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Abstract. In this note, we attack a question about the injectivity of the forgetful

map posed ten years ago by Tsukiyama. We show that we can insert the forgetful map

in an exact sequence and that the problem can be reduced to the computation of the

sequence which turns out unexpectedly to be related to the phantom map problem and

the famous Halperin conjecture in rational homotopy theory.

1. Introduction.

Among many research topics in homotopy theory, there are two interesting

ones: phantom map theory and forgetful maps which forget the G-action. An

interesting relation between these two concepts have been observed in this paper

which is used to attack the forgetful map problem in [12] posed by Tsukiyama

ten years ago.

A pair of maps f ; g from a CW complex to a topological space is called a

phantom pair [18] if the restrictions of f ; g to the n-skeleton of the complex are

homotopic for all nb 0. In this case, we call the map f a phantom map with

respect to g which is denoted by a g-phantom map. The set of homotopy classes

of g-phantom maps from X to Y is denoted by PhgðX ;YÞ. It is clear that the

concept of g-phantom map is homotopy invariant. Especially, if g is a constant

map, then the g-phantom map becomes just a phantom map and PhgðX ;YÞ is just

PhðX ;YÞ. If g is the identity map, then f is a g-phantom map if and only if f

is a weak identity as defined by Roitberg [20].

Historically Adams and Walker [1] found the first nontrivial phantom map

and Gray made the first detailed study of phantom maps in his Ph.D. thesis

[8]. Later many other authors, McGibbon, Meier, Møller, Oda-Shitanda, Roit-

berg, Sullivan, Zabrodsky and etc. contributed a lot of ideas to this area, see [14]

for a comprehensive survey of this area. Among many others, they proved the

following which are crucial to our later applications.
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Theorem 1.1 ([14]). Let X and Y be nilpotent CW complexes with finite

type. Then the set PhðX ;YÞ of all phantom maps from X to Y is either one point

set or uncountable.

Let Xt denote the homotopy fiber of the rationalization map r : X ! Xð0Þ.

In general, PhðX ;Y Þ is a proper subset of ½X ;Y �. But if we use the fact

PhðX ;YÞ ¼ Imfr� : ½Xð0Þ;Y � ! ½X ;Y �g, then they are equal under some con-

ditions and even more is true by Theorem 5.2 in [14] as follows.

Theorem 1.2. If X and Y are 1-connected CW complexes of finite type. If

½Xt;Y � ¼ ½SXt;Y � ¼ �, then there are bijections of pointed sets

PhðX ;YÞ ¼ ½X ;Y �A ½Xð0Þ;Y �A
Y

n>0

H nðX ; pnþ1ðY ÞnRÞ

where R is the group of real numbers which is a rational vector space.

If we combine the results in [14], then we have the following theorem.

Theorem 1.3 ([14]). Let X ¼ S
mZ and Y ¼ W

nðKÞ m; nb 0 where K is a 1-

connected finite CW complex. If

(i) Z is BG and G is a connected compact Lie group, or

(ii) Z is a 1-connected finite Postnikov space, i.e. pjZ ¼ 0 for j su‰ciently

large, then there are bijections of pointed sets

PhðX ;YÞ ¼ ½X ;Y �A ½Xð0Þ;Y �A
Y

i>0

H iðX ; piþ1ðYÞnRÞ:

In the above theorem the target space is the (iterated) loop space of a finite

CW complex. To deal with some essential infinite space, Zabrodsky [28] ex-

tended the above theorem as follows

Theorem 1.4. The equation in Theorem 1.2 remains true if X ¼ S
mK �

ðH; l þ 3Þ and Y ¼ W
n B autðPÞ where m; l; nb 0, H is a finitely generated abelian

group and P is a 1-connected finite CW complex.

Theorem 1.3 and 1.4 say, in some cases, all maps are phantom maps and

the homotopy classes of them can be calculated. The general phantom pair is

studied only briefly by Oda-Shitanda [18] and seems to be forgotten later. Roit-

berg ([20] and [21]) has studied the weak identities and posed several interesting

open questions about them and later Shitanda has also some related works on it.

According to our point of view, the main problem one faces with the general

phantom pair is the following

Question 1.5. Let g1; g2 : X ! Y be two maps. What is the relation

between Phg1ðX ;YÞ ¼ fg1g and Phg2ðX ;Y Þ ¼ fg2g?
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A well known result in this direction is

Theorem 1.6 ([18]). If Y is an H-space with inverse, then for any two maps

g1; g2 : X ! Y two equations in Question 1.5 are equivalent.

For our applications, we will extend Theorem 1.6 to the case when Y is not

an H-space. Actually what we need is about somewhat more general notion, see

Theorem 2.6, 2.7 for details.

Now let us turn to a forgetful map. Given a principal G-bundle q : P ! B,

let AutGðPÞ be the group of G-equivariant homotopy self-equivalences of the

fibration. Let AutðPÞ be the group of unbased homotopy self-equivalences of

the space P. The following question was posed by Tsukiyama in [12].

Question 1.7. When is the natural map

F : AutGðPÞ ! AutðPÞ

which forgets the G-action, a monomorphism?

In [26], Tsukiyama constructed an example which answers the Question 1.7

negatively and in [27], he gave a su‰cient condition which answers the question

positively. His example is the following:

Example 1.8. Given a connected compact Lie group G which is not a torus

and a maximal torus T, then there is a principal G-bundle G ! G=T ! BT over

BT which is classified by the natural map Bi : BT ! BG where i : T ! G is the

inclusion of T into G. Then AutðG=TÞ is finite and there is an exact sequence

0 ! p1ðmapðBT ;BGÞ;BiÞ ! AutGðG=TÞ ! AutðBTÞ:

Since p1ðmapðBT ;BGÞ;BiÞ is uncountable, AutGðG=TÞ is uncountable and hence

the forgetful map F : AutGðG=TÞ ! AutðG=TÞ is not injective.

One of the main results in this paper is the following

Theorem 1.9. Let q : P ! B be a principal G-bundle with P a homotopy type

of 1-connected finite CW complex. Then there is an exact sequence

p1ðautðPÞÞ ! p1ðmap�ðBG;B autðPÞÞ; cÞ ! AutGðPÞ !
F

AutðPÞ

where c : BG ! B autðPÞ is determined by the given principal bundle.

Remark 1.10. In the above theorem, the calculation of the kernel of F is in

some sense equivalent to the calculation of p1ðmap�ðBG;B autðPÞÞ; cÞ. If this

group is trivial, then the forgetful map is injective. On the other hand, if the

group is uncountable, the kernel of F is also uncountable since p1ðautðPÞÞ ¼

p1ðmapðP;PÞ; idÞ is countable.
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The following theorem shows that, in some case, the kernel of F is either

zero or uncountable.

Theorem 1.11. Let q : P ! B be as above, k : B ! BG the classifying map,

k : B ! BG the associated fibration with fiber P and c : BG ! B autðPÞ the clas-

sifying map of k. Then the following statements are true:

(i) If Phc
1ðBG;B autðPÞÞ0 0, the kernel of F is uncountable.

(ii) If G is a connected compact Lie group and c is a phantom map, then the

kernel of F is either zero or uncountable.

(iii) If G is 1-connected KðH;mÞ for a finitely generated abelian group H,

then the kernel of F is either zero or uncountable.

According to Tsukiyama ([26] and [27]), it is possible that the kernel of

forgetful map is zero or uncountable. The above theorem says in some case that

these are the only possibilities. Furthermore we will show that the results in

phantom map theory and rational calculation which is usually not so di‰cult can

be used to decide when the kernel of forgetful map is zero or uncountable. The

above theorem leads to another natural question.

Question 1.12. Is it possible that the kernel of forgetful map is non-trivial

finite or countable?

Now we will give concrete conditions for the injectivity or non-injectivity of

forgetful map.

Theorem 1.13. Let P be a 1-connected finite CW complex. Then the

following statements are equivalent.

(i) There is a connected compact Lie group G and a principal G-bundle such

that the total space has the homotopy type of P, the classifying map c is a

phantom map and the associated forgetful map has uncountable kernel.

(ii) 0
i>0

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ is nontrivial.

Before giving concrete examples of principal bundles with non-injective

forgetful maps, we recall some backgrounds. A 1-connected CW complex X

such that dimH �ðX Þ < y is called rationally elliptic [23] if dim p�ðXÞnQ < y.

Let ðX ; �Þ be any pointed space. The Gottlieb group (or evaluation subgroup) [9]

is defined by

GnðXÞ ¼ Imfev� : pnðmapðX ;XÞ; idÞ ! pnðX Þg

where ev : mapðX ;XÞid ! X is defined by evð f Þ ¼ f ð�Þ:

The Gottlieb groups are extremely di‰cult to compute in general. However

for rational spaces there have been some remarkable results on the Gottlieb

groups.
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The following theorem was proved by Félix and Halperin in [7, Theorem

III].

Theorem 1.14. If X is a 1-connected finite CW complex, then GevenðXð0ÞÞ ¼ 0.

Moreover, if X is rationally nontrivial and elliptic, then we have the fol-

lowing result from [23, Theorem 4.1].

Theorem 1.15. If X is a 1-connected finite CW complex which is rationally

nontrivial and elliptic, then G�ðXð0ÞÞ0 0.

Now the following theorem follows immediately from Theorem 1.13, 1.14

and Theorem 1.15.

Theorem 1.16. Let P be a 1-connected finite CW complex which is rationally

nontrivial and elliptic. Then there are a compact Lie group G and a principal G-

bundle with total space homotopy equivalent to P such that the forgetful map has

uncountable kernel.

Remark 1.17. We do not know the existence of 1-connected CW complex

P such that 0
i>0

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

If we assume G ¼ KðH; 2mÞ where H is a finitely generated abelian group

and mb 1, we have the following

Theorem 1.18. Let P be a 1-connected finite CW complex. Then the fol-

lowing statements are equivalent.

(i) For any principal KðH; 2mÞ-bundle where mb 1, H a finitely generated

abelian group and total space homotopy equivalent to P, the associated

forgetful map is injective.

(ii) 0
i>1

p2iðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0:

Now we want to give some examples with injective forgetful maps. Again

we first recall some backgrounds. A 1-connected CW complex X is said to be of

type F0 if X is rationally elliptic and H oddðX ;QÞ ¼ 0. A fibration P !
j
E ! B

with a path connected base is orientable if it is totally non-cohomologous to zero,

i.e. if the map j � : H �ðE;QÞ ! H �ðP;QÞ is surjective. One of the most beautiful

conjectures in rational homotopy theory is the following

Conjecture 1.19 ([6]). Let P ! E ! B be an orientable fibration such that

the fiber P is homotopy equivalent to a CW complex of type F0. Then the Serre

spectral sequence (with rational coe‰cients in Q) of the fibration collapses at the

E2 term.

In [17, Theorem A], Meier found the relation between Halperin conjecture

and the group pevenðmapðPð0Þ;Pð0ÞÞ; idÞ as follows.
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Theorem 1.20. Let P be of type F0. Then the following statements are

equivalent.

(i) The Serre spectral sequence of every orientable fibration with fiber P

collapses at the E2 term.

(ii) pevenðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

The Halperin conjecture have been verified for a couple of special cases.

The results obtained so far can be stated as follows.

Theorem 1.21 ([2], [13], [22], [25]). If P satisfies one of the following

conditions

(i) P is a Kähler manifold,

(ii) H �ðP;QÞ as an algebra has at most 3 generators,

(iii) P ¼ G=U for G a compact Lie group and U a closed subgroup of

maximal rank,

then the Halperin conjecture is true.

Comparing Theorem 1.18 and 1.20 we obtain immediately the following

Theorem 1.22. Let P be a 1-connected finite CW complex of type F0. Then

the following statements are equivalent.

(i) The Halperin conjecture is true for P.

(ii) For any principal KðH; 2mÞ-bundle where mb 1, H a finitely generated

abelian group and total space homotopy equivalent to P, the associated

forgetful map is injective and p2ðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

Corollary 1.23. Let P be a 1-connected finite CW complex satisfying one

of the conditions of Theorem 1.21. Then for any principal KðH; 2mÞ-bundle where

mb 1, H a finitely generated abelian group and total space homotopy equivalent to

P, the associated forgetful map is injective.

In section 2, we will introduce the phantom element which is a generalization

of phantom pair and use this concept to prove Theorem 2.9 and Theorem 2.10.

In section 3, we will study the forgetful map and try to insert it into an exact

sequence and prove Theorem 1.9. In section 4, the results of previous sections

will be applied here to get the precise information about the forgetful map and

prove Theorem 1.11, 1.13, 1.18. In this paper all our basic spaces will be

assumed to be 1-connected CW complexes of finite type. We will also use the

following notations:

(i) X n is the n-skeleton of X.

(ii) mapðX ;YÞ is the space of continuous mappings from X to Y.

(iii) map�ðX ;Y Þ is the subspace of pointed mappings from ðX ; x0Þ to

ðY ; y0Þ.
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(iv) r : X ! Xð0Þ is the rationalization.

(v) Let Xt be the homotopy fiber of r. Then Xt ! X ! Xð0Þ is a cofi-

bration up to homotopy.

(vi) êe : Y ! ŶY is the profinite completion [24] and r : Yr ! Y is the

homotopy fiber of êe.

The first author thanks the Brain Pool Program of KOSEF for the support

to his visit to Korea University and Professor Woo and the department of

Mathematics Education, Korea University for the hospitality during which this

work was completed. He also thanks to Professor Shen Xinyao who brought

him to the area of topology ten years ago and Professor McGibbon who kindly

sent him many reprints and preprints.

2. Phantom elements.

Let X be a CW complex and Y be a space. A map f : X ! Y is called a

phantom map if f jX n (the restriction of f to the n-th skeleton of X ) is homotopic

to the constant map for all nb 0. A pair of maps f ; g : X ! Y is called a

phantom pair [18] if f jX n is homotopic to gjX n for all nb 0. For a fixed map

g : X ! Y we denote by PhgðX ;YÞ the set of homotopy classes of maps f such

that f and g are a phantom pair. Each element of PhgðX ;YÞ is also called a g-

phantom map.

Here we generalize the concept of phantom pair as follows.

Definition 2.1. Let X be a CW complex, Y a space and g : X ! Y

be any based map. Then a A pjðmap�ðX ;YÞ; gÞ is called a g-phantom ele-

ment if ði�n Þ�ðaÞ ¼ 0 for each nb 0 where ði�n Þ� : pjðmap�ðX ;Y Þ; gÞ !

pjðmap�ðX
n
;YÞ; gjX nÞ is the homomorphism induced by the inclusion in : X

n!

X . Denote the set of all g-phantom elements by

Ph
g
j ðX ;Y Þ ¼ fa A pjðmap�ðX ;Y Þ; gÞ j a is a g-phantom elementg:

If j ¼ 0, then a is a g-phantom element if and only if it represents the

homotopy class of a map which is a g-phantom map. If g is the constant map,

then a g-phantom map is the same as the phantom map. Since Adams and

Walker [1] found the first essential phantom map, this area has attracted interests

of many mathematicians.

Let us recall some basic results about homotopy of a sequence of fibration at

first. Let

� � � �!Xnþ1 �!
nnþ1

Xn �!
nn

Xn�1 �! � � �

be a sequence of fibration of spaces and X be the inverse limit of the above

inverse system. If we choose base points xn A Xn such that nnðxnÞ ¼ xn�1, it was
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shown by Bousfield and Kan in [5] that there exists the following short exact

sequence for jb 0

� ! lim
 �

1

n
pjþ1ðXn; xnÞ ! pjðlim �

Xn; xÞ ! lim
 �

pjðXn; xnÞ ! �:

Theorem 2.2. Let X ;Y be nilpotent CW complexes of finite type and

g : X ! Y be any map. Then for all jb 0, we have

Ph
g
j ðX ;YÞ ¼ lim

 �

1

n
pjþ1ðmap�ðX

n
;YÞ; gjX nÞ:

Proof. Let X n be the n-skeleton of X. Then

� � � ! map�ðX
nþ1

;Y Þ ! map�ðX
n
;Y Þ ! map�ðX

n�1
;YÞ ! � � �

is a sequence of fibration with map�ðX ;Y Þ as the inverse limit. By the Bousfield

and Kan’s result and the given fibration, there exists a short exact sequence

� ! lim
 �

1

n
pjþ1ðmap�ðX

n
;Y Þ; gjX nÞ ! pjðmap�ðX ;YÞ; gÞ

! lim
 �n

pjðmap�ðX
n
;YÞ; gjX nÞ ! �

for all jb 0 and any map g : X ! Y . By the definition of phantom elements,

the proof is complete. r

A natural problem about Phg
j ðX ;YÞ is its cardinality. For this we have the

following

Theorem 2.3 ([14]). The first derived inverse limit of an inverse system of

countable groups is either one point set or uncountable.

Corollary 2.4. Let X ;Y be nilpotent CW complexes of finite type and

g : X ! Y be any map. Then Ph
g
j ðX ;Y Þ is either one point set or uncountable for

all jb 0.

Another natural question is the extended version of Question 1.5.

Question 2.5. For two maps f ; g : X ! Y , what is the relation between

Ph
g
j ðX ;YÞ and Ph

f
j ðX ;YÞ?

The first result in this direction is an extension of the result of Oda-Shitanda

[18].

Theorem 2.6. Let X be a nilpotent CW complex and Y be an H-space with

inverse. If f ; g : X ! Y are any two maps, then Ph
g
j ðX ;YÞ ¼ Ph

f
j ðX ;YÞ.

Proof. Let Y be an H-space with a multiplication m : Y � Y ! Y and an

inverse n : Y ! Y such that the composites of
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Y ��!
ð1; nÞ

Y � Y ��!
m

Y ;

Y ��!
ðn;1Þ

Y � Y ��!
m

Y

are homotopic to the constant map. For the n-skeleton X n, let us define hn by

the composite

map�ðX
n
;YÞf n ��!

ð1; n�Þ
map�ðX

n
;YÞf n �map�ðX

n
;Y Þ

n� f n

��! map�ðX
n
;Y � YÞð f n

; n� f nÞ ��!
m�

map�ðX
n
;Y Þ�:

Then for any map f : X ! Y , it is easy to show that the following diagram

commutes up to homotopy

map�ðX
nþ1

;Y Þf nþ1 ���!
i �n

map�ðX
n
;YÞf n

?
?
?
y
hnþ1

?
?
?
y
hn

map�ðX
nþ1

;YÞ� ���!
i �n

map�ðX
n
;YÞ�

where f n is the restriction of f to X n and in : X
n ! X nþ1 is the inclusion

map. The proof is complete by Theorem 2.2. r

Theorem 2.7 ([19]). Let X ;Y be nilpotent CW complexes of finite type and

f : X ! Y be any map. Then the following statements are equivalent.

(i) a A pjðmap�ðX ;YÞ; f Þ is a phantom element.

(ii) ðêe�Þ�ðaÞ ¼ 0 or ðt�Þ�ðaÞ ¼ 0

where ðêe�Þ� : pjðmap�ðX ;YÞ; f Þ ! pjðmap�ðX ; ŶY Þ; f̂f Þ is the induced map by the

profinite completion êe and ðt�Þ� : pjðmap�ðX ;YÞ; f Þ ! pjðmap�ðXt;YÞ; f
t
Þ is the

induced map by the inclusion Xt ! X .

Proof. We will only prove (ii) ) (i) which is necessary for our

applications in this paper. For the proof of the other part, see [19]. Let a A

pjðmap�ðX ;Y Þ; f Þ and ðêe�Þ�ðaÞ ¼ 0. If we consider the following commutative

diagram

pjðmap�ðX ;Y Þ; f Þ ���!
ði �n Þ�

pjðmap�ðX
n
;Y Þ; f jX nÞ

?
?
?
y
ðêe�Þ�

?
?
?
y
ðêe�Þ�

pjðmap�ðX ; ŶYÞ; f̂f Þ ���!
ði �n Þ�

pjðmap�ðX
n
; ŶYÞ; f̂f jX nÞ
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then we have ðêe�Þ� � ði
�
n Þ�ðaÞ ¼ ði�n Þ� � ðêe�Þ�ðaÞ ¼ 0. In [24], Sullivan showed that

if Y is a nilpotent space, êe : Y ! ŶY and h; g are any two maps from a finite CW

complex Z to Y such that êe � gF êe � h, then gF h. By the result of Sullivan, it

follows immediately that the map êe� : map�ðX
n;YÞf jX n

! map�ðX
n; ŶYÞ

f̂f jX n
has the

above property. Thus the induced homomorphism

ðêe�Þ� : pjðmap�ðX
n
;Y Þ; f jX nÞ ! pjðmap�ðX

n
; ŶY Þ; f̂f jX nÞ

is a monomorphism. Thus ði�n Þ�ðaÞ ¼ 0 and hence a is a phantom element.

Let ðt�Þ�ðaÞ ¼ 0. Then we have ðêe�Þ� � ðt
�Þ�ðaÞ ¼ 0 A pjðmap�ðXt; ŶY Þ; f̂f

t
Þ.

By Proposition 2.1 of [18], map�ðXð0Þ; ŶYÞ is weakly contractible and hence

the induced map ðt�Þ� : pjðmap�ðX ; ŶYÞ; f̂f Þ ! pjðmap�ðXt; ŶYÞ; f̂f
t
Þ is an iso-

morphism for j > 0. Since ðêe�Þ� � ðt
�Þ� ¼ ðt�Þ� � ðêe�Þ�, we have ðêe�Þ�ðaÞ ¼ 0 A

pjðmap�ðX ; ŶY Þ; f̂f Þ: By the first part, a is a phantom element. r

Proposition 2.8. Let X ;Y be 1-connected CW complexes of finite type such

that map�ðXt;Y Þ F
w

�. If f : X ! Y is a phantom map, then

Ph
f
j ðX ;Y Þ ¼ pjðmap�ðX ;YÞ; f Þ ¼ ½S jXð0Þ;Y �:

Proof. To show the first equality, it su‰ces to prove pjðmap�ðXt;YÞ; f
t
Þ ¼

0 by Theorem 2.7. From Theorem 5.1 of [14], f
t
is homotopic to the constant

map and hence

pjðmap�ðXt;YÞ; f
t
ÞG pjðmap�ðXt;Y Þ; �ÞG ½S jXt;Y � ¼ 0:

Thus the proof of first equality is complete.

The second equality follows from the proof of Theorem D(i) in Zabrodsky

[28] since the proof depends only on the condition map�ðXt;Y Þ F
w

�. r

Theorem 2.9. Let X ¼ KðH;mÞ, Y ¼ B autðPÞ and f : X ! Y be any map

where mb 3, H is a finitely generated abelian group and P is a 1-connected finite

CW complex. Then Ph
f
j ðX ;YÞ ¼ pjðmap�ðX ;YÞ; f Þ ¼ ½S jXð0Þ;Y �.

Proof. By 1.3.1 and Corollary C 0 in [28], it is easy to show that

map�ðXt;YÞ is weakly contractible. It also follows by Theorem 1.4 that any

map f : X ! Y is a phantom map. Thus we can apply Proposition 2.8 to get

Ph
f
j ðX ;YÞ ¼ pjðmap�ðX ;Y Þ; f Þ:

To prove the last equality, note that if X is 1-connected, then map�ðX ;YÞ

is homotopy equivalent to map�ðX ; ~YY Þ where ~YY is the universal covering of

Y. Since ~YY is a 1-connected space, thus the proof is completed by Proposition

2.8. r

J. Pan and M. H. Woo206



Theorem 2.10. Let X ¼ BG and Y ¼ B autðPÞ where G is a connected

compact Lie group and P is a 1-connected finite CW complex. If f : X ! Y is a

phantom map and jb 1, then Ph
f
j ðX ;Y Þ ¼ pjðmap�ðX ;YÞ; f Þ ¼ ½S jXð0Þ;Y �.

Proof. To prove the first equality, it su‰ces by the proof of Proposition

2.8 to show that

½S jXt;Y � ¼ 0:

If we use Theorem C(c) in [28], it is easy to show

½S jXt;Y � ¼ ½S j�1BGt;WY � ¼ ½S j�1BGt; autðPÞ� ¼ 0:

The proof of the second equality follows from the same argument as in the proof

of Theorem 2.9. r

3. Forgetful map and its description.

Let us consider the principal G-bundle q : P ! B with structure group G

where G acts on P freely. For each such bundle one can consider the space

autGðPÞ of unbased G-equivariant homotopy self-equivalences of P and the group

AutGðPÞ ¼ p0ðaut
GðPÞÞ

which is called the group of G-equivariant homotopy self-equivalences of the

bundle.

On the other hand, we can also consider the space autðPÞ of unbased

homotopy self-equivalences of the space P and the group

AutðPÞ ¼ p0ðautðPÞÞ

which is called the group of unbased homotopy self-equivalences of P. There

have been an extensive study on these two subjects (see [12]) and the extensive

references there. In [12], Tsukiyama posed the following question.

When is the natural map F : AutGðPÞ ! AutðPÞ, which forgets the G-action,

a monomorphism?

No progress has been made except two recent papers by Tsukiyama ([26] and

[27]). In this paper, we will try to attack this question. Our approach is based

on the identification of the space of G-equivariant homotopy self-equivalences

as the loop space on a mapping space and the recent results on the Sullivan

conjecture. What is most interesting about our results is the relation between the

injectivity of F and the existence of the phantom map between appropriate

spaces.

In [26] and [27], Tsukiyama used an indirect approach to attack the question

and got partial results on it. In this section, based on a simple but crucial
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observation, we will identify the homomorphism F as the homomorphism induced

on p0 by a map whose homotopy fiber can be determined explicitly and thus we

can determine the kernel of F under a reasonable condition.

Now let G be a topological group, q : P ! B be a principal G-bundle and

k : B ! BG be the classifying map. For the map k, we can take k : B ! BG as

a fibration via the standard factorization of a map into the composite of a

homotopy equivalence and a Hurewicz fibration. Given fibration k : B ! BG,

we can form the group AutBGðBÞ the group of homotopy classes of self homotopy

equivalences of B over BG. The following proposition is a well known result,

see [3], [4], [10], [11].

Proposition 3.1. Let c : BG ! B autðPÞ be the classifying map for the fi-

bration k : B ! BG. Then there is a natural isomorphism

AutGðPÞGAutBGðBÞG p1ðmapðBG;B autðPÞÞ; cÞ:

If the above isomorphism is natural in object G, then the map F will be

naturally isomorphic to the map p : p1ðmapðBG;B autðPÞÞ; cÞ ! p1ðB autðPÞÞ

whose kernel can be computed explicitly by the evaluation fibration

map�ðBG;B autðPÞÞc ! mapðBG;B autðPÞÞc ! B autðPÞ:

A careful check confirms the above speculation and leads to the following

Theorem 3.2. Let q : P ! B be a principal G-bundle and c : BG ! B autðPÞ

be the classifying map for the fibration k : B ! BG. Then there is a commutative

diagram

p0 autBGðBÞ ���!
G

p0 aut
GðPÞ

?
?
?
y

?
?
?
y

p0 autðPÞ ���!
G

p0 autðPÞ;

where P is the fiber of k which is homotopy equivalent to P and the two horizontal

maps are isomorphisms. It follows from the above diagram that there is an exact

sequence

p1ðautðPÞÞ ! p1ðmap�ðBG;B autðPÞÞ; cÞ ! AutGðPÞ !
F

AutðPÞ:

This theorem follows directly from the following lemmas and the fact that

the homotopy fiber of the fibration autBGðBÞ ! autðPÞ is Wmap�ðBG;B autðPÞÞc
by Corollary 5.7 and Proposition 5.8 in [4]. Let q : P ! B be a principal G-

bundle and k : X ! B be a map, then there is an associated principal G-bundle

over X defined by
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k �ðPÞ ���! P
?
?
?
y
k �ðqÞ

?
?
?
y
q

X ���!
k

B:

Lemma 3.3. Let p : EG ! BG be the universal principal G-bundle. Then the

rule that takes k to k �ðpÞ defines a natural bijection from ½B;BG�, the set of free

homotopy classes of maps from B to BG, to the set of isomorphism classes of G-

bundles over B.

Proof. This is well known. r

Lemma 3.4. If q : P ! B is a principal G-bundle and g : X ! B is a ho-

motopy equivalence, then the induced bundle map from g�ðqÞ : g�ðPÞ ! X to q is a

homotopy equivalence between two principal bundles.

Proof. This is (1.9) of [3]. r

Lemma 3.5. Let q : P ! B and k : B ! BG be as above. Then there is a

commutative diagram

autGðk �ðEGÞÞ ���! autGðPÞ
?
?
?
y

?
?
?
y

autðk �ðEGÞÞ ���! autðPÞ;

where the two vertical maps are forgetful maps and the horizontal maps are

homotopy equivalences which are defined in the proof.

Proof. By Lemma 3.4, there is a principal bundle isomorphism h : P !

k �ðEGÞ over B. Define the horizontal maps by the rule x 7! h�1 � x � h. It is

obvious that the diagram is commutative. r

Lemma 3.6. Let q : P ! B, k : B ! BG and k : B ! BG be as above. Then

there is a commutative diagram up to homotopy

autGðk �ðEGÞÞ ���! autGðk �ðEGÞÞ
?
?
?
y

?
?
?
y

autðk �ðEGÞÞ ���! autðk �ðEGÞÞ;

where the two vertical maps are forgetful maps and the horizontal maps are

homotopy equivalences which are defined in the proof.

Proof. By Lemma 3.4, there is a homotopy equivalence h between two

principal bundles k �ðpÞ : k �ðEGÞ ! B and k �ðpÞ : k �ðEGÞ ! B. If we define the
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horizontal maps as in the proof of the above lemma, then the diagram is easily

seen to be commutative up to homotopy. r

Lemma 3.7. Let q : P ! B, k : B ! BG and k : B ! BG be as above. Then

there is a commutative diagram up to homotopy

p0 autBGðBÞ ���! p0 aut
Gðk �ðEGÞÞ

?
?
?
y

?
?
?
y

p0 autðPÞ ���! p0 autðk
�ðEGÞÞ

where P is the fiber of the fibration k which is homotopy equivalent to P, the right

vertical map is a forgetful map, the left vertical map is the function sending a map

to the map which induced on the fiber of fibration k at a based point of BG and the

horizontal maps are defined in the proof.

Proof. By definition, k �ðEGÞ ¼ fðb; eÞ A B� EG j kðbÞ ¼ pðeÞg and P ¼

fðb; �Þ A B� EG j kðbÞ ¼ �g. Now there is the obvious map f : P ! k �ðEGÞ

defined by f ððb; �ÞÞ ¼ ðb; �Þ which is a homotopy equivalence by the general

property of pullback.

Given a self homotopy equivalence h A autBGðBÞ there exists a map

h : k �ðEGÞ ! k �ðEGÞ defined by hðb; eÞ ¼ ðhðbÞ; eÞ which makes the pair ðh; hÞ a

principal bundle map. The given map h induces also an obvious map ~hh A autðPÞ

defined by ~hhðb; �Þ ¼ ðhðbÞ; �Þ: It is easy to check that h � f ¼ f � ~hh. If we define

the horizontal maps in the above diagram by

p0 autBGðBÞ ! p0 aut
Gðk �ðEGÞÞ; h 7! ðh; hÞ

p0 autðPÞ ! p0 autðk
�ðEGÞÞ; g 7! f � g � f �1

;

then it is easy to check that the diagram is commutative which is what we want

to prove. r

4. Applications to forgetful maps.

In Section 3, we have embedded the forgetful map into the exact sequence

p1ðautðPÞÞ ! p1ðmap�ðBG;B autðPÞÞ; cÞ ! AutGðPÞ !
F

AutðPÞ:

In this section, we will apply the phantom map theory to extract information

about the forgetful map. If

p1ðmap�ðBG;B autðPÞÞ; cÞ ¼ 0;
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then we know that KerF ¼ 0 from the above exact sequence. If

p1ðmap�ðBG;B autðPÞÞ; cÞ0 0;

then we can not say anything about the KerF . If P is a finite CW complex,

then p1ðautðPÞÞ is a countable group. Therefore, if p1ðmap�ðBG;B autðPÞÞ; cÞ is

uncountable, then KerF is uncountable. This is the relation what we find

between phantom map theory and the injectivity of forgetful map. From the

above discussion, we have the following which is Theorem 1.11 in the intro-

duction.

Theorem 4.1. Let q : P ! B be a principal G-bundle with P a 1-connected

finite CW complex, k : B ! BG the classifying map, k : B ! BG the associated

fibration with fiber P and c : BG ! B autðPÞ the classifying map of k. Then the

following statements are true:

(i) If Phc
1ðBG;B autðPÞÞ0 0, then KerF is uncountable.

(ii) If c is a phantom map and G is a connected compact Lie group, then

KerF is either zero or uncountable.

(iii) If G is 1-connected KðH;mÞ for a finitely generated abelian group H,

then KerF is either zero or uncountable.

Proof. Since Phc
1ðBG;B autðPÞÞ is a subgroup of p1ðmap�ðBG;B autðPÞÞ; cÞ

and is either one point or uncountable by Corollary 2.4, (i) is clear.

If we use Phc
1ðBKðH;mÞ;B autðPÞÞ ¼ Phc

1ðKðH;mþ 1Þ;B autðPÞÞ and The-

orem 2.9 for G to be a 1-connected KðH;mÞ and if we use Theorem 2.10 for c a

phantom map and G a connected compact Lie group, we can show

Phc
1ðBG;B autðPÞÞ ¼ p1ðmap�ðBG;B autðPÞÞ; cÞ:

This implies p1ðmap�ðBG;B autðPÞÞ; cÞ (and hence KerF ) is either zero or un-

countable. r

Lemma 4.2. If the map c in Theorem 4.1 is a phantom map, then F is

injective (has uncountable kernel, respectively) if and only if ½BGð0Þ; autðPÞ� is trivial

(nontrivial, respectively).

Proof. By Theorem 2.10, we have

Phc
1ðBG;B autðPÞÞ ¼ p1ðmap�ðBG;B autðPÞÞ; cÞ ¼ ½S1BGð0Þ;B autðPÞ�:

Thus the kernel of forgetful map is either zero or uncountable. It is zero if and

only if p1ðmap�ðBG;B autðPÞÞ; cÞ ¼ 0. Since

p1ðmap�ðBG;B autðPÞÞ; cÞ ¼ ½S1BGð0Þ;B autðPÞ� ¼ ½BGð0Þ; autðPÞ�;

it completes the proof. r
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Theorem 4.3. Let P be a 1-connected finite CW complex. Then the fol-

lowing statements are equivalent.

(i) There is a connected compact Lie group G and a principal G-bundle where

the total space has the homotopy type of P and the classifying map c is a

phantom map such that the associated forgetful map has uncountable

kernel.

(ii) 0
i>0

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ is nontrivial.

Proof. To prove this theorem, we first note that given map c0 : BG !

B autðPÞ then there is a principal G-bundle q : P 0 ! B such that P 0 is the

same homotopy type to P and the natural associated map c : BG ! B autðPÞ

of the associated fibration k : B ! BG is homotopic to c0. Therefore it is

su‰cient to take c0 ¼ � and choose a Lie group G such that ½BGð0Þ; autðPÞ� ¼

½BGð0Þ;mapðP;PÞid�0 0.

According to Theorem 1.2, ½BGð0Þ;mapðP;PÞid�0 0 if H tðBG;QÞ0 0 and

ptþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ0 0. Therefore it remains to show H tðBG;QÞ0 0 for

some even integer t satisfying ptþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ0 0. Let t0 be the smallest

positive even integer such that ptþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ0 0. There exists of

course a compact Lie group G such that H t0ðBG;QÞ0 0. It follows from the

discussion above that there exists a principal G-bundle such that the total space

has the homotopy type of P and the associated forgetful map has uncountable

kernel by the above lemma.

Conversely, if we assume 0
i>0

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0, then it is easy

to see that ½BGð0Þ; autðPÞ� ¼ 0 for any connected compact Lie group. This

completes the proof by the above lemma. r

Corollary 4.4. Let P be a 1-connected finite CW complex. Then for all

principal G-bundle q : P ! B such that the structure group is a connected compact

Lie group and the associated map c is a phantom map, the associated forgetful map

is injective if and only if 0
i>0

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

By the same way to Theorem 4.3, we have the following theorem for

G ¼ KðH;mÞ.

Theorem 4.5. Let P be a 1-connected finite CW complex. Then the fol-

lowing statements are equivalent.

(i) There is a principal KðH; 2mþ 1Þ (KðH; 2mÞ, respectively)-bundle where

mb 1, H a finitely generated abelian group and the total space has the

homotopy type of P such that the associated forgetful map has un-

countable kernel.

(ii) 0
i>1

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ (0
i>1

p2iðmapðPð0Þ;Pð0ÞÞ; idÞ, respectively)

is nontrivial.
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Corollary 4.6. Let P be a 1-connected finite CW complex. Then the fol-

lowing statements are equivalent.

(i) For every principal KðH; 2mþ 1Þ-bundle where mb 1, H a finitely

generated abelian group and total space homotopy equivalent to P, the

associated forgetful map is injective.

(ii) 0
i>1

p2iþ1ðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

The following corollary is Theorem 1.18 in the introduction.

Theorem 4.7. Let P be a 1-connected finite CW complex. Then the fol-

lowing statements are equivalent.

(i) For any principal KðH; 2mÞ-bundle where mb 1, H a finitely generated

abelian group and total space homotopy equivalent to P, the associated

forgetful map is injective.

(ii) 0
i>1

p2iðmapðPð0Þ;Pð0ÞÞ; idÞ ¼ 0.

Let us conclude this paper with another question motivated by the results

obtained in this paper.

Question 4.8. Is it possible that for every 1-connected CW complex P there

exist a compact Lie group G and a principal G-bundle such that the total space

has the homotopy type of P and the associated forgetful map F has uncountable

kernel?
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