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Abstract. Let fcrgr>0 and ffrgr>0 be the families of operator monotone func-

tions on ½0;yÞ satisfying crðx
rgðxÞÞ ¼ x r, frðx

rgðxÞÞ ¼ x rhðxÞ, where g and h are

continuous and g is increasing. Suppose sca
and sfr are the corresponding operator

connections. We will show that if Aasca
Bb 1 ða > 0Þ, then A rscr

B and A rsfrB are

both increasing for rb a, and then we will apply this to the geometric operator means

to get a simple assertion from which many operator inequalities follow.

1. Introduction.

In this paper we denote bounded positive semidefinite operators on a Hilbert

space by A;B;C and so on. A real valued continuous function jðxÞ on ½0;yÞ is

called an operator monotone function if 0aAaB implies jðAÞa jðBÞ. The

fact that xa ð0 < aa 1Þ is operator monotone is called the Löwner-Heinz

inequality.

In [8] (see p. 76 of [9] for the relevant topics) a quadratic operator equation

B ¼ XAX was studied and it was shown that if A is nonsingular, then there is

a solution T with 0aTa 1 if and only if ðA1=2BA1=2Þ1=2aA and that T is

then given by the formula T ¼ A�1=2ðA1=2BA1=2Þ1=2A�1=2 if A is invertible. The

solution of B ¼ XA�1X is therefore given by A1=2ðA�1=2BA�1=2Þ1=2A1=2. On the

other hand, in [7] it was shown that if A is invertible, the maximum of all X

such that

A X

X B

� �

b 0

equals A1=2ðA�1=2BA�1=2Þ1=2A1=2, which is called the geometric mean of A and

B and denoted by A ]B. Therefore, by using this symbol, the solution T of

B ¼ XAX is given by T ¼ A�1 ]B if A is invertible. For 0 < l < 1 and for

invertible A the weighted geometric mean is defined as:

A ]
l

B :¼ A1=2ðA�1=2BA�1=2ÞlA1=2:
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Furuta [3], [4] showed that AaB implies for 1a s; p and 0 < r

A1þr
a ðAr=2BpAr=2Þð1þrÞ=ðpþrÞ; ð1Þ

A1�tþr
a fAr=2ðA�t=2BpA�t=2ÞsAr=2gð1�tþrÞ=ðps�tsþrÞ ð0a ta 1; ta rÞ: ð2Þ

Further, in [1], [2], [10] it was shown that AaB implies for 0 < p; r

erAa ðerA=2epBerA=2Þr=ðrþpÞ: ð3Þ

These inequalities can be rewritten with the symbol ]; for instance, (1) is equiv-

alent to AaA�r ]
ð1þrÞ=ðpþrÞ

Bp.

Now let us state a simple fact on numerical weighted geometric means: For

positive numbers a; b; c; x and y, if ðxaÞbc=ðaþbcÞðybÞa=ðaþbcÞ
a 1, then for any d

with �aa da bc, ðxrÞðsc�dÞ=ðrþscÞðysÞðrþdÞ=ðrþscÞ is decreasing for rb a and for

sb b. We will show that this result is true even if x and y are replaced by A

and B and that (1), (2) and (3) follow simply from it.

We study in a more general situation. Namely, we treat operator connec-

tions (or means) which include every weighted geometric mean. Kubo and Ando

[6] defined a connection, which is denoted by s, and showed that there is a one

to one correspondence between s and an operator monotone function jb 0 on

½0;yÞ by the formula

AsB ¼ A1=2jðA�1=2BA�1=2ÞA1=2 ð4Þ

if A is invertible; s is called an operator mean if AsA ¼ A, which is equivalent

to jð1Þ ¼ 1. The operator mean corresponding to jðxÞ ¼ x1=2 is clearly geo-

metric mean.

The properties of a connection s which we will need in this paper are the

following:

(i) AaC and BaD imply AsBaCsD;

(ii) CðAsBÞC ¼ ðCACÞsðCBCÞ if C is invertible;

(iii) ðAnsBnÞ # ðAsBÞ if An # A and Bn # B in the strong topology;

(iv) AsB ¼ Bs 0A , where s 0 is the connection corresponding to xjð1=xÞ.

In this paper we write sj for s corresponding to j. In [11], to extend (1) and

(3) we constructed a family ffrðxÞgr>0 of non-negative operator monotone func-

tions which satisfies

frðgðxÞ f ðxÞ
rÞ ¼ f ðxÞcþr ð0a ca 1Þ;

where g and f are appropriate increasing functions; here by replacing f ðxÞ by x

and gð f �1ðxÞÞ by another function gðxÞ, fr satisfies frðgðxÞx
rÞ ¼ x rxc. In [12]

we also studied the operator monotone function fr; tðxÞ defined by

fr; tðxÞ ¼ x r=ðrþtÞf ðx t=ðrþtÞÞ; i:e:; fr; tðx
rx tÞ ¼ x rf ðx tÞ;
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where f b 0 is a given operator monotone function and r > 0 and t > 0. These

investigations have led us to set up a pair of operator monotone functions fcrg

and ffrg with the following situation:

crðx
rgðxÞÞ ¼ xr; i:e:; x�rscr

gðxÞ ¼ 1; ð5Þ

frðx
rgðxÞÞ ¼ xrhðxÞ; i:e:; x�rsfrgðxÞ ¼ hðxÞ: ð6Þ

In this situation, cr may be considered to be the subsidiary function of fr.

From now on, we assume that fcrgr>0 and ffrgr>0 are families of non-

negative functions on ½0;yÞ satisfying (5) and (6) respectively, where g and h

are continuous and g is increasing and that cr and fr are both operator mono-

tone for every r which is not less than a non-negative real number. Note that

cr is strictly increasing on ½0;yÞ with crð0Þ ¼ 0 and crðyÞ ¼ y, so the inverse

function c�1
r on ½0;yÞ exists. We remark that hðxÞ is not necessarily increasing

and that the region of r for which cr is operator monotone is not necessarily

coincident with that of r for which fr is: for instance, in (5) and (6) set gðxÞ ¼ x t

for a fixed t > 0 and hðxÞ ¼ x�1, then crðxÞ ¼ xr=ðtþrÞ is operator monotone for

r > 0; on the other hand frðxÞ ¼ xð�1þrÞ=ðtþrÞ is operator monotone for rb 1.

In the next section we show a fundamental principle, from which we can

derive easily (1), (2) and (3): to be precise, we show that if Aasca
Bb 1 ða > 0Þ,

then Arscr
B and ArsfrB are both increasing for rb a; we deal with geometric

means and give a very useful theorem in the third section; in the last section, we

explain how easily we can get (1), (2) and (3).

2. Criteria for monotonicity.

Theorem 2.1. Let fcrgrba ða > 0Þ be a family of non-negative and operator

monotone functions satisfying (5). Then the following hold:

(a) if Aasca
Bb 1, then Arscr

B is increasing for rb a;

(b) if A and B are invertible and if Aasca
Ba 1, then Arscr

B is decreasing

for rb a.

Proof. To prove the first statement (a), it su‰ces to show

Asscs
Bb 1 for some sb a ) Arscr

BbAsscs
B for every r A ½s; 2s�:

Indeed, from Aasca
Bb 1 it follows that Arscr

B is increasing in ½a; 2a� and hence

not less than 1; by the mathematical induction, we can see the statement. Since

Ar ¼ ðAsÞr=s, we may show that

Ascs
Bb 1 for some sb a ) Ar=sscr

BbAscs
B for every r A ½s; 2s�: ð7Þ

Notice ðAþ eÞscs
ðBþ eÞbAscs

Bb 1 for e > 0. If we could show

ðAþ eÞr=sscr
ðBþ eÞb ðAþ eÞscs

ðBþ eÞ, then by (iii) in the preceding section we
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would get (7) as e ! þ0. We therefore assume that A and B are invertible. Put

y ¼ x s in csðx
sgðxÞÞ ¼ x s and crðx

rgðxÞÞ ¼ x r. Then, by setting b ¼ ðr� sÞ=s,

we obtain

crðy
bc�1

s ðyÞÞ ¼ yby; i:e:; y�bscr
c�1
s ðyÞ ¼ y: ð8Þ

The assumption Ascs
Bb 1 implies csðA

�1=2BA�1=2ÞbA�1: Here, denote the left-

hand side by H and the right-hand side by K. Since HbK and 0a ba 1, by

the Löwner-Heinz inequality, K�b
bH�b. Hence by (i) in Section 1 we have

K�bscr
c�1
s ðHÞbH�bscr

c�1
s ðHÞ ¼ H;

here the last equality follows from (8). Multiplying the above from the left and

the right with A1=2 yields, by (ii) in Section 1,

Abþ1scr
BbAscs

B:

Consequently, we have (7). We next show the second statement (b). Let A

and B be invertible. To see

Asscs
Ba 1 ) Arscr

BaAsscs
B ðsa ra 2sÞ;

it is su‰cient to show

Ascs
Ba 1 ) Ar=sscr

BaAscs
B ðsa ra 2sÞ:

It is not di‰cult to get this in a fashion similar to the above. r

In the second statement (b) of the above theorem, we assumed A and B are

invertible, because the norm of ðAþ eÞascs
ðBþ eÞ may not necessarily converge

to that of Aascs
B as e ! þ0. We do not know if the invertibility of A and B

can be removed.

Theorem 2.2. Let fcrgrba and ffrgrba ða > 0Þ be families of non-negative

operator monotone functions satisfying (5) and (6). Then the following hold:

(a) if Aasca
Bb 1, then ArsfrB is increasing for rb a;

(b) if A and B are invertible and if Aasca
Ba 1, then ArsfrB is decreasing

for rb a.

Proof. We show the second statement (b). By Theorem 2.1, from

Aasca
Ba 1 it follows that Asscs

Ba 1 for sb a. Thus, it su‰cies to show

Asscs
Ba 1 for some sb a ) ArsfrBaAssfsB for every r A ½s; 2s�:

Further, it is clearly su‰cient to show that

Ascs
Ba 1 for some sb a ) Ar=ssfrBaAscs

B for every r A ½s; 2s�:
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Ascs
Ba 1 implies

csðA
�1=2BA�1=2ÞaA�1:

Here put the left-hand side by H and the right-hand side by K. In (5) and (6),

putting y ¼ xs and b ¼ ðr� sÞ=s we obtain

frðy
bc�1

s ðyÞÞ ¼ ybfsðc
�1
s ðyÞÞ ðy > 0Þ: ð9Þ

Since HaK and 0 < b < 1, we have K�b
aH�b, which gives

K�bsfrc
�1
s ðHÞaH�bsfrc

�1
s ðHÞ ¼ H�bfrðH

bc�1
s ðHÞÞ:

By (9), H�bfrðH
bc�1

s ðHÞÞ ¼ fsðc
�1
s ðHÞÞ. Thus the above inequality gives

AbsfrðA
�1=2BA�1=2Þa fsðA

�1=2BA�1=2Þ:

Multiplying the above from the left and the right with A1=2 yields

Abþ1sfrBaAsfsB:

Consequently, the proof of the second statement is complete. To see the first

statement we may assume that A and B are invertible as in the proof of Theorem

2.1. Then one can show it in the same way as above. r

Theorem 2.3. Let fcrgr>0 and ffrgr>0 be families of non-negative operator

monotone functions satisfying (5) and (6). If AaB or if logAa logB for

invertible A and B, then for r > 0

Ar
acrðA

r=2gðBÞAr=2Þ; crðB
r=2gðAÞB r=2ÞaBr; ð10Þ

Ar=2hðBÞAr=2
a frðA

r=2gðBÞAr=2Þ; frðB
r=2gðAÞBr=2ÞaB r=2hðAÞB r=2: ð11Þ

Proof. Suppose first AaB. Since the functions given in the theorem are

all continuous, by replacing A and B by Aþ e and Bþ e respectively if nec-

essary, we may assume that A and B are both invertible. Since B�a
aA�a for

0 < aa 1, A�asca
gðBÞbB�asca

gðBÞ ¼ 1 and A�asfagðBÞbB�asfagðBÞ ¼ hðBÞ.

By the above theorems we get A�rscr
gðBÞb 1 and A�rsfrgðBÞb hðBÞ for rb a;

by letting a take over all 0 < a < 1, these hold for all r > 0. Thus we get

Ar
acrðA

r=2gðBÞAr=2Þ and Ar=2hðBÞAr=2
a frðA

r=2gðBÞAr=2Þ for r > 0, that is,

the first inequalities of both (10) and (11). From B�a
aA�a it also follows that

B�asca
gðAÞaA�asca

gðAÞa 1 and B�asfagðAÞa hðAÞ. Thus we get the second

inequalities of both (10) and (11).

Suppose next logAa logB and A and B are invertible. Upon replacing

B by Bþ e if necessary, we may assume logAþ e1a logB for some e1 > 0.
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By taking the uniform derivatives of A t and B t at t ¼ 0 there is a d > 0 so

that Aa
aBa for every a A ð0; dÞ. Thus the same argument leads us to (10)

and (11). r

We have already shown (10) in [11]. The functions crðxÞ ¼ xr=ðrþqÞ and

frðxÞ ¼ xðrþpÞ=ðrþqÞ satisfies the condition of the preceding theorem with gðxÞ ¼ xq

and hðxÞ ¼ xp for ð0 < pa qÞ. So, (10) and (11) imply

Ar
a ðAr=2BqAr=2Þr=ðrþqÞ; ðBr=2AqBr=2Þr=ðrþqÞ

aBr;

Ar=2BpAr=2
a ðAr=2BqAr=2ÞðrþpÞ=ðrþqÞ; ðB r=2AqB r=2ÞðrþpÞ=ðrþqÞ

aBr=2ApBr=2:

One can see that these are extensions of (1) and (3); indeed, by putting p ¼ 1 in

the third inequality one get (1).

Remark 2.1. In the above theorems, we assumed that the families fcrgr>0

and ffrgr>0 satisfy (5) and (6) respectively. However their proofs are still valid

if (8) and (9) hold. Therefore, theorems are true even if we assume that cr and

fr are non-negative operator monotone functions on ½0;yÞ with crð0Þ ¼ 0 and

crðyÞ ¼ y and that for all r and s with r > s > 0

crðcsðxÞ
ðr�sÞ=s

xÞ ¼ csðxÞ
r=s and frðcsðxÞ

ðr�sÞ=s
xÞ ¼ csðxÞ

ðr�sÞ=s
fsðxÞ

instead of (5) and (6); because they satisfy

crðy
ðr�sÞ=sc�1

s ðyÞÞ ¼ yr=s and frðy
ðr�sÞ=sc�1

s ðyÞÞ ¼ yðr�sÞ=sfsðc
�1
s ðyÞÞ;

from which (8) and (9) follow.

Remark 2.2. Let fArgr>0 be a weakly continuous semi-group of positive

semidefinite operators, that is, Arþs ¼ ArAs. Then we get ðArÞ
a ¼ Ara for a > 0.

Thus from Theorem 2.2 we obtain

(a) if Aascb
Bb 1, then Aarscbr

B is increasing for rb 1;

(b) if Aascb
Ba 1 for invertible Aa and B, then Aarscbr

B is decreasing for

rb 1.

3. Weighted geometric means.

Our objective in this section is to apply the results we got in the preceding

section to the weighted geometric means. As we mentioned in the first section

the symbols ]
l

and sx l express the same weighted geometric mean for 0 < la 1.

By (iv) we have A ]
l

B ¼ B ]
1�l

A.

Lemma 3.1. Let a > 0, c > 0 and c > d. Then the following hold:
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(a) if A and B are invertible and if Aa ]
a=ðaþcÞ

Ba 1, then Ar ]
ðrþdÞ=ðrþcÞ

B is

decreasing for rbmaxða;�dÞ;

(b) if Aa ]
a=ðaþcÞ

Bb 1, then Ar ]
ðrþdÞ=ðrþcÞ

B is increasing for rbmaxða;�dÞ.

Proof. The functions crðxÞ ¼ x r=ðrþcÞ and frðxÞ ¼ xðrþdÞ=ðrþcÞ satisfy (5) and

(6) with gðxÞ ¼ xc and hðxÞ ¼ xd . cr is operator monotone for r > 0 and so

is fr for rbmaxð0;�dÞ. We show only the first statement. By Theorem 2.1

Aa1 ]
a1=ða1þcÞ

Ba 1 for a1 :¼ maxða;�dÞ: Thus by Theorem 2.2 Ar ]
ðrþdÞ=ðrþcÞ

B is

decreasing for rb a1. This implies the desired result. r

Theorem 3.2. For a given c > 0 define a function Fðr; sÞ by

Fðr; sÞ ¼ Ar ]
r=ðrþscÞ

B s for r > 0; s > 0: ð12Þ

Then, for rb a > 0, sb b > 0 the following hold:

(a) if A and B are both invertible and Fða; bÞa 1, then Fðr; sÞaFða; bÞ;

(b) if F ða; bÞb 1, then Fðr; sÞbFða; bÞ.

Proof. We show only the first statement. From Lemma 3.1 it follows that

1bFða; bÞbF ðr; bÞ ¼ Ar ]
r=ðrþbcÞ

Bb ¼ Bb ]
bc=ðrþbcÞ

Ar ¼ Bb ]
b=ðbþr=cÞ

Ar

bBs ]
s=ðsþr=cÞ

Ar ¼ Ar ]
ðr=cÞ=ðsþr=cÞ

B s ¼ Ar ]
r=ðrþscÞ

Bs ¼ Fðr; sÞ: r

By using the above theorem twice, from F ða; bÞa 1 it follows that Fðr2; s2Þa

F ðr1; s1ÞaFða; bÞ for r2b r1b a and for s2b s1b b.

The case l ¼ 1=2 of the following corollary resembles the result shown in [1].

Corollary 3.3. For a given l as 0 < l < 1 the following hold:

(a) if A ]
l

Ba 1 for invertible A and B, then A r ]
l

Br is decreasing for rb 1;

(b) if A ]
l

Bb 1, then Ar ]
l

B r is increasing for rb 1.

Proof. Define c by l ¼ 1=ð1þ cÞ and use Theorem 3.2 to get this. r

Now we treat a quadratic equation B ¼ XAX given in the first section.

Assume that A and B are invertible. Then the solution is given by A�1 ]B. By

Corollary 3.3 we get:

(a) if A�1 ]Bb 1 then the solution A�r ]Br of B r ¼ XArX is increasing for

rb 1;

(b) if A�1 ]Ba 1 then A�r ]Br is decreasing for rb 1.

The following is the main theorem of this section.
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Theorem 3.4. For real numbers c > 0 and d, define F ðr; sÞ by (12) and

Gðr; sÞ by

Gðr; sÞ ¼ Ar ]
ðrþdÞ=ðrþscÞ

Bs for r > 0; s > 0 with 0a
rþ d

rþ sc
a 1: ð13Þ

Let a > 0, b > 0 and �aa da bc. Then for r2b r1b a and for s2b s1b b the

following hold:

(a) if A and B are both invertible and F ða; bÞa 1, then Gðr2; s2ÞaGðr1; s1Þ;

(b) if F ða; bÞb 1, then Gðr2; s2ÞbGðr1; s1Þ.

Proof. We show only the first statement. Theorm 3.2 implies Fðr1; s1Þa

F ða; bÞa 1. Therefore, it is su‰cient to prove Gðr; sÞaGða; bÞ for rb a and

for sb b. Suppose rb a and sb b. Since rb ab�d, by Lemma 3.1, we have

Gðr; bÞaGða; bÞ and Fðr; bÞaF ða; bÞ. The latter fact yields

1bAr ]
r=ðrþbcÞ

Bb ¼ Bb ]
bc=ðrþbcÞ

Ar ¼ Bb ]
b=ðbþr=cÞ

Ar;

from which, by Lemma 3.1, it follows that

Bs ]
ðs�d=cÞ=ðsþr=cÞ

Ar
aBb ]

ðb�d=cÞ=ðbþr=cÞ

Ar because of sb bb
d

c
:

Since the right-hand side in the above inequality equals

Bb ]
ðbc�dÞ=ðbcþrÞ

Ar ¼ Ar ]
ðrþdÞ=ðrþbcÞ

Bb ¼ Gðr; bÞ;

and since the left-hand side equals

Bs ]
ðsc�dÞ=ðscþrÞ

Ar ¼ Ar ]
ðrþdÞ=ðrþscÞ

Bs ¼ Gðr; sÞ;

the above inequality means Gðr; sÞaGðr; bÞ. Consequently, we get Gðr; sÞa

Gða; bÞ. r

The above theorem says that if F ða; bÞa 1, Gða; bÞaK then Gðr; sÞaK

for rb a, sb b; moreover, if Fða; bÞ ¼ 1 then Gðr; sÞ is constant, though this

directly follows from the definitions of Fðr; sÞ and Gðr; sÞ. Notice that Gðr; sÞ ¼

F ðr; sÞ if d ¼ 0.

So far, we have seen that Fða; bÞa 1 (or Fða; bÞb 1) has a great influ-

ence on Gðr; sÞ. Now we give a su‰cient condition on Gðr; sÞ in order that

F ða; bÞa 1 (or F ða; bÞb 1).

Proposition 3.5. Let A and B be invertible. Let a > 0 and c > d > 0.

Then the following hold:
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Aa ]
ðaþdÞ=ðaþcÞ

BaA�d ) Aa ]
a=ðaþcÞ

Ba 1;

Aa ]
ðaþdÞ=ðaþcÞ

BbA�d ) Aa ]
a=ðaþcÞ

Bb 1:

Proof. The first assumption implies

ðA�a=2BA�a=2ÞðaþdÞ=ðaþcÞ
aA�ðaþdÞ;

from which, by the Löwner-Heinz inequality, it follows that

ðA�a=2BA�a=2Þa=ðaþcÞ
aA�a; and hence Aa ]

a=ðaþcÞ

Ba 1: r

4. Applications.

We mentioned after Theorem 2.3 that (10) and (11) are extensions of (1)

and (3). However we give simple proofs of (1) and (3) to explain how Theorem

3.4 is useful, and we give an extension of (2).

(1): We may assume A and B are invertible. From AaB it follows that

A�a
bB�a for every a with 0 < a < 1. Substitute A�1 for A in (12) and (13),

and put c ¼ 1 and d ¼ 1. Then

F ða; 1Þ ¼ A�a ]
a=ðaþ1Þ

BbB�a ]
a=ðaþ1Þ

B ¼ 1; Gða; 1Þ ¼ A�a ]
ðaþ1Þ=ðaþ1Þ

B ¼ B:

Thus by Theorm 3.4

Gðr; sÞ ¼ A�r ]
ðrþ1Þ=ðrþsÞ

B s

is increasing for rb a and for sb 1; especially, Gðr; sÞbGða; 1Þ ¼ BbA. Since

a is arbitrary, we have Gðr; sÞbA for r > 0; sb 1. Replace p for s to get

(1). r

(3): We show, by using Theorem 3.4, the stronger result:

AaB ) e rA=2epBerA=2a ðerA=2eqBerA=2ÞðrþpÞ=ðrþqÞ ðr > 0; qb pb 0Þ:

Upon replacing B by Bþ e if necessary, we may assume that Aþ eaB for

some e > 0. By taking the uniform derivatives of e tA and e tB at t ¼ 0, there is

a d > 0 so that eaAa eaB for all a with 0 < a < d. Put

Fðr; sÞ ¼ e�rA ]
r=ðrþsÞ

esB; Gðr; sÞ ¼ e�rA ]
ðrþpÞ=ðrþsÞ

esB:

Then we get
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Fða; pÞ ¼ e�aA ]
a=ðaþpÞ

epBb e�aB ]
a=ðaþpÞ

epB ¼ 1;

Gða; pÞ ¼ e�aA ]
ðaþpÞ=ðaþpÞ

epB ¼ epB:

Thus Gðr; sÞ is increasing for r > 0 and for sb p, since a is arbitrary.

This implies especially Gðr; qÞbGðr; pÞ, from which we can get the desired

result. r

Now we give an extension of (2). By putting B ¼ A in the following we

get (2).

Proposition 4.1. If AaBaC and if B is invertible, then for 0a ta 1,

ta r, 1a p and 1a s

A1�tþr
a fAr=2ðB�t=2C pB�t=2ÞsAr=2gð1�tþrÞ=ðps�tsþrÞ;

fC r=2ðB�t=2ApB�t=2ÞsC r=2gð1�tþrÞ=ðps�tsþrÞ
aC1�tþr: ð14Þ

Proof. If t ¼ 0, (14) reduces to (1). So we assume 0 < ta 1. We may,

without loss of generality, assume A is invertible. Put

K ¼ B�t=2C pB�t=2:

Then (14) is equivalent to

A1�t
aA�r ]

ðrþ1�tÞ=ðrþps�tsÞ

K s ðta r; 1a p; 1a sÞ:

Put

F ðr; sÞ ¼ A�r ]
r=ðrþps�tsÞ

K s and Gðr; sÞ ¼ A�r ]
ðrþ1�tÞ=ðrþps�tsÞ

K s:

B t
bA t yields A t=2B�tA t=2

a 1; since x t=p is operator concave (see [5]) we obtain

A t=2B�t=2ðC pÞ t=pB�t=2A t=2
a ðA t=2B�t=2C pB�t=2A t=2Þ t=p;

from which it follows that

Fðt; 1Þ ¼ A�t ]
t=p

K 1
bB�t=2C tB�t=2

b 1;

Gðt; 1Þ ¼ A�t ]
1=p

K 1
bB�t=2CB�t=2

bB1�t
bA1�t:

By virtue of Theorem 3.4, Gðr; sÞ is therefore increasing for rb t and for sb 1;

in particular, Gðr; sÞbA1�t. Thus we get (14). The second inequality follows

from (14) by taking the inverse of it. r
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Comments. After this paper was accepted, the author heard that the

essentially same result as Theorem 3.4 (a) has been already gotten by T. Furuta,

T. Yamazaki, M. Yanagida in ‘‘Operator functions implying generalized Furuta

inequality’’ Math. Inequal. Appl. (1998). Their proof depends on (1); however,

ours does not depend on (1).

References

[ 1 ] T. Ando, On some operator inequalities, Math. Ann., 279 (1987), 157–159.

[ 2 ] M. Fujii, T. Furuta and E. Kamei, Furuta’s inequality and its application to Ando’s theo-

rem, Linear Algebra Appl., 149 (1991), 91–96.

[ 3 ] T. Furuta, AbBb 0 assures ðB rApB rÞ1=qbBð pþ2rÞ=q for rb 0, pb 0, qb 1 with ð1þ 2rÞqb

pþ 2r, Proc. Amer. Math. Soc., 101 (1987), 85–88.

[ 4 ] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear

Algebra Appl., 219 (1995), 139–155.

[ 5 ] F. Hansen and G. K. Pedersen, Jensen’s inequality for operators and Löwner’s theorem,
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