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Abstract. In this paper, we consider the scalar curvature of a self-
shrinker and get the gap theorem of the scalar curvature. We get also a
relationship between the upper bound of the square of the length of the sec-
ond fundamental form and the Ricci mean value.

1. Introduction.

Let x : M™ — R"*! be an n(n > 2)-dimensional hypersurface in the (n + 1)-dimen-
sional Euclidean space. Let 7 and z1 denote the projection of the position vector z
onto tangent space and the normal space of M", respectively, then

r=zl +at.
A hypersurface M™ is called a self-shrinker if it satisfies the quasi-linear elliptic system:
H=—<zt enp1>, (1.1)

where e, 11 an unit normal vector and H is the mean curvature of M". Self-shrinkers
play an important role in the study of the mean curvature flow. For example, Huisken’s
monotonicity formula for the mean curvature flow implies that any Type I blow-up limit
is a self-similar shrinking solution (cf. [5] and [6]). In other words, not only self-shrinkers
correspond to self-shrinking solutions to the mean curvature flow, but also they describe
all possible Type I blow ups at a given singularity of the mean curvature flow. The
simplest example of a self-shrinker in R™*! is the round sphere of radius \/n centered
at the origin. In a remarkable recent work, Colding and Minicozzi [3] proved that a
self-shrinker which is a stable critical points of a certain entropy functional must be a
sphere or cylinder. The round sphere is also known to minimize entropy among closed
self-shrinkers.

To characterize the self-shrinkers by mean curvature H and the square of the length
of the second fundamental form || A||2, some interesting gap theorems have been obtained.
For examples, for a compact self-shrinker, we have max ||A||? > 1 and equality sign holds
if and only if the self-shrinker is the round sphere of radius y/n centered at the origin [8].
For the generalization to the case of arbitrary codimension and complete self-shrinkers
we refer readers to papers [1], [2] and [4]. Considering the mean curvature, by making
use of Minkowski’s formula [7], one can see that following gap theorem holds: for a
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compact self-shrinker we have min H? — n < 0 < max H? — n, where each equality sign
holds if and only if the self-shrinker is S"(y/n). For the scalar R, it is easy to prove that
min R < n — 1 and the equality holds if and only if the self-shrinker is S™(y/n). In fact,
from Gauss equation R = H? — || A||? we have

1

-1
T Hm = H - |A)? <0,
n

R —

where the equality holds if and only if the hypersurface is totally umbilical. Hence we
have

-1
minR— (n—1)=minR — ngminR—niminH2
n

-1 -1
:minR+max(—nH2> < max (R— n H2> <0,
n n

and the conclusion follows immediately. From this we see that minR < n — 1 1is a
necessary condition that a compact Riemannian manifold can be immersed in Euclidean
space as a codimension 1 self-shrinker.

In this paper, we define Ricci mean value of a hypersurface as follows:

1 T T
= — M 1.2
c nV/Mch(x ,x)dM, (1.2)

where V is the volume of M™ and Ric(z”,2T) denotes the Ricci curvature in tangent
vector 7. The main purpose of this paper is to get the gap theorem for the scalar
curvature. As a corollary of the main theorem we get also a relationship between the
upper bound of the square of the length of the second fundamental form and the Ricci
mean value. Explicitly, we prove following results:

THEOREM 1.1.  For a compact self-shrinker with scalar curvature R if either con-
dition R < n—14c or R > n— 1+ c is satisfied, then ¢ = 0, R = n — 1 and the
self-shrinker is isometrically homeomorphic to sphere S™(\/n).

In other words, we get, on a compact self-shrinker, it holds
mnR—(n—1) <c<maxR— (n—1),

where each of the equality signs holds if and only if ¢ = 0 and the self-shrinker is
isometrically homeomorphic to sphere S (y/n). In particular, if R is constant then z(M™)
is isometrically homeomorphic to sphere S™(y/n).

THEOREM 1.2.  For a compact self-shrinker, we have
1 — max HAH2 <e¢ < (n—1)(max HAH2 -1

where each of the equality signs holds if and only if c = 0 and the self-shrinker is isomet-
rically homeomorphic to sphere S™(\/n).
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The conclusion of Theorem 1.2 is closely related to an interesting problem, i.e. the
second gap problem. The second gap problem means that dose exist a number 6(> 1)
such that if [|A||? < § then ||A|? = 1 or ||A||*> = 6, and there exists compact self-shrinker
with ||A]|? = §7 In other words, for compact self-shrinkers, dose exist a number § such
that max ||A]|?> > § and identity holds if and only if |A||?> = § and there exists compact
self-shrinker with [|A||*> = 67 The interval [1, 4] is called the second gap of || A|>.

From Theorem 1.2 we see that it holds that if ¢ > 0, then max || A[|? > 1+(c/(n — 1));
if ¢ < 0, then max ||A||> > 1 — c. This shows that if there exists the second gap [1, d] of
| A[|2, then c(z) # 0 (z(M) is self-shrinker with max ||A(z)|* = §) and, if ¢(z) > 0 then
d>14 (e(x)/(n—1));if c(z) < 0 then § > 1 — ¢(x).

We establish first a new integral formula for a compact self-shrinker and then, by
making use of the new formula, we prove above results.

2. An integral formula on a compact hypersurface.

Let z : M™ — R™"! be an n-dimensional hypersurface in the (n + 1)-dimensional
FEuclidean space with inner product <-,->. Define nonnegative function

1
u =5l

Let 27 denote the projection of the position vector # and Ric(x”,z™) denote the Ricci
curvature in tangent vector 7. We introduce the notation
1 . T T
c=— Ric(z® ,x" )dM, 2.1

o [ Biela® aT) (2.1)
where dM is volume element and V' is the volume of M™. Quantity c relies on the metric
of M™ and immersion x but it is a constant on x(M™) for fixed x. We have following
integral formula:

LEMMA 2.1.  For a compact hypersurface M™ in R*1, we have formula
/ [Rl|z- 2 = n(n — 1+ )]dM =0, (2.2)
M

For a self-shrinker, using condition |z*||> = H? and Minkowski’s formula, we have

the following integral formula:

COROLLARY 2.2.  For a compact self-shrinker, it holds that
/ [R— (n—1+c)H?dM = 0. (2.3)
M

PROOF OF LEMMA 2.1. Let f be a smooth function on M". Choosing a local
field of orthonormal tangent frames e; (1 < i < n) and normal vector e, i1, we can
denote the components of the co-derivative of f; = e;(f) by fi ;. Laplacian A is defined
by Af := )", fii- Noting that the following formula can be easily gotten by a direct
calculation and making use of Ricci identity:
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AGIWH?) =D 1Y AN+ D Rififs,
.5 k ij
we have
- i fif;dM = 2 — (Af)?|dM. .
[, S rassis /M[;m (@12|a (2.4)

In the fact, (2.4) holds on a compact Riemannian manifold because it dose not involve
the structure of the hypersurface. Next step, we will apply (2.4) to the function v which
is determined by isometrically immersion z. As u satisfies following equation

U5 = 51’]’ + <z, €n+l>hija
Au=n+<z,ep41>H,

we have
Zufj — (Au)?
%,J
=-nn—-1)—2(n—-1)<z,ep1>H + (Zhijhij — H2> T eny1 >
i

Making use of (2.4) and the first Minkowski’s integral formula
/ (n+<x,ept1>H)dM =0,
M

we have
—/ Z R”ulu]dM = / |:TL(TL — ].) + (Z hijhij — H2> <z, 6n+1>2:| dM,
M M r

which implies (2.2). This completes the proof of the lemma. O

3. Proofs of main theorems.

In the section, we will prove Theorem 1.1 and Theorem 1.2. We need the following
proposition:

PrROPOSITION 3.1. Let M™ be a compact Riemannian manifold and © : M" —
R™*L be an isometric immersion. Then there exists a point ¢ € M™ such that scalar
curvature R(q) is positive.

PrOOF. The function u = (1/2)<z,z> attains the maximum at a point ¢ € M™
as M™ is compact and u is continuous. We have

dul, =0, d*ul, <0.
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Let e,41 be the unit normal vector at point g. The second fundamental form A(q) is
defined as follows:

A(q) = <d*x|q, €nt1>.
From <z,dz>|, = du|, = 0 we see z(q) L T,M. So, we have

‘T(Q) = <x(‘1)7 €n+1>€En+1, <$(Q)a ent1> # 0.
We have
0 > d?ul, = <dz,dv>|, + <z, d*r>|, = <dz,dz>|, + <2(q), €nt1>A(q).

Since <dz, dx>|, is positive definite, we know that <z(q), e,+1>A(q) is negative definite.
Hence we know that A(q) must be definite. Let A\; (1 < ¢ < n) be the eigenvalue of A(q).
Then we have

)\i>\j > 0.

Hence we have

2
Rla) = (112 = A1) = (00) = 2 = a > o.

i#]
This completes the proof of Proposition 3.1. d

PrRoOOF OF THEOREM 1.1. Firstly, we prove claim: suppose R < n —1+4 ¢ or
R>n—1+¢,then R=n—1+con M. From Corollary 2.2 we see that the assumption
of the theorem implies

[R—(n—1+c)H?=0.

On open set U = {q € M : H(q) # 0}, we have R = n—1+c on U. We will
prove that constant number n — 1 + ¢ is positive. In fact, on one hand, there exits a
point go such that R is positive at go (Proposition 3.1). On the other hand, we have
R=H?—|A|? < H?=0o0n M\U. Hence gy € U and so we have n—1+c = R(qg) > 0
on U. Note that R is a positive constant on U and is non-positive on M \ U, we know
that M \ U is empty as R is continuous on M. This completes the proof of the claim:
R=n—-14+con M.

Secondly, we prove claim: R =n—14con M"™ implies ¢ = 0. It is well known that
on a compact hypersurface of R™™1 it holds the second Minkowski’s integral formula

/ (0 = V)H + R<a, eny1>]dM = 0.
M
In particular, for self-shrinker we have

/ HIR — (n—1)]dM = 0. (3.1)
M
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From the first claim we have

c/ HdM = 0.
M

As R is constant on M and M is compact we know that R is a positive constant. Using
Gaussian equation we have

0<R=H?—|A|?<H?

which means H # 0 everywhere. So we have [ HdM # 0. This completes the proof of
the claim: ¢ = 0.

Thirdly, we prove claim: M™ is isometrically homeomorphic to sphere S™(y/n). From
inequality

n n

-1 -1
H>+ H> - |A|? = - H*>+ R
n n

1
0> —H?— |4 = -
n
and equality
H?dM = / ndM,
M M

we have

0> /M (in - ||A||2)dM = /M(f(n — 1)+ R)dM.

From the second claim we know R =n — 1. We get (1/n)H? — ||A||?> = 0, which means
M is totally umbilical. This completes proof of the claim and so completes the proof of
Theorem 1.1. 0

COROLLARY 3.2. A compact self-shrinker with constant scalar curvature is isomet-
rically homeomorphic to S™(y/n).

PROOF OF THEOREM 1.2. From Corollary 2.2 and Gaussian equation we have
/ (H? — ||A|? = n+1—c)H?*dM = 0.
M
Noting
/ (H? —n)dM =0,
M
we have
/ (H? —n)H?*dM = / (H?* —n)%dM > 0.
M M

Hence we have
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A - - npzay o,
M

We see that if ||A]|> < 1 — ¢ then ||A||?> = 1 — ¢ and H? = n, which implies ¢ = 0 and
x(M) is isometrically homeomorphic to sphere S"(y/n). In other words, we have

supHAH2 >1-—c, (3.2)

where equality holds implies ¢ = 0 and x(M) is isometrically homeomorphic to sphere
§"(v/n).

On the other hand, as H? < n||A||?, we have R = H? — ||A||?> < (n — 1)||A4||?. From
Theorem 1.1 we have

sup HA||2 >1+

= (3.3)

From (3.2) and (3.3) we complete the proof of Theorem 1.2. O

REMARK 3.3. For a given compact Riemannian manifold (M™,g), if it can be
isometrically immersed in R™t! as a self-shrinker, then we have a non-empty set

X = {x: M"™ — R"*!|isometrically immersion as a self-shrinker}.
Functional ¢ : X — R which is defined by (1.2) needs to satisfy
min R(g) — (n—1) < c¢(r) <maxR(g) —(n—1), zeX
Hence we can define two numbers a and [ as follows:

= inf = .
o= infe(@). = supe(a)

Our inequality can be written as follows:
min R(g) — (n—1) <a < <maxR(g) — (n—1). (3.4)

Theorem 1.1 shows that if there exists zp such that ¢(xg) = «, then ¢(z¢) = 0 and M™
is isometric to sphere S™(y/n).
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