, then there exist ε,M > 0 such that

∥TC
β,µ(t)∥L (C(Ω)) ≤ Me−εt

for all t > 0.

Proof. Let us put

β̃(z) := µ(z)(Ω)−
d∑

j=1

tr bj(z)νj(z)

and d̃0(x) =
∑d

j=1(Djbj)(x). Replace d0 with d̃0 and β with β̃ and denote by T̃β̃,µ

the corresponding semigroup on C(Ω). We denote the generator of T̃C
β̃,µ

by ÃC
β̃,µ

. Then

0 ≤ TC
β,µ(t) ≤ T̃C

β̃,µ
(t) for all t > 0 by Proposition 5.4 and a perturbation argument, cf.

the proof of Proposition 5.5. By Proposition 5.3 the semigroup T̃β̃,µ is Markovian so that

its generator has spectral bound 0. However, the generators of these two semigroups are

different. To see this, let us first assume that β ̸= β̃ in L∞(∂Ω). Note that the conormal

derivative ∂A
ν = ∂Ã

µ does not depend on the zero order term d0 resp. d̃0. We find

⟨1, µ(z)⟩ = ∂Ã
ν 1+ β̃1 ̸= ∂A

ν 1+ β1.

Thus 1 ̸∈ D(AC
β,µ) but 1 ∈ D(ÃC

β,µ). If, on the other hand, β = β̃ in L∞(∂Ω), then we

have d0 ̸= d̃0 in L∞(Ω). Note that Aβ,µ1 = d̃0 − d0. If d̃0 − d0 ∈ C(Ω), it follows that

1 ∈ D(AC
β,µ) but A

C
β,µ1 ̸= ÃC

β̃,µ
1. If d̃0 − d0 ̸∈ C(Ω), then 1 ̸∈ D(AC

β,µ). In any case we

have ÃC
β̃,µ

̸= AC
β,µ. Thus the claim follows from Theorem A.3. □



1548

1548 W. Arendt, S. Kunkel and M. Kunze

Next we show a blow-up result in the case where we perturb a Markovian semigroup

Tβ,0 by a positive µ. Recall from Proposition 4.5 that Tβ,0 is Markovian if and only if

the identities (4.4) and (4.5) hold.

Theorem 6.5. Assume the identities (4.4) and (4.5) and that Ω is connected. If

µ(z) ≥ 0 for almost all z ∈ ∂Ω but not identically 0 almost everywhere, then there exist

ω,M > 0 such that

∥TC
β,µ(t)∥L (C(Ω)) ≥ Meωt

for all t > 0.

Proof. The semigroup TC
β,0 is Markovian (by Proposition 4.5) and has an exten-

sion to L2(Ω) which is irreducible (as a consequence of Proposition A.4). From Proposi-

tion A.5, it follows that TC
β,0 is irreducible. By Proposition 5.4 we have TC

β,0(t) ≤ TC
β,µ(t)

for all t > 0. Since ∂ν1 + β1 = 0 < µ(z)(Ω) for z in a set of positive measure, one has

1 ̸∈ D(AC
β,µ). Thus the two semigroups are different and it follows from Theorem A.3

that 0 = s(AC
β,0) < s(AC

β,µ) =: ω. Thus there exists u ∈ C(Ω) such that u ≥ 1 with

AC
β,µu = ωu. But this implies TC

β,µ(t)u = eωtu which, in turn, yields the claim. □

Remark 6.6. In particular, it follows from Theorem 6.5 that the only realization

of our operator with non-local Neumann boundary conditions (i.e. where β = 0) which

generates a sub-Markovian semigroup is that with classical (local) Neumann boundary

conditions (i.e. β = 0 and µ = 0).

7. Absolutely continuous measures µ(z).

In this section we consider the case where the measures µ(z) are absolutely contin-

uous with respect to the Lebesgue measure on Ω. More precisely, we assume that we are

given a function h ∈ L2(∂Ω× Ω) such that

µ(z)(A) =

∫
A

h(z, x) dx.

In this situation we can use form methods to show that the semigroup Tβ,µ, defined on

L∞(Ω), has an extension to L2(Ω). This allows us to establish irreducibility of TC
β,µ via

Propositions A.4 and A.5 in the Markovian case, provided Ω is connected. On the other

hand, we can use form methods to show that our assumptions to infer positivity resp.

sub-Markovianity are close to optimal.

We consider the form aβ,h : H1(Ω)×H1(Ω) → R, given by

aβ,h[u, v] := aβ [u, v]−
∫
∂Ω

∫
Ω

h(z, x)u(x) dx v(z) dσ(z).

Then the form aβ,h is elliptic and continuous. Denote by A 2
β,h the associated operator

on L2(Ω). Then −A 2
β,h generates a holomorphic, strongly continuous semigroup T 2

β,h on

L2(Ω). It is easy to see that if in addition
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∂Ω

(∫
Ω

|h(z, x)|dx
)p

dσ, (7.1)

for some p > d−1 with p ≥ 2, then the measures µ(z) = h(z, x)dx satisfy Hypothesis 1.1

whence we obtain a semigroup Tβ,µ on L∞(Ω) with generator Aβ,µ. Using the definition

of the co-normal derivative one sees that the part of −A 2
β,h in L∞(Ω) is precisely the

operator Aβ,µ. It follows that T
2
β,h leaves the space L∞(Ω) invariant and the restriction

of that semigroup to L∞(Ω) is Tβ,µ.

Proposition 7.1. With the notation above, we have:

(a) The semigroup T 2
β,h is positive if and only if h ≥ 0 almost everywhere.

(b) Assume that bj ∈ W 1,∞(Ω) for j = 1, . . . , d. Then T 2
β,h is sub-Markovian if and

only if (5.3) holds, h ≥ 0 almost everywhere and 0 ≤
∫
Ω
h(z, x)dx ≤ β(z) +∑d

j=1 tr bj(z)νj(z) for almost every z ∈ ∂Ω.

Proof. (a) By the first Beurling–Deny criterion [29, Corollary 2.6] T 2
β,µ is positive

if and only if aβ,µ[u
+, u−] ≤ 0 for all u ∈ H1(Ω). If h ≥ 0 almost everywhere this is

clearly fulfilled.

Conversely assume that T 2
β,µ(t) ≥ 0 for all t > 0. Then∫

∂Ω

∫
Ω

h(z, x)u+(x) dxu−(z) dσ(z) = −aβ,h[u
+, u−] ≥ 0

for all u ∈ H1(Ω). Now let functions 0 ≤ v ∈ D(Ω) and 0 ≤ φ ∈ C(∂Ω) be given. We

find a sequence wn ∈ D(Rd) with 0 ≤ wn ≤ ∥φ∥∞ such that suppwn ∩ supp v = ∅ and

wn(z) → φ(z) for all z ∈ ∂Ω. Inserting u = v − wn in the above inequality and using

dominated convergence, we obtain that∫
∂Ω

∫
Ω

h(z, x)v(x) dxφ(z) dσ(z) ≥ 0.

As 0 ≤ φ ∈ C(∂Ω) was arbitrary, we conclude that∫
Ω

h(z, x)v(x)dx ≥ 0

for almost all z ∈ ∂Ω. As 0 ≤ v ∈ D(Ω) was arbitrary, it follows that for almost all

z ∈ ∂Ω we have h(z, x) = 0 for almost all x ∈ Ω. Now Fubini’s theorem implies that

h ≥ 0 with respect to the product measure, proving the necessity of the condition.

(b) The sufficiency of the inequality above was already established in Proposition

5.5, so we only need to prove its necessity. If the semigroup is sub-Markovian, it is

positive and thus h ≥ 0 almost everywhere by (a).

By the Beurling–Deny–Ouhabaz criterion [29, Corollary 2.8], for u ∈ H1(Ω) we have

0 ≤ aβ,h[u ∧ 1, (u− 1)+]
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= −
∑
j

∫
Ω

(Djbj)(u− 1)+dx+

∫
Ω

d0(u− 1)+dx

+

∫
∂Ω

(∑
j

bjνj(u− 1)+ + β(z)−
∫
Ω

(u ∧ 1)(x)h(z, x)dx
)
(u− 1)+(z) dσ(z).

Now let v ∈ H1(Ω) such that v ≥ 0. Inserting u = v + 1 in the above inequality, the

desired inequalities follow from Lemma 4.4. □

Remark 7.2. We have already noted after Proposition 5.5 that Condition (5.3) is

necessary for Tβ,µ to be sub-Markovian.

We now consider the case where the semigroup is Markovian. Then we can prove

irreducibility via Proposition A.4 and deduce convergence of the semigroup to an equi-

librium.

Theorem 7.3. Assume that Ω is connected, and that h ≥ 0 almost everywhere

satisfies Equation (7.1). Moreover, assume that
∑d

j=1 Djbj = d0 almost everywhere on

Ω and

d∑
j=1

bj(z)νj(z) + β(z) =

∫
Ω

h(z, x) dx

almost everywhere on ∂Ω. Then the semigroup TC
β,µ on C(Ω) is irreducible and Markov-

ian. Consequently, there exist 0 ≪ φ ∈ L2(Ω) such that
∫
Ω
φ(x)dx = 1 and constants

ε,M > 0 such that

∥TC
β,µ(t)− φ⊗ 1∥L (C(Ω)) ≤ Me−εt

for all t > 0.

8. Measures satisfying Hypothesis 1.1.

In this brief section we give some examples of maps µ for which Hypothesis 1.1 is

satisfied.

Example 8.1. Assume that for every Borel set A ⊂ Ω the complex-valued map

z 7→ µ(z)(A) is continuous. Then µ satisfies conditions (a), (b) and (c) in Hypothesis 1.1.

Proof. It is obvious that (a) holds. As for (b), we note that by continuity and

compactness of ∂Ω we have supz∈∂Ω |µ(z)(A)| < ∞ for every A ∈ B(Ω). Now [12,

Corollary 4.6.4] yields supz∈∂Ω ∥µ(z)∥ < ∞. To prove (c), pick a dense sequence zn in

∂Ω. We set

τ :=
∑
n∈N

1

2n
|µ(zn)|,

where |µ(z)| denotes the total variation of µ(z). Then τ is a finite positive measure and
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we have µ(zn) ≪ τ for every n ∈ N. Let A ∈ B(Ω) with τ(A) = 0 be given. Consider

the function φ(z) := µ(z)(A). By the above φ(zn) = 0 for all n ∈ N. Moreover, φ is

continuous by assumption. Thus φ ≡ 0, proving that in fact µ(z) ≪ τ for all z ∈ ∂Ω. □

Similarly, we can consider maps µ which only take countably many values.

Example 8.2. Assume that µ(z) =
∑

n∈J 1An(z)µj where (An)j∈J ⊂ B(∂Ω) and

(µj)n∈J ⊂ M (Ω) and J is a finite or countably infinite index set. Then µ satisfies

Hypothesis 1.1 provided
∑

n∈J σ(An)|µn|(Ω)p < ∞ where p is as in Hypothesis 1.1(b).

Proof. Part (a) is obvious and (b) was assumed. Part (c) is fulfilled with τ =∑
n∈J 2−n|µn|. □

Appendix A. Irreducible semigroups.

In this appendix we collect some known facts on positive, irreducible semigroups.

In some cases we present some variations or adapt results to our special situation.

Let E be a real Banach lattice. In our context E will be C(Ω) or Lq(Ω). Let T

be a strongly continuous semigroup on E which is positive, i.e. for f ∈ E+ we have

T (t)f ∈ E+ for all t ≥ 0. We denote the generator of T by A. The spectral bound of A

is defined by

s(A) := sup{Reλ : λ ∈ σ(AC)}

where σ(AC) is the spectrum of the generator AC of the complexification of T . In

what follows, we will not distinguish between an operator and its complexification. In

particular, when we talk about the spectrum, resolvent, etc. of an operator, we always

mean the spectrum/resolvent, etc. of its complexification.

By [7, C-III Theorem 1.1], s(A) ∈ σ(A) whenever σ(A) ̸= ∅ . If A has compact

resolvent, then σ(A) consists of isolated points which are all eigenvalues.

Theorem A.1. Assume that T (t) is compact for all t > 0, that s(A) = 0 and that

T is bounded. Then there exist a positive projection P ̸= 0 of finite rank, ε > 0 and

M > 0 such that

∥T (t)− P∥L (E) ≤ Me−εt

for all t > 0.

Proof. Since T (t) is compact for all t > 0, T is immediately norm continuous and

it follows from [7, C-III Corollary 2.13] that there is some δ > 0 such that Reλ ≤ −2δ < 0

for all λ ∈ σ(A) \ {0}. Denote by P the spectral projection with respect to 0, i.e.

P :=
1

2πi

∫
|λ|=δ

R(λ,A) dλ.
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As T (t) is compact for all t > 0, so is the resolvent and thus also P , whence it has finite

rank. The restriction of T to the range of P is a bounded semigroup on a finite dimen-

sional vector space whose generator has spectrum {0}. It follows that the generator of

the restriction is diagonalizable and is thus the zero operator. Consequently, T (t)P = P

for all t > 0. The space F = (I−P )E is invariant under the semigroup and the generator

AF of the restriction has its spectrum in a strict left half plane. Since the semigroup is

immediately norm continuous there exist ε > 0, M > 0 such that ∥T (t)|F ∥L (F ) ≤ Me−εt

and hence ∥T (t)− P∥L (E) ≤ Me−εt for all t ≥ 0. □

Theorem A.1 implies in particular that there exists u > 0, i.e. u ≥ 0 and u ̸= 0, such

that T (t)u = u for all t ≥ 0. Thus the Krein–Rutman Theorem which asserts that the

largest eigenvalue (i.e. s(A)) has a positive eigenfunction is incorporated in Theorem A.1.

We next want to investigate when P has rank one and the positive eigenfunction is

strictly positive. This will be done via the notion of irreducibility. A subspace J of E is

called an ideal if

(i) u ∈ J implies |u| ∈ J and

(ii) if u ∈ J , then 0 ≤ v ≤ u implies v ∈ J .

A positive, strongly continuous semigroup T on E is called irreducible if the only invariant

closed ideals are J = {0} and J = E.

If E = C(Ω) then J ⊂ E is a closed ideal if and only if there exists a closed subset

K of Ω such that

J = {f ∈ C(Ω) : f |K = 0}.

If E = Lq(Ω) (1 ≤ q < ∞) then J ⊂ E is a closed ideal if and only if there exists a

measurable subset K of Ω such that

J = {f ∈ Lq(Ω) : f |K = 0 a.e.}.

We say that u ∈ E is a quasi interior point and write u ≫ 0 if the principal ideal

Eu := {v ∈ E : ∃ c > 0 such that |v| ≤ cu}

is dense in E.

If E = C(Ω) then u ≫ 0 if and only if there is δ > 0 such that u(x) ≥ δ > 0 for all

x ∈ Ω. In this case u is actually an inner point of the positive cone. If E = Lp(Ω) then

u ≫ 0 if and only if u(x) > 0 for almost every x.

We call φ ∈ E′ a strictly positive functional if ⟨φ, f⟩ = 0 implies f = 0 for all

f ∈ E+.

If E = C(Ω), then φ is strictly positive if and only if there exists a strictly positive

Borel measure ν, i.e. ν(O) > 0 for all non-empty open sets O ⊂ Ω, such that

⟨φ, f⟩ =
∫
Ω

f(x) dν(x).
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If E = Lq(Ω) for φ ∈ Lq′(Ω) ≃ (Lq(Ω))′ to be strictly positive is equivalent to that

φ(x) > 0 almost everywhere, i.e. φ ≫ 0.

The importance of these concepts in the study of asymptotic behavior stems from

the fact that positive fixed points of positive, irreducible semigroups are strictly positive.

More precisely, if T is a positive, irreducible, strongly continuous semigroup and u > 0 is

such that T (t)u = u for all t > 0, then u ≫ 0 and if 0 < φ ∈ E′ is such that T (t)′φ = φ

for all t > 0 then φ is strictly positive. Moreover, because of irreducibility, s(A) cannot be

a pole of order larger than 1, see [7, C-III Proposition 3.5]. This implies that T (t)P = P

for all t > 0 in the proof of Theorem A.1 even though the semigroup is not assumed to

be bounded. We thus obtain the following result on asymptotic stability.

Theorem A.2. Let T be a positive, irreducible strongly continuous semigroup on

E with generator A. Assume that T (t) is compact for t > 0 and s(A) = 0. Then there

exist 0 ≪ u ∈ kerA, a strictly positive φ ∈ kerA′, ε > 0, M > 0 such that ⟨φ, u⟩ = 1 and

∥T (t)− φ⊗ u∥L (E) ≤ M−εt

for all t ≥ 0 where we have written φ⊗ u for the projection defined by

(φ⊗ u)(f) = ⟨φ, f⟩u,

for all f ∈ E. In particular

lim
t→∞

T (t)f = ⟨φ, f⟩u,

i.e. the orbits of the semigroup converge to an equilibrium.

Theorems A.1 and A.2 lie at the heart of the Perron–Frobenius theory. We refer to

[7] for more information.

We shall have occasion to use the strict monotonicity of the spectral bound.

Theorem A.3. Let S and T be strongly continuous semigroups on E with gener-

ators B and A respectively. Assume that

(i) 0 ≤ S(t) ≤ T (t) for all t > 0;

(ii) A has compact resolvent, and

(iii) T is irreducible.

If A ̸= B, then s(B) < s(A).

Proof. This is a version of [5, Theorem 1.3], see also [4, Theorem 10.2.10] in

connection with [4, Theorems 10.6.3 and 10.6.1]. □

Next we describe ways to prove irreducibility. On L2(Ω) this is very easy if the

semigroup is associated with a form by virtue of the Beurling–Deny–Ouhabaz criterion

for the invariance of closed convex sets. In particular the following holds true (see [31,

Theorem 2.10]).



1554

1554 W. Arendt, S. Kunkel and M. Kunze

Proposition A.4. Let V ⊂ H1(Ω) be a closed subspace containing H1
0 (Ω), where

Ω ⊂ Rd is a connected, open set. Let a : V × V → R be a continuous and elliptic form

such that the associated semigroup T is positive. Then T is irreducible.

On C(Ω) irreducibility is a stronger notion than on L2(Ω). However, the following

result shows how irreducibility on C(Ω) can be deduced from irreducibility on L2(Ω).

Proposition A.5. Let Ω ⊂ Rd be open and bounded and T be a positive, irre-

ducible, strongly continuous semigroup on L2(Ω) whose generator A has compact resol-

vent. Assume that T leaves C(Ω) invariant and that the restriction TC of T to C(Ω) is

strongly continuous and suppose that its generator AC has compact resolvent. Assume

that s(A) = 0. Then TC is irreducible if and only if there exists u ∈ kerA ∩ C(Ω) such

that u(x) ≥ δ > 0 for all x ∈ Ω.

Proof. Assume that there exists 0 ≪ u ∈ C(Ω) ∩ kerA. Since T is irreducible 0

is a pole of order 1 and the residuum P is of the form

Pf =
(∫

Ω

φf dx
)
· u

for some 0 ≪ φ ∈ L2(Ω), see [7, C-III Proposition 3.5]. Since C(Ω) is dense in L2(Ω),

it follows that the coefficients in the Laurent series expansion in C(Ω) around 0 (see [7,

A-III, Equation (3.1)]) are the restriction of those in L2(Ω). Thus 0 is also a pole of

order 1 of the resolvent of AC . The residuum

PC =
1

2πi

∫
|λ|=ε

R(λ,AC) dλ

is the same, i.e. PC = P |C(Ω). Now let J = {f ∈ C(Ω) : f |K = 0} be an invariant

ideal. Then for z ∈ K, f ∈ J , f ≥ 0 we have (T (t)f)(z) = 0 for all t > 0 and hence

(R(λ,AC)f)(z) = 0 for all λ > 0, since we suppose that s(A) = 0 and know that s(A) is

the abscissis of the Laplace transform of the semigroup [6, Theorem 5.3.1]. Thus∫
Ω

f(x)φ(x)dx · u(z) = lim
λ↓0

(λR(λ,AC)f)(z) = 0.

Since φ ≫ 0 in L2(Ω) this implies f = 0. Consequently J = {0}. This proves the

sufficiency.

To show the necessity, recall that 0 is also a pole of R(λ,AC). It follows that

s(AC) = 0. By Theorem A.2, there exists 0 ≪ u ∈ ker(AC) ⊂ ker(A). □
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