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Abstract. The parabolic Bloch space is the set of all solutions u of the
parabolic operator L(α) with the finite Bloch norm ∥u∥Bα(σ). In this paper,

we introduce L(α)-conjugates of parabolic Bloch functions, and investigate
several properties. As an application, we give an isomorphism theorem on
parabolic Bloch spaces.

1. Introduction.

Let H be the upper half-space of the (n+1)-dimensional Euclidean space Rn+1(n ≥
1), that is, H = {(x, t) ∈ Rn+1;x ∈ Rn, t > 0}. For 0 < α ≤ 1, the parabolic operator

L(α) is defined by

L(α) = ∂t + (−∆x)
α,

where ∂t = ∂/∂t and ∆x is the Laplacian with respect to x. Let C(H) be the set of all

real-valued continuous functions on H, and Ck(H) the set of all k times continuously

differentiable functions onH. A function u ∈ C(H) is said to be L(α)-harmonic if L(α)u =

0 in the sense of distributions (for details, see Section 2). Put m(α) = min{1, 1/2α}. Let
σ > −m(α) be a real number. We denote by Bα(σ) the set of all L

(α)-harmonic functions

u ∈ C1(H) which satisfy

∥u∥Bα(σ) := sup
(x,t)∈H

tσ
{
t1/2α|∇xu(x, t)|+ t|∂tu(x, t)|

}
<∞,

where ∇x = (∂1, . . . , ∂n) and ∂j = ∂/∂xj . We also denote by B̃α(σ) the set of all

functions u ∈ Bα(σ) which satisfy u(0, 1) = 0. We call B̃α(σ) (or Bα(σ)) the parabolic

Bloch space. We remark that B̃α(σ) is a Banach space with the norm ∥ · ∥Bα(σ) (see [6]).

It is well known that the fundamental solutions of L(1/2) and L(1) are the Poisson and

heat kernels, respectively. In other cases (α ̸= 1/2, 1), simple explicit expressions for the

fundamental solutions are not known. Furthermore, we also note that B̃1/2(0) coincides

with the harmonic Bloch space of Ramey and Yi [13].

The fractional Laplacian (−∆)α is actively investigated in the theory of partial differ-

ential equations. Recently, there are various studies which are concerned with generalized
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heat equations defined by the fractional Laplacian or fractional differential operators (for

example, see [1], [8], and [9]). On the other hand, Nishio, Shimomura, and Suzuki [11]

introduced new function spaces which consist of L(α)-harmonic functions, and estab-

lished fundamental properties of those spaces using potential theory method in [7]. The

background of our investigation is based on their theory in [11].

In this paper, we study a notion of conjugate functions on parabolic Bloch spaces

for all 0 < α ≤ 1, and give several properties which are parallel to theory of the classical

harmonic conjugates of Stein and Weiss [14]. Stein and Weiss introduced harmonic

conjugates for harmonic functions on H. According to [14], harmonic conjugates are

defined by the generalized Cauchy–Riemann equations. Recently, we study α-parabolic

conjugate functions on parabolic Bloch spaces in [4]. The study of [4] is an extension of

harmonic conjugates of [14]. However, our extension of [4] is not satisfactory, because

there exist parabolic Bloch functions which do not have α-parabolic conjugate functions.

Therefore, in this paper, we introduce the notion of L(α)-conjugates to parabolic Bloch

spaces, and thus obtain completely satisfying results which are parallel to theory of the

harmonic conjugates. Moreover, in Section 5 of this paper, we introduce a notion of

(κ, ν)-conjugates which is a full generalization of our conjugacy. Actually, in Theorem

5.4, we show that if κ = 1 and ν = (1/α) − 1 then (κ, ν)-conjugacy coincides with α-

parabolic conjugacy in Theorem A below; if κ = ν = 1/2α then (κ, ν)-conjugacy coincides

with L(α)-conjugacy in Theorem 1 below.

To state our results, we give some notations. For a real number κ, let Dκ
t = (−∂t)κ

be a fractional differential operator, and FCκ the class of functions φ on R+ = (0,∞)

such that Dκ
t φ is well-defined (for the explicit definitions of Dκ

t and FCκ, see Section 2).

First, we present the definition of harmonic conjugates for harmonic functions on H.

According to [14], harmonic conjugates are defined by the generalized Cauchy–Riemann

equations.

Definition A ([14]). Let u be a function on H. An n-tuple (v1, . . . , vn) is called a

harmonic conjugate of u if an (n+1)-tuple (v1, . . . , vn, u) satisfies the following generalized

Cauchy–Riemann equations;

∂jvk = ∂kvj (1 ≤ j, k ≤ n),

∂ju = −Dtvj (1 ≤ j ≤ n),

Dtu =
n∑

j=1

∂jvj .

Next, we describe our previous results. In [4], we extended the notion of harmonic

conjugates by fractional differential operators. Our previous extension in [4] is as follows.

Definition B (Definitions 1 and 2 of [4]). Let 0 < α ≤ 1 and let u be a function on

H. An n-tuple (v1, . . . , vn) is called an α-parabolic conjugate function of u if vj ∈ C1(H),

u(x, ·) ∈ FC(1/α)−1, and an (n+1)-tuple (v1, . . . , vn, u) satisfies the following equations;

∂jvk = ∂kvj (1 ≤ j, k ≤ n),

∂ju = −Dtvj (1 ≤ j ≤ n),
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and

n∑
j=1

∂jvj =

{
D(1/α)−1

t u (0 < α < 1),

u− lim
t→∞

u(0, t) (α = 1).

We remark that (1/2)-parabolic conjugate functions coincide with harmonic conju-

gates. The following theorem is the main result of [4].

Theorem A (Theorems 1 and 2 of [4]). Let 0 < α ≤ 1, σ > −m(α), and u ∈
B̃α(σ). Put η := (1/2α) − 1 + σ. If η > −1/2α, then there exists a unique α-parabolic

conjugate function (v1, . . . , vn) of u such that vj ∈ B̃α(η). Also, there exists a constant

C > 0 independent of u such that

C−1∥u∥Bα(σ) ≤
n∑

j=1

∥vj∥Bα(η) ≤ C∥u∥Bα(σ).

We give a remark of Theorem A. When 0 < α ≤ 1/2, the condition of η is always

satisfied. However, when 1/2 < α ≤ 1, there exists σ > −m(α) such that η ≤ −1/2α.

In other words, there exists u ∈ B̃α(σ) which does not have an α-parabolic conjugate

function. In order to solve this problem, we need to introduce the definition of L(α)-

conjugates. Now, we describe the main results of this paper.

Definition 1. Let 0 < α ≤ 1 and let u be a function onH. An n-tuple (v1, . . . , vn)

is called an L(α)-conjugate of u if vj , u ∈ C1(H), vj(x, ·), u(x, ·) ∈ FC1/2α, and an

(n+ 1)-tuple (v1, . . . , vn, u) satisfies the following equations;

∂jvk = ∂kvj (1 ≤ j, k ≤ n), (1.1)

∂ju = −D1/2α
t vj (1 ≤ j ≤ n), (1.2)

and

D1/2α
t u =

n∑
j=1

∂jvj . (1.3)

We remark that L(1/2)-conjugates coincide with harmonic conjugates. Thus, Def-

inition 1 is also an extension of Definition A. Theorem 1 is the main theorem of this

paper.

Theorem 1. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Then, there exists a

unique L(α)-conjugate (v1, . . . , vn) of u such that vj ∈ B̃α(σ). Moreover, there exists a

constant C > 0 independent of u such that

C−1∥u∥Bα(σ) ≤
n∑

j=1

∥vj∥Bα(σ) ≤ C∥u∥Bα(σ). (1.4)

Theorem 1 asserts that the L(α)-conjugate of u ∈ B̃α(σ) always exists for all 0 <
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α ≤ 1 and σ > −m(α). Furthermore, for u ∈ B̃α(σ), the function vj belongs to the same

Banach space B̃α(σ).

We also give an inversion theorem of Theorem 1.

Theorem 2. Let 0 < α ≤ 1, σ > −m(α). Suppose an n-tuple (v1, . . . , vn) sat-

isfies vj ∈ B̃α(σ) and (1.1). Then, there exists a unique function u ∈ B̃α(σ) such that

(v1, . . . , vn) is the L
(α)-conjugate of u. Moreover, there exists a constant C > 0 indepen-

dent of vj such that

C−1
n∑

j=1

∥vj∥Bα(σ) ≤ ∥u∥Bα(σ) ≤ C

n∑
j=1

∥vj∥Bα(σ). (1.5)

As an application, we give an isomorphism theorem on parabolic Bloch spaces. The

study of parabolic Bloch spaces is closely related to that of parabolic Bergman spaces.

Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. We denote by bpα(λ) the parabolic Bergman

spaces and the norm is denoted by ∥·∥Lp(λ) (for the explicit definition, see Section 6). We

already gave the following theorem in the previous paper [5], which is an isomorphism

theorem on parabolic Bergman spaces.

Theorem B (Theorem 5.4 and Remark 5.5 of [5]). Let 0 < α ≤ 1, 1 ≤ p < ∞,

and λ1, λ2 > −1. Then, bpα(λ1)
∼= bpα(λ2) under the relation D−λ1/p

t u = D−λ2/p
t v for

u ∈ bpα(λ1) and v ∈ bpα(λ2). Moreover, there exists a constant C > 0 such that

C−1∥v∥Lp(λ2) ≤ ∥u∥Lp(λ1) ≤ C∥v∥Lp(λ2).

The following is an isomorphism theorem on parabolic Bloch spaces.

Theorem 3. Let 0 < α ≤ 1 and σ1, σ2 > −m(α) be real numbers. Then, B̃α(σ1) ∼=
B̃α(σ2) under the relation D−σ1+κ

t u = D−σ2+κ
t v for u ∈ B̃α(σ1) and v ∈ B̃α(σ2), where κ

is a real number such that κ > max{0, σ1, σ2}. Moreover, there exists a constant C > 0

such that

C−1∥v∥Bα(σ2) ≤ ∥u∥Bα(σ1) ≤ C∥v∥Bα(σ2). (1.6)

Finally, we describe the construction of this paper. In Section 2, we introduce

L(α)-harmonic functions and fractional differential operators, and present their basic

properties. In Section 3, we give basic properties of parabolic Bloch functions. In Sec-

tion 4, we give the proof of Theorems 1 and 2. In Section 5, we extend the notion of

L(α)-conjugates called (κ, ν)-conjugates, and give their properties. In Section 6, we give

the proof of Theorem 3, which is an application of Sections 4 and 5.

2. Preliminaries.

In this section, we describe definitions of L(α)-harmonic functions and fractional

differential operators, and present basic properties of fractional calculus of L(α)-harmonic

functions. We recall the definition of L(α)-harmonic functions. We describe the operator

(−∆x)
α. Since the case α = 1 is trivial, we only describe the case 0 < α < 1. Let
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dV (x, t) = dxdt be the Lebesgue volume measure on H. Let C∞(H) be the set of all

infinitely differentiable functions on H and C∞
c (H) the set of all functions in C∞(H)

with compact support. For 0 < α < 1, (−∆x)
α is the convolution operator defined by

(−∆x)
αψ(x, t) = −cn,α lim

δ→0+

∫
|y−x|>δ

(ψ(y, t)− ψ(x, t))|y − x|−n−2αdy (2.1)

for all ψ ∈ C∞
c (H) and (x, t) ∈ H, where cn,α = −4απ−n/2Γ((n+ 2α)/2)/Γ(−α) > 0. A

function u ∈ C(H) is said to be L(α)-harmonic on H if u satisfies the following condition:

for every ψ ∈ C∞
c (H),∫

H

|u · L̃(α)ψ|dV <∞ and

∫
H

u · L̃(α)ψdV = 0, (2.2)

where L̃(α) = −∂t+(−∆x)
α is the adjoint operator of L(α). By (2.1) and the compactness

of supp(ψ) (the support of ψ), there exist 0 < t1 < t2 < ∞ and a constant C > 0

such that supp(L̃(α)ψ) ⊂ S = Rn × [t1, t2] and |L̃(α)ψ(x, t)| ≤ C(1 + |x|)−n−2α for all

(x, t) ∈ S. Thus, the integrability condition of (2.2) is equivalent to the following: for

any 0 < t1 < t2 <∞, ∫ t2

t1

∫
Rn

|u(x, t)|(1 + |x|)−n−2αdV (x, t) <∞. (2.3)

We introduce the fundamental solution of L(α). For x ∈ Rn, the fundamental

solution W (α) of L(α) is defined by

W (α)(x, t) =


1

(2π)n

∫
Rn

exp(−t|ξ|2α +
√
−1 x · ξ) dξ t > 0

0 t ≤ 0,

where x · ξ denotes the inner product on Rn. It is known that W (α) is L(α)-harmonic on

H and W (α) ∈ C∞(H).

We present definitions of fractional integral and differential operators. Let C(R+)

be the set of all continuous functions on R+ = (0,∞). For a positive real number κ, let

FC−κ be the set of all functions φ ∈ C(R+) such that there exists a constant ε > 0 with

φ(t) = O(t−κ−ε) as t→ ∞. We remark that FC−ν ⊂ FC−κ if 0 < κ ≤ ν. For φ ∈ FC−κ,

we can define the fractional integral of φ with order κ by

D−κ
t φ(t) =

1

Γ(κ)

∫ ∞

0

τκ−1φ(t+ τ)dτ, t ∈ R+. (2.4)

Furthermore, let FCκ be the set of all functions φ ∈ C(R+) such that ∂
⌈κ⌉
t φ ∈

FC−(⌈κ⌉−κ), where ⌈κ⌉ is the smallest integer greater than or equal to κ. In partic-

ular, we will write FC0 = C(R+). For φ ∈ FCκ, we can also define the fractional

derivative of φ with order κ by

Dκ
t φ(t) = D−(⌈κ⌉−κ)

t (−∂t)⌈κ⌉φ(t), t ∈ R+. (2.5)
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Also, we define D0
tφ = φ. We may often call both (2.4) and (2.5) the fractional derivative

of φ with order κ. Moreover, we call Dκ
t the fractional differential operator with order κ.

We describe basic properties of fractional derivatives of the fundamental solution

W (α), which are given in [2]. Let N0 = N∪{0}. For a multi-index β = (β1, . . . , βn) ∈ Nn
0 ,

let ∂βx = ∂|β|/∂x1
β1 · · · ∂xnβn , where |β| = β1 + · · · + βn. The following lemma is given

by Theorem 3.1 of [2] and Theorem 4.1 of [3].

Lemma 2.1. Let 0 < α ≤ 1, β ∈ Nn
0 , and let κ > −n/2α be a real number. Then,

the following statements hold.

(1) The both derivatives ∂βxDκ
tW

(α)(x, t) and Dκ
t ∂

β
xW

(α)(x, t) are well-defined and

∂βxDκ
tW

(α)(x, t) = Dκ
t ∂

β
xW

(α)(x, t). Moreover, there exists a constant C > 0 such

that

|∂βxDκ
tW

(α)(x, t)| ≤ C(t+ |x|2α)−((n+|β|)/2α)−κ

for all (x, t) ∈ H.

(2) Let ν be a real number such that κ+ ν > −n/2α. Then,

Dν
t ∂

β
xDκ

tW
(α)(x, t) = ∂βxDκ+ν

t W (α)(x, t)

for all (x, t) ∈ H.

(3) ∂βxDκ
tW

(α) is L(α)-harmonic on H.

(4) (D1/α
t +∆x)W

(α)(x, t) = 0 for all (x, t) ∈ H.

Let γ ∈ Nn
0 be a multi-index, and ν > −n/2α be a real number. We define a function

ωγ,ν
α on H ×H by

ωγ,ν
α (x, t; y, s) := ∂γxDν

tW
(α)(x− y, t+ s)− ∂γxDν

tW
(α)(−y, 1 + s)

for all (x, t), (y, s) ∈ H. The function ωγ,ν
α plays an important role for the study of

parabolic Bloch spaces. Basic properties of the function ωγ,ν
α are given by Lemma 5.6

of [6].

Lemma 2.2. Let 0 < α ≤ 1, σ > −m(α), γ ∈ Nn
0 , and ν > −n/2α. Then, the

following statements hold.

(1) For every (x, t) ∈ H, there exists a constant C = C(n, α, γ, ν, x, t) > 0 such that

|ωγ,ν
α (x, t; y, s)| ≤ C(1 + s+ |y|2α)−((n+|γ|)/2α)−ν−m(α)

for all (y, s) ∈ H.

(2) If ρ > −1 and η := (|γ|/2α) + ν − ρ − 1 > −m(α), then there exists a constant

C = C(n, α, γ, ν, ρ) > 0 such that∫
H

|ωγ,ν
α (x, t; y, s)|sρdV (y, s) ≤ CFα,η(x, t)
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for all (x, t) ∈ H, where

Fα,η :=


1 + |x|−2αη + t−η (0 > η > −m(α))

1 + log(1 + |x|) + | log t| (η = 0)

1 + t−η (η > 0).

Finally, we present the following lemma.

Lemma 2.3 (Lemma 5 of [12]). Let θ, c ∈ R. If θ > −1 and θ−c+(n/2α)+1 < 0,

then there exists a constant C = C(n, α, θ, c) > 0 such that∫
H

sθ

(t+ s+ |x− y|2α)c
dV (y, s) = Ctθ−c+(n/2α)+1

for all (x, t) ∈ H.

3. Basic properties of parabolic Bloch functions.

In this section, we give basic properties of parabolic Bloch functions. First, we

present basic properties of fractional calculus on parabolic Bloch spaces. The following

lemma is given by Proposition 5.4 of [6] and Lemma 6.1 of [4].

Lemma 3.1. Let 0 < α ≤ 1, σ > −m(α), γ ∈ Nn
0 be a multi-index, and κ be a real

number such that κ = 0 or κ > max{0,−σ}. If u ∈ Bα(σ), then the following statements

hold.

(1) The derivatives ∂γxDκ
t u(x, t) and Dκ

t ∂
γ
xu(x, t) can be defined, and the equation

∂γxDκ
t u(x, t) = Dκ

t ∂
γ
xu(x, t) holds. Furthermore, if (γ, κ) ̸= (0, 0), then there ex-

ists a constant C = C(n, α, σ, γ, κ) > 0 such that

|∂γxDκ
t u(x, t)| ≤ Ct−((|γ|/2α)+κ+σ)∥u∥Bα(σ)

for all (x, t) ∈ H.

(2) If ν = 0 or ν > max{0,−σ}, then

Dν
t ∂

γ
xDκ

t u(x, t) = ∂γxDν+κ
t u(x, t). (3.1)

Furthermore, if ν < 0, then (3.1) also holds whenever ν < σ and ν + κ >

max{0,−σ}.

(3) ∂γxDκ
t u is L(α)-harmonic on H.

(4) (D1/α
t +∆x)u(x, t) = 0 for all (x, t) ∈ H.

The following lemma is the reproducing formula on parabolic Bloch spaces.

Lemma 3.2 (Theorem 5.7 of [6]). Let 0 < α ≤ 1 and σ > −m(α). If real numbers

κ ∈ R+ and ν ∈ R satisfy κ > −σ and ν > σ, then
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u(x, t)− u(0, 1) =
2κ+ν

Γ(κ+ ν)

∫
H

Dκ
t u(y, s)ω

0,ν
α (x, t; y, s)sκ+ν−1dV (y, s) (3.2)

for all u ∈ Bα(σ) and (x, t) ∈ H. If κ = 0 and ν > max{0, σ}, then (3.2) also holds.

Next, we introduce the following integral operator induced by ωκ,ν
α . Let 0 < α ≤ 1.

Let γ ∈ Nn
0 be a multi-index, and let ν, ρ be real numbers. For a function f on H, the

integral operator Πγ,ν,ρ
α is defined by

Πγ,ν,ρ
α f(x, t) :=

∫
H

f(y, s)ωγ,ν
α (x, t; y, s)sρdV (y, s). (3.3)

Some of the basic properties of the integral operators Πγ,ν,ρ
α are as follows. We denote

by L∞(H) the set of all Lebesgue measurable functions f on H which satisfy

∥f∥L∞ := esssup{|f(x)| : (x, t) ∈ H} <∞.

Lemma 3.3. Let 0 < α ≤ 1, γ ∈ Nn
0 , ν > −n/2α, and ρ > −1. Put η :=

(|γ|/2α) + ν − ρ− 1. If η > −m(α), then the following statements hold :

(1) Πγ,ν,ρ
α is a bounded operator from L∞(H) to B̃α(η).

(2) Let κ be a real number such that κ > max{0,−η}. Then,

Dκ
t Π

γ,ν,ρ
α f(x, t) =

∫
H

f(y, s)∂γxDκ+ν
t W (α)(x− y, t+ s)sρdV (y, s) (3.4)

holds for all f ∈ L∞(H) and (x, t) ∈ H.

(3) Let β ∈ Nn
0 with |β| ̸= 0. Moreover, let κ be a real number such that κ > −(|β|/2α)−

η and κ+ ν > −n/2α. Then,

Dκ
t ∂

β
xΠ

γ,ν,ρ
α f(x, t) =

∫
H

f(y, s)∂β+γ
x Dκ+ν

t W (α)(x− y, t+ s)sρdV (y, s)

holds for all f ∈ L∞(H) and (x, t) ∈ H.

Proof.

(1) The essential proof is already given by Proposition 4.1 of [4].

(2) Let κ > max{0,−η}. Since κ > 0, the differentiation under the integral sign shows

that

Dκ
t Π

γ,ν,ρ
α f(x, t)

=
1

Γ(⌈κ⌉ − κ)

∫ ∞

0

τ ⌈κ⌉−κ−1

∫
H

f(y, s)∂γxD
⌈κ⌉+ν
t W (α)(x− y, t+ τ + s)sρdV (y, s)dτ.

Here, (1) of Lemma 2.1 and Lemma 2.3 imply that
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0

∫
H

τ ⌈κ⌉−κ−1|f(y, s)∂γxD
⌈κ⌉+ν
t W (α)(x− y, t+ τ + s)|sρdV (y, s)dτ <∞,

because κ > −η. Therefore, we can get (3.4) by the Fubini theorem and (2) of

Lemma 2.1.

(3) The proof is similar to that of (2). Thus, we omit the proof. □

Finally, we present estimates of normal derivative norms of parabolic Bloch func-

tions.

Lemma 3.4 (Theorem 5.9 of [6]). Let 0 < α ≤ 1 and σ > −m(α). Then, for every

real number κ > max{0,−σ}, there exists a constant C = C(n, α, σ, κ) > 0 independent

of u such that

C−1∥u∥Bα(σ) ≤ ∥tκ+σDκ
t u∥L∞ ≤ C∥u∥Bα(σ)

for all u ∈ B̃α(σ).

4. L(α)-conjugates on parabolic Bloch spaces.

In this section, we give the main results of this paper. First, we give the proof of

Theorem 1.

Proof of Theorem 1. Let u ∈ B̃α(σ). For an integer 1 ≤ j ≤ n, we define a

function vj on H by

vj(x, t) = − 2σ+2

Γ(σ + 2)
Πγ(j),σ+1−(1/2α),0

α (sσ+1Dtu)(x, t),

where γ(j) = (δj1, . . . , δjn) ∈ Nn
0 and δjℓ is the Kronecker δ. Since sσ+1Dtu ∈ L∞(H),

(1) of Lemma 3.3 implies that vj ∈ B̃α(σ) and there exists a constant C > 0 independent

of u such that

∥vj∥Bα(σ) ≤ C∥u∥Bα(σ). (4.1)

First, we show that the (n + 1)-tuple (v1, . . . , vn, u) satisfies (1.1), (1.2), and (1.3).

By (3) of Lemma 3.3, we give

∂kvj(x, t) = − 2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂k∂jDσ+1−(1/2α)
t W (α)(x− y, t+ s)dV (y, s).

(4.2)

Thus, (v1, . . . , vn, u) satisfies (1.1). We show that (1.2) is satisfied. In fact, Lemma 3.2

implies that the function u satisfies

u(x, t) =
2σ+2

Γ(σ + 2)
Π0,σ+1,0

α (sσ+1Dtu)(x, t). (4.3)

Hence, (2) and (3) of Lemma 3.3 give
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−D1/2α
t vj(x, t) =

2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s)

and

∂ju(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s).

Therefore, (v1, . . . , vn, u) satisfies (1.2). We show that (1.3) is satisfied. By (4.2), we

obtain

n∑
j=1

∂jvj(x, t)

=
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1−(1/2α)
t

(
−∆xW

(α)(x− y, t+ s)
)
dV (y, s).

Here, (2) and (4) of Lemma 2.1 show that

Dσ+1−(1/2α)
t (−∆xW

(α)(x− y, t+ s)) = Dσ+1+(1/2α)
t W (α)(x− y, t+ s).

Consequently, we obtain

n∑
j=1

∂jvj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1+(1/2α)
t W (α)(x− y, t+ s)dV (y, s).

On the other hand, (2) of Lemma 3.3 gives

D1/2α
t u(x, t) =

2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1+(1/2α)
t W (α)(x− y, t+ s)dV (y, s).

Hence, (v1, . . . , vn, u) satisfies (1.3).

Next, we show that the (n + 1)-tuple (v1, . . . , vn, u) satisfies the inequalities (1.4).

Since the second inequality is already given by (4.1), it suffices to show the first inequality.

By Lemma 3.4 and (1.3), there exists a constant C > 0 independent of u such that

∥u∥Bα(σ) ≤ C∥t(1/2α)+σD1/2α
t u∥L∞ ≤ C

n∑
j=1

∥t(1/2α)+σ∂jvj∥L∞ .

Since ∥t(1/2α)+σ∂jvj∥L∞ ≤ ∥vj∥Bα(σ), we obtain the first inequality.

Finally, we show the uniqueness of (v1, . . . , vn). Suppose that (u1, . . . , un) is an

L(α)-conjugate of u with uj ∈ B̃α(σ). We show that vj = uj on H. By Lemma 3.4 and

(1.2), there exists a constant C > 0 independent of vj and uj such that

∥vj − uj∥Bα(σ) ≤ C∥t(1/2α)+σD1/2α
t (vj − uj)∥L∞ ≤ C∥t(1/2α)+σ(∂ju− ∂ju)∥L∞ = 0.

Therefore, we obtain vj = uj on H. This completes the proof. □

Next, we give the proof of Theorem 2.
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Proof of Theorem 2. Suppose an n-tuple (v1, . . . , vn) satisfies vj ∈ B̃α(σ) and

(1.1). We define a function u on H by

u(x, t) =
2σ+2

Γ(σ + 2)

n∑
j=1

Πγ(j),σ+1−(1/2α),0
α (sσ+1Dtvj)(x, t).

Since sσ+1Dtvj ∈ L∞(H), (1) of Lemma 3.3 implies that u ∈ B̃α(σ) and there exists a

constant C > 0 independent of vj such that

∥u∥Bα(σ) ≤ C

n∑
j=1

∥vj∥Bα(σ). (4.4)

First, we show that the (n+1)-tuple (v1, . . . , vn, u) satisfies (1.2) and (1.3). In fact,

Lemma 3.2 implies that the function vj satisfies

vj(x, t) =
2σ+2

Γ(σ + 2)
Π0,σ+1,0

α (sσ+1Dtvj)(x, t). (4.5)

Hence, (3) of Lemma 3.3 gives

D−1/2α
t ∂j∂kvj(x, t)

=
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtvj(y, s)∂k∂jDσ+1−(1/2α)
t W (α)(x− y, t+ s)dV (y, s).

On the other hand, (3) of Lemma 3.3 implies that

∂ku(x, t) =
2σ+2

Γ(σ + 2)

n∑
j=1

∫
H

sσ+1Dtvj(y, s)∂k∂jDσ+1−(1/2α)
t W (α)(x− y, t+ s)dV (y, s).

Therefore, we obtain ∂ku(x, t) =
∑n

j=1 D
−1/2α
t ∂j∂kvj(x, t). Since (v1, . . . , vn) satisfies

(1.1), (2) and (4) of Lemma 3.1 give

∂ku(x, t) =
n∑

j=1

D−1/2α
t ∂2j vk(x, t) = −D−1/2α

t (−∆xvk(x, t)) = −D1/2α
t vk(x, t).

Therefore, (v1, . . . , vn, u) satisfies (1.2). We show that (1.3) is satisfied. By (2) and (3)

of Lemma 3.3, we obtain

D1/2α
t u(x, t) =

2σ+2

Γ(σ + 2)

n∑
j=1

∫
H

sσ+1Dtvj(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s)

and

∂jvj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtvj(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s).
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Hence, (v1, . . . , vn, u) satisfies (1.3).

Next, we show that the (n + 1)-tuple (v1, . . . , vn, u) satisfies the inequalities (1.5).

Since the second inequality is already given by (4.4), it suffices to show the first inequality.

By Lemma 3.4 and (1.2), there exists a constant C > 0 independent of vj such that

∥vj∥Bα(σ) ≤ C∥t(1/2α)+σD1/2α
t vj∥L∞ = C∥t(1/2α)+σ∂ju∥L∞ .

Since ∥t(1/2α)+σ∂ju∥L∞ ≤ ∥u∥Bα(σ), we obtain the first inequality.

Finally, we show the uniqueness of the function u. Suppose that v ∈ B̃α(σ) and the

n-tuple (v1, . . . , vn) is an L
(α)-conjugate of v. We show that u = v on H. By Lemma 3.4

and (1.3), there exists a constant C > 0 independent of u and v such that

∥u− v∥Bα(σ) ≤ C
∥∥∥t(1/2α)+σ

(
D1/2α

t u−D1/2α
t v

)∥∥∥
L∞

= C
∥∥∥t(1/2α)+σ

 n∑
j=1

∂jvj −
n∑

j=1

∂jvj

∥∥∥
L∞

= 0.

Therefore, we obtain u = v on H. This completes the proof. □

5. A generalization of L(α)-conjugates.

In this section, we discuss a generalization of L(α)-conjugates. We generalize the

definition of L(α)-conjugates, and study properties of generalized L(α)-conjugates. We

introduce the following definition, which is called a (κ, ν)-conjugate.

Definition 5.1. Let u be a function on H. An n-tuple (v1, . . . , vn) is called a

(κ, ν)-conjugate of u if u, vj ∈ C1(H), vj(x, ·) ∈ FCκ, u(x, ·) ∈ FCν , and the (n+1)-tuple

(v1, . . . , vn, u) satisfies the following equations:

∂jvk = ∂kvj (1 ≤ j, k ≤ n), (5.1)

−Dκ
t vj =

{
∂ju (κ ̸= 0)

∂ju− ∂ju(0, 1) (κ = 0)
(1 ≤ j ≤ n), (5.2)

and

n∑
j=1

∂jvj =

{
Dν

t u (ν ̸= 0)

u− lim
t→∞

u(0, t) (ν = 0).
(5.3)

We note that (1/2α, 1/2α)-conjugates and (1, (1/α) − 1)-conjugates coincide with

L(α)-conjugates and α-parabolic conjugate functions, respectively. Therefore, the study

of (κ, ν)-conjugates is an extension of Section 4 and the previous paper [4].

Now, we start investigation of (κ, ν)-conjugates on parabolic Bloch spaces. In order

to show the main theorem of this section, we prepare the following lemmas.

Lemma 5.2. Let 0 < α ≤ 1, σ > −m(α), and u ∈ Bα(σ). Also, let γ ∈ Nn
0 ,

κ > max{0,−σ}, and ν > σ. If σ > −|γ|/2α, then
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H

|Dκ
t u(y, s)| |∂γxDν

tW
(α)(x− y, t+ s)|sκ+ν−1dV (y, s) <∞

for all (x, t) ∈ H.

Proof. The proof is given by (1) of Lemma 2.1 and Lemma 2.3, immediately. □

Lemma 5.3 (Lemma 5.2 of [4]). Let 0 < α ≤ 1, σ > 0, u ∈ B̃α(σ), and (x, t) ∈ H.

If κ > 0 and ν > σ, then

u(x, t)− lim
s→∞

u(x.s)

=
2κ+ν

Γ(κ+ ν)

∫
H

Dκ
t u(y, s)Dν

tW
(α)(x− y, t+ s)sκ+ν−1dV (y, s).

As an application of (κ, ν)-conjugates, we can generalize Theorem 1.

Theorem 5.4. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Also, let κ and ν be

non-negative real numbers with κ+ν = 1/α. Put η = (1/2α)+σ−κ. If η > −m(α), then

there exists a unique (κ, ν)-conjugate (v1, · · · , vn) of u such that vj ∈ B̃α(η). Moreover,

there exists a constant C > 0 independent of u such that

C−1∥u∥Bα(σ) ≤
n∑

j=1

∥vj∥Bα(η) ≤ C∥u∥Bα(σ). (5.4)

Proof. Let u ∈ B̃α(σ). For 1 ≤ j ≤ n, we define a function vj on H by

vj(x, t) = − 2σ+2

Γ(σ + 2)
Πγ(j),σ+1−κ,0

α (sσ+1Dtu)(x, t).

Since sσ+1Dtu ∈ L∞(H), (1) of Lemma 3.3 implies that vj ∈ B̃α(η) and there exists a

constant C > 0 independent of u such that

∥vj∥Bα(η) ≤ C∥u∥Bα(σ). (5.5)

We show that the (n+1)-tuple (v1, . . . , vn, u) satisfies (5.1), (5.2), and (5.3). By (3)

of Lemma 3.3, we obtain

∂kvj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂k∂jDσ+1−κ
t W (α)(x− y, t+ s)dV (y, s). (5.6)

Hence, (v1, . . . , vn, u) satisfies (5.1). We show that (5.2) is satisfied. In fact, Lemma 3.2

implies that the function u satisfies

u(x, t) =
2σ+2

Γ(σ + 2)
Π0,σ+1,0

α (sσ+1Dtu)(x, t). (5.7)

Therefore, (3) of Lemma 3.3 shows that
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∂ju(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s). (5.8)

Let κ > 0. Since κ > −η, (2) of Lemma 3.3 implies that

−Dκ
t vj(x, t) =

2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s).

Therefore, (5.2) is satisfied when κ > 0. Let κ = 0. By Lemma 5.2 and (5.8), we obtain

−vj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(x− y, t+ s)dV (y, s)

− 2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)∂jDσ+1
t W (α)(−y, 1 + s)dV (y, s)

= ∂ju(x, t)− ∂ju(0, 1).

Consequently, (5.2) is satisfied for κ ≥ 0. We show that (5.3) is satisfied. By (3) of

Lemma 3.3, we have

n∑
j=1

∂jvj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1−κ
t (−∆xW

(α)(x− y, t+ s))dV (y, s).

Here, (2) and (4) of Lemma 2.1 give

Dσ+1−κ
t (−∆xW

(α)(x− y, t+ s)) = Dσ+1+ν
t W (α)(x− y, t+ s).

Therefore, we obtain

n∑
j=1

∂jvj(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1+ν
t W (α)(x− y, t+ s)dV (y, s). (5.9)

Let ν > 0. Then, it follows from (2) of Lemma 3.3 that

Dν
t u(x, t) =

2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1+ν
t W (α)(x− y, t+ s)dV (y, s).

Therefore, (5.3) is satisfied when ν > 0. Let ν = 0. Then, Lemmas 5.2 and 5.3 imply

that

u(x, t) =
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)ω
0,σ+1
α (x, t; y, s)dV (y, s)

=
2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1
t W (α)(x− y, t+ s)dV (y, s)

− 2σ+2

Γ(σ + 2)

∫
H

sσ+1Dtu(y, s)Dσ+1
t W (α)(−y, 1 + s)dV (y, s)

=
n∑

j=1

∂jvj(x, t)− {u(0, 1)− lim
s→∞

u(0, s)} =
n∑

j=1

∂jvj(x, t) + lim
s→∞

u(0, s).
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Thus, (5.3) is satisfied for ν ≥ 0.

Next, we show the inequalities (5.4). The second inequality is already given by (5.5).

Thus, it suffices to show the first inequality. If ν > 0, then Lemma 3.4 and (5.3) shows

that there exists a constant C > 0 independent of u such that

∥u∥Bα(σ) ≤ C∥tσ+νDν
t u∥L∞ = C

∥∥∥∥∥∥tσ+ν
n∑

j=1

∂jvj

∥∥∥∥∥∥
L∞

≤ C
n∑

j=1

∥tσ+ν∂jvj∥L∞ .

Since |∂jvj | ≤ |∇xvj | and σ + ν = η + (1/2α), we obtain

∥u∥Bα(σ) ≤ C
n∑

j=1

∥tηt1/2α∇xvj∥L∞ ≤ C
n∑

j=1

∥vj∥Bα(η).

We assume ν = 0. Since the limit value lims→∞ u(0, s) exists (see, Remark 5.6 of [4]),

(5.3) gives

∥u∥Bα(σ) = ∥
n∑

j=1

∂jvj∥Bα(σ).

Also, (1) of Lemma 3.1 implies that there exists a constant C > 0 independent of vj such

that

tσ+(1/2α)|∇x∂jvj(x, t)| ≤ Ctσ−(1/2α)−η∥vj∥Bα(η) = C∥vj∥Bα(η)

and

tσ+1|Dt∂jvj(x, t)| ≤ Ctσ−(1/2α)−η∥vj∥Bα(η) = C∥vj∥Bα(η).

Therefore, we obtain the first inequality for ν ≥ 0.

Finally, we show the uniqueness of the (κ, ν)-conjugate (v1, · · · , vn) of u. Suppose

that (u1, · · · , un) is a (κ, ν)-conjugate of u such that uj ∈ B̃α(η). We show that uj = vj
on H. Let κ > 0. Then, by Lemma 3.4 and (5.2), there exists a constant C > 0

independent of u such that

∥uj − vj∥Bα(η) ≤ C∥tη+κ(Dκ
t uj −Dκ

t vj)∥L∞ = C∥tη+κ(∂ju− ∂ju)∥L∞ = 0.

The case of κ = 0 is similar to that of κ > 0. Thus, this completes the proof. □

6. Isomorphism theorem on parabolic Bloch spaces.

In this section, we shall prove Theorem 3. The study of parabolic Bloch spaces is

closely related to that of parabolic Bergman spaces. In fact, parabolic Bloch spaces are

regarded as a limiting case p → ∞ of parabolic Bergman spaces. Thus, we recall the

definition of parabolic Bergman spaces. Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. The

parabolic Bergman space bpα(λ) is the space of all L(α)-harmonic functions which belong

to Lp(λ), where Lp(λ) = Lp(H, tλdV ) is the set of all Lebesgue measurable functions on
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H which satisfy

∥f∥Lp(λ) :=

(∫
H

|f(x, t)|ptλdV (x, t)

)1/p

<∞.

The following proposition is given in the previous paper [5], which is a corresponding

result of Theorem 3.

Theorem B (Theorem 5.4 and Remark 5.5 of [5]). Let 0 < α ≤ 1, 1 ≤ p < ∞,

and λ1, λ2 > −1. Then, bpα(λ1)
∼= bpα(λ2) under the relation D−λ1/p

t u = D−λ2/p
t v for

u ∈ bpα(λ1) and v ∈ bpα(λ2). Moreover, there exists a constant C > 0 such that

C−1∥v∥Lp(λ2) ≤ ∥u∥Lp(λ1) ≤ C∥v∥Lp(λ2).

Now, we start the investigation of this section. As an application of Theorems 2 and

5.4, we can give the following theorem.

Theorem 6.1. Let 0 < α ≤ 1 and σ1, σ2 > −m(α) be real numbers. Then,

B̃α(σ1) ∼= B̃α(σ2).

Proof. Without loss of generality, we may assume that σ1 ≤ σ2. First, we

suppose that σ2 − σ1 ≤ 1/2α. Let u ∈ B̃α(σ1). Then, by Theorem 5.4 with κ =

(1/2α) − σ2 + σ1 and ν = (1/2α) + σ2 − σ1, there exists a unique (κ, ν)-conjugate

(v1, . . . , vn) of u such that vj ∈ B̃α(σ2). Moreover, by Theorem 2, there exists a unique

function v ∈ B̃α(σ2) such that (v1, . . . , vn) is the L
(α)-conjugate of v. Also, Theorems 2

and 5.4 show that there exists a constant C > 0 independent of u such that

C−1∥u∥Bα(σ1) ≤ ∥v∥Bα(σ2) ≤ C∥u∥Bα(σ1). (6.1)

Therefore, we obtain B̃α(σ1) ∼= B̃α(σ2) when 0 ≤ σ2 − σ1 ≤ 1/2α.

In order to show the assertion for general σ1 and σ2 with σ1 ≤ σ2, it suffices to apply

the above result several times. Thus, this completes the proof. □

Remark 6.2. In Theorem 6.1, we can also find a correspondence between u ∈
B̃α(σ1) and v ∈ B̃α(σ2). Actually, if σ1 ≤ σ2, then (1.3) and (5.3) give

D1/2α
t v = D(1/2α)+σ2−σ1

t u. (6.2)

In order to show the equation in Theorem 3, we prepare the following lemmas.

Lemma 6.3 (Proposition 2.1 of [2]). Let κ and ν be positive real numbers. If

φ ∈ FC−ν−κ, then D−ν
t D−κ

t φ = D−ν−κ
t φ.

Lemma 6.4. Let 0 < α ≤ 1, σ > −m(α), and u ∈ B̃α(σ). Also, let κ, ν >

max{0,−σ} be real numbers. Then, Dν−κ
t Dκ

t u(x, t) = Dν
t u(x, t) for all (x, t) ∈ H.

Proof. We assume that ν > κ. Then, the differentiation under the integral sign

shows that
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Dν−κ
t Dκ

t u(x, t) = D−(⌈ν−κ⌉−(ν−κ))
t D−(⌈κ⌉−κ)

t D⌈ν−κ⌉+⌈κ⌉
t u(x, t).

In fact, the derivative D⌈ν−κ⌉+⌈κ⌉
t u(x, t) belongs to FC−(⌈ν−κ⌉+⌈κ⌉−ν). Hence, Lemma

6.3 gives

D−(⌈ν−κ⌉−(ν−κ))
t D−(⌈κ⌉−κ)

t D⌈ν−κ⌉+⌈κ⌉
t u(x, t)

= D−(⌈ν−κ⌉+⌈κ⌉−ν)
t D⌈ν−κ⌉+⌈κ⌉

t u(x, t). (6.3)

If ⌈ν − κ⌉ + ⌈κ⌉ = ⌈ν⌉, then the right-hand side of (6.3) becomes Dν
t u(x, t), directly. If

⌈ν − κ⌉+ ⌈κ⌉ = ⌈ν⌉+ 1, then the right-hand side of (6.3) becomes

D−(⌈ν⌉−ν)−1
t D⌈ν⌉+1

t u(x, t) = D−(⌈ν⌉−ν)
t D−1

t DtD⌈ν⌉
t u(x, t). (6.4)

Therefore, (1) of Lemma 3.1 implies that the right-hand side of (6.4) is equal to Dν
t u(x, t).

We assume that ν < κ. Since ν > −σ, Lemma 6.3 shows that

Dν−κ
t Dκ

t u(x, t) = Dν−⌈κ⌉
t D⌈κ⌉

t u(x, t)

= D−(⌈ν⌉−ν)
t D−⌈κ⌉+⌈ν⌉

t D⌈κ⌉−⌈ν⌉
t D⌈ν⌉

t u(x, t). (6.5)

Therefore, (1) of Lemma 3.1 implies that the right-hand side of (6.5) is equal to Dν
t u(x, t).

This completes the proof. □

Now, we give the proof of Theorem 3.

Proof of Theorem 3. Without loss of generality, we may assume that σ1 ≤ σ2.

Then, Theorem 6.1 and (6.2) imply that B̃α(σ1) ∼= B̃α(σ2) under the correspondence

D1/2α
t v = D(1/2α)+σ2−σ1

t u for u ∈ B̃α(σ1) and v ∈ B̃α(σ2). Since κ > max{0, σ1, σ2},
Lemma 6.4 gives

Dκ−σ2−(1/2α)
t D(1/2α)+σ2−σ1

t u = D−σ1+κ
t u

and

Dκ−σ2−(1/2α)
t D1/2α

t v = D−σ2+κ
t v.

Consequently, we obtain D−σ1+κ
t u = D−σ2+κ

t v.

The inequalities (1.6) are given by (6.1), directly. Thus, this completes the proof. □
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Yôsuke Hishikawa

Department of Mathematics

Faculty of Education

Gifu University

Yanagido 1-1

Gifu 501-1193, Japan

E-mail: yhishik@gifu-u.ac.jp

Masaharu Nishio

Department of Mathematics

Osaka City University

Sugimoto, Sumiyoshi 3-3-138

Osaka 558-8585, Japan

E-mail: nishio@sci.osaka-cu.ac.jp

Masahiro Yamada

Department of Mathematics

Faculty of Education

Gifu University

Yanagido 1-1

Gifu 501-1193, Japan

E-mail: yamada33@gifu-u.ac.jp

https://doi.org/10.1007/s11118-013-9358-5
https://doi.org/10.1007/s11118-013-9358-5
https://doi.org/10.1017/S0027763000001495
https://doi.org/10.1016/j.aml.2016.06.010
https://doi.org/10.1016/j.aml.2016.06.010
https://doi.org/10.1016/j.jde.2015.04.033
https://doi.org/10.1016/0021-9045(92)90055-S
https://doi.org/10.18910/7024
https://doi.org/10.18910/7024
https://doi.org/10.14492/hokmj/1277472867
https://doi.org/10.1090/S0002-9947-96-01383-9
https://doi.org/10.1090/S0002-9947-96-01383-9
https://doi.org/10.1007/BF02546524

