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Polygonal presentations of semisimple tensor categories

By Shigeru Yamagami

(Received Jun. 15, 2000)

Abstract. A polygonal description of semisimple tensor categories is presented and

the rigidity as well as the associated involutions are analysed in terms of this.

Introduction.

The combinatorial structures behind tensor categories play fundamental roles

in recent studies of quantum symmetries ([1], [2], [5], [11]). Although it is common

to impose the strictness on associativity in tensor categories, which does not lose the

information thanks to the coherence theorem, an explicit use of associativity con-

straints is often convenient in concrete computations.

A direct manipulation of such combinatorial data, however, can easily lose

the navigation. When tensor categories are semisimple, we can divide the relevant

structure into two parts: the skeleton information of fusion rule (algebra) and the

remaining flesh part, which provides a kind of (non-linear) cohomological infor-

mation.

Viewing this way, semisimple tensor categories can be reconstructed from

hom-vector spaces relating three simple objects. These are then pictorially as-

signed to edges of a triangle and the general hom-sets are expressed in terms of

polygons together with triangular decompositions.

This kind of geometrical presentation of tensor categories is useful in actual

computations to get perspectives: we shall describe the rigidity as well as the as-

sociated involutions (if any exists) and show that the variety of duality isomorphisms

comes from choices of ‘‘characters’’ of fusion rules.

1. Polygonal vector spaces.

A monoidal category ðC;n; IÞ with a, l and r denoting associativity, left-unit

and right-unit constraints respectively is called a tensor category over a field K

if hom-sets are K-vector spaces and all the relevant operations are K-linear.

In what follows, we shall exculisvely deal with tensor categories over the complex

number field C and vector spaces are assumed to be C-linear unless otherwise

stated.
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Given tensor categories C and C
0, a monoidal functor F : C ! C

0 is called

an isomorphism if (i) F gives an isomorphism of vector spaces

HomðX ;YÞ ! HomðF ðXÞ;FðY ÞÞ

for any pair ðX ;YÞ of objects in C and (ii) each object X 0 in C
0 is isomorphic

to F ðX Þ for some object X in C. Two tensor categories C and C
0 are said to be

isomorphic if there is an isomorphism between them.

An object X in a tensor category is simple if EndðXÞ ¼ C1X . A tensor

category C is semisimple if the unit object is simple and every object is isomorphic

to a direct sum of simple objects.

Given a semisimple tensor category C, we denote by S ¼ SpecðCÞ the set

of equivalence classes of simple objects in C, which is referred to as the spectrum

of C. The free module Z½S � generated by the set SpecðCÞ has the ring structure

defined by

½X �½Y � ¼
X

½Z� AS

dimðHomðZ;X nY ÞÞ½Z �;

i.e., the ring Z½S � has a special basis SpecðCÞ for which structure constants are

non-negative integers.

Rings, furnished with such bases, are referred to as fusion algebras although

this terminology is usually used in a more restrictive sense.

For x ¼ ½X �, y ¼ ½Y � and z ¼ ½Z � in SpecðCÞ, a non-negative integer N xy
z is

defined as the multiplicity of Z-component in the decomposition of X nY , i.e.,

N xy
z ¼ dimHomðZ;X nYÞ:

The totality fN xy
z gx;y; z A Spec is, by definition, the fusion rule of C.

Let C be a semisimple tensor category with the spectrum S ¼ SpecðCÞ.

For the time being, we fix a specific representative containing the unit object I

and regard S as a set consisting of simple objects in C. For a finite family

fXjg0a jam of simple objects in S, we set

X1 � � �Xm

X0

� �

¼ HomðX1 n � � � nXm;X0Þ;

X0

X1 � � �Xm

� �

¼ HomðX0;X1 n � � � nXmÞ;

which are finite dimensional vector spaces with the pairing

X1 � � �Xm

X0

� �

�
X0

X1 � � �Xm

� �

C f � g 7! h f ; gi A C

defined by

h f ; gi1X0
¼ f � g;
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i.e., we have the natural identification

X1 � � �Xm

X0

� �

¼
X0

X1 � � �Xm

� ��

:

The vector space
X1 � � �Xm

X0

� �

is graphically represented by a polygon of mþ 1

vertices with edges labeled by the sequence fX0;X1; . . . ;Xmg clockwise, where the

initial label X0 plays a special role and we place it at the bottom edge.

Triangular vector spaces
XY

Z

� �� �

X ;Y ;Z AS

then form building blocks of

polygonal vector spaces such as
X1 � � �Xm

X0

� �

in the following sense: We begin

with the case m ¼ 3 and consider X1 nX2 nX3. According to two ways of

grouping ðX1 nX2ÞnX3 and X1 n ðX2 nX3Þ, we have two natural isomor-

phisms of vector spaces

0
X12 AS

X1X2

X12

� �

n
X12X3

X0

� �

!
X1X2X3

X0

� �

;

0
X23 AS

X2X3

X23

� �

n
X1X23

X0

� �

!
X1X2X3

X0

� �

:

We denote this situation graphically as

X2

X1 X3

X0

!

X2

X1 X3

X0

;

X2

X1 X3

X0

!

X2

X1 X3

X0

and the composite isomorphism

X2

X1 X3

X0

!

X2

X1 X3

X0

is referred to as an associativity transformation.

For the case m ¼ 4, we have five groupings ððX1X2ÞX3ÞX4; ðX1X2ÞðX3X4Þ,

ðX1ðX2X3ÞÞX4;X1ððX2X3ÞX4Þ;X1ðX2ðX3X4ÞÞ with the associated vector spaces

X0 X0 X0 X0 X0
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where

X2 X3

X1 X4

¼ 0
X12;X123

X1X2

X12

� �

n
X12X3

X123

� �

n
X123X4

X0

� �

X0

and so on.

If we apply associativity transformations to squares inside triangulated penta-

gons, then we have the commutative diagram in Figure 1, i.e., associativity trans-

formations satisfy the pentagonal relation.

Generalizing these, groupings in X1 � � �Xm are parametrized by triangular de-

compositions of an ðmþ 1Þ-polygon, which in turn give rise to triangular decom-

positions of the vector space
X1 � � �Xm

X0

� �

and composed associativity transforma-

tions provide the same result as long as the initial and final vector spaces are the

same (the coherence for associativity transformations).

Triangular vector spaces of the form
IY

X

� �

and
YI

X

� �

are non-trivial only

for X ¼ Y and, if this is the case, they admit distinguished vectors lX A
IX

X

� �

and rX A
XI

X

� �

given by the unit constraints.

The associativity transformation

T :

ðXIÞY

Z

� �

!
X ðIYÞ

Z

� �

Figure 1.
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then takes an especially simple form:

TðrX n xÞ ¼ lX n x for x A
XY

Z

� �

:

To facilitate the visual notation further, given a triangular decomposition of

a polygon and a family of vectors in the accompanied triangular vector spaces we

denote its tensor product by putting the vectors inside the belonging triangles: for

example, in the triangular decomposition

X1X2X3

X0

� �

¼ 0
X12 AS

X1X2

X12

� �

n
X12X3

X0

� �

with x AHomðX1X2;X12Þ and h AHomðX12X3;X0Þ, the associated vector hðxn1X3
Þ

is denoted by

X2

X1 X3

X0

:

x
h

We now discuss the reverse process of the construction according to [13].

Suppose that we are given a set S with a distinguished element 1 and a family of

finite-dimensional vector spaces
x1x2

x0

� �

indexed by triplets ðx0; x1; x2Þ in the set S

(called triangular vector spaces) and a family of isomorphisms

T x1x2x3
x0

: 0
x12 AS

x1x2

x12

� �

n
x12x3

x0

� �

! 0
x23 AS

x2x3

x23

� �

n
x1x23

x0

� �

indexed by quadruplets ðx0; x1; x2; x3Þ in the set S (called associativity transfor-

mations) which satisfies the pentagonal identity. Furthermore, we assume that

there are distinguished vectors lx A
1x

x

� �

, rx A
x1

x

� �

such that

1x

y

� �

¼
C lx if x ¼ y,

f0g otherwise,

�

x1

y

� �

¼
Crx if x ¼ y,

f0g otherwise,

�

and

Tðrx n sÞ ¼ ly n s; s A
xy

s

� �

for the associativity transformation T :

ðx1Þy

s

� �

!
xð1yÞ

s

� �

.
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The totality of these data is referred to as a monoidal system. Given a mon-

oidal system

xy

z

� �

;T xyz
s ; ls; rs

� �

s;x;y; z AS

;

we define the dual system by

xy

z

� ��

;T xyz
s ; l �s ; r

�
s

� �

s;x;y; z AS

;

where
xy

z

� ��

is the dual vector space of
xy

z

� �

,

l �s A
1s

s

� ��

; r�s A
s1

s

� ��

are specified by hls; l
�
s i ¼ 1 ¼ hrs; r

�
s i and

T ¼ T xyz
s : 0

t AS

xy

t

� ��

n
tz

s

� ��

! 0
t AS

yz

t

� ��

n
xt

s

� ��

is defined to be the transposed inverse of T ¼ T xyz
s .

Given a monoidal system, consider a family X ¼ fXðsÞgs AS of finite-

dimensional C-vector spaces with XðsÞ ¼ f0g except for finitely many s A S. Let

Y ¼fYðsÞgs AS be another such family. Thinking of these as objects and defining

hom-sets by

HomðX ;Y Þ ¼ 0
s AS

HomðXðsÞ;YðsÞÞ

with the pointwise composition, we obtain a (semisimple) category CðSÞ.

Using the assumed triangular vector spaces, the tensor product operation in

CðSÞ is introduced by

ðX nY ÞðsÞ ¼ 0
x;y AS

X ðxÞnYðyÞn
xy

s

� ��

for objects X, Y in CðSÞ and

ð f n gÞðsÞ ¼ 0
x;y AS

f ðxÞn gðyÞn 1 :

0
x;y AS

X ðxÞnY ðyÞn
xy

s

� ��

! 0
x;y AS

X 0ðxÞnY 0ðyÞn
xy

s

� ��

for f A HomðX ;X 0Þ and g A HomðY ;Y 0Þ.
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The unit object I in CðSÞ is defined to be

IðsÞ ¼
C if s ¼ 1,

f0g otherwise.

�

Associativity and unit constraints are defined by

aX ;Y ;ZðsÞ ¼ 0
x;y; z

1XðxÞ n 1Y ðyÞ n 1ZðzÞ nT x;y; z
s : ðX nYÞnZ ! X n ðY nZÞ

with

ððX nY ÞnZÞðsÞ ¼ 0
x;y; z; t

XðxÞnYðyÞnZðzÞn
xy

t

� ��

n
tz

s

� ��

;

ðX n ðY nZÞÞðsÞ ¼ 0
x;y; z; t

XðxÞnYðyÞnZðzÞn
yz

t

� ��

n
xt

s

� ��

;

and

lX ðxÞ : X ðxÞn
1x

x

� ��

C xn l �x 7! x A X ðxÞ;

rX ðxÞ : X ðxÞn
x1

x

� ��

C xn r�x 7! x A XðxÞ

with

ðI nXÞðxÞ ¼ X ðxÞn
1x

x

� ��

; ðX n IÞðxÞ ¼ XðxÞn
x1

x

� ��

:

It is immediate to see that these in fact satisfy the axioms of tensor category:

So far we have defined a semisimple tensor category CðS;TÞ.

If we identify an element x A S with the object X in CðS;TÞ defined by

XðsÞ ¼
C if s ¼ x,

f0g otherwise,

�

then the vector space Homðxn y; zÞ is naturally identified with the triangular

vector space
xy

z

� �

and we recover the associativity transformation T from the

associativity constraint for CðS;TÞ.

Two monoidal systems ðS;TÞ, ðS 0
;T 0Þ with the unit elements 1 and 1 0 are

said to be equivalent if we can find a bijection f : S ! S 0 such that fð1Þ ¼ 1 0 and

a family of isomorphisms fxy
z :

xy

z

� �

!
fðxÞfðyÞ

fðzÞ

� �

which makes the diagram in

Fig. 2 commutative and satisfies

f1x
x ðlxÞ ¼ lfðxÞ; fx1

x ðrxÞ ¼ rfðxÞ:
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An equivalence ffxy
z g is called a gauge transformation if it is associated to

the identity map of the index set S.

Summarizing these, we have the following.

Proposition 1.1 (Reconstruction). Two tensor categories CðS;TÞ and

CðS 0
;T 0Þ are isomorphic if and only if ðS;TÞ and ðS 0

;T 0Þ are equivalent.

Example 1.2. Semisimple tensor categories with the fusion rule given by a

countable group G are parametrized by elements in the third cohomology group

H 3ðGÞ up to gauge transformations.

Proof. In fact, non-trivial triangular vector spaces are 1-dimensional and

given by
g; h

gh

� �

; g; h A H. With a choice of associative bases 00 ½g; h� A
g; h

gh

� �

such that ½1; g� ¼ lg and ½g; 1� ¼ rg, associativity transformations are specified as

T : ½g1; g2�n ½g1g2; g3� 7! cðg1; g2; g3Þ½g2 n g3�n ½g1; g2g3�;

where cðg1; g2; g3Þ is a three cocycle of G.

The pentagonal identity and the unit constraint condition for T take the

form

cðg2; g3; g4Þcðg1g2; g3; g4Þ
�1
cðg1; g2g3; g4Þcðg1; g2; g3g4Þ

�1
cðg1; g2; g3Þ ¼ 1

and cðg; 1; hÞ ¼ 1 respectively.

The Kelley’s result on unit constraint conditions (see [7]) is then reduced to

cð1; g; hÞ ¼ cðg; h; 1Þ ¼ 1, which is a direct consequence of the cocycle condition if

we take g2 ¼ 1 or g3 ¼ 1.

Figure 2.
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If we denote by CðG; cÞ the semisimple tensor category associated to a

normalized 3 cocycle c on a group G, then it is immediate to see that CðG; cÞG

CðG 0
; c 0Þ i¤ there is a group isomorphism f : G ! G 0 such that c and c 0 � f are

cohomologous in H 3ðGÞ. r

2. Rigidity.

Recall that an object X in a tensor category C is said to be rigid if we can

find an object X � and a pair of morphisms e : X nX � ! I , d : I ! X � nX such

that the composite morphisms (the associativity isomorphisms being omitted by

coherence theorem)

X ��!
1nd

X nX � nX ��!
en 1

X ; X �
��!
dn 1

X � nX nX �
��!
1ne

X �

are identities. The object X � is unique up to isomorphisms and is referred to as

a dual object of X. The tensor category C is rigid if every object is rigid and

isomorphic to a dual of another object.

Lemma 2.1 (cf. [6]). For a simple object X in a rigid (semisimple) tensor

category, its dual object X � is again simple and X itself is a dual of X �.

Proof. If X � is not simple, X �
GY � lZ � by the rigidity of C and then

X GY lZ by the uniqueness of (pre)dual objects. Thus X � is simple if X is

so. By Frobenius reciprocity and the semisimplicity of C, we have

HomðX ;X ��ÞGHomðX � nX ; IÞGHomðI ;X � nXÞGEndðXÞ;

whence there is a non-trivial morphism X ! X ��. Since X �� is simple as a dual

of the simple object X �, they are actually isomorphic. r

As a consequence of the above lemma, an involution is defined on the

spectrum set S of a rigid tensor category by ½X �� ¼ ½X ��, which satisfies the

duality relation

N
xy
1 ¼

1 if x ¼ y�,

0 otherwise.

�

The fusion algebra C ½S � is a *-algebra by extending the involution on the set S

(see [12], [4], [14] for more information on fusion algebras in the present context).

Assume that in the tensor category CðS;TÞ the fusion set S is furnished with

an involution � satisfying the duality relation. For an object X in CðS;TÞ and a

morphism f : X ! Y , we then define the object X � by

X �ðsÞ ¼ ðX ðs�ÞÞ� ð¼ the dual vector space of Xðs�ÞÞ
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and the morphism tf : Y � ! X � by

ð tf ÞðsÞ ¼ tf ðs�Þ : Yðs�Þ� ! X ðs�Þ�;

where tf ðs�Þ denotes the transposed map of f ðs�Þ.

The operation X �, tf gives a contravariant functor from CðS;TÞ into itself.

Lemma 2.2 (Local Rigidity). The semisimple tensor category CðS;TÞ is rigid

if and only if S admits an involution � satisfying N
x �y
1 ¼ dx;y and

hdn r�s ;Tðen lsÞi ¼ hdn l �s� ;T
�1ðen rs�Þi0 0

for 00 e A
ss�

1

� �

, 00 d A
s�s

1

� ��

with s A S.

Proof. For e A
xy

1

� �

and d A
yx

1

� ��

, we have

ðen 1Þa�1ð1n dÞ ¼ hdn r�x ;Tðen lxÞi1x;

ð1n eÞaðdn 1Þ ¼ hdn l �y ;T
�1ðen ryÞi1y

with obvious identifications on unit constraints. The condition in question is

then equivalent to the rigidity of simple objects in CðS;TÞ, which in turn implies

the rigidity for arbitrary objects: For each s A S, choose es A
ss�

1

� �

and ds A
s�s

1

� ��

so that

hds n r�s ;Tðes n lsÞi ¼ hds n l �s � ;T
�1ðes n rs �Þi ¼ 1:

For any object X in CðS;TÞ, we then define morphisms eX : X nX � ! I , dX :

I ! X � nX by

0
s AS

XðsÞnX ðsÞ� n
ss�

1

� ��

C 0
s AS

xs n h�
s n ss 7!

X

s

hxs; h
�
s ihes; ssi A C ¼ Ið1Þ;

Ið1Þ ¼ C C 1 7! 0
s

dXðsÞ n ds A 0
s AS

X ðsÞ� nXðsÞn
s�s

1

� ��

:

Here

dXðsÞ ¼
X

j

x�
j n xj

with fxjg a basis in XðsÞ and fx�
j g its dual basis.

It is straightforward to check that these in fact give a rigidity pairing between

X and X �. r

Example 2.3. The tensor category CðG; cÞ associated to a 3 cocycle c of a

group G is rigid.
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Proof. The fusion rule set S is the group G itself and the involution is given

by g� ¼ g�1 for g A G. Let e ¼ ½g; g�1� A
g; g�1

1

� �

and d ¼ ½g�1
; g�� A

g�1
; g

1

� ��

in Lemma 2.2. Then

hdn r�g ;Tðen lgÞi ¼ cðg; g�1
; gÞ; hdn l �g�1 ;T

�1ðen rg�1Þi ¼ cðg�1
; g; g�1Þ�1

shows that the rigidity is equivalent to

cðg; g�1
; gÞ ¼ cðg�1

; g; g�1Þ�1
;

whence it follows from the cocycle condition of c if we consider the condition

dcðg; g�1
; g; g�1Þ ¼ 1. r

Let CðS;TÞ be a semisimple tensor category described by a monoidal

system ðS;TÞ with S a fusion rule set and T a system of associativity transfor-

mations on S. Assume that the tensor category CðS;TÞ is rigid, i.e., S admits

an involution � satisfying the duality relation and the condition in Lemma 2.2.

We then choose es A
ss�

1

� �

, ds A
s�s

1

� ��

and extend it to rigidity pairings eX :

X nX � ! I , dX : I ! X � nX as described in the proof of Lemma 2.2.

The following is immediate from definitions.

Lemma 2.4. The contravariant functor ðX ; f Þ 7! ðX �
;

tf Þ is compatible with

the rigidity pairing fðeX ; dX Þg:

eY ð f n 1Þ ¼ eX ð1n
tf Þ or equivalently ð1n f ÞdX ¼ ð tf n 1ÞdY

for f : X ! Y .

By the uniqueness of rigidity pairings, we can define isomorphisms cX ;Y :

Y � nX � ! ðX nYÞ� by the commutativity of the diagram

X nY nY � nX �
���!
1neY

X nX �

1ncX ;Y

?
?
?
y

?
?
?
y
eX

X nY n ðX nY Þ� ���!
eXY

I

;

where parentheses are omitted thanks to the coherence theorem.

By the above lemma, the family fcX ;Yg is natural in X, Y and hence it is

determined by isomorphisms cx;y for x, y A S as

cX ;Y ðsÞ ¼ 0
x;y AS

1n cx;yðsÞ : ðY
� nX �ÞðsÞ ! ðX nYÞ�ðsÞ
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with

ðY � nX �ÞðsÞ ¼ 0
x;y AS

Y ðyÞ� nXðxÞ� n
y�x�

s

� ��

;

ðX nYÞ�ðsÞ ¼ 0
x;y AS

YðyÞ� nX ðxÞ� n
xy

s�

� �

:

Here the isomorphism

cx;yðsÞ :
y�x�

s

� ��

!
xy

s�

� �

is specified in the follwoing way: Starting with a vector an bn s in the vector

space

ððxyÞðy�x�ÞÞð1Þ ¼ 0
s AS

xy

s�

� ��

n
y�x�

s

� ��

n
s�s

1

� ��

;

the evaluation by the morphism

ðxyÞðy�x�Þ ���!
1ncx; y

ðxyÞðxyÞ� ���!
exy

1

gives

ha; cx;yðsÞbihes� ; ssi;

whereas the evaluation by the morphism (see Fig. 3)

ðxyÞðy�x�Þ �����!
a

xðyðy�x�ÞÞ �����!
1na�1

xððyy�Þx�Þ �����!
1nðeyn1Þ

xð1x�Þ

�����!
1nl

xx�
�����!

ex
1

gives the expression

hð1nT�1ÞðT n 1Þðey n lx � n exÞ; an bn si:

Equating these, we get an explicit formula which determines cx;yðsÞ:

ha; cx;yðsÞbi ¼ hð1nT�1ÞðT n 1Þðey n lx � n exÞ; an bn e�s�i;

where e�s � A Homð1; s�sÞ is specified by hes� ; e
�
s�i ¼ 1.

Figure 3.
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If we change fesgs AS into fe 0s ¼ fðs�Þ�1
esgs AS with fðs�Þ A C

� and cx;y into

c 0x;y, then c 0x;y satisfies

ha; c 0x;yðsÞbifðsÞ
�1 ¼ fðy�Þ�1

fðx�Þ�1
hð1nT�1ÞðTn1Þðeyn lx � nexÞ; anbn e�s�i

and the comparison with the equation for cx;y yields

c 0x;yðsÞ ¼
fðsÞ

fðx�Þfðy�Þ
cx;yðsÞ:

If we define a natural family of isomorphisms ffX : X � ! X �g by

fX : 0
s AS

xðsÞ 7! 0
s AS

fðsÞxðsÞ;

then it intertwines between cX ;Y and c 0X ;Y :

Y � nX �
���!
cX ;Y

ðX nYÞ�

fYnfX

?
?
?
y

?
?
?
y
fXnY

Y � nX �
���!
c 0
X ;Y

ðX nYÞ�
:

In other words, the monoidal functor ðX �
;

tf ; cX ;Y Þ is unique up to natural

equivalences.

For an object X in CðS;TÞ, we defined dX � : I ! X �� nX �, whereas we

have

I ���!
teX

ðX nX �Þ� ���!
c�1
X ;X �

X �� nX �
:

Lemma 2.5. For an object X in CðS;TÞ,

teX ¼ cX ;X � � dX � : I ! ðX nX �Þ�:

Proof. If we regard teX as an element in ðX nX �Þ�ð1Þ ¼ ðX nX �Þð1Þ�,

then

teX ¼ 0
x AS

dX ðxÞ� n ex A 0
x AS

XðxÞnXðxÞ� n
xx�

1

� �

;

where the second dual of (finite-dimensional) vector spaces are identified with the

original ones. Similarly dX � is identified with an element in ðX �� nX �Þð1Þ by

dX � ¼ 0
x AS

dXðxÞ� n dx � A 0
x AS

X ðxÞnXðxÞ� n
xx�

1

� ��

and then cX ;X � � dX � takes the form

0
x AS

dX ðxÞ� n cx;x �ðdx �Þ A 0
x AS

XðxÞnX ðxÞ� n
xx�

1

� �

:
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Thus we need to show ex ¼ cx;x �ðdx �Þ in
xx

�

1

� �

. According to the morphism

ðxn x
�Þn ðxn x

�Þ ����!
1ncx; x�

ðxn x
�Þn ðxn x

�Þ� ����!
exx�

I ;

the vector

dx � n dx � n r
�
1 A

xx�

1

� ��

n
xx�

1

� ��

n
11

1

� ��

H

0

B
B
B
B
@

x
�

x

x x
�

1

C
C
C
C
A

�

1

is mapped by 1n cx;x � n 1 to the vector

dx � n cx;x �ðdx�Þn r
�
1 A

xx
�

1

� ��

n
xx

�

1

� �

n
11

1

� ��

and then evaluated by exx� , resulting in the scalar

hdx � ; cx;x �ðdx �Þi:

On the other hand, the vector dx � n dx � n r�1 is transformed by an associa-

tivity transformation into dx � nTðdx � n r
�
1 Þ, which is equal to

dx � n r
�
x � n dx � A

xx
�

1

� ��

n
x
�1

x
�

� ��

n
xx

�

1

� ��

H

0

B
B
B
B
@

x
�

x

x x
�

1

C
C
C
C
A

�

1

by Kelly’s theorem ([7]) and then again by an associativity transformation into

T
�1ðdx � n r

�
x
Þn dx � A

x
�
x

1

� ��

n
1x�

x
�

� ��

n
xx

�

1

� ��

H

0

B
B
B
B
@

x
�

x

x x�

1

C
C
C
C
A

�

:

1

The last vector is evaluated according to the morphism

ðxn ðx� n xÞÞn x
�
������!
ð1nex� Þn1

ðxn 1Þn x
�
������!

rxn1
xn x

�
������!

ex
I

into the scalar

hex� n lx � ;T
�1ðdx � n r

�
x �Þihex; dx �i ¼ hex; dx �i:

(In the last line, we used the local rigidity.)

Comparing these, we have ex ¼ cx;x �ðdx �Þ, proving the assertion. r
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3. Duality.

In this section, we assume that the antimonoidal functor f 7! tf is supple-

mented to an involution by duality isomorphisms fdX : X ! X ��gX AObjectðCÞ, i.e.,

the family fdXg is natural in X and multiplicative in the sense that the following

diagrams commute,

X ���!
dX

X ��

f

?
?
?
y

?
?
?
y

ttf

Y ���!
dY

Y ��

;

X nY ���!
dn d

X �� nY ��

d

?
?
?
y

?
?
?
y
c

ðX nY Þ�� ���!
tc

ðY � nX �Þ�

;

and tdX ¼ d�1
X � : X ��� ! X � (see [16] for more information on this).

By the naturality in X, d takes the form

XðsÞ C x 7! Dsx
��

A X ðsÞ�� ¼ X ��ðsÞ

for s A S with Ds A C
�, where x 7! x�� denotes the natural identification XðsÞ ¼

X ðsÞ��. The multiplicativity of d is then reduced to the commutativity of

xy

s

� ��

���!
DxDy xy

s

� ��

Ds

?
?
?
y

?
?
?
y
cy� ; x � ðsÞ

xy

s

� �

���!
tcx; yðsÞ

y�x�

s�

� �

(note that tcx;yðsÞ ¼
tðcx;yðs

�ÞÞ), i.e.,

D t
scx;yðsÞ ¼ DxDycy�

;x �ðsÞ :
xy

s

� ��

!
y�x�

s�

� �

:

If fD 0
sgs AS gives a duality d 0 for the antimultiplicativity fc 0x;yg, then it

satisfies

D 0t
s c

0
x;yðsÞ ¼ D 0

xD
0
yc

0
y �

;x �ðsÞ;

which is equivalent to

D 0
s

Ds

fðs�Þ

fðx�Þfðy�Þ
¼

D 0
xD

0
y

DxDy

fðsÞ

fðxÞfðyÞ
:

As a solution, we may take

D 0
s ¼

fðsÞ

fðs�Þ
Ds:
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In other words, there is a natural correspondance between duality isomor-

phisms for di¤erent antimultiplicativities and we may restrict ourselves to the

case ðX �
;

tf ; cÞ ¼ ðX � 0
;

t 0f ; c 0Þ for the studies of possibility of rigidity-compatible

involutions: the information on involutions is then stacked up to the choice of

duality isomorphisms.

Remark. Since the vector space
xx�

1

� �

is 1-dimensional, the linear map

Cx;x �ð1Þ :
xx�

1

� �

!
xx�

1

� ��

and its transposed map tCx;x �ð1Þ coincides. Thus we have

D1 ¼ DxDx �

for any x A S. In particular, we see that

D1 ¼ 1; DxDx � ¼ 1:

The condition tdX ¼ d�1
X � is a consequence of the multiplicativity.

Let d and d 0 be dualities based on a common antimultiplicative functor

ðX �
;

tf ; cÞ. If we define a family of isomorphisms ffX : X ! Xg by d 0
X ¼ dX � fX ,

then it is natural and multiplicative: f fX ¼ fY f for f : X ! Y and fXnY ¼

fX n fY . By the naturality, such a family is determined by scalars ffðsÞgs AS,

fs A C
�, defined by fs ¼ fðsÞ1s and the multiplicativity is reduced to the con-

dition

fðsÞ ¼ fðxÞfðyÞ if
xy

s

� �

0 f0g:

In particular, it satisfies

fð1Þ ¼ 1; fðs�Þ ¼ fðsÞ�1

and gives a character of the fusion rule set S. (This is di¤erent from the notion

of character of the fusion algebra C ½S �.)

Conversely, given a character ffðsÞgs AS of S, it induces a natural and mul-

tiplicative family of isomorphisms by

fX ðxÞ : X ðxÞ C x 7! fðxÞx A X ðxÞ:

By point-wise multiplication, the set GðSÞ of characters of S becomes a

commutative group and choices of dualities for the rigidity-compatible antimul-

tiplicative functor ðX �
;

tf ; cÞ are parametrized by elements in GðSÞ. Since the

antimultiplicativity fcX ;Yg is uniquely determined by the choice feXg, the iso-

morphism classes of the structure ðfeXg; fdXgÞ is parametrized by the set GðSÞ as

well.
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We now proceed into the description of Frobenius duality ([15], [16], cf. also

[3]), which is a family feX : XnX � ! Ig together with an involution ðX �
;

tf ; c; d Þ

satisfying

(i) (Multiplicativity)

ðX n ðY nY �ÞÞnX �
������!
ð1neY Þn1

ðX n IÞnX �
������!

rXn1
X nX �

?
?
?
?
y

?
?
?
?
y
eX

ðX nYÞn ðY � nX �Þ ������!
1ncX ;Y

ðX nY Þn ðX nY Þ� ������!
eXnY

I

:

(ii) (Naturality)

X nY �
���!
fn1

Y nY �

1n tf

?
?
?
y

?
?
?
y
eY

X nX �
���!

eX

I

:

(iii) (Faithfulness) The map EndðXÞ C f 7! eX ð f n 1Þ is faithful.

(iv) (Neutrality) If we define left and right dimensions (denoted by ldimðXÞ

and rdimðXÞ respectively) of an object X by the following composites

I ����!
teX

ðX nX �Þ� ����!
c�1
X ;X �

X �� nX �
����!
d�1
X

n 1
X nX �

����!
eX

I ;

I ����!
t
eX �

ðX � nX ��Þ� ����!
c�1
X �

;X ��

X ��� nX ��
����!
d�1
X � n 1

X � nX ��
����!

eX �

I ;

then they coincide (the common scalar is called the dimension of X and

denoted by dimðXÞ).

Starting with a choice of rigidity pairings es A
ss�

1

� �� �

, we enlarge it to the

family feXg and define an antimultiplicativity fcX ;Yg as discussed before. Then

the first three properties, multiplicativity, naturality and faithfulness, are satisfied

by just giving a duality fdX : X ! X ��g for ðX �
;

tf ; cÞ. Thus whether it gives a

Frobenius duality depends on the validity of neutrality.

Lemma 3.1. A duality family fDsgs AS for a local rigidity family fes; dsgs AS

with es A
ss�

1

� �

, ds A
s�s

1

� ��

gives a Frobenius duality if and only if

D2
s ¼

hds � ; esi

hds; es�i
:
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Proof. By the naturality, it is enough to check the condition for simple

X. In that case, by Lemma 2.5, the composite morphisms in the neutrality are

reduced to

1 ���!
ds�

s��s� ���!
d�1
s

ss� ���!
es

1; 1 ���!
ds

s�s ���!
1nds

s�s�� ���!
es�

1

and the equality of these is

D�1
s hds� ; esi ¼ Dshds; es �i: r

As a conclusion of our discussions, we have the following.

Theorem 3.2. Isomorphism classes of Frobenius dualities in the tensor cate-

gory CðS;TÞ is, if it exists, parametrized by characters of S taking values in fG1g.

Example 3.3. Let G be a (discrete) group and c be a normalized cyclic 3-

cocycle (see Appendix A). The associated tensor category CðG; cÞ is reflexive and

reflexivity is parametrized by characters of G. For a cyclic cocycle c, d ¼fDggg AG
itself is a character (generally, the parameter space is a principal homogeneous

space of the character group of G ) and the dimension function is given by

ldimðgÞ ¼
cðg; g�1

; gÞ

Dg

:

Moreover, a Frobenius duality is defined by choosing Dg ¼ cðg; g�1
; gÞ so that

dimðgÞ ¼ 1 for g A G.

Proof. Let eg ¼ ½g; g�1� A
gg�

1

� �

with the accompanied dg A
g�g

1

� ��

given

by

dg ¼ cðg; g�1
; gÞ�1½g; g�1�½g�1

; g��:

Given g, h A G, let

cg;hðh
�1g�1Þ :

h�g�

h�1g�1

� ��

C ½h�1
; g�1�� 7! m½g; h� A

g; h

gh

� �

be the non-trivial part of cg;h.

If we start with the vector

½h; h�1�� n ½g; 1�� n ½g; g�1� A
ðgðhh�1ÞÞg�1

1

� ��

;

its evaluation by eg � eh is equal to 1, whereas repetitions of associativity trans-

formations show that it corresponds to the vector

cðg; h; h�1Þcðgh; h�1
; g�1Þ�1½g; h�� n ½h�1

; g�1�� n ½gh; h�1g�1�� A
ðghÞðh�g�Þ

1

� ��
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in the pentagonal vector space. Now the evaluation by egh � cg;h gives the result

mcðg; h; h�1Þcðgh; h�1
; g�1Þ�1

:

Therefore we have

m ¼
cðgh; h�1

; g�1Þ

cðg; h; h�1Þ
:

Thus the equation for d takes the form

Dgh

cðgh; h�1
; g�1Þ

cðg; h; h�1Þ
¼ DgDh

cðh�1g�1
; g; hÞ

cðh�1
; g�1

; gÞ
:

To solve this equation, we assume the cyclic symmetry on the cocycle c. Then

cðgh; h�1
; g�1Þ ¼ cðh�1g�1

; g; hÞ ¼ 1; cðg; h; h�1Þ ¼ cðh�1
; g�1

; gÞ;

which reduces the equation to

Dgh ¼ DgDh; g; h A G;

i.e., fDggg AG is a character of G.

The left dimension is calculated by

dimðgÞ1I ¼ egðd
�1
g n 1Þdg � ¼ cðg�1

; g; g�1Þ�1
D�1

g : r

Remark. For a normalized cyclic 3-cocycle c, we have

cðgh; ðghÞ�1
; ghÞ ¼ cðg; g�1

; gÞcðh; h�1
; hÞ:

Proof. From the cocycle relation dcðg; h; h�1g�1
; ghÞ ¼ 1, we have

cðgh; h�1g�1
; ghÞ ¼ cðh; h�1g�1

; ghÞcðg; g�1
; ghÞcðg; h; h�1g�1Þ;

which, combined with the cyclicity of c (g1g2g3g4 ¼ 1 implies cðg1; g2; g3Þ ¼

cðg2; g3; g4Þ
�1) of the form

cðg; h; h�1g�1Þ ¼ 1; cðh; h�1g�1
; ghÞ ¼ cðh�1

; h; h�1g�1Þ�1
;

produces

cðgh; h�1g�1
; ghÞ ¼

cðg; g�1
; ghÞ

cðh�1
; h; h�1g�1Þ

:

By the cocycle relations dcðg; g�1
; g; hÞ ¼ 1 ¼ dcðh�1

; h; h�1
; g�1Þ, we have

cðg; g�1
; ghÞ ¼ cðg; g�1

; gÞcðg�1
; g; hÞ;

cðh�1
; h; h�1g�1Þ ¼ cðh�1

; h; h�1Þcðh; h�1
; g�1Þ;
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whence

cðgh; h�1g�1; ghÞ ¼
cðg; g�1; gÞ

cðh�1; h; h�1Þ

cðg�1; g; hÞ

cðh; h�1; g�1Þ
:

Finally, we apply the cyclicity of c in the form

cðg�1; g; hÞ ¼ cðh�1; g�1; gÞ�1 ¼ cðh; h�1; g�1Þ: r

Example 3.4. Let G be a finite abelian group. Given a symmetric non-

degenerate bicharacter s : G � G ! T and a real number t satisfying t
2 ¼ jGj�1,

we can define a tensor category Cðs; tÞ such that S ¼ G t fmg with the fusion

rule am ¼ m ¼ ma and m2 ¼
P

a AG a other than the group operation among ele-

ments in G (see [13]).

Then the tensor category Cðs; tÞ is reflexive and there are two choices of

reflexivity, both of which give rise to Frobenius dualities. More precisely, we

have Da ¼ 1 for a A G, Dm ¼G1 and the dimension function is given by

dimðaÞ ¼ 1; dimðmÞ ¼
1

tDm

A fGjGj1=2g:

Proof. Recall that non-trivial triangular vector spaces are given by

a; b

ab

� �

¼ C ½a; b�;
a;m

m

� �

¼ C ½a;m�;
m; a

m

� �

¼ C ½m; a�;
m;m

a

� �

¼ C ½a�

and associativity transformations are given by

b

a c

abc

C ½a; b�n ½ab; c� 7! ½b; c�n ½a; bc� A

b

a c

abc

;

b

a m

m

C ½a; b�n ½ab;m� 7! ½b;m�n ½a;m� A

b

a m

m

;

m

a b

m

C ½a;m�n ½m; b� 7! sða; bÞ½m; b�n ½a;m� A

m

a b

m

;

a

m b

m

C ½m; a�n ½m; b� 7! ½a; b�n ½m; ab� A

a

m b

m

;
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m

a m

b

C ½a;m�n ½b� 7! ½a�1b�n ½a; a�1b� A

m

a m

b

;

a

m m

b

C ½m; a�n ½b� 7! sða; bÞ½a;m�n ½b� A

a

m m

b

;

m

m a

b

C ½ba�1�n ½ba�1
; a� 7! ½m; a�n ½b� A

m

m a

b

;

m

m m

m

C ½b�n ½b;m� 7!
X

a AG

t

sða; bÞ
½a�n ½m; a� A

m

m m

m

:

Note that, if we denote by f½a��g the dual basis of f½a�g and so on, then we

have

m

a b

m

0

B

@

1

C

A

�

C ½a;m�� n ½m; b�� 7! ha; bi�1½m; b�� n ½a;m�� A

m

a b

m

0

B

@

1

C

A

�

;

a

m m

b

0

B

@

1

C

A

�

C ½m; a�� n ½b�� 7! ha; bi�1½a;m�� n ½b�� A

a

m m

b

0

B

@

1

C

A

�

;

m

m m

m

0

B

@

1

C

A

�

C ½b�� n ½b;m�� 7!
X

a

tha; bi½a�� n ½m; a�� A

m

m m

m

0

B

@

1

C

A

�

:

As seen in [13], the tensor category Cðs; tÞ is rigid. With the choice of pairings

ea ¼ ½a; a�1� A
aa�

1

� �

; em ¼ ½1� A
mm

1

� �

;

the associated copairings are given by

da ¼ ½a�1
; a�� A

a�a

1

� ��

; dm ¼ t
�1½1�� A

mm

1

� ��

:
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Based on these data, we can calculate the maps cx;yðsÞ:

ca;bðb
�1a�1Þ :

b�a�

b�1a�1

� ��

C ½b�1
; a�1�� 7! ½a; b� A

a; b

ab

� �

;

ca;mðmÞ :
ma�

m

� �

C ½m; a�1�� 7! ½a;m� A
am

m

� �

;

cm;aðmÞ :
a�m

m

� ��

C ½a�1
;m�� 7! ½m; a� A

ma

m

� �

;

cm;mða
�Þ :

mm

a�

� �

C ½a�1�� 7! t½a� A
mm

a

� �

:

In fact, if we start with the vector

½b�� n ½b;m�� n ½1�� A

0

B

B

B

B

@

m m

m m

1

C

C

C

C

A

�

;

1

the evaluation by emð1n em n 1Þ gives db;1, whereas the vector is changed by as-

sociativity transformations into

t
X

a AG

sða; bÞ½a�� n ½a�1�� n ½a�1
; a�� A

0

B

B

B

B

@

m m

m m

1

C

C

C

C

A

�

:

1

If we define mðaÞ A C by cm;mða
�Þð½a�1��Þ ¼ mðaÞ½a�, then the last vector goes to

t
X

a AG

mðaÞsða; bÞ½a�� n ½a�n ½a�1
; a�� A 0

a AG

mm

a

� ��

n
mm

a

� �

n
a�a

1

� �

and its evaluation turns out to be

t
X

a AG

mðaÞsða; bÞ:

Comparing this with the Kronecker delta db;1, we obtain

mðaÞ ¼
1

tjGj
¼ t:

Similarly for other cx;yðs
�Þ’s.
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It is now immediate to write down the equations for fDsg:

Dab ¼ DaDb; DaDm ¼ Dm; Da ¼ D2
m

with the solutions given by

Da 1 1; Dm A fG1g:

The left dimension is then calculated by

dimðaÞ ¼ eaðd
�1
a n 1Þda � ¼ 1;

dimðmÞ ¼ emðd
�1
m n 1Þdm � ¼

1

tDm

;

which is automatically *-invariant and hence the involution in consideration gives

rise to a Frobenius duality. r

4. Positivity.

Now we shall restrict ourselves to tensor categories possessing positivity, i.e.,

C �-tensor categories.

A category C is a C �-category if each HomðX ;YÞ is a Banach space with a

conjugate-linear involution HomðX ;Y Þ C f 7! f � A HomðY ;XÞ such that k f �f k ¼

k f k2.

A tensor category C is, by definition, a C �-tensor category if it is a C �-

category at the same time in such a way that all the monoidal structures respect

the *-operation (the unit and associativity constarints are then unitaries). A

monoidal functor F between C �-tensor categories is called a C �-monoidal functor

if it preserves the *-operation: F ð f Þ� ¼ Fð f �Þ for f : X ! Y and the multipli-

cativity mX ;Y : F ðX ÞnF ðYÞ ! FðX nYÞ is unitary.

Given a semisimple C �-tensor category C with the spetrum set S represented

by simple objects, each triangular vector space
xy

z

� �

is a finite-dimensional Hilbert

space with the inner product defined by

ðxjhÞ1z ¼ hx�
; x; h A ½xy�:

The elements (of unit constarints) lx A
1x

x

� �

and rx A
x1

x

� �

are then unit

vectors. Moreover, the associativity transformations

T :

y

x z

w

!

y

x z

w
are unitaries.

Polygonal presentations of tensor categories 83



A monoidal system satisfying these conditions is referred to as a C �-monoidal

system.

Given a C �-monoidal system ðS;TÞ, we can reconstruct the C �-tensor category

C: an object in C is a family X ¼ fX ðsÞgs AS of finite-dimensional Hilbert spaces

with X ðsÞ ¼ f0g for all but finitely many s A S. Hom-sets are then defined by

HomðX ;YÞ ¼ 0
s AS

HomðXðsÞ;YðsÞÞ;

which is a vector space of linear maps between Hilbert spaces 0
s
XðsÞ and

0
s
YðsÞ, whence it admit the norm as well as the *-operation in the obvious

manner.

It is now immediate to check that the unit and associativity constraints de-

fined before are unitaries.

In the C �-tensor category CðS;TÞ, the operations X 7! X � and f 7! tf are

defined exactly as in O2. It is then immediate to check the relation ð tf Þ� ¼ tð f �Þ

for a morphism f : X ! Y .

We can apply the discussions on rigidity and (Frobenius) duality to C �-tensor

categories as well. For C �-tensor cateogries, however, it is natural to require the

positivity in Frobenius duality: a Frobenius duality feX : X nX � ! Ig with an

involution ðX �
;

tf ; c; d Þ is positive if ðd�1
X n 1Þc�1

X ;X �
teX ¼ e�X (I � being identified

with I ).

We proved in [16] the existence and the uniqueness of positive Frobenius du-

ality for a rigid C �-tensor category with simple unit object. The key notion there is

the balancedness of rigidity pairs: a rigidity pair fe : X nX � ! I ; d : I ! X � nXg

is said to be balanced if

eðan 1Þe� ¼ d
�ð1n aÞd for any a A EndðX Þ:

By Lemma 2.5, the positivity is equivalent in the present context to requiring

D�1
s ds� ¼ e

�
s ; s A S:

For s0 s�, we can choose balanced pairings es, es� so that ds� ¼ e�s , which

forces Ds to be 1 by positivity. For s ¼ s�, let e A
ss

1

� �

and d A
ss

1

� ��

be a

balanced rigidity pair. Since both of e� and d are non-trivial vectors in the 1-

dimensional vector space
ss

1

� ��

, they are proportional

d ¼ le
�
;

where l A C satisfies jlj by kdk ¼ kek (the pair ðe; dÞ being balanced). Since the

balanced pair ðe; dÞ is unique up to the phase choice ðe iye; e�iydÞ ðy ARÞ, the phase

factor l does not depend on the choice of balanced pairs and is characterisrtic of
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s ¼ s�. Thus it must coincides with the duality factor Ds for a positive duality.

On the other hand, Ds satisfies D
2
s ¼ 1 for s ¼ s�; the phase factor is either þ1 or

�1.

Definition 4.1. Let S be the spectrum (fusion rule set) of a rigid C �-tensor

category with simple unit object. A self-dual element s ¼ s� in S is said to be

real or pseudoreal according to Ds ¼ 1 or Ds ¼ �1, namely l > 0 or l < 0, where

l A R
� is given by

d ¼ le
�
; e A

ss

1

� �

; d A
ss

1

� ��

with ðe; dÞ a rigidity pair for s.

Now we can describe a positive Frobenius duality in terms of polygonal

presentations. Given a rigid C �-monoidal system, a family es A
ss�

1

� �� �

s AS

is

called a balanced system if ðes; e
�
s �Þ is a rigidity pair for s0Gs� and ðes;Ge�s Þ is

a rigidity pair for s ¼Gs�, where s ¼Gs� means that s is real or pseudoreal ac-

cording to the signature.

Theorem 4.2. In a rigid C �-monoidal system, we can always find a bal-

anced system of duality pairings. Given a balanced system fesgs AS , its canonical

extension feXg provides a positive Frobenius duality together with the involution

ðX �; tf ; cX ;Y ; dX Þ, where the duality isomorphism fdX : X ! X ��g is specified by

Ds ¼
�1 if s A S is pseudoreal,

1 otherwise.

�

Appendix A. Group Cohomology. In the text, we have occasionally used

the cyclic normalization of cocycles in group cohomology, which would be a

known fact but we have failed in finding literatures; we shall give an account here

for completeness.

Let G be a discrete group and

� � � !
q
C1 !

q
C0 ! Z

be a projective resolution of the trivial G-module Z. For an abelian group A

with a G-action, the cohomology groups are defined by

H nðG;AÞ ¼ H nðHomGðC:;AÞÞ;

which is independent of the choice of projective resolutions.
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Commonly used is the standard resolution, where

Cn ¼ 0
g0;g1;...;gn AG

Zðg0; g1; . . . ; gnÞ

is a free Z-module with the G-action defined by

gðg0; g1; . . . ; gnÞ ¼ ðgg0; gg1; . . . ; ggnÞ:

The di¤erential and a chain contraction s (satisfying qsþ sq ¼ id ) are given by

qðg0; g1; . . . ; gnÞ ¼
Xn

i¼0

ð�1Þ iðg0; . . . ; ĝgi; . . . ; gnÞ;

sðg0; g1; . . . ; gnÞ ¼ ð1; g0; g1; . . . ; gnÞ:

As a ZðGÞ-basis (the so-called bar basis), we can choose

jg1jg2j � � � jgnj ¼ ð1; g1; g1g2; . . . ; g1g2 � � � gnÞ

(ðg0; g1; . . . ; gnÞ ¼ g0jg
�1
0 g1jg

�1
1 g2j � � � jg

�1
n�1gnj). Note that

qðjg1jg2j � � � jgnjÞ ¼ g1jg2j � � � jgnj þ
Xn�1

i¼1

ð�1Þ ijg1j � � � jgigiþ1j � � � jgnj

þ ð�1Þnjg1j � � � jgn�1j

and

sðgjg1j � � � jgnjÞ ¼ jgjg1j � � � jgnj:

For g0, g1; . . . ; gn A G, define the wedge product by

g05g15 � � �5gn ¼ Pnþ1ðg0; g1; . . . ; gnÞ ¼
1

ðnþ 1Þ!

X

s ASnþ1

eðsÞðgsð0Þ; gsð1Þ; . . . ; gsðnÞÞ;

which is an element in Q nZ Cn. These, when parametrized by unordered

nþ 1-tuple fg0; g1; . . . ; gng, form a Z-basis of the image Dn of Cn under the

projection Pnþ1 in Q nZ Cn and hence

Dn ¼
X

Zg05g15 � � �5gn

is a free ZðGÞ-submodule of Q nZ Cn. Define a ZðGÞ-linear map d : Dn ! Dn�1

by d ¼ Pnq. Then by the formula

dðg05g15 � � �5gnÞ ¼
Xn

i¼0

ð�1Þ ig05 � � �5 ĝgi5 � � �5gn

we know that d 2 ¼ 0.
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In fact,

P

X

s

eðsÞqðgsð0Þ; . . . ; gsðnÞÞ
� �

¼
Xn

i¼0

X

s

eðsÞð�1Þ igsð0Þ5 � � �5 ĝgsðiÞ5 � � �5gsðnÞ

¼
X

i; j

X

sðiÞ¼j

eðsÞð�1Þ igsð0Þ5 � � �5 ĝgsðiÞ¼j5 � � �5gsðnÞ

(letting s ¼ t � ði; jÞ)

¼
X

i; j

X

tð jÞ¼j

eðtÞð�1Þ iþ1

gtð0Þ5 � � �5gtði�1Þ5 ĝgtð jÞ¼j5gtðiþ1Þ5 � � �5gtð j�1Þ5gtðiÞ5gtð jþ1Þ5 � � �5gtðnÞ

¼
X

i; j

X

tð jÞ¼j

eðtÞð�1Þ iþ1ð�1Þ j�1�i
gtð0Þ5 � � �5gtð j�1Þ5 ĝgtð jÞ5gtðð jþ1Þ5 � � �5gtðnÞ

¼
X

i; j

X

tð jÞ¼j

ð�1Þ jg05 � � �5 ĝgj5 � � �5gn

¼ ðnþ 1Þ!
Xn

j¼0

ð�1Þ jg05 � � �5 ĝgj5 � � �5gn:

The chain contraction c for the di¤erential is then defined by

cðg05 � � �5gnÞ ¼ Pnþ2 sðg05 � � �5gnÞ ¼ 15g05 � � �5gn:

Thus we get another free resolution ðD; d Þ (the wedge resolution) of the trivial G-

module Z.

Since the ZðGÞ-linear projections fPnþ1 : Cn ! Dng give a chain homomor-

phism ðC; qÞ ! ðD; d Þ (see the explicit formula for d ), the induced inclusion of

chain complexes

HomGðDn;AÞ ���!
d �

HomGðDnþ1;AÞ
?
?
?
y

?
?
?
y

HomGðCn;AÞ ���!
q
�

HomGðCnþ1;AÞ

induces the isomorphisms.

As a consequence, to represent cohomology classes, we can choose cocycles,

say F A HomGðCn;AÞ, satisfying

Fðgsð0Þ; . . . ; gsðnÞÞ ¼ eðsÞFðg0; . . . ; gnÞ
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for s A Snþ1. In the case of lower n, we can explicitly write down the conditions:

With

f ðg1; . . . ; gnÞ ¼ F ð1; g1; g1g2; . . . ; g1g2 � � � gnÞ;

we have

f ðg; hÞ ¼ f ðgh; h�1Þ ¼ �gf ðg�1
; ghÞ;

f ðg1; g2; g3Þ ¼ �g1 f ðg2; g3; g4Þ

if g1g2g3g4 ¼ 1, and so on.

Remark. When G acts on A trivially, we can deduce

�f ðg; hÞ ¼ f ðh�1
; g�1Þ; f ðg1; g2; g3Þ ¼ �f ðg2; g3; g4Þ

from the above conditions.
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