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Abstract. In this paper we classify vertex operator algebras with three
conditions which arise from Virasoro minimal models: (A) the central charge

and conformal weights are rational numbers, (B) the space spanned by char-
acters of all simple modules of a vertex operator algebra coincides with the
space of solutions of a modular linear differential equation of order 4 and (C)
the dimensions of first three weight subspaces of a VOA are 1, 0 and 1, respec-

tively. It is shown that vertex operator algebras which we concern have central
charges c = −46/3,−3/5,−114/7, 4/5, and are isomorphic to minimal mod-
els for c = −46/3,−3/5 and Z2-graded simple current extensions of minimal
models for c = −114/7, 4/5.

Introduction.

In the theory of vertex operator algebras (VOAs), one of the most important prop-

erties is the modular invariance of the space spanned by characters of all simple modules.

This is proved by Zhu [27, Theorem 5.3.3] and Dong, Mason and Li [4, Theorem 1.3]

under two conditions–C2-cofiniteness and rationality. In the proof of the modular in-

variance of the space spanned by characters, particularly, convergence of characters, it

is shown that there exists a linear differential equation with regular singularity only

at q = 0 whose space of solutions contains the space spanned by characters of all simple

modules of a given VOA. This differential equation is now called a monic modular linear

differential equation (monic MLDE) and is studied together with the theory of vector-

valued modular forms (cf. [4], [16], [17]). A monic MLDE is defined by means of the

Serre derivation ([16], [17]). The Serre derivation ϑk = qd/dq − (k/12)E2 of weight k is

a differential operator acting on meromorphic functions on the upper half plane, where

E2 is the “quasimodular” Eisenstein series. The ith iterated Serre derivation is defined

by ϑi
k = ϑk+2(i−1)◦· · ·◦ϑk+2◦ϑk. A linear differential equation ϑp

0(f)+
∑p−1

i=0 Piϑ
i
0(f) = 0

is called a monic MLDE (of weight 0) if Pi is a holomorphic modular form of weight 2(p−i)

for each i (see [16], [17]).
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One of problems on the study of relationships between VOAs and monic MLDEs is

to decide if the space spanned by characters of all simple modules of a VOA coincides

with the space of all solutions of a monic MLDE.

One of the most studied examples of VOAs is the simple Virasoro VOA L(cp,q, 0)

(cf. [9], [25]) associated with the irreducible highest weight module of the Virasoro al-

gebra, where the central charge cp,q is 1 − 6(p − q)2/pq for coprime positive integers p

and q. The VOA L(cp,q, 0) is often called the minimal model in physics literature. It

was shown in [20] and [21] that there is a monic MLDE Lp,q(ϑ)f = 0 such that the set

of characters of simple L(cp,q, 0)-modules forms a fundamental system of solutions of the

monic MLDE, where Lp,q(ϑ) is a differential operator of the Serre derivation ϑ0 (We also

give a simple proof of this fact in Proposition 6 in Section 3.).

Another example of VOAs is the affine VOA Lg(k, 0) associated with the irreducible

highest weight module of a finite-dimensional simple Lie algebra g of positive integral

level k ([9]). We showed in [1] that if the dimension of the space Xg,k spanned by

characters of all simple Lg(k, 0)-modules is between 1 and 6, then Xg,k coincides with

the space of solutions of a monic MLDE. However, we also found several affine VOAs,

LA2(3, 0), etc., whose spaces of characters are not the spaces of solutions of any monic

MLDEs.

The problem which is intensively studied in this paper is a classification of VOAs

whose spaces spanned by characters of all simple modules coincide with the spaces of

solutions of monic MLDEs of given orders. Since a monic MLDE of order 1 is (qd/dq)f =

0, any solution is a constant function. Therefore, the corresponding VOA is trivial.

In [19], Mathur, Mukhi and Sen classified the rational conformal field theories whose

partition functions (characters) satisfy monic MLDEs of order 2. In the language of

VOAs their classification is interpreted as such VOAs are isomorphic to affine VOAs of

level 1 associated with (the Deligne exceptional series) A1, A2, G2, D4, F4, E6, E7, and

the minimal model L(c2,5, 0). The 3rd order case is studied in [2], [10] and [24]. Since

there are infinitely many VOAs whose spaces of characters of simple modules span the

spaces of solutions of monic MLDEs of order 3 ([1]), we need an extra condition to obtain

finite number of corresponding VOAs. In [2], [10] and [24], it is also assumed that the

weight 1 subspace of a VOA is trivial. Then we obtain 8 candidate central charges and

show that 6 candidate central charges have corresponding VOAs and the other central

charges do not have corresponding C2-cofinite and rational VOAs ([3]). However, it is

not known if each of 6 central charges has the unique corresponding VOA.

Our main purpose of this paper is to classify the VOAs whose spaces spanned by

characters of all simple modules coincide with spaces of solutions of monic MLDEs of

order 4 under several conditions on VOAs, which may characterize the minimal models.

We first give several results on relations between (extensions of) minimal models

and monic MLDEs, which are necessary to prove one of our main theorems. Let p and q

be coprime positive integers such that L(cp,q, 0) does not have positive integral conformal

weights. We can prove that if the space of solutions of the monic MLDE Lp,q(ϑ)f = 0

contains the space spanned by characters of all simple modules of a VOA V with cen-

tral charge cp,q, then V is isomorphic to the minimal model L(cp,q, 0) (Theorem 8 in

Section 3). This result can be considered as a characterization of the minimal mod-

els L(cp,q, 0) for specific pairs (p, q) by means of the monic MLDEs Lp,q(ϑ)f = 0.
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We also study an extension of a minimal model by its simple module, which is

called a Z2-graded simple current extension (SCE). It is known that a Z2-graded SCE

of L(cp,q, 0) uniquely exists if (p, q) = (2t+1, 4u+2) for some positive integers t and u. We

also characterize Z2-graded SCEs of minimal models by monic MLDEs. More precisely,

we prove that there is a unique monic MLDE L̂p,q(ϑ)f = 0 whose space of solutions

coincides with the space spanned by characters of all simple modules of the Z2-graded

SCE of L(cp,q, 0) (Theorem 11 in Section 4). Then we show that if the space spanned by

characters of all simple modules of a VOA with central charge cp,q is realized by the monic

MLDE L̂p,q(ϑ)f = 0, then this VOA is isomorphic to the Z2-graded SCE (Theorem 13

in Section 4).

We next prove our main result in this paper. Taking into account of the properties of

the minimal models we suppose that a central charge and conformal weights of a VOA V

are rational numbers and that dimV0 = 1, dimV1 = 0, and dimV2 = 1. Then it is shown

in [5, Lemma 5.2] that this VOA has no nonzero negative weight spaces, and therefore,

the character chV of V is expressed as chV = q−c/24(1 + q2 + mq3 + O(q4)), where c

denotes the central charge of V and m is the dimension of V3. By substituting chV to the

general form of monic MLDEs of order 4, we can determine monic MLDEs uniquely (see

Section 5). There are 2 monic MLDEs with generic parameters and 6 monic MLDEs.

The list of monic MLDEs that we obtain contains the monic MLDEs L2,9(ϑ)f = 0,

L3,5(ϑ)f = 0, L̂5,6(ϑ)f = 0 and L̂3,14(ϑ)f = 0. It follows from our characterization

that VOAs corresponding to these monic MLDEs are isomorphic to the minimal mod-

els L(c2,9, 0), L(c3,5, 0) (c2,9 = −46/3, c3,5 = −3/5), and the Z2-graded SCEs of minimal

models with central charges c5,6 = 4/5, c3,14 = −114/7 by their simple modules with

conformal weight 3, respectively. By solving other monic MLDEs which appear in the

paper, we verify that there does not exist VOAs associated with these monic MLDEs

and complete a proof of our main result (Theorem 19 in Section 6).

The paper is organized as follows. In Section 1 we review the definitions and the

basic properties of vector-valued modular functions, monic MLDEs, and several results

obtained by Mason in [17]. The Frobenius method of solving linear differential equations

with regular singularities is also explained here. Several important facts and results

of the representation theory of the minimal models are illustrated in Section 2. In

Section 3 we describe the relations of monic MLDEs and characters of minimal models.

The main issue of this section is to give a characterization of minimal models by means

of monic MLDEs. In Section 4 we discuss Z2-graded SCEs of minimal models and

prove that there is a monic MLDE whose space of solutions coincides with the space

spanned by characters of all simple modules of a Z2-graded SCE of a minimal model.

A characterization of Z2-graded SCEs of minimal models by means of monic MLDEs

and central charges also proved here. In Section 5 we give recursive relations of Fourier

coefficients of solutions (q-series) of monic MLDEs of order 4. We also determine rational

numbers which can be central charges and monic MLDEs under our conditions. Finally,

we complete a proof of one of our main results in Section 6 by excluding objects which do

not fit our conditions. In Appendix, all solutions of the Diophantine equation appeared

in Section 5 are determined, which is due to D. Zagier.
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1. Monic modular linear differential equations and vector-valued mod-

ular functions.

Throughout the paper we denote the complex upper half-plane by H = {τ ∈
C | Im τ > 0}. For a positive integer k ≥ 2, let E2k be the normalized Eisenstein series

of weight 2k

E2k(τ) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)q
n, q = e2π

√
−1τ (τ ∈ H), (1)

where σm(n) is the division function and Bn is the nth Bernoulli number. The quasi-

modular form E2(τ) is defined by setting k = 1 in (1).

Definition. A vector-valued modular function (VVMF) on SL2(Z) is a (col-

umn) vector-valued holomorphic function F = t
(
f1, . . . , fp

)
on H with a p-dimensional

complex representation ρ : SL2(Z) → GLp(C) subject to (a) F(γ(τ)) = ρ(γ)F(τ)
for all γ ∈ SL2(Z) and (b) each component function fj has a q-expansion fi =

qλi
∑∞

n=0 a
i
nq

n (ai0 ̸= 0, λi ∈ C) on H.

A vector-valued modular function F is called normalized if fi = qλi(1 +∑∞
n=1 a

i
nq

n) (1 ≤ i ≤ m), fm+1, . . . , fp = 0 and λ1, . . . , λm fj = 0 are mutually dis-

tinct. For a VVMF F, there is an invertible matrix A such that AF is normalized.

The Serre derivation for k ∈ Z≥0 is defined by

ϑk(f) = D(f)− k

12
E2f, D = q

d

dq
,

and the ith iterated Serre derivation is defined by ϑi
k = ϑk+2(i−1) ◦ · · · ◦ ϑk+2 ◦ ϑk with

ϑ0
k = 1. A linear differential equation

ϑp
0(f) +

p−1∑
i=0

Piϑ
i
0(f) = 0 (2)

is called a monic modular linear differential equation (monic MLDE for short) if Pi is

a holomorphic modular form of weight 2(p− i). Since any holomorphic modular form of

weight 2 is 0, we see that Pi = 0 for i = p− 1. It was shown by Mason in [17, Theorem

4.1] that the space of solutions is invariant under the usual slash action of SL2(Z) and

that q = 0 is a unique regular singular point of (2).

Theorem 1. Let F = t(f1, . . . , fp) be a normalized vector-valued modular function.

Suppose that {fj} is linearly independent and fi = qλi(1 +
∑∞

n=1 a
i
nq

n). Then the set

of component functions {fj} forms a fundamental system of a monic modular linear

differential equation of order p if and only if p(p− 1)− 12
∑p

i=1 λj = 0.

Remark. In this paper we restrict our attention to vector-valued modular func-

tions (vector-valued modular forms of weight 0). In [17] all results cited in this section

are proved for vector-valued modular forms of non-negative integral weights.
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Since any monic MLDE has a regular singularity at q = 0, we can use the Frobenius

method ([11, Chapter XVI]) to obtain a fundamental system of solutions of a monic

MLDE. Suppose that f = qρ(1 +
∑∞

n=0 anq
n) is a solution of (2). By substituting f

to (2) and taking the coefficient of qρ, we see that ρ is a root of the polynomial

Ψ(ρ) =

p−1∏
k=0

(
ρ− k

6

)
+

p−2∑
i=0

Pi,0

i−1∏
k=0

(
ρ− k

6

)
, Pi =

∞∑
n=0

Pi,nq
n.

This polynomial is usually called the indicial polynomial (characteristic polynomial) of

the monic MLDE (2) and the roots of the indicial equation, that is, Ψ(ρ) = 0, are called

the indicial roots (indices) of (2).

Lemma 2 ([11, Chapter XVI, p. 397]). If λ is an indicial root and there are no

indicial roots in λ + Z>0, then a solution of the form qλ(1 +
∑∞

n=1 anq
n) is uniquely

determined.

The coefficients an are determined by recursive relations of Fourier coefficients (see

Section 6 for monic MLDEs of order 4).

2. Virasoro vertex operator algebras.

In this section we review fundamental properties of Virasoro vertex operator algebras.

The Virasoro algebra denoted here by Vir is a Lie algebra generated by Ln (n ∈ Z)
and a central element C with the commutation relations

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−n C.

A vertex operator algebra (VOA) is a quadruple (V, Y,1, ω) consisting of a Z-
graded vector space V =

⊕
n∈Z Vn with distinguished vectors 1 ∈ V0 and ω ∈ V2,

called the vacuum vector and the Virasoro element, respectively, and a linear map

Y : V → EndC(V )[[z, z−1]] (a 7→ Y (a, z) =
∑

n∈Z anz
−n−1) which satisfies a number

of axioms (cf. [15], [18]). Define Ln for n ∈ Z by Y (ω, z) =
∑

n∈Z Lnz
−n−2. Then the

set {Ln, idV |n ∈ Z} gives a module of the Virasoro algebra on V . Particularly, the

central element C acts as a scalar cV ∈ C and cV is called the central charge of V . For

each n ∈ Z, a homogeneous subspace Vn is a finite dimensional weight space of weight n

with respect to L0. A VOA V is said to be of CFT type if V =
⊕∞

n=0 Vn and V0 = C1.

Proposition 3 ([5, Lemma 5.2]). Let V be a vertex operator algebra. If V0 = C1
then V has no nonzero negative weight spaces, that is, V is of CFT type.

Let V be a VOA with central charge cV . A weak V -module is a pair (M,YM ) of

a vector space M and a linear map YM : V → EndC(M)[[z, z−1]] with naturally required

conditions for a module. A weak V -module M is also a module of the Virasoro algebra of

the central charge cV by letting YM (ω, z) =
∑

n∈Z Lnz
−n−2. An admissible V -module is a

weak V -module M which carries a Z≥0-grading M =
⊕∞

n=0 M(n) satisfying amM(m) ⊆
M(k+n−m−1) for a ∈ Vk, m, k ∈ Z and n ∈ Z≥0. A weak V -module is said to be a V -
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module if there are finitely many complex numbers hi such that M =
⊕

i

⊕∞
n=0 Mhi+n

where Mh is a finite-dimensional eigenspace of L0 with eigenvalue h. If M is a simple V -

module, there exists a complex number h such that M =
⊕∞

n=0 Mh+n and Mh ̸= 0. This

complex number h is called the conformal weight of a simple V -module M . The (formal)

character of a simple V -module M is defined to be

chM (τ) = trM qL0−cV /24 =

∞∑
n=0

(dimMh+n)q
h−cV /24+n.

We can also define the character of a module such as M =
⊕∞

n=0 Mh+n which is not

simple. We denote by X (V ) the space spanned by characters of all simple V -modules.

It is called that a VOA V is rational if any admissible V -module is completely

reducible and C2-cofinite if the subspace of V spanned by elements of the form a−2b (a, b ∈
V ) has finite-codimension in V . It is shown in [4, Proposition 3.6] that if V is C2-cofinite

then the number of simple modules is finite up to isomorphisms and each character chM
of the simple V -module M converges on H. Moreover, if V is rational and C2-cofinite

then the space X (V ) is invariant under the usual slash action of SL2(Z). In other words,

the set of characters of all simple V -modules forms a finite-dimensional vector-valued

modular function.

One of the most important examples of rational and C2-cofinite VOAs is the con-

cept of the minimal models. Let Vir≥0 =
⊕∞

n=0 CLn, and c, h be complex numbers.

Let Cvc,h be a 1-dimensional U(Vir≥0)-module which is defined by Lnvc,h = hδn,0vc,h
and Cvc,h = cvc,h, where U(g) denotes the universal enveloping algebra of a Lie alge-

bra g. Then the induced module M(c, h) = U(Vir) ⊗U(Vir≥0) Cvc,h is called the Verma

module of the Virasoro algebra with central charge c and highest weight h, which has

the unique maximal proper submodule J(c, h). We denote by L(c, h) = M(c, h)/J(c, h)

the irreducible quotient.

Let ⟨L−1vc,0⟩ be the submodule of M(c, 0), which is generated by L−1vc,0. It is

obvious that ⟨L−1vc,0⟩ is a proper submodule of M(c, 0). We denote the quotient mod-

ule M(c, 0)/⟨L−1vc,0⟩ by V (c, 0) and by 1 the image of vc,0 under the natural surjection.

It is shown in [9, Theorem 4.3 and Remark (p. 163)] that V (c, 0) and L(c, 0) are VOAs

with the vacuum vectors 1 and the Virasoro elements ω = L−21. By Poincaré–Birkhoff–

Witt theorem applied to U(Vir) the space V (c, 0) has a basis

L−n1 · · ·L−nr1 (r ≥ 0, ni ∈ Z, n1 ≥ · · · ≥ nr > 1)

whose weight is defined by L0, that is,
∑r

i=1 ni. Thus the character of V (c, 0) is given by

q−c/24
∏
n>1

(1− qn)−1 = q−c/24
(
1 + q2 + q3 + 2q4 +O(q5)

)
.

A homogeneous vector v of a highest weight Vir-module is called singular if Lnv = 0

for all positive integer n (n = 1, 2 are enough by the commutation relations). If V (c, 0)

contains a singular vector of positive integral weight, then V (c, 0) is not simple. It was

shown in [6] and [7] that V (c, 0) contains a singular vector of positive weight if and only if
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c = cp,q = 1− 6(p− q)2

pq
(3)

for coprime positive integers p and q. We call the simple Virasoro VOA L(cp,q, 0) the

minimal model. Let r and s be integers, and write

hr, s =
(rq − sp)2 − (p− q)2

4pq
. (4)

Theorem 4 ([25, Theorem 4.2]). Let p, q ∈ Z>1 be coprime integers.

(a) The vertex operator algebra L(cp,q, 0) is rational and C2-cofinite.

(b) For any simple L(cp,q, 0)-module M , there exist 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ q − 1

such that M is isomorphic to L(cp,q, hr,s).

(c) Two L(cp,q, 0)-modules L(cp,q, h1) and L(cp,q, h2) are isomorphic if and only if h1 =

h2.

(d) As an L(cp,q, 0)-module the rational number hr,s is the conformal weight

of L(cp,q, hr,s).

The number of distinct elements of the set {hr,s | 1 ≤ r ≤ p − 1, 1 ≤ s ≤ q − 1},
which is equal to the number of inequivalent simple L(cp,q, 0)-modules, is (p−1)(q−1)/2

partly since hr,s = hp−r, q−s.

Definition. Let V be a vertex operator algebra and ω its Virasoro element. We

denote by V ω the vertex operator subalgebra of V generated by ω.

In order to study the subalgebra V ω of a VOA V with central charge cp,q, we collect

several results from the theory of Verma modules of the Virasoro algebra. It is known

([6], [7] and [12, Theorem 6.5]) that any proper submodule of M(cp,q, 0) is generated

by at most two singular vectors. In particular, the maximal proper submodule J(cp,q, 0)

is generated by L−1vcp,q,0 and a singular vector wp,q of weight (p − 1)(q − 1). It is also

known that any singular vector except vc,0 and wp,q is contained in ⟨L−1vcp,q,0⟩.

Theorem 5. Let V be a vertex operator algebra with central charge cp,q. Then the

vertex operator subalgebra V ω generated by the Virasoro element ω of V is isomorphic

to either V (cp,q, 0) or L(cp,q, 0).

Proof. Because the VOA V ω is a highest weight Vir-module with central

charge cp,q, there is a non-zero surjective Vir-homomorphism ϕ : M(cp,q, 0) → V ω.

Since L−11 = 0 in V , kerϕ contains L−1vcp,q,0. If kerϕ − ⟨L−1vcp,q,0⟩ does not contain

a singular vector and is not empty, then kerϕ cannot be generated by singular vectors,

which contradicts to the fact that every non-zero submodule is generated by singular

vectors. Therefore, kerϕ− ⟨L−1vcp,q,0⟩ contains a singular vector, otherwise it is empty.

If kerϕ − ⟨L−1vcp,q,0⟩ contains a singular vector, then it must be wp,q. Since the

unique maximal submodule is generated by L−1vcp,q,0 and wp,q, the submodule kerϕ is

maximal and then V ω ∼= L(cp,q, 0).
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Suppose that kerϕ − ⟨L−1vcp,q,0⟩ is empty. Then kerϕ = ⟨L−1vcp,q,0⟩ and V ω ∼=
V (cp,q, 0) follows. □

Corollary 1. Let V be a vertex operator algebra with central charge cp,q. Suppose

that chV ω ̸= chV (cp,q,0). Then V ω is isomorphic to L(cp,q, 0).

Proof. Since chV ω ̸= chV (cp,q,0), we have V ω ̸∼= V (cp,q, 0). It then follows

from Theorem 5 that V ω is isomorphic to L(cp,q, 0). □

Corollary 2. Let V be a vertex operator algebra. Suppose that chV = chL(cp,q,0).

Then V is isomorphic to L(cp,q, 0).

Proof. By Corollary 1, the VOA V ω is isomorphic to L(cp,q, 0) since chV ω ̸=
chV (cp,q,0). Therefore dimVn = dimV ω

n for each n, which proves the corollary since

V ω ⊆ V . □

3. Minimal models and monic modular linear differential equations.

In this section we prove that there exists a monic MLDE whose space of solutions

coincides with the space spanned by characters of all simple L(cp,q, 0)-modules. This fact

is already known in [21, Theorem 7.1]. Here we give a proof in the context of the theory

of VVMFs.

The character χr,s of L(cp,q, 0)-module L(cp,q, hr,s) is given by (cf. [12, Theorem

6.13])

χr,s(q) =
qhr,s−cp,q/24

∑
n∈Z

(
qrsn

2+n(qr−ps) − qrsn
2+n(qr+ps)+pq

)∏∞
n=1(1− qn)

=

{
q−cp,q/24(1 + q2 + q3 + · · · ) hr,s = 0,

qhr,s−cp,q/24(1 + q + q2 + · · · ) otherwise,

which is rewritten as

χr,s = η(q)−1 (θpq,qr−ps − θpq,qr+ps) ,

where η(q) = q−1/24
∏∞

n=1(1 − qn) is the Dedekind eta function and θa,b =∑
n∈Z q

a(n+b/2a)2 (a, b ∈ (1/2)Z≥0) is the theta series (see [12, Corollary 6.1]). Since

conformal weights of the simple L(cp,q, 0)-modules are mutually distinct, the characters

of simple L(cp,q, 0)-modules give an n = (p−1)(q−1)/2-dimensional normalized VVMF.

Proposition 6 ([21, Theorem 7.1]). There exists a unique monic modular linear

differential equation Lp,q(ϑ)f = 0 of order n = (p− 1)(q − 1)/2 whose space of solutions

coincides with the space spanned by characters of all simple L(cp,q, 0)-modules.

Proof. Since the lowest power in q of the character χr,s is hr,s − cp,q/24 by

Theorem 4 (d), it follows from (3) and (4) that
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p−1∑
r=1

q−1∑
s=1

(
hr,s −

cp,q
24

)
=

(p− 1)(q − 1)(pq − p− q − 1)

24
.

Because each term hr,s appears exactly twice in the left-hand side as hr, s = hp−r, q−s,

we have

1

2

p−1∑
r=1

q−1∑
s=1

(
hr,s −

cp,q
24

)
=

1

12

(p− 1)(q − 1)

2

(
(p− 1)(q − 1)

2
− 1

)
=

1

12
n(n− 1).

Hence the proposition follows from Theorem 1. □

The central charges and conformal weights of L(cp,q, 0) with (p−1)(q−1)/2 < 5 are

listed in Table 1 (that is, the number of simple modules is not greater than 4). It follows

Table 1. Central charges and conformal weights of

L(cp,q, 0) with (p− 1)(q − 1)/2 < 5.

(p, q) Central charge Conformal weights

(2, 3) 0 0

(2, 5) −22/5 0, −1/5

(2, 7) −68/7 0, −2/7, 3/7

(3, 4) 1/2 0, 1/2, 1/16

(2, 9) −46/3 0, −1/3, −5/9, −2/3

(3, 5) −3/5 0, −1/20, 1/5, 3/4

from Theorem 4 and Proposition 6 that the set of indicial roots of Lp,q(ϑ)f = 0 is {hr,s−
cp,q/24 | 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1}. Since the differential operator Lp,q(ϑ) with (p−
1)(q−1)/2 < 5 has order less than 5 and any holomorphic modular forms of weight k < 10

is a scalar multiple of Ek, we see that Lp,q(ϑ) = ϑn
0 +

∑n−2
i=0 αiE2(n−i)ϑ

i
0, where n =

(p − 1)(q − 1)/2. Since a monic MLDE of the form ϑn
0 (f) +

∑n−2
i=0 αiE2(n−i)ϑ

i
0(f) = 0

is uniquely determined by indicial roots ([16, Lemma 2.3]), it follows from Table 1 that

the differential operators Lp,q(ϑ) with (p− 1)(q − 1)/2 < 5 are given by

L2,3(ϑ) = ϑ0,

L2,5(ϑ) = ϑ2
0 −

11

3600
E4,

L2,7(ϑ) = ϑ3
0 −

5

252
E4ϑ0 +

85

74088
E6,

L3,4(ϑ) = ϑ3
0 −

107

2304
E4ϑ0 +

23

55296
E6,

L2,9(ϑ) = ϑ4
0 −

13

216
E4ϑ

2
0 +

53

5832
E6ϑ0 −

253

559872
E8,

L3,5(ϑ) = ϑ4
0 −

949

7200
E4ϑ

2
0 +

139

21600
E6ϑ0 −

279

256000
E8.

(5)

We next give a characterization of a VOA with central charge cp,q whose space

spanned by characters of all simple modules is contained in (does not necessarily coincide
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with) the space of solutions of the monic MLDE Lp,q(ϑ)f = 0. This result will be used

to prove Theorem 19 in Section 6. We first show the following proposition.

Proposition 7. Let V be a vertex operator algebra and M =
⊕∞

n=0 Mh+n a V -

module (not necessarily simple). Suppose that the space X (V ) spanned by characters of

all simple V -modules is contained in the space of solutions of a monic modular linear

differential equation. Then the space of solutions contains the character of M .

Proof. Since the number of linearly independent characters of simple V -modules

is finite and Mh+n is finite-dimensional for each n, the character of M is a finite sum of

characters of simple V -modules. □

For any pair (p, q) such that the set of conformal weights of simple L(cp,q, 0)-modules

does not contain positive integers, we show that the monic MLDE Lp,q(ϑ)f = 0 charac-

terizes a VOA with central charge cp,q.

Theorem 8. Let p and q be coprime positive integers such that the set of conformal

weights of simple L(cp,q, 0)-modules does not contain positive integers, and let V be a (not

necessarily simple) vertex operator algebra with central charge cp,q. Suppose that the

space of solutions of Lp,q(ϑ)f = 0 given in Proposition 6 contains the space spanned by

characters of all simple V -modules. Then V is isomorphic to L(cp,q, 0).

Proof. It follows from Proposition 7 that the character of V sits in the space of

solutions of Lp,q(ϑ)f = 0. Because L(cp,q, 0) does not have a positive integral conformal

weight and any indicial root is written as hr,s−cp,q/24, the indicial root does not exist in

the set −cp,q/24+Z>0. Since the character χ1,1 of L(cp,q, 0) is a solution of Lp,q(ϑ)f = 0,

it follows from Lemma 2 that any solution with index −cp,q/24 is a scalar multiple of χ1,1.

Therefore, the character of V is χ1,1 since dimV0 = 1 and the central charge of V is cp,q.

It follows from Corollary 2 of Theorem 5 that V is isomorphic to L(cp,q, 0). □

If (p − 1)(q − 1)/2 < 9, then L(cp,q, 0) does not have a positive integral conformal

weight. However, if (p, q) = (3, 10), then h1,9 = 2.

Corollary. Let p and q be coprime positive integers such that (p− 1)(q− 1)/2 <

9 and V a vertex operator algebra with central charge cp,q. If the space spanned by

characters of all simple modules is contained in the space of solutions of Lp,q(ϑ)f = 0,

then V ∼= L(cp,q, 0).

4. Extensions of minimal models and monic modular linear differential

equations.

In this section we discuss the relations between extensions of minimal models and

monic MLDEs. We first prove that there exists a monic MLDE L̂p,q(ϑ)f = 0 whose

space of solutions coincides with the space spanned by characters of all simple modules

of the Z2-graded simple current extension of a minimal model with central charge cp,q.

Our main results in this section is that the monic MLDE L̂p,q(ϑ)f = 0 for the Z2-graded

simple current extension determines a VOA with central charge cp,q.
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Definition. Let V be a vertex operator algebra and U a vertex operator subalge-

bra of V which has the same Virasoro element of V . Then V is called an extension of U .

It is called that an extension V of U is called nontrivial if anb ̸= 0 for some a, b ∈ V \U
and n.

Let V be an extension of a rational VOA U . Then V is a finite direct sum of simple U -

modules with integral conformal weights since U is the Z≥0-graded Vir-submodule of V .

Let V be a rational and C2-cofinite VOA. Suppose that L, M and N are V -modules.

The fusion rule NL
MN (∈ Z≥0) of type

(
L

M N

)
is the dimension of the space of intertwining

operators of type
(

L
M N

)
(see e.g. [8] for the definition of intertwining operators). The

relations among L, M and N are usually denoted by

M ×N =
∑

L: simple V -modules

NL
MN L,

and a V -moduleM is called simple current if for any simple V -module N there is a simple

V -module L such that M ×N = L.

Definition. Let V 0 be a vertex operator algebra and {V α |α ∈ A} a set of simple

current V 0-modules indexed by a finite abelian group A such that V α × V β = V α+β .

Then V =
⊕

α∈A V α is called a A-graded simple current extension (SCE) of V 0 if (V, Y )

is a nontrivial extension of V 0.

Remark. Let V =
⊕

α∈A V α be a A-graded simple current extension and Y the

vertex operator on V . Then the restriction of the vertex operator

Y : V α →
⊕
γ∈A

HomC(V
β , V γ)[[z, z−1]]

defines an intertwining operator. Since V α (α ∈ A) is simple current, that is, NV γ

V α,V β =

δα+β,γ , we see that Y (vα, z)vβ ∈ V α+β((z)) for all vα ∈ V α and vβ ∈ V β . This is one of

the reasons why we call this extension A-graded.

Theorem 9 (cf. [12, Theorem 9.3]). Let p, q > 1 be coprime integers. For any

integers 0 < r1, r2 < p and 0 < s1, s2 < q, we have the fusion rules

L(cp,q, hr1,s1)× L(cp,q, hr2,s2)

=

min{r1+r2,2p−(r1+r2)}−1∑
r3=|r1−r2|+1

r3−1≡r1+r2 mod 2

min{s1+s2,2q−(s1+s2)}−1∑
s3=|s1−s2|+1

s3−1≡s1+s2 mod 2

L(cp,q, hr3,s3). (6)

Let Ap,q be a free abelian group generated by symbols [L(cp,q, hr,s)] labeled by all simple

L(cp,q, 0)-modules. Then Ap,q becomes a commutative associative Z-algebra by (6).

It follows from the theorem that

L(cp,q, hr,s)× L(cp,q, h1,q−1) = L(cp,q, hr,q−s)
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which shows that L(cp,q, h1,q−1) is a simple current module, and that the

set {L(cp,q, 0), L(cp,q, h1,q−1)} with the fusion product × forms the abelian group Z2.

Proposition 10 ([26, Lemma 2.6, Theorem 2.14][14, Proposition 3]). Suppose

that h1,q−1 is a positive integer. Then V = L(cp,q, 0)⊕L(cp,q, h1,q−1) has a unique simple

vertex operator algebra structure such that V is a Z2-graded simple current extension

of L(cp,q, 0). Moreover, this extension is rational and C2-cofinite.

Remark. Suppose that h1,q−1 is a positive integer. We denote by L̂(cp,q, h1,q−1)

the (unique) Z2-graded simple current extension of L(cp,q, 0) by L(cp,q, h1,q−1) given

in Proposition 10.

We next prove that there is a monic MLDE whose space of solutions coincides with

the space spanned by characters of all simple L̂(cp,q, h1,q−1)-modules. Since L(cp,q, 0) is

rational and C2-cofinite, any simple module of the extension L̂(cp,q, h1,q−1) is a direct

sum of simple L(cp,q, 0)-modules. Thus the character of a simple L̂(cp,q, h1,q−1)-module

is obtained by the irreducible decomposition of a simple L̂(cp,q, h1,q−1)-module as an

L(cp,q, 0)-module.

Suppose that h1,q−1 is a positive integer. Since h1,q−1 = (p−2)(q−2)/4 and (p, q) =

1, there exist positive integers t and u such that (p, q) = (2t+1, 4u+2) or (4u+2, 2t+1) (we

can suppose (p, q) = (2t+1, 4u+2) since cp,q = cq,p). For 1 ≤ r ≤ p−1 and 1 ≤ s ≤ q−1,

we write

Zr,s
2 =

{
Z2 s = 2u+ 1,

0 otherwise
(7)

and Sr,s = Z2/Zr,s
2 . For every a ∈ Sr,s we introduce the notation

L(cp,q, hr,s)
a =

{
L(cp,q, hr,s) if a = 0̄ + Zr,s

2 ,

L(cp,q, hr,q−s) if a = 1̄ + Zr,s
2 .

(8)

Then it follows from [26, Theorem 2.14] that a simple L̂(cp,q, h1,q−1)-module, as

an L(cp,q, 0)-module, is isomorphic to
⊕

a∈Sr,s
L(cp,q, hr,s)

a ⊗ Ua for some r and s,

where Ua is a simple module of the twisted group algebra Cλa [Zr,s
2 ] with 2-cocycle λa ∈

Z2(Zr,s
2 ,C×).

The twisted group algebra Cλa [Zr,s
2 ] is defined by the group algebra C[Zr,s

2 ] =⊕
α∈Zr,s

2
Ceα with the deformed multiplication ∗ defined by eα ∗ eβ = λa(α, β)e

α+β for

all α, β ∈ Zr,s
2 . Since Zr,s

2 is either 0 or Z2, each 2-cocycle λ satisfies λa(α, β) = λa(β, α)

for all α, β ∈ Zr,s
2 , which shows that Cλa [Zr,s

2 ] is commutative. Thus any simple Cλa [Zr,s
2 ]-

module is 1-dimensional. Therefore, it follows from (7), (8) and hr,s = hp−r,q−s that

a simple L̂(cp,q, h1,q−1)-module is isomorphic to one of L(cp,q, 0)-modules

L(cp,q, hr,s)⊕ L(cp,q, hr,q−s) (1 ≤ r ≤ t, 1 ≤ s ≤ 2u), L(cp,q, hr,2u+1) (1 ≤ r ≤ t). (9)

We remark that these L(cp,q, 0)-modules are not always L̂(cp,q, h1,q−1)-modules.

It follows from [26, Theorem 3.2] that L(cp,q, hr,2u+1) is a simple L̂(cp,q, h1,q−1)-



1359

Minimal models and modular linear differential equations 1359

module, and that L(cp,q, hr,s)⊕L(cp,q, hr,q−s) is a simple L̂(cp,q, h1,q−1)-module if hr,s−
hr,q−s is an integer. Since hr,s −hr,q−s = −(2t+1− 2r)(2u+1− s)/2 < 0 if 1 ≤ s ≤ 2u,

we see that s must be odd (s = 1, 3, 5, . . . , 2u− 1) and that hr,s < hr,q−s for 1 ≤ r ≤ t,

1 ≤ s ≤ 2u. Therefore, every simple L̂(cp,q, h1,q−1)-module as an L(cp,q, 0)-module is

isomorphic to one of L(cp,q, hr,2u+1) and L(cp,q, hr,2v−1)⊕L(cp,q, hr,4u+3−2v) for 1 ≤ r ≤ t

and 1 ≤ v ≤ u. This shows that the set of conformal weights of all simple L̂(cp,q, h1,q−1)-

modules is given by

{hr,2u+1 | 1 ≤ r ≤ t} ∪ {hr,2v−1 | 1 ≤ r ≤ t, 1 ≤ v ≤ u}, (10)

and the set of characters of simple L̂(cp,q, h1,q−1)-modules is

{χr,2u+1 | 1 ≤ r ≤ t} ∪ {χr,2v−1 + χr,q−2v+1 | 1 ≤ r ≤ t, 1 ≤ v ≤ u}. (11)

Theorem 11. Let (p, q) = (2t + 1, 4u + 2) be a pair of coprime positive integers.

Then there is a unique monic modular linear differential equation L̂p,q(ϑ)f = 0 of or-

der t(u + 1) whose space of solutions coincides with the space spanned by characters of

all simple modules of the Z2-graded simple current extension L̂(cp,q, h1,q−1).

Proof. It follows from (10) with a help of (3) and (4) that

t∑
r=1

hr,2u+1 +
t∑

r=1

u∑
v=1

hr,2v−1 −
t(u+ 1)cp,q

24
=

t(u+ 1)(tu+ t− 1)

12
.

Hence the theorem is proved by Theorem 1. □

Remark. In [24], it is shown that the character of L̂(cp,q, h1,q−1) is a solution of

a monic MLDE of order h1,q−1 + 1. However, our theorem shows that there is a monic

MLDE of order strictly smaller than h1,q−1+1. The order of the monic MLDE L̂p,q(ϑ)f =

0 is h1,q−1+1 if and only if one of p and q is 3 and 6, respectively. For example, the monic

MLDE for the extension L̂(c5,14, 9) obtained in [24] is of order 10, whereas L̂5,14(ϑ)f = 0

is of order 8.

We next show that any VOA V with central charge cp,q whose space spanned by

characters of all simple modules is contained in the space of solutions of the monic

MLDE L̂p,q(ϑ)f = 0 given in Theorem 11 is isomorphic to L̂(cp,q, h1,q−1) for specific

pairs (p, q) (see Theorem 13 at the end of this section), which will be used to prove

Theorem 19 given in Section 6. The main part of a proof of Theorem 13 is to show that

dimV (cp,q, 0)n−dim L̂(cp,q, h1,q−1)n > 0 for sufficiently large n. In order to prove this, we

use asymptotic behavior of Fourier coefficients of characters of simple L(cp,q, 0)-modules.

For series {an} and {bn}, we write an ∼ bn if limn→∞(an/bn) = 1. It is known in

[12, Lemma 9.14] that

dimL(cp,q, hr,s)hr,s+n

∼ 1√
2
S(r,s),(r0,s0)

(
1− 6/pq

24

)1/4

n−3/4eπ
√

(2/3)(1−(6/pq))n, (12)
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where

S(r,s), (r′,s′) = (−1)(r+s)(r′+s′)

√
8

pq
sin

(
πrr′

p
(p− q)

)
sin

(
πss′

q
(p− q)

)
and (r0, s0) is a specific pair of positive integers satisfying |r0q − s0p| = 1. Suppose that

(p, q) = (2t + 1, 4u + 2) for some positive integers t and u. It follows that p − q and s0
are odd since |2r0(2u+ 1)− 2ts0 − s0| = 1. Then we have

S(1,q−1), (r0,s0) = (−1)q(r0+s0)

√
8

pq
sin

(
πr0
p

(p− q)

)
sin

(
π(q − 1)s0

q
(p− q)

)
= (−1)q(r0+s0)

√
8

pq
sin

(
πr0
p

(p− q)

)
sin

(
πs0(p− q)− πs0

q
(p− q)

)
=

√
8

pq
sin

(
πr0
p

(p− q)

)
sin

(
πs0
q

(p− q)

)
= S(1,1), (r0,s0) (13)

and

S(1,1), (r0,s0) = (−1)2(r0+s0)

√
8

pq
sin

(
π(r0 − s0)∓

π

p

)
sin

(
π(r0 − s0)∓

π

q

)
=

√
8

pq
sin

(
π

p

)
sin

(
π

q

)
> 0

since |r0q − s0p| = 1 and (p, q) = 1. By (12) and (13), the Fourier coefficients of χ1,1

and χ1,q−1 have the same asymptotic behavior at n → ∞, which implies that

dim L̂(cp,q, h1,q−1)n

∼ 2√
2
S(1,1), (r0,s0)

(
1− 6/pq

24

)1/4

n−3/4eπ
√

(2/3)(1−(6/pq))n > 0. (14)

Proposition 12. For sufficiently large n, we have dimV (cp,q, 0)n −
dim L̂(cp,q, h1,q−1)n > 0.

Proof. Let T = U(
⊕∞

n=3 CL−n)vcp,q,0 ⊂ M(cp,q, 0). It is shown in [12, Lemma

9.14] that

dimTn ∼ π2

12
√
3n2

eπ
√

2n/3, (15)

where Tn is a graded subspace of T with weight n. Since the VOA V (cp,q, 0) is isomorphic

to S = U(
⊕∞

n=2 CL−n)vcp,q,0 as a vector space, we have dimV (cp,q, 0)n ≥ dimTn for

all n. Thus it suffices to prove dimTn − L̂(cp,q, h1,q−1)n > 0 for large enough n. Let

A(n) and B(n) be the right-hand sides of (14) and (15), respectively. Then it follows

from (14) and (15) that there exists a small enough real number ε > 0 such that
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0 < (1− ε)A(n) < dim L̂(cp,q, h1,q−1)n < (1 + ε)A(n),

0 < (1− ε)B(n) < dimTn < (1 + ε)B(n)

for sufficiently large n. Thus we have

dimTn

dim L̂(cp,q, h1,q−1)n
>

(
1− ε

1 + ε

)
B(n)

A(n)
,

where

B(n)

A(n)
=

(π2/12
√
3n2)eπ

√
2n/3

(2/
√
2)S(1,1), (r0,s0)((1− 6/pq)/24)1/4n−3/4eπ

√
(2/3)(1−(6/pq)n

=
eπ
√

(2n/3)−π
√

(2/3)(1−(6/pq))n(π2/12
√
3)

n5/4(2/
√
2)S(1,1), (r0,s0)((1− 6/pq)/24)1/4

.

It follows that limn→∞ B(n)/A(n) = ∞ since 0 < 1 − 6/pq < 1 and S(1,1), (r0,s0) > 0.

Therefore, dimTn/dim L̂(cp,q, h1,q−1)n → ∞ as n → ∞, which proves the proposition.

□

Theorem 13. Let (p, q) = (2t+1, 4u+2) be a pair of coprime positive integers and

V a vertex operator algebra with central charge cp,q whose space spanned by characters

of all simple V -modules is contained in the space of solutions of L̂p,q(ϑ)f = 0 given in

Theorem 11. Suppose that the set of conformal weights of simple L̂(cp,q, h1,q−1) does

not contain positive integers. Then V is isomorphic to the Z2-graded simple current

extension L̂(cp,q, h1,q−1).

Proof. We first show that V ω ∼= L(cp,q, 0). Since there are no positive in-

tegral conformal weights, it follows from Theorem 11 and Lemma 2 that the char-

acter χ1,1 + χ1,q−1 of L̂(cp,q, h1,q−1) is a unique solution of L̂p,q(ϑ)f = 0 of the

form q−cp,q/24(1 + O(q)). Therefore, the character of V coincides with χ1,1 + χ1,q−1,

which shows that dimVn = dim L̂(cp,q, h1,q−1)n for all n. It follows from Proposition 12

that dimV (cp,q, 0)n − dimVn > 0 for sufficiently large n. Since dimVn ≥ dim(V ω)n, the

character of V ω is not equal to the character of V (cp,q, 0). Then Corollary 1 of Theorem 5

implies that V ω is isomorphic to L(cp,q, 0). Since L(cp,q, 0) is rational and C2-cofinite

and the character of V is χ1,1 + χ1,q−1, it follows that V ∼= L(cp,q, 0)⊕L(cp,q, h1,q−1) as

an L(cp,q, 0)-module.

If Y (u, z)v = 0 for all u, v ∈ L(cp,q, h1,q−1), then the subspace L(cp,q, h1,q−1) is

a V -submodule. Since L(cp,q, h1,q−1) is simple as an L(cp,q, 0)-module, L(cp,q, h1,q−1) is

also a simple V -module with positive integral conformal weight h1,q−1. Thus χ1,q−1 is

a solution of L̂p,q(ϑ)f = 0, whereas χ1,q−1 is not a solution of L̂p,q(ϑ)f = 0 by (11).

This is a contradiction. It then follows from Proposition 10 that V is isomorphic

to L̂(cp,q, h1,q−1). □

At the end of the section we give the list of pairs (p, q) such that the differential

operator L̂p,q(ϑ) has order 3 or 4. By the same argument used to obtain (5) together
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Table 2. Central charges and conformal weights of

L̂(cp,q, h1,q−1) with h1,q−1 < 4.

(p, q) h1,q Central charge Conformal weights

(3, 10) 2 −44/5 0, −1/5, −2/5

(3, 14) 3 −114/7 0, −3/7, −4/7, −5/7

(5, 6) 3 4/5 0, 1/15, 2/5, 2/3

with Table 2, the differential operators L̂p,q(ϑ) for (p, q) in Table 2 are given by

L̂3,10(ϑ) = ϑ3
0 −

11

900
E4ϑ0 +

11

5400
E6,

L̂3,14(ϑ) = ϑ4
0 −

37

504
E4ϑ

2
0 +

517

74088
E6ϑ0 −

57

87808
E8,

L̂5,6(ϑ) = ϑ4
0 −

67

900
E4ϑ

2
0 +

89

5400
E6ϑ0 −

209

810000
E8.

(16)

Remark. For any pair (p, q) the order of L̂p,q(ϑ) is strictly greater than 2.

5. Monic modular linear differential equations of order 4 and possible

central charges.

In this section we determine candidate central charges of VOAs satisfying the condi-

tions (A) the central charges and conformal weights are rational numbers, (B) the spaces

spanned by characters of all simple modules coincide with the spaces of solutions of monic

MLDEs of order 4 and (C) dimV0 = 1, dimV1 = 0 and dimV2 = 1.

Remarks. (1) Every minimal model L(cp,q, 0) satisfies all conditions by the def-

inition of L(cp,q, 0) and Proposition 6.

(2) The condition (C) is the same as the assertion that the first 3 coefficients of the

character of a VOA coincide with those of the character q−c/24
∏

n>1(1 − qn)−1

of V (c, 0)

It is known that a monic MLDE of order 4 can be written as (see [23])

D4(f)− E2D
3(f) + (3E′

2 + α1E4)D
2(f)−

(
E′′

2 +
α1

2
E′

4 − α2E6

)
D(f) + α3E8f = 0,

(17)

where D = q(d/dq) and E′
k = D(Ek), E′′

k = D2(Ek). This monic MLDE is in fact

rewritten as

ϑ4
0(f) +

(
α1 −

11

36

)
E4ϑ

2
0(f) +

(
α1

6
+ α2 −

5

216

)
E6ϑ0(f) + α3E8f = 0, (18)

where we have used the Ramanujan identities:

12E′
2 = E2

2 − E4, 3E′
4 = E2E4 − E6, 2E′

6 = E2E4 − E8. (19)
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Let V be a (not necessarily simple) VOA with central charge c, which sat-

isfies the conditions (A)–(C). By Propositions 3 and 7, the character chV =

q−c/24
(
1 + q2 +mq3 +O(q4)

)
is a solution of (17), where m is a non-negative integer

(the dimension of V3). By substituting chV into (17) and taking the Fourier coefficients

of q−c/24, q1−c/24, q2−c/24 and q3−c/24, we have

576c2α1 − 13824cα2 + 331776α3 = −c4 − 24c3,

240c(c+ 12)α1 + 12096cα2 + 276480α3 = c3 + 72c2 + 576c,(
1244736c2 + 29804544c+ 1327104

)
α1 + (229906944c+ 663552)α2 + 20543901696α3

= −c4 + 1896c3 + 238464c2 + 4257792c− 2654208. (20)

and(
576c2m+ 4008960c2 − 82944cm+ 127733760c+ 2985984m+ 238878720

)
α1

− (13824cm− 1706987520c− 995328m+ 334430208)α2

+ (331776m+ 348603678720)α3

= −c4m+ 24c3(11m+ 120)− 5184c2(5m− 88)

+ 41472c(27m+ 296)− 1990656(9m− 8).

(21)

Since the determinant of the matrix associated with the simultaneous equation (20) is

a non-zero scalar multiple of c(578c− 7)(5c+ 22), this equation has a unique solution

α1 = −56c3 + 993c2 − 11660c− 1440

96(578c− 7)
,

α2 = −−25c4 − 829c3 − 7347c2 + 1008c+ 3456

1728(578c− 7)
,

α3 = −14c5 + 425c4 + 3672c3 + 5568c2 + 9216c

110592(578c− 7)

(22)

if and only if c ̸= 0,−22/5, 7/578.

If c = 7/578, then the system (20) is not compatible. Therefore, there does not exist

any VOA with central charge c = 7/578 satisfying the conditions (B) and (C). If c is

either 0 or −22/5 (rankA = 2), then the system (20) implies (α2, α3) = (−2α1 − 4, 0)

and (17/675 − α1/6, 1793/4320000 − 11α1/3600), respectively. These cases are studied

later in Section 6.

By (21) and (22), the rational number c satisfies

1050c5 + (5m+ 31020)c4 + (275600− 703m)c3

+ (32992m+ 673104)c2a+ (504352− 517172m)c+ 3984m− 210432 = 0. (23)

We confirmed that this equation does not have rational solutions c for any 3 ≤ m ≤ 216

(according to a private communication with D. Zagier by the 2nd author, this quintic

equation has rational roots even when m > 216). It is proved by D. Zagier that the

rational solutions (c,m) with m ∈ Z≥0 of (23) are given in Table 3. The proof is given
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in the appendix which is written by him.

Table 3. m and central charges.

m c

1 −68/7, 1/2, −3/5, −46/3

2 −114/7, 4/5

501971 36

3132760 122/3

37950512 238/5

42987520 48

For each c given in Table 3 together with c = 0, −22/5, we can obtain indicial

equations and indicial roots as in Table 4 (the first column provides candidate conformal

weights). Since the sets of indicial roots for c = 36, 122/3, 238/5 and 48 contain non-

rational numbers, these cases are excluded by the condition (A). For data in 5th–8th

Table 4. Central charges and indices.

c Indices Indices+c/24

0 0, 2, (−1±
√
−7− 4α1)/2 0, 2, (−1±

√
−7− 4α1)/2

−22/5 −1/60, 11/60, (25±
√
1114− 3600α1)/60 −1/5, 0, (14±

√
1114− 3600α1)/60

−68/7 −1/42, 5/42, 17/42, 1/2 −3/7,−2/7, 0, 2/21

1/2 −1/48, 1/24, 23/48, 1/2 0, 1/16, 1/2, 25/48

−46/3 −1/36, 1/12, 11/36, 23/36 −2/3,−5/9,−1/3, 0

−3/5 −1/40, 1/40, 9/40, 31/40 −1/20, 0, 1/5, 3/4

−114/7 −1/28, 3/28, 1/4, 19/28 −5/7,−4/7,−3/7, 0

4/5 −1/30, 1/30, 11/30, 19/30 0, 1/15, 2/5, 2/3

rows of Table 4, we can find corresponding VOAs.

Proposition 14. Let V be a vertex operator algebra with central charge c, which

satisfies conditions (A)–(C). If c is either −46/3 or −3/5, then V is isomorphic to L(c, 0).

If c is either −114/7 or 4/5, then V is isomorphic to L̂(c, 3).

Proof. If the central charge c is either c = −46/3 or c = −3/5, Table 4 shows

that the corresponding monic MLDE coincides with L2,9(ϑ)f = 0 and L3,5(ϑ)f = 0

in (5), respectively. Since any conformal weight of simple L(c, 0)-module is not a positive

integer (see also Table 1), it follows from Theorem 8 that V is isomorphic to L(c, 0).

If the central charge c is either −114/7 or 4/5, then it follows from Table 2 and

Table 4 that the corresponding monic MLDE has order 2 or 3 (see Equation (16)),

respectively. Since any conformal weight of simple L̂(c, 3)-module is not a positive integer

by Table 2, it follows from Theorem 13 that a VOA V is isomorphic to L̂(c, 3). □
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6. Main results.

In this section we show that a VOA which satisfies (A) the central charge and

conformal weights are rational numbers, (B) there is a monic modular linear differen-

tial equation of order 4 whose space of solutions coincides with the space spanned by

characters of all simple V -modules and (C) dimV0 = 1, dimV1 = 0 and dimV2 = 1, is

isomorphic to one of L(−46/3, 0), L(−3/5, 0), L̂(−114/7, 3) and L̂(4/5, 3). Since we have

already proved in Proposition 14 that central charges −46/3, 1/2, −114/7 and 4/5 have

corresponding VOAs, it suffices to exclude the cases c = 0,−22/5,−68/7, 1/2.

Observe that each central charge in the first 4 rows in Table 4 is equal to cp,q with

(p−1)(q−1)/2 < 4. We prove that there are no VOAs with central charge cp,q satisfying

the conditions (A)–(C) for such pairs (p, q).

The indicial equation of the monic MLDE (17) is Ψ(ρ) = ρ4 − ρ3 +α1ρ
2 +α2ρ+α3

(coefficients α1, α2 and α3 are uniquely determined by indical roots in Table 4). Let λ

be an indicial root and suppose that other indicial roots do not sit in λ + Z>0. Then

a solution qλ(1 +
∑∞

n=1 anq
n) with index λ is uniquely determined by the recursive

relations

an = Ψ(λ+ n)−1
n∑

m=1

{
e2,m(n−m+ λ)3 −

(
3me2,m + α1e4,m

)
(n−m+ λ)2

+
(
m2e2,m +

1

2
α1me4,m − α2e6,m

)
(n−m+ λ)− α3e8,m

}
an−m (24)

for each n ≥ 1.

Remark. If the indicial equation has multiple roots, then there is a logarithmic

solution (see [11, Chapter XVI]). Since characters of simple V -modules are power series

in q, the condition (B) implies that any solution of the monic MLDE (17) does not involve

logarithmic terms in q. Thus it is enough to consider the case that indicial equations of

monic MLDEs of the form (17) do not have multiple roots.

(a) Central charge c2,3 = 0.

The monic MLDE whose set of indicial roots is {0, 2, (−1 ±
√
−7− 4α1)/2} is

given by

D4(f)−E2D
3(f)+ (3E′

2 +α1E4)D
2(f)−

(
E′′

2 +
α1

2
E′

4 + (2α1 + 4)E6

)
D(f) = 0. (25)

The constant function 1 is a solution with index 0. It follows from the last remark that

the indicial equation does not have multiple roots. We prove that VOAs with central

charge 0, which satisfy the conditions (A)–(C) do not exist.

Let V be a VOA with central charge 0, which satisfies the conditions (A)–(C). Then

the character chV =
∑∞

n=0(dimVn)q
n = 1+q2+mq3+· · · is a solution of (25). Then (21)

implies α1 = −2(7m+ 664)/(m+ 912). Because all indicial roots are rational numbers,

it follows that the indicial roots
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−1±
√
−7− 4α1

2
= −1

2
±

√
(49m− 1072)(m+ 912)

m+ 912
(26)

are rational numbers. Since m ≥ 0 and the right-hand side of (26) is a rational number,

there exists an integer r such that (49m − 1072)(m + 912) = r2, which is equivalent to

(49m − 7r + 21808)(49m + 7r + 21808) = 52349440. By solving this equation, we have

the list of m

{24, 78, 88, 232, 375, 708, 1194, 1285, 1636, 2608, 2733, 4236, 7908, 12400,
23838, 66328, 102282, 533733}.

(27)

We can verify by using (26) and (27) on a case-by-case basis that the set of indicial roots

does not contain integers greater than 2. Therefore, the solution f2 with index 2 and the

first coefficient 1 is uniquely determined by recursive relations (24) as

f2 = q2 +mq3 +
9(853m2 + 23392m− 371328)

8(m+ 2342)
q4

+
3083022m2 + 254932344m2 − 1529365568m− 46472052736

(m+ 2342)(9m+ 13928)
q5 +O(q6). (28)

Since 1 is a solution of (25) and chV = 1 + q2 + mq3 + O(q4) by the condition (C),

we see that chV −1 is a solution of the monic MLDE with index 2 and the first co-

efficient 1, which shows that chV = 1 + f2. Therefore, all Fourier coefficients of f2
must be non-negative integers. Substituting each number of (27) into Fourier coefficients

of the solution f2, we can show that the Fourier coefficient of q4 is an integer if and

only if m ∈ {24, 232, 1636, 2608} and that the Fourier coefficient of q5 is not an integer1

for m = 1636 and 2608, and then m is 24 or 232.

For m = 24, the set of indicial roots is {0, 2,−2/3,−1/3}. Since there are no indicial

roots in the set −2/3 + Z>0, the solution f−2/3 with index −2/3 is uniquely determined

by recursive relations (24) as

f−2/3 = q−2/3(1− 1448q − 51748q2 +O(q3)).

Since characters of simple V -modules are contained in the space of solutions of (25) (the

condition (B)), a scalar multiple of the solution f−2/3 must coincide with a character of

a simple V -module. However, this is impossible since the Fourier coefficients of f−2/3

have alternate signature.

For m = 232, the corresponding monic MLDE is given by

ϑ4
0(f)−

155

36
E4ϑ

2
0(f) +

715

216
E6ϑ0(f) = 0 (29)

and the set of indicial roots of the monic MLDE is {−2, 0, 1, 2}.
Let F1 = −(E′

10+264η24)/η22 and F2 = (E3
4 − 720η24)′/η26. Then η22F1 and η26F2

are extremal quasimodular forms of depth 1 and weight 12 and 14, respectively ([13,

Theorem 2.1]). We show that the product F1F2 is a solution of the monic MLDE (29).

1They are 3607786048/29 and 1523763136/5, respectively.
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Definition. A quasimodular form of depth r and weight k is a function f0+f1E2+

f2E
2
2+· · ·+frE

r
2 , where fi is a modular form of weight k−2i and fr ̸= 0. A quasimodular

form of depth r and weight k is called extremal if its q-expansion
∑∞

n=0 anq
n satisfies

a0 = a1 = · · · = am−2 = 0, am−1 ̸= 0, m =
r∑

i=0

dimMk−2i,

where Mi is the space of modular forms of weight i on SL2(Z).

It is not difficult to verify that

ϑ2
0(F1)−

143

144
E4F1 = 0 and E4ϑ

2
0(F2) +

1

3
E6ϑ0(F2)−

143

144
E2

2F2 = 0. (30)

Since the space of solutions of a (not necessarily monic) MLDE is invariant under the

slash action of SL2(Z) (the proof given in [17, p. 385] works), the functions

F1(−1/τ) =
1

2π
√
−1

(2π
√
−1τF1 − E10),

F2(−1/τ) =
1

2π
√
−1

(2π
√
−1τF2 + E3

4 − 720η24),

are solutions of (30), respectively. It then follows from (30) that

ϑ0(F1F2) = ϑ0(F1)F2 + F1ϑ0(F2),

ϑ2
0(F1F2) = 4ϑ0(F1)ϑ0(F2)−

E6

3E4
F1ϑ0(F2),

ϑ4
0(F1F2) = −715

216
E6ϑ0(F1)F2 −

1025

216
E6F1ϑ0(F2) +

155

9
E4ϑ0(F1)ϑ0(F2),

which shows that F1F2 is a solution of the monic MLDE (29). Because the space of

solutions of (29) is invariant under the action of SL2(Z), the function

F1(−1/τ)F2(−1/τ) =

(
1

2π
√
−1

)2

(2π
√
−1τF1 − E10)(2π

√
−1τF2 + E3

4 − 720η24)

is also a solution of (29) by the modular invariance property. Since the condition (B)

implies that the space of solutions of (29) is spanned by power series in q, this is a con-

tradiction.

Summarizing these arguments, we have the proposition.

Proposition 15. Vertex operator algebras with central charge c = 0 satisfy-

ing (A)–(C) do not exist.

(b) Central charge c2,5 = −22/5.

The associated monic MLDE (17) is given by
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D4(f)− E2D
3(f) + (3E′

2 + α1E4)D
2(f)

−
{
E′′

2 +
α1

2
E′

4 −
(

17

675
− α1

6

)
E6

}
D(f) +

(
1793

4320000
− 11α1

3600

)
E8f = 0.

(31)

The set of indicial roots is obtained as {−1/60, 11/60, (25±
√
1114− 3600α1)/60}. Fur-

ther, it follows by (18) and (19) that (31) is rewritten as

ϑ6 ◦ ϑ4 ◦ L2,5(ϑ)f +

(
α1 −

121

400

)
E4L2,5(ϑ)f = 0. (32)

Proposition 6 and Table 1 together with the monic MLDE L2,5(ϑ)f = 0 in (5) imply that

the space of solutions of (32) contains characters χ1,1 and χ1,2 of simple L(−22/5, 0)-

modules. Therefore, we see that χ1,1 is a solution with index 11/60 of the monic

MLDE (31).

Proposition 16. Vertex operator algebras with central charge c = −22/5 satisfy-

ing the conditions (A)–(C) do not exist.

Proof. Suppose that there is a VOA V with central charge −22/5, which sat-

isfies the conditions (A)–(C). Then the condition (B) implies that X (V ) coincides

with the space of solutions of the monic MLDE (31) whose set of indicial roots is

{−1/60, 11/60, (25±
√
1114− 3600α1)/60}. If there are no indicial roots in 11/60+Z>0,

then it follows from the condition (C) that the character of V is χ1,1 and that

V ∼= L(−22/5, 0) by Corollary 2 of Theorem 5, which contradicts to the condition (B)

since the number of simple L(−22/5, 0)-modules is 2.

Suppose that there is an indicial root in 11/60 + Z>0. Then there exists a positive

integer ℓ such that (25 +
√
1114− 3600α1)/60 = 11/60 + ℓ. Then the set of indicial

roots is {
13

20
− ℓ, − 1

60
,
11

60
,
11

60
+ ℓ

}
.

Since there are no indicial roots in 13/20 − ℓ + Z>0, the solution f13/20−ℓ with in-

dex 13/20− ℓ is written as

f13/20−ℓ = q13/20−ℓ

(
1− 6(13500ℓ4 − 20475ℓ3 + 9525ℓ2 − 968ℓ− 182)

(3ℓ− 5)(15ℓ− 22)(15ℓ− 11)
q +O(q2)

)
by the recursive relations (24), and a scalar multiple of f13/20−ℓ is a character of a simple

V -module. However, it follows that (13500ℓ4 − 20475ℓ3 + 9525ℓ2 − 968ℓ − 182)/(3ℓ −
5)(15ℓ − 22)(15ℓ − 11) is positive for all ℓ ∈ Z>0, which shows that any scalar multiple

of f13/20−ℓ cannot be a character of a simple V -module since the second Fourier coefficient

is negative. Thus we have proved the proposition. □

(c) Central charge c2,7 = −68/7.

The associated monic MLDE (17) is written as
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D4(f)− E2D
3(f) +

(
3E′

2 +
2

7
E4

)
D2(f)

−
(
E′′

2 +
1

7
E′

4 +
619

37044
E6

)
D(f)− 85

148176
E8f = 0,

(33)

and the set of indicial roots is {−1/42, 5/42, 17/42, 1/2}. It follows from (5) and (19)

that the left-hand side of this monic MLDE is rewritten as

ϑ6

(
ϑ3
0(f)−

5

252
E4ϑ0(f) +

85

74088
E6f

)
= ϑ6 ◦ L2,7(ϑ)f. (34)

Therefore, the character χ1,1 of L(−68/7, 0) is a solution of (33) by Table 1 and (5).

Proposition 17. Vertex operator algebras with central charge c = −68/7 satisfy-

ing the conditions (A)–(C) do not exist.

Proof. Suppose that there is a VOA with central charge −68/7, which satisfies

the conditions (A)–(C). Since there are no indicial roots which sit in 17/42 + Z>0, the

character of V must be χ1,1. Thus it follows from Corollary 2 of Theorem 5 that V is

isomorphic to L(−68/7, 0) by Lemma 2. However, the space spanned by characters of all

simple L(−68/7, 0)-modules is 3-dimensional, which contradicts to the condition (B). □

(d) Central charge c3,4 = 1/2.

The associated monic MLDE is given by

D4(f)− E2D
3(f) +

(
3E′

2 +
199

768
E4

)
D2(f)

−
(
E′′

2 +
199

1536
E′

4 +
229

55296
E6

)
D(f)− 23

110592
E8f = 0.

(35)

The set of incidial roots is {−1/48, 23/48, 1/24, 1/2}. It follows from (5) and (19) that

the left-hand side of this monic MLDE is rewritten as

ϑ6 ◦
(
ϑ3
0(f)−

107

2304
E4ϑ0(f) +

23

55296
E6f

)
= ϑ6 ◦ L3,4(ϑ)f.

Therefore, the character χ1,1 of L(1/2, 0) is a solution of the monic MLDE (35) by Table 1

and (5).

Proposition 18. Vertex operator algebras with central charge 1/2 satisfying the

conditions (A)–(C) do not exist.

Proof. Suppose that there is a VOA V with central charge 1/2 satisfying the

conditions (A)–(C). Since there are no indicial roots which sit in 1/48+Z>0, the character

of V must be χ1,1 by Lemma 2. Thus it follows from Corollary 2 of Theorem 5 that

V is isomorphic to L(1/2, 0). However, the space spanned by characters of all simple

L(1/2, 0)-modules is 3-dimensional, which contradicts to the condition (B). □
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Theorem 19. Let V be a vertex operator algebra. Suppose that (A) the central

charge and conformal weights are rational numbers, (B) there is a monic modular linear

differential equation of order 4 whose space of solutions coincides with the space spanned

by characters of all simple V -modules and (C) dimV0 = 1, dimV1 = 0 and dimV2 = 1.

Then V is isomorphic to one of the minimal models L(−46/3, 0), L(−3/5, 0), and the

Z2-graded simple current extensions L̂(−114/7, 3), L̂(4/5, 3) of L(−114/7, 0), L(4/5, 0)

by their simple modules with conformal weight 3, respectively.

Proof. The conditions (A), (B) and (C) imply the rational numbers which are

the candidates for central charges and indicial roots of monic MLDEs of order 4 as in

Table 4. Then Propositions 14–18 prove the theorem. □

As a corollary of the theorem, we obtain

Corollary. Let V be a rational and C2-cofinite vertex operator algebra such that

V0 = C1, dimV1 = 0 and dimV2 = 1. Suppose that there is a monic modular linear

differential equation of order 4 whose space of solutions coincides with the space spanned

by characters of all simple V -modules. Then V is isomorphic to one of the minimal

models with central charge −46/3, −3/5, and the Z2-graded simple current extensions of

minimal models of central charge −114/7, 4/5.

Proof. Since V is rational and C2-cofinite, it is known in [4, Theorem 11.3] that

the central charge and conformal weights are rational numbers. Moreover, any VOA

with V0 = C1 is of CFT type (see Proposition 3). Then the assertion follows from

Theorem 19. □

7. Final remark.

In this paper we classified vertex operator algebras V of CFT type whose spaces

of characters of simple modules coincide with the space of solutions of monic MLDEs

of order 4 under the condition on the dimensions of lower homogeneous subspaces of

VOAs, namely, dimV1 = 0 and dimV2 = 1. This condition provides that such VOAs

are isomorphic to one of minimal models L(c2,9, 0), L(c3,5, 0) and extensions of minimal

models L(c5,6, 0), L(c3,14, 0) by simple modules with conformal weight 3. Therefore, this

result characterizes minimal models with central charges c2,9 and c3,5 in terms of monic

MLDEs and dimensions of V1 and V2. Particularly, monic MLDEs associated with data

which correspond central charges and conformal weights played crucial role.

Our results (Theorems 8 and 13) can be basically used to determine a VOA whose

space spanned by characters of all simple modules coincides with the space of solutions of

monic MLDEs of order n under the condition that the first n−1 coefficients of character

of V coincide with those of the character of V (cp,q, 0) when we suppose that the central

charge is cp,q. However, if we omit the condition that the central charge is cp,q, then Z2-

orbifold models of lattice VOAs and for monic MLDEs of orders 3 and 5 appear ([24]).

The problem characterizing all VOAs associated to monic MLDEs of higher dimensional

minimal models is far from at the moment. We need to develop another methods.
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The first obstruction appears for 6th order case since the space of modular form

of weight 12 is 2-dimensional (The lower weight spaces have dimension 1). However,

our method works if we change the condition (B) to the character of V coincides with

q−c/24
(
1+q2+q3+2q4+2q5+mq6+O(q7)

)
([22]), which is the first 6th part of chV (c,0).

Moreover, combining the condition on simple modules, we state:

Conjectures. Let V be a simple vertex operator algebra. Suppose that (I) the

character chV of V coincides with q−c/24
∏

n>1(1 − qn)−1 up to the first d terms with

d = (p − 1)(q − 1) − 1, (II) any simple V -module except V has a character of the

form qh−c/24
∏

1+q+O(q2) and (III) the space spanned by characters of all simple V -

modules is n = (p−1)(q−1)/2-dimensional and coincides with the space of a monic mod-

ular linear differential equation. Then V is isomorphic to the minimal model L(cp,q, 0).

Unfortunately our prescription does not work on solving this conjecture since the

dimension of Mk(Γ) is given by dk =
∑k

i=0 dimM2i(Γ) (see Table 5). Therefore, the

general monic MLDE of order n has d2n linear parameters. However, while we have only

(d2n + 2)-simultaneous equations. Therefore, we cannot use our method or generalized

methods to the higher order cases. For instance, by the Table 5 we can apply our method

at most 9th order case.

Table 5. Dimensions of the spaces of modular forms.

Weight 2 4 6 8 10 12 14 16 18 20 · · · 34 36

dimMk(Γ) 0 1 1 1 1 2 1 2 2 2 · · · 3 4

dk 0 1 2 3 4 6 7 9 11 13 · · · 32 36

Final observation is about Theorem 8 in Section 3. This theorem can be generalized

even in the cases that the set of conformal weights of the simple L(cp,q, 0)-modules has

a positive integer. Therefore it seems to be very possible to classify VOAs with central

charge cp,q.

Appendix by Don Zagier.

We will show that the Diophantine equation

1050 c5 + (5m+ 31020) c4 + (−703m+ 275600) c3 + (32992m+ 673104) c2

+ (−517172m+ 504352) c+ (3984m− 210432) = 0

has precisely sixteen solutions with (c,m) ∈ Q × Z, seven with m ∈ {1, 2}, four with

m > 500 000, and five with m < −100 000, as listed below in increasing order of c :

c −114/7 −46/3 −68/7 −22/5 −3/5 1/2 4/5

m 2 1 1 1 1 1 2

c 36 122/3 238/5 48

m 501 971 3 132 760 37 950 512 42 987 520

c 50 53 58 60 102

m −1 453 535 852 −12 059 329 −2 661 904 −1 837 492 −177 972 .
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For the proof, we first notice that setting c = x/210 transforms the equation into

x5 + (m+ 6204)x4 + 42 (−703m+ 275600)x3 + 141120 (2062m+ 42069)x2

+ 1852200 (504352− 517172m)x+ 18670176000 (83m− 4384) = 0 .

For m ∈ Z this is a monic polynomial in x with integer coefficients, so that any solution

with x rational in fact has x integral. Next, we make the substitution m = n−x−35730.

In terms of the new variables, the equation to be solved takes on the form A(x)n+B(x) =

0, where

A(x) = x4 − 29526x3 + 290989440x2 − 957905978400x+ 1549624608000 ,

B(x) = 420 (1846547x3 − 22460023656x2 + 81488964629520x− 132023660227200)

with deg(B) < deg(A). (The coefficients in the substitution m 7→ n were chosen precisely

to achieve this.) Since neither A(x) nor B(x) has an integral root (in fact, both are

irreducible), the rational function F (x) = B(x)/A(x) takes on non-zero rational values

for x ∈ Z, and our problem is to find all integral values in this set. Since F vanishes at

infinity, and all non-zero integers are at least 1 in absolute value, it is already clear that

there are only finitely of these and hence only finitely many solutions (c,m) ∈ Q × Z
of the original equation. A brute force calculation would be time-consuming because

the set of integers x for which |F (x)| ≥ 1 is [−775 532 377, 775 567 102], with cardinality

nearly two billion. But we do not have to check the integrality of F (x) for all integers x

in this range. Instead, we check it only for the much smaller range |x| < 50000. This

takes only 0.8 seconds with the software package PARI and yields precisely 16 values of

x with F (x) ∈ Z, which after transforming back via (c,m) = (x/420,−F (x)−x−35730)

correspond to the 16 pairs (c,m) tabulated above. We then observe that for |x| > 50000

the value of F (x) belongs to the interval [−11407, 23179], and since F (x)−n is irreducible

for all n in this interval (as PARI checks in 2.3 seconds), there are no further solutions.
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