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Abstract. Voiculescu’s single variable free entropy is generalized in two di¤erent

ways to the free relative entropy for compactly supported probability measures on the

real line. The one is introduced by the integral expression and the other is based on

matricial (or microstates) approximation; their equivalence is shown based on a large

deviation result for the empirical eigenvalue distribution of a relevant random ma-

trix. Next, the perturbation theory for compactly supported probability measures via

free relative entropy is developed on the analogy of the perturbation theory via relative

entropy. When the perturbed measure via relative entropy is suitably arranged on the

space of selfadjoint matrices and the matrix size goes to infinity, it is proven that the

perturbation via relative entropy on the matrix space approaches asymptotically to that

via free relative entropy. The whole theory can be adapted to probability measures on

the unit circle.

Introduction.

One of the key points in free probability theory is that the important (non-

commutative) distributions admit convenient matrix models. Let a be a non-

commutative random variable in a noncommutative probability space ðA; jÞ, and

let an n� n random matrix Xn be given for every n A N . Then Xn is called an

(almost sure) random matrix model for a if

1

n

Xn

i¼1

PðXn;X
�
n Þii ! jðPða; a�ÞÞ almost surely

as n ! y for any polynomial P of two noncommutative indeterminates. For

example, selfadjoint random matrices with independent Gaussian entries form a

model for the semicircular distribution when the variances of entries are suitably

arranged; non-selfadjoint random matrices with independent Gaussian entries form

a model for the circular distribution.

Matrix models play a crucial role in the definition of entropy which goes on

the following lines. Suppose that the entropy of a variable a should be defined
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with respect to another variable b which has a convenient random matrix model

Tn. If ln is the distribution measure of Tn (on the space Mn of n� n matrices),

then the asymptotics of the quantity

1

n2
log lnðfX A Mn : jtðX

kÞ � jðakÞja e; ka rgÞ ð0:1Þ

gives the entropy SðakTnÞ; one takes

lim
e!þ0

lim
r!y

lim sup
n!y

of the above expression. A general theory is not available for an arbitrary

random matrix model, but Voiculescu’s definition [19], [20] for the free entropy

can be put in this setting and later in [11] Hiai and Petz considered the case when

Tn is a Haar distributed unitary. Restricting ourselves to the case when the dis-

tribution of a is given by a compactly supported measure m on R, we have

SðmkHnÞ ¼
1

2

ðð
R

2
logjx� yj dmðxÞ dmðyÞ �

1

4

ð
x2 dmðxÞ þ

3

4
; ð0:2Þ

where Hn is the selfadjoint Gaussian random matrix model of the semicircular

distribution. For a measure m on the unit circle we also have

SðmkUnÞ ¼

ðð
T

2
logjx� yj dmðxÞ dmðyÞ; ð0:3Þ

where Un is a Haar distributed random unitary. In fact, the above formulas

(0.2) and (0.3) are derived from the large deviation results for random matrices

due to Ben Arous and Guionnet [2] and also [12].

The first aim of the present paper is to make a definition of the free relative

entropy Sðm; nÞ of two measures. If we want to reach such a quantity in the

above manner, then a random matrix model Qn
n of the measure n should be find

in order to proceed with (0.1). We make a proposal for Qn
n and find that

SðmkQn
nÞ ¼ �

ðð
logjx� yj dðm� nÞðxÞ dðm� nÞðyÞ:

This will be our definition of Sðm; nÞ, the free relative entropy of m with respect to

n. In fact, Sðm; nÞ is symmetric in the two variables and was investigated already

in [14]. Note that Biane and Speicher [3] introduced the notion of free relative

entropy (also free Fisher information) with respect to a function F while ours are

defined with respect to a measure n. After the discussion of the properties of the

free relative entropy Sðm; nÞ, we move to state perturbation.
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Let us recall [15] that in the setting of operator algebras the relative entropy

Sðj;oÞ is defined for states j and o, and for a selfadjoint operator h the

minimizer of the functional

Sðj;oÞ þ jðhÞ

is called the inner perturbation of the state o; the notation oh is used.

Following this pattern the minimizer of

Sðm; nÞ þ

ð
f ðxÞ dmðxÞ

will be called the perturbed measure. In Sections 2 and 3 of the paper, this

perturbation procedure is studied following the pattern of the state perturbation

procedure in operator algebras. Roughly speaking several results are analogous,

however in the perturbation theory via the free relative entropy there are slight

di¤erences.

Voiculescu originally introduced the free entropy SðmÞ based on his spec-

ulation (so-called Voiculescu’s heuristics) that SðmÞ appears as a normalized limit

of the relative entropies of the distributions of certain random matrices with

respect to the Lebesgue measure on the matrix space. A more rigorous deri-

vation of Voiculescu’s heuristics was later given in [2]. In Sections 4 and 5, we

show a similar but di¤erent result asserting that the free relative entropy Sðnh; nÞ

for the perturbed measure nh via free relative entropy is a normalized limit of the

relative entropies of the distributions of random matrices perturbed according

to h.

As is briefly explained in the last section, free relative entropy and the

corresponding perturbation theory for probability measures on R can be fully

adapted to the case of probability measures on the unit circle.

Throughout the paper our main reference is [13] concerning random matrix

models, related large deviations and entropy in free probability theory.

1. Free entropy and free relative entropy.

For a probability Borel measure m on R the free entropy SðmÞ was in-

troduced by Voiculescu [19] as

SðmÞ :¼

ðð
logjx� yj dmðxÞ dmðyÞ; ð1:1Þ

and it is indeed the minus sign of the so-called logarithmic energy of m familiar in

potential theory ([18]). In this paper the support of m, denoted by supp m, is

that in the topological sense, i.e. the smallest closed subset KHR such that

mðKÞ ¼ 1. Note that the double integral (1.1) always exists with a value in
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½�y;þyÞ whenever m is compactly supported. The free entropy functional

SðmÞ is upper semi-continuous in weak topology when the support of m is re-

stricted in a compact set, and it is strictly concave (see [13, 5.3.2]).

The microstates (or matricial) approach for free entropy was developed in

[20]. For each n A N let Mn denote the space of all n� n complex matrices and

trn the normalized trace functional on Mn. The set of all selfadjoint matrices

in Mn is denoted by M sa
n . There is a natural linear bijection between M sa

n and

R
n2

which is an isometry for the Hilbert-Schmidt and Euclidean norms, so the

‘‘Lebesgue’’ measure Ln on M sa
n is induced by the Lebesgue measure on R

n2

via

this isometry. Let m be a probability Borel measure supported in ½�R;R�,

R > 0. For n; r A N and e > 0 define

GRðm; n; r; eÞ :¼ fA A M sa
n : kAkaR; jtrnðA

kÞ �mkðmÞja e; ka rg; ð1:2Þ

where kAk is the operator norm and mkðmÞ :¼
Ð

xk dmðxÞ, the kth moment of

m. Then the limit

wRðm; r; eÞ :¼ lim
n!y

1

n2
logLnðGRðm; n; r; eÞÞ þ

1

2
log n

� �

ð1:3Þ

exists for every r A N and e > 0, and

lim
r!y; e!þ0

wRðm; r; eÞ ¼ SðmÞ þ
1

2
logð2pÞ þ

3

4
: ð1:4Þ

(See [13, 5.6.2] for the existence of the limit in (1.3) while lim was originally

lim sup in [20].)

The Boltzmann-Gibbs entropy SðmÞ of a probability measure m on R is given

as

SðmÞ :¼ �

ð

dm

dx
log

dm

dx
dx

if m is absolutely continuous with respect to the Lebesgue measure dx and dm=dx

is the Radon-Nikodym derivative; otherwise SðmÞ :¼ �y. The relative entropy

(or the Kullback-Leibler divergence) Sðm; nÞ of m with respect to another prob-

ability measure n is defined as

Sðm; nÞ :¼

ð

dm

dn
log

dm

dn
dn ¼

ð

log
dm

dn
dm

if m is absolutely continuous with respect to n; otherwise Sðm; nÞ :¼ þy. If m

and n are supported in ½�R;R�, then these entropies have the asymptotic ex-

pressions as follows:
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SðmÞ ¼ lim
r!y; e!þ0

lim
n!y

1

n
logLn

��

ðx1; . . . ; xnÞ A ½�R;R�n :

xk
1 þ � � � þ xk

n

n
�mkðmÞ

�

�

�

�

�

�

�

�

a e; ka r

��

; ð1:5Þ

�Sðm; nÞ ¼ lim
r!y; e!þ0

lim
n!y

1

n
log nn

��

ðx1; . . . ; xnÞ A ½�R;R�n :

xk
1 þ � � � þ xk

n

n
�mkðmÞ

�

�

�

�

�

�

�

�

a e; ka r

��

; ð1:6Þ

where Ln is the n-dimensional Lebesgue measure and nn is the n-fold product of

n. These expressions can be derived from Sanov’s large deviation theorem for

the empirical distribution of i.i.d. random variables (see [13, 5.1.1] for details).

The free entropy SðmÞ is the free analogue of the Boltzmann-Gibbs entropy

SðmÞ, and the asymptotic expression given in (1.2)–(1.4) (with scale n�2) is the

‘‘free’’ counterpart of the expression (1.5) (with scale n�1). Now, naturally arises

the following question: What is the free analogue of the relative entropy Sðm; nÞ?

The problem was recently investigated in [14], and it turned out that the free

relative entropy Sðm; nÞ of m with respect to n can be defined as

Sðm; nÞ ¼ �

ðð

logjx� yj dðm� nÞðxÞ dðm� nÞðyÞ; ð1:7Þ

which is the logarithmic energy of a signed measure m� n. But the above (1.7)

may not be well-defined, and to be more precise we adopt the following definition:

Sðm; nÞ :¼ lim
e!þ0

�

ðð

logðjx� yj þ eÞ dðm� nÞðxÞ dðm� nÞðyÞ

� �

: ð1:8Þ

In fact, this is well-defined because e > 0 7! �
Ð Ð

logðjx� yj þ eÞ dðm� nÞðxÞ �

dðm� nÞðyÞ is increasing as e & 0 ([14, Lemma 3.6]). Of course, the integral

(1.7) exists and coincides with (1.8) as long as logjx� yj is integrable with re-

spect to djm� njðxÞ djm� njðyÞ; in particular, this is the case if SðmÞ > �y and

SðnÞ > �y (see the proof of [13, 5.3.2]).

In [14] the asymptotic expression of the free relative entropy Sðm; nÞ was

obtained in the microstates approach. Before stating it we here give a brief

exposition on some large deviation result related to random matrices, which is a

basis of deriving the asymptotic expression of Sðm; nÞ. This large deviation will

indeed play a crucial role in Section 4 as well.

Let R > 0 and Q be a real continuous function on ½�R;R�. For each n A N

define the probability distribution ~llnðQ;RÞ on R
n by

Free relative entropy for measures and a corresponding perturbation theory 683



~llnðQ;RÞ :¼
1

ZnðQ;RÞ
exp �n

X

n

i¼1

QðxiÞ

 !

Y

i<j

jxi � xjj
2

�
Y

n

i¼1

w½�R;R�ðxiÞ dx1dx2 � � � dxn; ð1:9Þ

where ZnðQ;RÞ is the normalizing constant:

ZnðQ;RÞ :¼

ðR

�R

� � �

ðR

�R

exp �n
X

n

i¼1

QðxiÞ

 !

Y

i<j

jxi � xjj
2
dx1 � � � dxn: ð1:10Þ

Moreover, let lnðQ;RÞ be the probability distribution on M sa
n which is invariant

under unitary conjugation and whose joint eigenvalue distribution on R
n is

~llnðQ;RÞ; more explicitly,

lnðQ;RÞ :¼ ðdU n ~llnðQ;RÞÞ �F�1
n ; ð1:11Þ

where dU is the Haar probability measure on the n-dimensional unitary group Un

and Fn : Un � R
n ! M sa

n is defined as

FnðU ; ðx1; . . . ; xnÞÞ :¼ U diagðx1; . . . ; xnÞU
�
:

One can consider lnðQ;RÞ as the distribution of an n� n random selfadjoint

matrix, or more explicitly lnðQ;RÞ itself as a random matrix. The support of

lnðQ;RÞ is

ðM sa
n ÞR :¼ fA A M sa

n : kAkaRg: ð1:12Þ

The empirical eigenvalue distribution of this random matrix is the random discrete

measure

dðx1Þ þ dðx2Þ þ � � � þ dðxnÞ

n
;

where dðxÞ is the point measure at x and the R
n-vector ðx1; x2; . . . ; xnÞ is dis-

tributed subject to the distribution (1.9). Let Mð½�R;R�Þ denote the set of all

probability measures supported in ½�R;R� equipped with the weak topology.

Then we have the following large deviation theorem.

Theorem 1.1. Let Q and Qn ðn A NÞ be real continuous functions on ½�R;R�

such that QnðxÞ ! QðxÞ uniformly on ½�R;R�. For each n A N define the prob-

ability distribution ~llnðQn;RÞ supported on ½�R;R�n by (1.9) and the normalizing

constant ZnðQn;RÞ by (1.10) with Qn in place of Q. Then the finite limit

BðQ;RÞ :¼ lim
n!y

1

n2
logZnðQn;RÞ ð1:13Þ
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exists, and if ðx1; . . . ; xnÞ A ½�R;R�n is distributed with the joint distribution
~llnðQn;RÞ, then the empirical distribution ð1=nÞðdðx1Þ þ � � � þ dðxnÞÞ satisfies the

large deviation principle in the scale n�2 with the good rate function:

IðmÞ :¼ �SðmÞ þ mðQÞ þ BðQ;RÞ for m A Mð½�R;R�Þ:

There exists a unique minimizer mQ of I with IðmQÞ ¼ 0 and BðQ;RÞ is determined

by only Q (independently of the choice of fQngÞ. Furthermore, the above em-

pirical distribution converges almost surely to mQ as n ! y in weak topology.

The above large deviation is a matricial counterpart of the famous Sanov

large deviation theorem ([5], [6]). The probability distribution Pn on Mð½�R;R�Þ

of the random measure ð1=nÞðdðx1Þ þ � � � þ dðxnÞÞ is given by

PnðGÞ :¼ ~llnðQn;RÞ ðx1; . . . ; xnÞ A ½�R;R�n :
dðx1Þ þ � � � þ dðxnÞ

n
A G

� �� �

for Borel sets G HMð½�R;R�Þ. Since Mð½�R;R�Þ is weakly compact (hence the

exponential tightness of ðPnÞ is automatic), it su‰ces (see [5, 4.1.11]) to prove that

�IðmÞ ¼ inf
G

lim sup
n!y

1

n2
logPnðGÞ

� �

¼ inf
G

lim inf
n!y

1

n2
logPnðGÞ

� �

for every m A Mð½�R;R�Þ, where G runs over the neighborhoods of m. The proof

is more or less similar to that of [13, 5.4.3 and 5.5.1], so we omit the details.

The assertion on the minimizer is a consequence of the fundamental result on

weighted potentials (see [18, I.1.3 and I.3.1] or Lemma 2.1 below). The proof of

the last statement is found in [13, p. 211].

Now let us return to the free relative entropy. Let n be a compactly

supported probability measure on R, and assume that the function

QnðxÞ :¼ 2

ð

logjx� yj dnðyÞ ð1:14Þ

is finite and continuous (as a function on R) at every x A supp n. Then Qn is a

continuous function on the whole R, because QnðxÞ is always continuous on

Rnsupp n. For instance, this is the case when n is absolutely continuous with

respect to dx and dn=dx is bounded. For R > 0 define the probability distri-

bution lnðn;RÞ on M sa
n by putting Q ¼ Qn in (1.9) and (1.11): lnðn;RÞ :¼

lnðQn;RÞ. Then the next theorem was proved in [14, Theorem 3.8] by appealing

to the above large deviation theorem in the case Qn ¼ Q ¼ Qn.

Theorem 1.2. Let m; n be compactly supported probability measures, and as-

sume that QnðxÞ in (1.14) is continuous on R. Then for any R > 0 with supp m,

supp nH ½�R;R�,
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�Sðm; nÞ ¼ lim
r!y; e!þ0

lim
n!y

1

n2
log lnðn;RÞðGRðm; n; r; eÞÞ; ð1:15Þ

where GRðm; n; r; eÞ is given in (1.2).

The above expression (1.15) is the free analogue of (1.6). The reference

measure lnðn;RÞ on M sa
n is a bit more complicated than the product nn on R

n in

(1.6), but it is the right one in free (or matricial) probability. In fact, Theorem

1.1 (together with Lemma 2.1) says that the empirical eigenvalue distribution of

the n� n selfadjoint random matrix having the distribution lnðn;RÞ converges

almost surely to n, the minimizer of the rate function, as n ! y in weak topology

(hence in the distribution sense). In this way, Theorem 1.2 gives a justification

for our free relative entropy Sðm; nÞ. Another (more decisive) justification will be

presented in Section 4.

We end the section by listing basic properties of Sðm; nÞ given in [14]. The

properties except the first one are analogous to those of the relative entropy

Sðm; nÞ. Let m; n; mi; ni be compactly supported probability measures on R.

(i) Symmetry: Sðm; nÞ ¼ Sðn; mÞ.

(ii) Strict positivity: Sðm; nÞb 0, and Sðm; nÞ ¼ 0 if and only if m ¼ n.

(iii) Joint convexity:

Sðlm1 þ ð1� lÞm2; ln1 þ ð1� lÞn2Þa lSðm1; n1Þ þ ð1� lÞSðm2; n2Þ

for 0a la 1.

(iv) Single strict convexity:

Sðlm1 þ ð1� lÞm2; nÞ < lSðm1; nÞ þ ð1� lÞSðm2; nÞ

if 0 < l < 1, m1 0 m2, Sðm1; nÞ < þy and Sðm2; nÞ < þy.

(v) Joint lower semi-continuity: Sðm; nÞ is jointly lower semi-continuous in

weak topology when the supports of m; n are restricted in a compact

set.

2. Perturbation via free relative entropy.

Let K be a fixed compact subset of R, and let MðKÞ denote the set of all

probability Borel measures supported in K . Also, let CRðKÞ denote the space of

all real continuous functions on K . For m A MðKÞ and h A CRðKÞ we write mðhÞ

for
Ð
K
h dm.

The (logarithmic) capacity of a compact set CHR is defined as

capðCÞ :¼ expðsupfSðmÞ : m A MðCÞgÞ

with convention capðCÞ ¼ 0 if SðmÞ ¼ �y for all m A MðCÞ. Then the capacity of

a general Borel set AHR is defined as capðAÞ :¼ supfcapðCÞ : CHA compactg.
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A property is said to hold for quasi-every x A A if it holds for all x A A except in

a set of capacity zero.

Throughout this section, let n A MðKÞ be such that the function Q ¼ Qn

given in (1.14) is finite and continuous on K ; hence Q A CRðKÞ and K has

positive capacity. For given h A CRðKÞ define the weighted energy integral

EhðmÞ :¼

ðð

log
1

jx� yj
dmðxÞ dmðyÞ þ

ð

h dm ¼ �SðmÞ þ mðhÞ

for m A MðKÞ. For later use, we state the fundamental result in the theory of

weighted potentials ([18, I.1.3 and I.3.1]) in a reduced form of the next lemma.

Lemma 2.1. For every h A CRðKÞ the following assertions hold:

(i) There exists a unique mh A MðKÞ such that

EhðmhÞ ¼ inffEhðmÞ : m A MðKÞg:

(ii) EhðmhÞ and SðmhÞ are finite.

(iii) The minimizer mh is characterized as mh A MðKÞ such that for some

B A R

2

ð

logjx� yj dmhðyÞ
b hðxÞ þ B for all x A supp mh;

a hðxÞ þ B for quasi-every x A K :

�

In this case, B ¼ �2EhðmhÞ þ mhðhÞ.

For n A MðKÞ fixed as above, the Legendre transform of m A MðKÞ 7! Sðm; nÞ

is defined as

cðh; nÞ :¼ supf�mðhÞ � Sðm; nÞ : m A MðKÞg ð2:1Þ

for each h A CRðKÞ.

Theorem 2.2. With the above definitions, the following assertions hold:

(i) cð� ; nÞ is a convex function on CRðKÞ satisfying

�nðhÞa cðh; nÞa khk ð2:2Þ

(in particular, cð0; nÞ ¼ 0) where khk is the sup-norm, and it is de-

creasing, i.e. cðh1; nÞb cðh2; nÞ if h1a h2. Moreover,

jcðh1; nÞ � cðh2; nÞja kh1 � h2k ð2:3Þ

for all h1; h2 A CRðKÞ.

(ii) For every m A MðKÞ,

Sðm; nÞ ¼ supf�mðhÞ � cðh; nÞ : h A CRðKÞg: ð2:4Þ

(iii) For every h A CRðKÞ there exists a unique nh A MðKÞ such that
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�nhðhÞ � Sðnh; nÞ ¼ cðh; nÞ: ð2:5Þ

Moreover, SðnhÞ is finite and

cðh; nÞ ¼ SðnhÞ þ SðnÞ � nhðQþ hÞ: ð2:6Þ

(iv) For every h A CRðKÞ and m A MðKÞ, m ¼ nh if and only if

cðhþ k; nÞb cðh; nÞ � mðkÞ for all k A CRðKÞ:

Proof. (i) The convexity and the decreasingness of cð� ; nÞ are obvious by

definition. (2.2) follows immediately from the positivity of Sðm; nÞ. For every

h1; h2 A CRðKÞ and m A MðKÞ,

�mðh1Þ � Sðm; nÞ ¼ �mðh2Þ � Sðm; nÞ þ mðh2 � h1Þa cðh2; nÞ þ kh1 � h2k;

and hence

cðh1; nÞa cðh2; nÞ þ kh1 � h2k:

This implies (2.3) by symmetry.

(ii) Let CRðKÞ� denote the space of all signed Borel measures on K , which

is a Banach space with respect to the total variation norm and is identified with

the dual Banach space of CRðKÞ with the sup-norm. Note also that the weak

topology on MðKÞ coincides with the w*-topology. The definition (2.1) means

that cð� ; nÞ : CRðKÞ ! R is the conjugate function (or the Legendre transform) of

the function j : CRðKÞ� ! ½0;þy� given by

jðmÞ :¼
Sðm; nÞ if m A MðKÞ;

þy if m A CRðKÞ�nMðKÞ:

�

By the properties of Sðm; nÞ listed at the end of Section 1, it follows that j is a

w*-lower semi-continuous and convex function. Hence (2.4) is a consequence of

the general duality theorem for conjugate functions.

(iii) We first show that

Sðm; nÞ ¼ �SðmÞ � SðnÞ þ mðQÞ ð2:7Þ

for all m A MðKÞ permitting both sides being þy. Indeed, for e > 0 we write

�

ðð

logðjx� yj þ eÞ dðm� nÞðxÞ dðm� nÞðyÞ

¼ �

ðð

logðjx� yj þ eÞ dmðxÞ dmðyÞ �

ðð

logðjx� yj þ eÞ dnðxÞ dnðyÞ

þ 2

ð ð

logðjx� yj þ eÞ dnðyÞ

� �

dmðxÞ;
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and the first two terms in the right-hand side converge as e & 0 to �SðmÞ and

�SðnÞ, respectively. When ea 1 and R :¼ maxfjx� yj : x; y A Kg, the diameter

of K , since

ð
logðjx� yj þ eÞ dnðyÞa logðRþ 1Þ

and 2
Ð
logðjx� yj þ eÞ dnðyÞ & QðxÞ as e & 0, the last term in the above equality

converges to mðQÞ by the monotone convergence theorem. Hence (2.7) is ob-

tained.

By (2.7) we have

�mðhÞ � Sðm; nÞ ¼ SðmÞ � mðQþ hÞ þ SðnÞ ¼ �EQþhðmÞ þ SðnÞ: ð2:8Þ

Hence Lemma 2.1 implies that there exists a unique nh (or mQþh) in MðKÞ for

which (2.5) is satisfied, and SðnhÞ > �y. The formula (2.6) is obvious from

(2.8).

(iv) Rewrite

cðhþ k; nÞb cðh; nÞ � nðkÞ for all k A CRðKÞ

as

cðhþ k; nÞ þ mðhþ kÞb cðh; nÞ þ nðhÞ for all k A CRðKÞ:

By (2.4) this condition is equivalent to

�Sðm; nÞb cðh; nÞ þ mðhÞ;

which means m ¼ nh. r

We call nh in Theorem 2.2 the perturbed probability measure of n by h (via

free relative entropy). Note that the variational expression (2.4) of Sðm; nÞ is

valid for any choice of a compact KHR such that KI supp m, supp n. Clearly,

nhþa ¼ nh and cðhþ a; nÞ ¼ cðh; nÞ � a for a A R.

It is instructive to consider the perturbed measure nh in comparison with the

similar perturbation via relative entropy. For any n A MðKÞ and h A CRðKÞ, it is

well-known that

log nðe�hÞ ¼ supf�mðhÞ � Sðm; nÞ : m A MðKÞg

and the probability measure m0 :¼ ðe�h=nðe�hÞÞn (i.e. dm0=dn ¼ e�h=nðe�hÞÞ is a

unique maximizer of �mðhÞ � Sðm; nÞ for m A MðKÞ. In fact, this can be easily

verified by using the strict positivity of Sðm; m0Þ. Moreover, for every m A MðKÞ,

Sðm; nÞ ¼ supf�mðhÞ � log nðe�hÞ : h A CRðKÞg:
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The probability measure m0 perturbed from n via the relative entropy Sðm; nÞ

is the so-called Gibbs ensemble. The above cðh; nÞ is considered as the ‘‘free’’

counterpart of log nðe�hÞ, and the characterization of nh in the above (iv) is the

‘‘free’’ analogue of the so-called variational principle for Gibbs ensembles ([17]).

It is worth noting, as mentioned in Introduction, that this type of perturbation

theory via relative entropy was developed even in the quantum probabilistic set-

ting on operator algebras ([16], [7], [15, Section 12]).

We shall write nh;S for nh in Theorem 2.2 and nh;S for the above m0, when

both perturbed measures via Sðm; nÞ and Sðm; nÞ are simultaneously treated. A

simple expression of cðh; nÞ such as log nðe�hÞ is not available; nevertheless in

Section 4 we shall give an asymptotic expression of cðh; nÞ.

Proposition 2.3. For every m A MðKÞ,

Sðm; nhÞaSðm; nÞ þ mðhÞ þ cðh; nÞ: ð2:9Þ

Moreover, if supp mH supp nh, then

Sðm; nhÞ ¼ Sðm; nÞ þ mðhÞ þ cðh; nÞ: ð2:10Þ

Proof. Since nh is the minimizer of EQþhðmÞ due to (2.8), we have by

Lemma 2.1

2

ð

logjx� yj dnhðyÞ
bQðxÞ þ hðxÞ þ B for all x A supp nh;

aQðxÞ þ hðxÞ þ B for quasi-every x A K ;

�

ð2:11Þ

where

B ¼ �2EQþhðn
hÞ þ nhðQþ hÞ

¼ 2SðnhÞ � nhðQþ hÞ

¼ SðnhÞ � SðnÞ þ cðh; nÞ

from (2.6). For (2.9) there is nothing to prove when Sðm; nÞ ¼ þy, so assume

that Sðm; nÞ < þy and hence SðmÞ > �y by (2.7). For e > 0 we write

�

ðð

logðjx� yj þ eÞ dðm� nhÞðxÞ dðm� nhÞðyÞ

¼ �

ðð

logðjx� yj þ eÞ dmðxÞ dmðyÞ �

ðð

logðjx� yj þ eÞ dnhðxÞ dnhðyÞ

þ 2

ðð

logðjx� yj þ eÞ dnhðyÞ dmðxÞ: ð2:12Þ
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The first two terms of (2.12) have the finite limits SðmÞ and SðnhÞ as e & 0, and

the monotone convergence theorem can be applied to the last term of (2.12) as in

the proof (iii) of Theorem 2.2. Hence we get

Sðm; nhÞ ¼ �SðmÞ � SðnhÞ þ 2

ð ð

logjx� yj dnhðyÞ

� �

dmðxÞ:

Since SðmÞ > �y implies that mðAÞ ¼ 0 for any Borel set A of capacity zero (see

[18, I.1.7]), we can use the second inequality of (2.11) to obtain (2.9):

Sðm; nhÞa�SðmÞ � SðnhÞ þ mðQþ hÞ þ B

¼ �SðmÞ � SðnÞ þ mðQþ hÞ þ cðh; nÞ

¼ Sðm; nÞ þ mðhÞ þ cðh; nÞ:

Next, assume that supp mH supp nh. Then the first inequality of (2.11)

implies that

2

ð ð

logjx� yj dnhðyÞ

� �

dmðxÞb mðQþ hÞ þ B > �y:

Hence we can take the limit e & 0 of (2.12) (regardless of SðmÞ > �y or not) so

that

Sðm; nhÞb�SðmÞ � SðnhÞ þ mðQþ hÞ þ B

¼ Sðm; nÞ þ mðhÞ þ cðh; nÞ:

This together with (2.9) gives (2.10). r

Corollary 2.4. For every h A CRðKÞ,

Sðnh; nÞa
nðhÞ � nhðhÞ

2
a khk;

cðh; nÞb�nðhÞ þ Sðnh; nÞb�
nðhÞ þ nhðhÞ

2
:

Furthermore, if supp nH supp nh, then

Sðnh; nÞ ¼
nðhÞ � nhðhÞ

2
;

cðh; nÞ ¼ �nðhÞ þ Sðnh; nÞ ¼ �
nðhÞ þ nhðhÞ

2
:

Proof. Putting m ¼ n in (2.9) gives
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Sðnh; nÞ ¼ Sðn; nhÞa nðhÞ þ cðh; nÞ

¼ nðhÞ � n
hðhÞ � Sðnh; nÞ

from (2.5), and this implies the first assertion. If supp nH supp nh, then equality

occurs in the above thanks to (2.10). r

The next proposition is the chain rule for the perturbation n 7! n
h.

Proposition 2.5. Let h; k A CRðKÞ. If Qn hðxÞ :¼ 2
Ð

logjx� yj dnhðyÞ as

well as Q ¼ Qn is continuous on K and suppðnhÞk H supp nh, then

ðnhÞk ¼ n
hþk

;

cðhþ k; nÞ ¼ cðh; nÞ þ cðk; nhÞ:

In particular, these hold if supp nh ¼ K and Qn h ¼ Qþ h on K.

Proof. Since Qn h is continuous on K by assumption, the perturbation ðnhÞk

of n
h is well-defined and it is characterized as follows: for some B 0 A R,

2

ð

logjx� yj dðnhÞkðyÞ
bQn hðxÞ þ kðxÞ þ B 0 for all x A suppðnhÞk;

aQn hðxÞ þ kðxÞ þ B 0 for quasi-every x A K :

�

Since suppðnhÞk H supp nh, combining this with (2.11) gives

2

ð

logjx� yj dðnhÞkðyÞ
bQðxÞ þ hðxÞ þ kðxÞ þ Bþ B 0 for all x A suppðnhÞk;

aQðxÞ þ hðxÞ þ kðxÞ þ Bþ B 0 for quasi-every x A K ;

�

which characterizes n
hþk so that ðnhÞk ¼ n

hþk.

By (2.5) we get

cðhþ k; nÞ ¼ �n
hþkðhþ kÞ � Sðnhþk

; nÞ;

cðk; nhÞ ¼ �ðnhÞkðkÞ � SððnhÞk; nhÞ ¼ �n
hþkðkÞ � Sðnhþk

; n
hÞ:

Since supp nhþk
H supp nh, we also get by (2.10)

Sðnhþk
; n

hÞ ¼ Sðnhþk
; nÞ þ n

hþkðhÞ þ cðh; nÞ:

Combining the above three equalities yields

cðhþ k; nÞ ¼ cðh; nÞ þ cðk; nhÞ;

as desired. r

Corollary 2.6. Assume one of the following conditions:
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(a) m A MðKÞ is such that Qm as well as Qn is continuous on K, and

h :¼ Qm �Qn,

(b) h A CRðKÞ and m :¼ nh satisfies supp nH supp m.

Then for each 0a la 1,

nlh ¼ ð1� lÞnþ lm;

Sðnlh; nÞ ¼ l2Sðm; nÞ;

cðlh; nÞ ¼ �lnðhÞ þ l2Sðm; nÞ:

Proof. We just prove the case (b); the proof of the case (a) is similar. For

0 < l < 1 put ml :¼ ð1� lÞnþ lm, so we have supp ml ¼ supp m thanks to supp nH

supp m. From the characterization of m ¼ nh we have for some B A R

QmlðxÞ ¼ ð1� lÞQnðxÞ þ lQmðxÞ
bQnðxÞ þ lhðxÞ þ lB for all x A supp ml;

aQnðxÞ þ lhðxÞ þ lB for quasi-every x A K ;

�

which implies that ml ¼ nlh. By Corollary 2.4,

Sðnlh; nÞ ¼
nðlhÞ � ðð1� lÞnþ lmÞðlhÞ

2

¼ l2
nðhÞ � mðhÞ

2
¼ l2Sðm; nÞ;

cðlh; nÞ ¼ �nðlhÞ þ Sðnlh; nÞ ¼ �lnðhÞ þ l2Sðm; nÞ;

and the latter holds also for l ¼ 0; 1. r

As for the perturbation n 7! nh;S via relative entropy, supp nh;S ¼ supp n is

obvious and the formulas

Sðm; nh;SÞ ¼ Sðm; nÞ þ mðhÞ þ log nðe�hÞ; ð2:13Þ

ðnh;SÞk;S ¼ nhþk;S;

log nðe�ðhþkÞÞ ¼ log nðe�hÞ þ log nh;Sðe�kÞ

hold in general.

The relation between n and nh ¼ nh;S is more complicated than that between

n and nh;S. However, the formulas in Corollary 2.6 (though they do not generally

hold) are quite simple compared with those for nlh;S; in fact, nlh;S ð0a la 1Þ is

not a line segment, and ðd 2=dl2ÞSðnlh;S; nÞ and ðd 2=dl2ÞSðn; nlh;SÞ are non-

constant functions of l. The simple formulas for nlh;S in Corollary 2.6 cor-

respond to the flatness of the Riemannian metric induced by the free entropy (see

[14, Section 4]).

Free relative entropy for measures and a corresponding perturbation theory 693



The following example shows that the support assumptions in Corollaries

2.4, 2.6 and Proposition 2.5 cannot be removed.

Example 2.7. Let K :¼ ½�R;R� and n be the arcsine law on ½�R;R�, i.e.

n :¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2
p wð�R;RÞðxÞ dx: ð2:14Þ

We notice QnðxÞ1 2 logðR=2Þ and SðnÞ ¼ logðR=2Þ. For each r > 0 set hr A

CRð½�R;R�Þ by hrðxÞ :¼ 2x2=r2. For 0 < raR let wr be the semicircle law of

radius r, i.e.

wrðxÞ :¼
2

pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p

w½�r; r�ðxÞ dx:

Since Qwr
ðxÞ ¼ 2

Ð r

�r
wrðyÞ logjx� yj dy satisfies (see [18, Section IV.5])

Qwr
ðxÞ ¼ 2x2

r2
þ 2 log

r

2
� 1 if jxja r

and

Qwr
ðxÞ ¼ 2x2

r2
þ 2 log

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � r2
p

2

�

�

�

�

�

�

�

�

�

�

� 2jxj
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � r2
p

� 1

<
2x2

r2
þ 2 log

r

2
� 1 if jxj > r;

we see that wr ¼ nhr when 0 < raR. Furthermore, note that Qwr
is continuous

on ½�R;R�. On the other hand, for rbR let mr be a convex combination of wR

and n given by

mr :¼ 1� R2

r2

� �

nþ R2

r2
wR:

Recall ([10, Proposition 3.3]) that mr is a unique maximizer of the free entropy

SðmÞ under the constraint that m is supported in ½�R;R� and
Ð

x2 dmðxÞa
R2=2� R4=4r2. Since

Qmr
ðxÞ ¼ 1� R2

r2

� �

QnðxÞ þ
R2

r2
QwR

ðxÞ

¼ 2x2

r2
þ 2 log

R

2
� R2

r2
for jxjaR;

we have mr ¼ nhr when rbR.

One can explicitly compute

Sðnhr ; nÞ ¼ �SðnhrÞ � SðnÞ þ 2 log
R

2
¼ logðR=rÞ þ 1=4 if 0 < raR;

R4=4r4 if rbR;

�
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nðhrÞ � nhrðhrÞ

2
¼

R2=2r2 � 1=4 if 0 < raR;

R4=4r4 if rbR;

�

cðhr; nÞ ¼
logðr=RÞ � 3=4 if 0 < raR;

R4=4r4 � R2=r2 if rbR:

�

Hence all equalities in Corollaries 2.4 and 2.6 are confirmed when rbR (hence

supp nhr ¼ supp n ¼ ½�R;R�). Since logðR=rÞ þ 1=4 < R2=2r2 � 1=4 if 0 < r < R,

the assumption supp nH supp nh in Corollary 2.4 (also Corollary 2.6) is essential.

For rbR one has n ¼ ðmrÞ
�hr ¼ ðnhrÞ�hr because QnðxÞ ¼ QmrðxÞ � hrðxÞ þ R2=r2

for jxjaR. However, for 0 < r < R one cannot choose a constant B A R such

that QnðxÞ ¼ Qwr
ðxÞ � hrðxÞ þ B for jxjaR; hence n0 ðwrÞ

�hr ¼ ðnhrÞ�hr . This

says that the assumption suppðnhÞk H supp nh in Proposition 2.5 is essential.

But, of course, n ¼ ðwrÞ
h for h :¼ �Qwr

. So, both supp nH supp nh and supp nI

supp nh can occur in general.

The next proposition gives a simple su‰cient condition for m A MðKÞ to be a

perturbed probability measure of n.

Proposition 2.8. If m A MðKÞ satisfies ma an for some constant ab 1, then

QmðxÞ :¼ 2
Ð

logjx� yj dmðyÞ is continuous on K and there exists an h A CRðKÞ

such that m ¼ nh.

Proof. It is enough to prove the first assertion. Indeed, we then have

h :¼ Qm �Qn A CRðKÞ and

2

ð

logjx� yj dmðyÞ ¼ QmðxÞ ¼ QnðxÞ þ hðxÞ for all x A K ;

showing m ¼ nh.

Let x0 A K and e > 0. Since y 7! logjy� x0j is integrable with respect to n,

one can choose 0 < d < 1 such that

ð0bÞ

ð

KVfjy�x0jadg

logjy� x0j dnðyÞb�e: ð2:15Þ

Furthermore, one can choose d0 > 0 such that if x A K and jx� x0ja d0, then

1

2
jQnðxÞ �Qnðx0Þja e; ð2:16Þ

ð

KVfjy�xj>dg

logjy� xj dnðyÞ �

ð

KVfjy�x0j>dg

logjy� x0j dnðyÞ

�

�

�

�

�

�

�

�

�

�

a e; ð2:17Þ

ð

KVfjy�xj>dg

logjy� xj dmðyÞ �

ð

KVfjy�x0j>dg

logjy� x0j dmðyÞ

�

�

�

�

�

�

�

�

�

�

a e: ð2:18Þ
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In the above, the estimate (2.17) follows because the Lebesgue bounded con-

vergence theorem yields

lim
x!x0

ð

KVfjy�x0j>dg

logjy� xj dnðyÞ ¼

ð

KVfjy�x0j>dg

logjy� x0j dnðyÞ

and

lim
x!x0

ð

KVfjy�xj>dg

�

ð

KVfjy�x0j>dg

 !

logjy� xj dnðyÞ ¼ 0:

The estimate (2.18) is similar. Assume x A K and jx� x0ja d0; then by (2.16)

and (2.17)

ð

KVfjy�xjadg

logjy� xj dnðyÞ �

ð

KVfjy�x0jadg

logjy� x0j dnðyÞ

�

�

�

�

�

�

�

�

�

�

a jQnðxÞ �Qnðx0Þj

þ

ð

KVfjy�xj>dg

logjy� xj dnðyÞ �

ð

KVfjy�x0j>dg

logjy� x0j dnðyÞ

�

�

�

�

�

�

�

�

�

�

a 2e;

and hence

ð

KVfjy�xjadg

logjy� xj dnðyÞb

ð

KVfjy�x0jadg

logjy� x0j dnðyÞ � 2eb�3e ð2:19Þ

thanks to (2.15). From d < 1 and the assumption ma an we have

1

2
jQmðxÞ �Qmðx0Þj

a

ð

KVfjy�xj>dg

logjy� xj dmðyÞ �

ð

KVfjy�x0j>dg

logjy� x0j dmðyÞ

�

�

�

�

�

�

�

�

�

�

�

ð

KVfjy�xjadg

logjy� xj dmðyÞ �

ð

KVfjy�x0jadg

logjy� x0j dmðyÞ

a e� a

ð

KVfjy�xjadg

logjy� xj dnðyÞ � a

ð

KVfjy�x0jadg

logjy� x0j dnðyÞ

a eþ 3aeþ ae ¼ ð1þ 4aÞe

by (2.18), (2.19) and (2.15). Hence QmðxÞ is continuous at each x0 A K . r
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Under the assumption ma an in the above proposition, Qm and Qn can be

compared as follows.

Lemma 2.9. If m A MðKÞ satisfies ma an for some ab 1, then

QmðxÞb aQnðxÞ þ 2ð1� aÞ logR ðx A KÞ;

where R is the diameter of K.

Proof. Choose c A R such that KH ½c� R=2; cþ R=2�, and transform K

and m; n to K 0 ðH ½�1=2; 1=2�Þ and m 0; n 0 A MðK 0Þ via the a‰ne transformation

x 7! ðx� cÞ=R, so ma an implies m 0
a an 0. Then for every x A K 0 we estimate

Qmðcþ RxÞ ¼ 2

ð

K

logjðcþ RxÞ � yj dmðyÞ

¼ 2

ð

K 0

logjðcþ RxÞ � ðcþ RyÞj dm 0ðyÞ

¼ 2

ð

K 0

logjx� yj dm 0ðyÞ þ logR

� �

b 2 a

ð

K 0

logjx� yj dn 0ðyÞ þ logR

� �

¼ 2 a

ð

K

logjðcþ RxÞ � yj dnðyÞ � logR

� �

þ logR

� �

¼ aQnðcþ RxÞ þ 2ð1� aÞ logR;

showing the desired conclusion. r

Corollary 2.10. If m A MðKÞ satisfies bna ma an for some constants

0 < ba 1a a, then there exists an h A CRðKÞ such that m ¼ nh and

ð1� aÞð2 logR�QnÞa ha ð1� bÞð2 logR�QnÞ;

where R is the diameter of K. (Note Qna 2 logR.)

Proof. By Proposition 2.8 and Lemma 2.9, Qm A CRðKÞ and

QmðxÞb aQnðxÞ þ 2ð1� aÞ logR ðx A KÞ:

Since na b�1m, the roles of m; n can be interchanged so that

QnðxÞb b�1QmðxÞ þ 2ð1� b�1Þ logR;

that is,

QmðxÞa bQnðxÞ þ 2ð1� bÞ logR ðx A KÞ:
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Hence the required estimates are satisfied for h :¼ Qm �Qn, and we have m ¼ nh

for this h. r

Corollary 2.11. If m A MðKÞ satisfies bna ma an for some 0 < ba 1a a,

then

Sðm; nÞa ðaða� 1Þ þ ð1� bÞÞðlogR� SðnÞÞ:

Proof. Corollary 2.10 gives

nðhÞa ð1� bÞð2 logR� nðQnÞÞ ¼ 2ð1� bÞðlogR� SðnÞÞ;

mðhÞb ð1� aÞmð2 logR�QnÞ

b að1� aÞnð2 logR�QnÞ ¼ 2að1� aÞðlogR� SðnÞÞ:

Hence by Corollary 2.4 we have

Sðm; nÞa
nðhÞ � mðhÞ

2
a ðaða� 1Þ þ ð1� bÞÞðlogR� SðnÞÞ:

(Note SðnÞa logðR=4Þ, see Example 2.7). r

3. Convergence of perturbed measures.

As in the previous section, let K be a compact subset of R and n A MðKÞ be

such that Q ¼ Qn A CRðKÞ. The aim of this section is to show the continuity

properties (with respect to h) of the perturbation nh introduced in the previous

section.

Set

MSðKÞ :¼ fm A MðKÞ : SðmÞ > �yg;

and for m1; m2 A MSðKÞ define

dðm1; m2Þ :¼ Sðm1; m2Þ
1=2

A ½0;þyÞ:

The next lemma is an application of the series expansions of the function

x 7!
Ð
logjx� yj dmðyÞ and of the free entropy SðmÞ due to Haagerup [8], and it

will play a key role in the proof of the following theorem.

Lemma 3.1. The above defined dðm1; m2Þ is a metric on MSðKÞ and the

d-topology is stronger than the weak topology (restricted on MSðKÞ).

Proof. The free relative entropy Sðm1; m2Þ is symmetric and strictly posi-

tive as stated at the end of Section 1. To prove the triangular inequality of

Sðm1; m2Þ
1=2, we may assume K ¼ ½�R;R� without loss of generality. First, as-

sume K ¼ ½�2; 2� and set
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Lrðx; yÞ :¼ �
X

y

n¼1

2rn

n
Tn

x

2

� �

Tn

y

2

� �

for 0 < r < 1 and x; y A ½�2; 2�, where Tn’s are the Chebyshev polynomials of the

first kind. In [8] Haagerup estimated

2 log 2bLrðx; yÞ ¼
1

2
logðð1� r2Þ2 þ r2ðx2 þ y2Þ � rð1þ r2ÞxyÞ

b logjx� yj þ 2 log
1þ r

2
;

and showed the series expansion

SðmÞ ¼ �
X

y

n¼1

2

n

ð2

�2

Tn

x

2

� �

dmðxÞ

� �2

ð3:1Þ

for every m A Mð½�2; 2�Þ. When m1; m2 A MSð½�2; 2�Þ, since logjx� yj is integrable

with respect to djm1 � m2jðxÞ djm1 � m2jðyÞ and Lrðx; yÞ ! logjx� yj as r % 1, the

Lebesgue convergence theorem yields

Sðm1; m2Þ ¼ �

ðð

logjx� yj dðm1 � m2ÞðxÞ dðm1 � m2ÞðyÞ

¼ lim
r%1

�

ðð

Lrðx; yÞ dðm1 � m2ÞðxÞ dðm1 � m2ÞðyÞ

� �

¼
X

y

n¼1

2

n

ð2

�2

Tn

x

2

� �

dðm1 � m2ÞðxÞ

� �2

:

For m1; m2 A MSð½�R;R�Þ let ~mmi :¼ miððR=2Þ�Þ A MSð½�2; 2�Þ. Then, since

Sðm1; m2Þ ¼ Sð~mm1; ~mm2Þ, the above formula is transformed to

Sðm1; m2Þ ¼
X

y

n¼1

2

n

ðR

�R

Tn

x

R

� �

dðm1 � m2ÞðxÞ

� �2

: ð3:2Þ

Now the triangular inequality of Sðm1; m2Þ
1=2 is obvious. If m; mk A MSð½�R;R�Þ

and Sðmk; mÞ ! 0, then one can see from (3.2) that mkðpÞ ! mðpÞ for any poly-

nomial p, which says that mk ! m in w*-topology. So the d-topology is stronger

than the w*-topology (or the weak topology). r

Remark 3.2. Concerning the above metric dðm1; m2Þ on MSðKÞ it is worth

noting that the d-topology is strictly stronger than the w*-topology and ðMSðKÞ; dÞ

is a non-compact Polish space. Indeed, we may assume K ¼ ½�2; 2�, and let n
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be the arcsine law (2.14) with R ¼ 2. For 0 < d; e < 1 let n1 be the uniform

distribution on ½2� d; 2� and m1 :¼ ð1� eÞnþ en1. Then m1 A MSð½�2; 2�Þ and

km1 � nka 2e. But, since
Ð 2

�2 Tnðx=2Þ dnðxÞ ¼ 0 for all n A N , we get

Sðm1; nÞ ¼ e2
X

y

n¼1

2

n

ð2

�2

Tn

x

2

� �

dðn1 � nÞðxÞ

� �2

¼ e2
X

y

n¼1

2

n

1

d

ð2

2�d

Tn

x

2

� �

dx

� �2

;

which can be arbitrarily large as d ! þ0 (for any e fixed). Therefore, one can

choose a sequence fmkg in MSð½�2; 2�Þ such that kmk � nk ! 0 (hence mk ! n in

w*-topology) but Sðmk; nÞ ! þy. (Incidentally, one can get a sequence fm 0
kg in

MSð½�2; 2�Þ such that Sðm 0
k; nÞ ! 0 and km 0

k � nk != 0, unlike the relative entropy

case, see [4], [9].)

Next, let fmkg be a d-Cauchy sequence in MSð½�2; 2�Þ. By (3.2) this means

that

ð 2

�2

Tn

x

2

� �

dmkðxÞ

� �y

n¼1

ðk A NÞ

form a Cauchy sequence in l
2ð1=nÞ, the l

2-space with respect to the sequence

ð1=nÞ. Hence the above sequence converges as k ! y to some ðanÞ A l
2ð1=nÞ in

the norm of l
2ð1=nÞ, so the limit mðpÞ :¼ limk!y mkðpÞ exists for every poly-

nomial p. Since jmðpÞja kpk
y
, m extends to a bounded linear functional on

CRð½�2; 2�Þ and mk ! m in w*-topology. We get

an ¼ lim
k!y

ð 2

�2

Tn

x

2

� �

dmkðxÞ ¼

ð2

�2

Tn

x

2

� �

dmðxÞ ðn A NÞ

so that by (3.1)

SðmÞ ¼ �
X

y

n¼1

2

n

ð2

�2

Tn

x

2

� �

dmðxÞ

� �2

¼ �
X

y

n¼1

2

n
a2n > �y:

This implies that m A MSð½�2; 2�Þ and dðmk; mÞ ! 0. Since ðMSð½�2; 2�Þ; dÞ is iso-

metrically imbedded in l
2ð1=nÞ, it is separable. Furthermore, since MSð½�2; 2�Þ

is a w*-dense proper subset of Mð½�2; 2�Þ as easily seen, there is a sequence in

MSð½�2; 2�Þ converging to an element in Mð½�2; 2�ÞnMSð½�2; 2�Þ in w*-topology.

Then this cannot have a subsequence converging in d-topology, so ðMSð½�2; 2�Þ; dÞ

is not compact.
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Theorem 3.3. If h; hn A CRðKÞ, n A N , satisfy khn � hk ! 0, then the fol-

lowing convergences hold:

(i) cðhn; nÞ ! cðh; nÞ.

(ii) Sðnhn ; mÞ ! Sðnh; mÞ for every m A MSðKÞ; in particular, Sðnhn ; nhÞ ! 0.

(iii) nhn ! nh weakly.

(iv) nhnðhnÞ ! nhðhÞ.

(v) SðnhnÞ ! SðnhÞ.

Proof. (i) is obvious from (2.3).

(ii) By (2.9) we have

0aSðnh; nhnÞaSðnh; nÞ þ nhðhnÞ þ cðhn; nÞ;

and this right-hand side tends to

Sðnh; nÞ þ nhðhÞ þ cðh; nÞ ¼ 0

thanks to (i) and (2.5). Hence Sðnhn ; nhÞ ! 0. For every m A MSðKÞ, since

Lemma 3.1 implies that

jSðnhn ; mÞ1=2 � Sðnh; mÞ1=2jaSðnhn ; nhÞ1=2;

we get Sðnhn ; mÞ ! Sðnh; mÞ.

(iii) is a consequence of (ii) and Lemma 3.1.

(iv) follows from

jnhnðhnÞ � nhðhÞja jnhnðhnÞ � nhnðhÞj þ jnhnðhÞ � nhðhÞj

a khn � hnk þ jnhnðhÞ � nhðhÞj ! 0

thanks to (iii).

(v) We apply (2.6) to have

SðnhnÞ ¼ cðhn; nÞ � SðnÞ þ nhnðQþ hnÞ

! cðh; nÞ � SðnÞ þ nhðQþ hÞ ¼ SðnhÞ

due to (i), (iii) and (iv). r

Concerning the perturbation nh;S via relative entropy, the continuity of

h 7! nh;S can be straightforwardly seen from the explicit formula nh;S ¼

ðe�h=nðe�hÞÞn. In fact, when h; hn A CRðKÞ and hn ! h boundedly pointwise, i.e.

supnkhnk < þy and hnðxÞ ! hðxÞ for every x A K , one gets the w*-convergence

nhn;S ! nh;S by the Lebesgue bounded convergence theorem.
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The next proposition says that the weak convergence and the d-convergence

are equivalent for a sequence fmng in MðKÞ such that mn’s are uniformly

dominated by n.

Proposition 3.4. Let m; mn A MðKÞ, n A N , and assume that there is an ab 1

such that mna an for all n A N . Then mn ! m weakly if and only if Sðmn; mÞ ! 0.

In this case, SðmnÞ ! SðmÞ and Sðmn; m
0Þ ! Sðm; m 0Þ for every m 0

A MSðKÞ.

Proof. First, assume that Sðmn; mÞ ! 0. Proposition 2.8 implies that Qmn A

CRðKÞ for n A N . Hence, by (2.7) with mn in place of n, we get

Sðm; mnÞ ¼ �SðmÞ � SðmnÞ þ mðQmnÞ: ð3:3Þ

This implies m A MSðKÞ as well as mn A MSðKÞ. Hence the weak convergence

mn ! m follows from Lemma 3.1.

Conversely, assume that mn ! m weakly. Then ma an holds as well, so

Qm A CRðKÞ by Proposition 2.8. Since as (3.3) we have

Sðmn; mÞ ¼ �SðmnÞ � SðmÞ þ mnðQmÞ;

it su‰ces for Sðmn; mÞ ! 0 to prove SðmnÞ ! SðmÞ. Indeed, we then obtain

Sðmn; mÞ ! �2SðmÞ þ mðQmÞ ¼ 0:

Now let us prove that SðmnÞ ! SðmÞ. For any e > 0 choose 0 < d < 1 such

that

ðð

fjx�yj<dg

jlogjx� yj j dnðxÞ dnðyÞa e:

We estimate

jSðmnÞ � SðmÞja

ðð

logjx� yj dðmn � mÞðxÞ dmnðyÞ

�

�

�

�

�

�

�

�

þ

ðð

logjx� yj dmðxÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

a

ð ð

logjx� yj dðmn � mÞðxÞ

�

�

�

�

�

�

�

�

dmnðyÞ

þ

ð ð

logjx� yj dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

dmðxÞ

a 2a

ð ð

logjx� yj dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

dnðxÞ
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and

ð

logjx� yj dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

a

ð

logðjx� yj4dÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

þ

ð

ðlogðjx� yj4dÞ � logjx� yjÞ dðmn þ mÞðyÞ

a

ð

logðjx� yj4dÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

þ 2a

ð

fjx�yj<dg

jlogjx� yj j dnðyÞ:

Therefore,

jSðmnÞ � SðmÞja 2a

ð ð

logðjx� yj4dÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

dnðxÞ

þ 4a2
ðð

fjx�yj<dg

jlogjx� yj j dnðxÞ dnðyÞ:

Since mn ! m weakly, we have

lim
n!y

ð

logðjx� yj4dÞ dðmn � mÞðyÞ ¼ 0 ðx A KÞ

and

sup
x AK

ð

logðjx� yj4dÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

< þy;

so the Lebesgue bounded convergence theorem yields

lim
n!y

ð ð

logðjx� yj4dÞ dðmn � mÞðyÞ

�

�

�

�

�

�

�

�

dnðxÞ ¼ 0:

Hence

lim sup
n!y

jSðmnÞ � SðmÞja 4a2e;

implying SðmnÞ ! SðmÞ.

It remains to show that Sðmn; m
0Þ ! Sðm; m 0Þ for every m 0 A MSðKÞ whenever

mn; m A MSðKÞ and Sðmn; mÞ ! 0. But this is immediate from Lemma 3.1 as in

the proof (ii) of Theorem 3.3. r

As for relative entropy, it is known that if mn; nn are probability measures on

R such that kmn � mk ! 0, knn � nk ! 0 and there is an a > 0 such that mna ann
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for all n A N , then Sðmn; nnÞ ! Sðm; nÞ. (This is true in the operator algebra set-

ting, see [1, Theorem 3.7].) However, this fails to hold for free relative entropy;

one can easily provide an example of mn; nn A MSðKÞ such that kmn � nk ! 0,

knn � nk ! 0 and mna ann for all n A N , but Sðmn; nnÞ != 0.

4. From relative entropy to free relative entropy.

In this section, given n and h as before, for each n we consider an n� n

selfadjoint random matrix naturally perturbed via relative entropy, and show that

the perturbed measure nh via free relative entropy is the limit distribution of the

empirical eigenvalue distributions of perturbed random matrices as the size n goes

to y. In so doing, we can also express the free relative entropy Sðnh; nÞ as the

limit (with normalization) of the relative entropy defined on the matrix space

M sa
n .

Throughout this section, we assume for simplicity that K is a finite interval

½�R;R�. Let n A Mð½�R;R�Þ be fixed so that Q ¼ Qn in (1.14) is a continuous

function on ½�R;R�. For each n A N we simply write lnðnÞ for the probability

measure lnðn;RÞ ¼ lnðQ;RÞ on ðM sa
n ÞR given in (1.9)–(1.12). Here note that

ðM sa
n ÞR is a compact subset of M sa

n being identified with a Euclidean space

R
n2

. For a given h A CRð½�R;R�Þ and n A N , let fnðhÞ denote a real continuous

function on ðM sa
n ÞR defined by

fnðhÞðAÞ :¼ n2 trnðhðAÞÞ for A A ðM sa
n ÞR; ð4:1Þ

where hðAÞ is defined via functional calculus and trn is the normalized trace on

Mn. Then one can get the probability measure lnðnÞ
fnðhÞ;S on ðM sa

n ÞR which is

the perturbed measure of lnðnÞ by fnðhÞ via relative entropy; namely, lnðnÞ
fnðhÞ;S

is a unique maximizer of the functional

�hðfnðhÞÞ � Sðh; lnðnÞÞ for h A MððM sa
n ÞRÞ;

where MððM sa
n ÞRÞ is the set of all probability Borel measures on ðM sa

n ÞR. In

fact, as mentioned after Theorem 2.2, it is given by

lnðnÞ
fnðhÞ;S ¼

e�fnðhÞ

lnðnÞðe�fnðhÞÞ
lnðnÞ ð4:2Þ

and

�lnðnÞ
fnðhÞ;SðfnðhÞÞ � SðlnðnÞ

fnðhÞ;S; lnðnÞÞ ¼ log lnðnÞðe
�fnðhÞÞ: ð4:3Þ

In the sequel we use the following notations for short:

DðxÞ :¼
Y

i<j

ðxi � xjÞ
2; dx :¼ dx1dx2 � � � dxn:
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Lemma 4.1. With the above notations,

lnðnÞ
fnðhÞ;S ¼ lnðQþ h;RÞ;

that is, lnðnÞ
fnðhÞ;S is invariant under unitary conjugation and its joint eigenvalue

distribution is

~llnðQþ h;RÞ ¼
1

ZnðQþ h;RÞ
exp �n

X

n

i¼1

ðQðxiÞ þ hðxiÞÞ

 !

DðxÞ
Y

n

i¼1

w½�R;R�ðxiÞ dx;

ð4:4Þ

where ZnðQþ h;RÞ is defined by (1.10) with Qþ h in place of Q. Furthermore,

lnðnÞðe
�fnðhÞÞ ¼

ZnðQþ h;RÞ

ZnðQ;RÞ
: ð4:5Þ

Proof. Since it is obvious from the definition (4.1) that fnðhÞ is invariant

under unitary conjugation, so is the measure lnðnÞ
fnðhÞ;S due to the expression

(4.2). Since lnðnÞ ¼ lnðQ;RÞ has the joint eigenvalue distribution (1.9) and by

(4.1)

fnðhÞðAÞ ¼ n
X

n

i¼1

hðxiÞ

for the eigenvalues x1; x2; . . . ; xn of A A ðM sa
n ÞR, we get

lnðnÞðe
�fnðhÞÞ ¼

1

ZnðQ;RÞ

ðR

�R

� � �

ðR

�R

exp �n
X

n

i¼1

ðQðxiÞ þ hðxiÞÞ

 !

DðxÞ dx

¼
ZnðQþ h;RÞ

ZnðQ;RÞ
:

This and (4.2) imply that the joint eigenvalue distribution of lnðnÞ
fnðhÞ;S is

(4.4). r

The measure lnðnÞ
fnðhÞ;S on ðM sa

n ÞR may be considered as an n� n selfadjoint

random matrix which is a perturbation of lnðnÞ via relative entropy. The next

theorem says that this perturbation of lnðnÞ via relative entropy on the matrix

space approaches asymptotically as n ! y to nh ð¼nh;SÞ, the perturbation of n

via free relative entropy. In particular, it justifies our formulation of free

relative entropy. In the theorem we actually treat a sequence of perturbed

measures lnðnÞ
fnðhnÞ;S determined by separate hn A CRð½�R;R�Þ for each n sat-

isfying khn � hk ! 0. The proof is based on the large deviation result presented

in Theorem 1.1.
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Theorem 4.2. Let n A Mð½�R;R�Þ be as above. If h; hn A CRð½�R;R�Þ,

n A N , satisfy khn � hk ! 0, then the following hold:

(i) The empirical eigenvalue distribution of lnðnÞ
fnðhnÞ;S converges almost

surely to nh as n ! y in weak topology.

(ii)

nhðhÞ ¼ lim
n!y

1

n2
lnðnÞ

fnðhnÞ;SðfnðhnÞÞ: ð4:6Þ

(iii)

Sðnh; nÞ ¼ lim
n!y

1

n2
SðlnðnÞ

fnðhnÞ;S
; lnðnÞÞ: ð4:7Þ

(iv) With BðQ;RÞ defined by (1.13) and BðQþ h;RÞ similarly with Qþ h in

place of Q,

cðh; nÞ ¼ lim
n!y

1

n2
log lnðnÞðe

�fnðhnÞÞ ¼ BðQþ h;RÞ � BðQ;RÞ: ð4:8Þ

(v)

nðhÞ � nhðhÞ � Sðnh; nÞ ¼ lim
n!y

1

n2
SðlnðnÞ; lnðnÞ

fnðhnÞ;SÞ:

Hence, if supp nH supp nh, then

Sðnh; nÞ ¼ lim
n!y

1

n2
SðlnðnÞ; lnðnÞ

fnðhnÞ;SÞ:

Proof. First, note that n is the minimizer of the rate function in Theorem

1.1, and the definition of nh in Section 2 means that nh is the minimizer of the

rate function when Q is replaced by Qþ h in Theorem 1.1. (With the notation

in Lemma 2.1, nh ¼ mQþh as well as n ¼ mQ.) Hence Theorem 1.1 implies the

following:

�SðnÞ þ nðQÞ þ BðQ;RÞ ¼ 0; ð4:9Þ

BðQ;RÞ ¼ lim
n!y

1

n2
logZnðQ;RÞ; ð4:10Þ

�SðnhÞ þ nhðQþ hÞ þ BðQþ h;RÞ ¼ 0; ð4:11Þ

BðQþ h;RÞ ¼ lim
n!y

1

n2
logZnðQþ hn;RÞ: ð4:12Þ

(i) By Lemma 4.1 the measure (or a selfadjoint random matrix) lnðnÞ
fnðhnÞ;S

has the joint eigenvalue distribution ~llnðQþ hn;RÞ given in (4.4) with hn in place
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of h. Theorem 1.1 (applied to Qþ hn instead of Qn) says that the empirical

distribution of ~llnðQþ hn;RÞ converges almost surely to nh as n ! y in weak

topology. This implies the assertion.

(ii) By Lemma 4.1 and (4.1),

1

n2
lnðnÞ

fnðhnÞ;SðfnðhnÞÞ ¼

ðR

�R

� � �

ðR

�R

1

n

X

n

i¼1

hnðxiÞ

 !

d~llnðQþ hn;RÞðxÞ:

Theorem 1.1 tells us that if ðx1; . . . ; xnÞ is distributed subject to ~llnðQþ hn;RÞ,

then for every f A CRð½�R;R�Þ the random variable

1

n

X

n

i¼1

f ðxiÞ ¼
dðx1Þ þ � � � þ dðxnÞ

n

� �

ð f Þ

converges almost surely to nhð f Þ as n ! y. Since khn � hk ! 0, this shows

that

lim
n!y

1

n

X

n

i¼1

hnðxiÞ ¼ nhðhÞ almost surely

so that (4.6) follows by the Lebesgue dominated convergence theorem.

(iii) Since by (4.3) and (4.5)

�lnðnÞ
fnðhnÞ;SðfnðhnÞÞ � SðlnðnÞ

fnðhnÞ;S; lnðnÞÞ

¼ logZnðQþ hn;RÞ � logZnðQ;RÞ;

it follows from (4.6), (4.10) and (4.12) that limn!yð1=n2ÞSðlnðnÞ
fnðhnÞ;S; lnðnÞÞ

exists, and we have

�nhðhÞ � lim
n!y

1

n2
SðlnðnÞ

fnðhnÞ;S; lnðnÞÞ

¼ BðQþ h;RÞ � BðQ;RÞ

¼ SðnhÞ � nhðQþ hÞ � SðnÞ þ nðQÞ ð4:13Þ

thanks to (4.9) and (4.11). Therefore,

lim
n!y

1

n2
SðlnðnÞ

fnðhnÞ;S; lnðnÞÞ ¼ �SðnhÞ þ SðnÞ þ nhðQÞ � nðQÞ

¼ �SðnhÞ � SðnÞ þ nhðQÞ

¼ Sðnh; nÞ

due to (2.7). Hence (iii) follows.
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(iv) By (2.5), (4.13), (4.12) and (4.5) we furthermore have

cðh; nÞ ¼ �nhðhÞ � Sðnh; nÞ

¼ BðQþ h;RÞ � BðQ;RÞ

¼ lim
n!y

1

n2
log

ZnðQþ hn;RÞ

ZnðQ;RÞ

¼ lim
n!y

1

n2
log lnðnÞðe

�fnðhnÞÞ; ð4:14Þ

as desired.

(v) By (2.13),

SðlnðnÞ; lnðnÞ
fnðhnÞ;SÞ ¼ lnðnÞðfnðhnÞÞ þ log lnðnÞðe

�fnðhnÞÞ:

Theorem 1.1 implies as (4.6) that

lim
n!y

1

n2
lnðnÞðfnðhnÞÞ ¼ nðhÞ:

These together with (4.14) give

lim
n!y

1

n2
SðlnðnÞ; lnðnÞ

fnðhnÞ;SÞ ¼ nðhÞ � nhðhÞ � Sðnh; nÞ:

If supp nH supp nh, then by Corollary 2.4

nðhÞ � nhðhÞ � Sðnh; nÞ ¼ Sðnh; nÞ:

Hence (v) is obtained. r

Besides its conceptual importance, Theorem 4.2 supplies the asymptotic

formulas of nhðhÞ and cðh; nÞ (when hn ¼ h for all n); thus we obtain the

asymptotic formula of Sðnh; nÞ ¼ �nhðhÞ � cðh; nÞ. In particular, we state the

following:

Corollary 4.3. Let m; n be compactly supported probability measures on R

such that Qm and Qn are continuous. Then for any R > 0 with supp m, supp nH

½�R;R�,

Sðm; nÞ

¼ lim
n!y

Ð R

�R
� � �

Ð R

�R
ðð1=nÞ

Pn
i¼1ðQnðxiÞ �QmðxiÞÞÞ expð�n

Pn
i¼1 QmðxiÞÞDðxÞ dx

Ð R

�R
� � �

Ð R

�R
expð�n

Pn
i¼1 QmðxiÞÞDðxÞ dx

þ lim
n!y

1

n2
log

Ð R

�R
� � �

Ð R

�R
expð�n

Pn
i¼1 QnðxiÞÞDðxÞ dx

Ð R

�R
� � �

Ð R

�R
expð�n

Pn
i¼1 QmðxiÞÞDðxÞ dx

:
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Proof. Set hn ¼ h :¼ Qm �Qn. Then the assumption implies m ¼ nh. The

first limit is an explicit expression of �nhðhÞ from (4.13), and the second limit is

a rewriting of �cðh; nÞ from (4.8). r

The free relative entropy Sðm; nÞ is symmetric in its two variables unlike the

relative entropy, while the formula in Corollary 4.3 does not seem symmetric in m

and n as it stands. On the other hand, the perturbation via relative entropy is

symmetric in the sense that if m is the perturbation of n by h, then n is the

perturbation of m by �h. This type of symmetry does not hold in the per-

turbation via free relative entropy as was verified in Example 2.7, even though

the limiting procedure from the perturbation via relative entropy to that via free

relative entropy was established in Theorem 4.2.

5. Specialization to free entropy.

In this section let us work on a finite interval ½�R;R� as in the previous

section. Let s be the arcsine law on ½�R;R� given in (2.14). Then QsðxÞ1

2 logðR=2Þ and SðsÞ ¼ logðR=2Þ as remarked in Example 2.7, and

Sðm; sÞ ¼ �SðmÞ þ log
R

2
for m A Mð½�R;R�Þ: ð5:1Þ

On the other hand, if m is the uniform distribution on ½�R;R� (i.e. m ¼ dx=2R),

then

Sðm;mÞ ¼ �SðmÞ þ logð2RÞ for m A Mð½�R;R�Þ:

Thus, the arcsine law can be considered as the free probabilistic analogue of

the uniform distribution, and the minus free entropy is a special case (up to an

additive constant) of free relative entropy while the minus Boltzmann-Gibbs

entropy is a special case of relative entropy. The aim of this section is to find

the exact forms when the previous results for free relative entropy are specialized

via (5.1) to free entropy.

Define the Legendre transform of �SðmÞ for m A Mð½�R;R�Þ as

PðhÞ :¼ supf�mðhÞ þ SðmÞ : m A Mð½�R;R�Þg

for each h A CRð½�R;R�Þ. The following formula is clear from (5.1):

PðhÞ ¼ cðh; sÞ þ log
R

2
for h A CRð½�R;R�Þ: ð5:2Þ

For every h A CRð½�R;R�Þ let sh denote the unique maximizer (guaranteed by

Lemma 2.1) of �mðhÞ þ SðmÞ for m A Mð½�R;R�Þ so that
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�shðhÞ þ SðshÞ ¼ PðhÞ:

In fact, it is obvious from (5.1) that this sh is nothing but the perturbed prob-

ability measure of s by h as defined in Section 2. Hence it is straightforward to

translate (or specialize) all the results in Sections 2 and 3 to the case of SðmÞ and

PðhÞ. For instance, we have the following:

(i) P is a decreasing convex function on CRð½�R;R�Þ satisfying

�sðhÞ þ log
R

2
aPðhÞa khk þ log

R

2

and

jPðh1Þ �Pðh2Þja kh1 � h2k

for all h; h1; h2 A CRð½�R;R�Þ.

(ii) For every m A Mð½�R;R�Þ,

SðmÞ ¼ inffmðhÞ þPðhÞ : h A CRð½�R;R�Þg:

(iii) For h A CRð½�R;R�Þ and m A Mð½�R;R�Þ, m ¼ sh if and only if

Pðhþ kÞbPðhÞ � mðkÞ for all k A CRð½�R;R�Þ:

We finally adapt the results in Section 4 to the free entropy case. For n A N

let Ln;R denote the restriction of the Lebesgue measure Ln (see Section 1) on

ðM sa
n ÞR. Since QsðxÞ is constant, the probability measure lnðsÞ :¼ lnðs;RÞ on

ðM sa
n ÞR is nothing but the normalization of the restriction of Ln on ðM sa

n ÞR:

lnðsÞ ¼
1

LnððM sa
n ÞRÞ

LnjðM sa
n ÞR

; ð5:3Þ

and it induces the joint eigenvalue distribution on ½�R;R�n

~llnðs;RÞ ¼
1

Znðs;RÞ
DðxÞ

Yn
i¼1

w½�R;R�ðxiÞ dx

with

Znðs;RÞ ¼

ðR

�R

� � �

ðR

�R

DðxÞ dx:

Note ([13, p. 240]) that

lim
n!y

1

n2
logZnðs;RÞ ¼ log

R

2
: ð5:4Þ
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Let h be a probability measure on ðM sa
n ÞR. The Boltzmann-Gibbs entropy

of h can be defined as

SðhÞ :¼ �Sðh;LnÞ; ð5:5Þ

where Sðh;LnÞ is the relative entropy of h with respect to Ln. The measure h is

also considered as an n� n selfadjoint random matrix and it induces a distri-

bution on R
n2 via the isometry M sa

n GR
n2 mentioned in Section 1. Then the

entropy (5.5) is indeed equal to the usual Boltzmann-Gibbs entropy of the in-

duced distribution on R
n2

. From (5.3) one can rewrite (5.5) as

SðhÞ ¼ �Sðh; lnðsÞÞ þ logLnððM
sa
n ÞRÞ: ð5:6Þ

It is known ([13, p. 240]) that the measure on R
n induced by Ln is

CnDðxÞ dx with Cn :¼
ð2pÞnðn�1Þ=2

Qn
j¼1 j!

;

and

lim
n!y

1

n2
logCn þ

1

2
log n

� �

¼
1

2
logð2pÞ þ

3

4
: ð5:7Þ

Under the above preparations we show the next theorem.

Theorem 5.1. If h; hn A CRð½�R;R�Þ, n A N , satisfy khn � hk ! 0, then the

following hold:

(i)

SðshÞ þ
1

2
logð2pÞ þ

3

4
¼ lim

n!y

1

n2
Sðlnðhn;RÞÞ þ

1

2
log n

� �

:

(ii)

shðhÞ ¼ lim
n!y

Ð R

�R
� � �
Ð R

�R
ðð1=nÞ

Pn
i¼1 hnðxiÞÞ expð�n

Pn
i¼1 hnðxiÞÞDðxÞ dx

Ð R

�R
� � �
Ð R

�R
expð�n

Pn
i¼1 hnðxiÞÞDðxÞ dx

:

(iii)

PðhÞ ¼ lim
n!y

1

n2
log

ðR

�R

� � �

ðR

�R

exp �n
X

n

i¼1

hnðxiÞ

 !

DðxÞ dx:

Proof. (i) Since lnðsÞ
fnðhnÞ;S ¼ lnðhn;RÞ by Lemma 4.1, it follows from

(4.7), (5.1) and (5.6) that
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�SðshÞ þ log
R

2
¼ lim

n!y

1

n2
½�Sðlnðhn;RÞÞ þ logLnððM

sa

n
Þ
R
Þ�:

Since by (5.4) and (5.7)

lim
n!y

1

n2
logLnððM

sa

n
Þ
R
Þ þ

1

2
log n

� �

¼ lim
n!y

1

n2
logZnðs;RÞ þ

1

n2
logCn þ

1

2
log n

� �

¼ log
R

2
þ
1

2
logð2pÞ þ

3

4
;

we have the desired formula.

(ii) By (4.6) and (4.1) we get

shðhÞ ¼ lim
n!y

1

n2
lnðhn;RÞðfnðhnÞÞ

¼ lim
n!y

ð

R

�R

� � �

ð

R

�R

1

n

X

n

i¼1

hnðxiÞ

 !

d~llnðhn;RÞðxÞ;

which gives the desired formula.

(iii) By (4.8) and (5.2) we get

PðhÞ ¼ lim
n!y

1

n2
log

ð

R

�R

� � �

ð

R

�R

exp �n

X

n

i¼1

hnðxiÞ

 !

d~llnðs;RÞðxÞ þ log
R

2

¼ lim
n!y

1

n2
log

ð

R

�R

� � �

ð

R

�R

exp �n

X

n

i¼1

hnðxiÞ

 !

DðxÞ dx

thanks to (5.4). r

In particular, when hn ¼ h for all n A N , the above (i) says that the free

entropy SðshÞ is the renormalized limit of the Boltzmann-Gibbs entropy of the

distribution lnðh;RÞ on the matrix space. The asymptotic formulas in (ii) and

(iii) together provide that of SðshÞ ¼ shðhÞ þPðhÞ.

The free entropy wðmÞ in the microstates approach is defined by (1.3)–(1.4)

so that

wðmÞ ¼ SðmÞ þ
1

2
logð2pÞ þ

3

4

for m A Mð½�R;R�Þ. Since the limit in the formula of Theorem 5.1 (iii) is re-

written as
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lim
n!y

1

n2
log

ð

ðM sa
n ÞR

expð�n2 trnðhðAÞÞÞ dLnðAÞ þ
1

2
log n

" #

� 1

2
logð2pÞ � 3

4
;

the formula means that the Legendre transform p of �wðmÞ for m A Mð½�R;R�Þ is
given by

pðhÞ ¼ PðhÞ þ 1

2
logð2pÞ þ 3

4

¼ lim
n!y

1

n2
log

ð

ðM sa
n ÞR

expð�n2 trnðhðAÞÞÞ dLnðAÞ þ
1

2
log n

" #

for h A CRð½�R;R�Þ. The form of this limit has some resemblance to the limit in

(1.3).

Example 5.2. For r > 0, when hr A CRð½�R;R�Þ is given by hrðxÞ :¼ 2x2=r2,

we determined shr ð¼nhrÞ in Example 2.7 and

SðshrÞ ¼ logðr=2Þ � 1=4 if 0 < raR;

logðR=2Þ � R4=4r4 if rbR;

�

PðhrÞ ¼
logðr=2Þ � 3=4 if 0 < raR;

logðR=2Þ þ R4=4r4 � R2=r2 if rbR;

�

When r ¼ 2, by Theorem 5.1 (iii) the latter estimate supplies the asymptotic limit

of integrals

lim
n!y

1

n2
log

ðR

�R

� � �
ðR

�R

exp � n

2

X

n

i¼1

x2
i

 !

DðxÞ dx

¼ �3=4 if Rb 2;

logðR=2Þ þ R4=64� R2=4 if 0 < Ra 2:

�

ð5:8Þ

Next, for r > 0 set kr A CRð½�R;R�Þ by krðxÞ :¼ 2x=r. The free Poisson dis-

tribution m1 (see [21, p. 34–35], [13, 3.3.5]) is given by

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4x� x2
p

2px
wð0;4�ðxÞ dx:

It is known ([13, 5.3.7]) that

Qm1
ðxÞ ¼ x� 2 if 0a xa 4;

< x� 2 if x < 0 or x > 4:

�
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Let ~mmr be the transform of m1 by the a‰ne transformation x 7! ðr=2Þðx� 2Þ so

that

~mmr ¼
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðð2x=rÞ þ 2Þ � ðð2x=rÞ þ 2Þ2
q

2pðð2x=rÞ þ 2Þ wð�r; r�ðxÞ dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p

prðxþ rÞ wð�r; r�ðxÞ dx:

Then we have

Q ~mmr
ðxÞ ¼ 2

ð

log x� r

2
ðy� 2Þ

�

�

�

�

�

� dm1ðyÞ ¼ Qm1

2x

r
þ 2

� �

þ 2 log
r

2

so that

Q ~mmr
ðxÞ ¼ ð2x=rÞ þ 2 logðr=2Þ if jxja r;

< ð2x=rÞ þ 2 logðr=2Þ if jxj > r:

�

Therefore, we notice that skr ¼ ~mmr when 0 < raR. On the other hand, if rbR

and

m̂mr :¼ 1� R

r

� �

sþ R

r
~mmR;

then

Qm̂mr
ðxÞ ¼ 2x

r
þ 2 log

R

2
for jxjaR;

so we have skr ¼ m̂mr. Moreover, since
Ð

x d ~mmrðxÞ ¼ �r=2, the following can be

easily computed:

SðskrÞ ¼ logðr=2Þ � 1=2 if 0 < raR;

logðR=2Þ � R2=2r2 if rbR;

�

PðkrÞ ¼
logðr=2Þ þ 1=2 if 0 < raR;

logðR=2Þ þ R2=2r2 if rbR:

�

When r ¼ 2, Theorem 5.1 (iii) gives

lim
n!y

1

n2
log

ðR

�R

� � �
ðR

�R

exp �n
X

n

i¼1

xi

 !

DðxÞ dx

¼ 1=2 if Rb 2;

logðR=2Þ þ R2=8 if 0 < Ra 2:

�

ð5:9Þ
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It is worthwhile to note that a phase transition occurs at R ¼ 2 in the asymptotics

of the integrals in (5.8) and (5.9).

In terms of statistical thermodynamics ([17])

ðR

�R

� � �

ðR

�R

exp �n
X

n

i¼1

hðxiÞ

 !

DðxÞ dx

is the partition function of n logarithmically interacting particle in an outer field

h. So

PðhÞ ¼ lim
n!y

1

n2
log

ðR

�R

� � �

ðR

�R

exp �n
X

n

i¼1

hðxiÞ

 !

DðxÞ dx

is nothing else but the pressure in a one-dimensional Coulomb gas model.

6. The case of measures on the unit circle.

Let m be a probability measure on the unit circle T. The free entropy of m

is given as

SðmÞ :¼

ðð

T
2
logjz� hj dmðzÞ dmðhÞ:

For n; r A N and e > 0 define

Guðm; n; r; eÞ :¼ fU A UðnÞ : jtrnðU
kÞ �mkðmÞja e;�ra ka rg;

where UðnÞ is the unitary group of order n and mkðmÞ :¼
Ð

T
zk dmðzÞ. Then SðmÞ

has the asymptotic expression ([11, Proposition 1.4]):

SðmÞ ¼ lim
r!y; e!þ0

lim
n!y

1

n2
log gnðGuðm; n; r; eÞÞ; ð6:1Þ

where gn is the Haar probability measure on the group UðnÞ.

Let n be another probability measure on T. The free relative entropy of m

with respect to n is defined as (1.8) by

Sðm; nÞ :¼ lim
e!þ0

�

ðð

T
2
logðjz� hj þ eÞ dðm� nÞðzÞ dðm� nÞðhÞ

� �

:

To obtain the asymptotic expression of Sðm; nÞ via the matricial approximation,

we need to introduce a probability distribution on UðnÞ corresponding to n.

Now assume that

Free relative entropy for measures and a corresponding perturbation theory 715



QnðzÞ :¼ 2

ð

T

logjz� hj dnðhÞ

is continuous on T, and define a probability distribution gnðnÞ on UðnÞ by

gnðnÞ :¼
1

ZnðnÞ
expð�n2 trnðQnðUÞÞÞ dgnðUÞ;

where ZnðnÞ is for normalization. This distribution is invariant under unitary

conjugation and its joint eigenvalue distribution on T
n has the density

1

~ZZnðnÞ
exp �n

X

n

i¼1

QnðziÞ

 !

Y

i<j

jzi � zjj
2

with respect to dz1 � � � dzn where dzj ¼ ð1=2pÞ dyj ðzj ¼ e iyj ). Then the following

expression similar to (1.15) is proven by use of the large deviation theorem ([12]):

�Sðm; nÞ ¼ lim
r!y; e!þ0

lim
n!y

1

n2
log gnðnÞðGuðm; n; r; eÞÞ: ð6:2Þ

The above (6.1) is a special case of (6.2) where n is the uniform distribution n0 on

T (having the maximal free entropy 0); notice SðmÞ ¼ �Sðm; n0Þ and gn ¼ gnðn0Þ.

One can see that the perturbation theory of measures in Section 2 is similarly

valid also for measures on T. Furthermore, one can perform the whole discus-

sions in Sections 3 and 4 in the case of measures on T by replacing Mð½�R;R�Þ,

CRð½�R;R�Þ and ðM sa
n ÞR by MðTÞ, CRðTÞ and UðnÞ, respectively. The details

are left to the reader, and we here remark just a few points. First, for m1; m2 A

MSðTÞ ð:¼fm A MSðTÞ : SðmÞ > �ygÞ the variant of (3.2) is

Sðm1; m2Þ ¼
X

y

n¼1

1

n

ð

T

zn dðm1 � m2ÞðzÞ

�

�

�

�

�

�

�

�

2

;

which shows that Lemma 3.1 remains valid for MSðTÞ. Thus, the convergence

properties in Theorem 3.3 hold for perturbed measures on T too.

Next, the Legendre transform of �SðmÞ is given as

pðhÞ :¼ supf�mðhÞ þ SðmÞ : m A MðTÞg

for h A CRðTÞ. Then we have

pðhÞ ¼ lim
n!y

1

n2
log

ð

UðnÞ

expð�n2 trnðhðUÞÞÞ dgnðUÞ

¼ lim
n!y

1

n2
log

ð

T

� � �

ð

T

exp �n
X

n

i¼1

hðziÞ

 !

Y

i<j

jzi � zjj
2
dz1 � � � dzn
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and

SðmÞ ¼ inffmðhÞ þ pðhÞ : h A CRðTÞg

for m A MðTÞ. The ‘‘pressure’’ pðhÞ was computed, for instance, in [12] for

hðzÞ ¼ logjz� aj2 ða A C ; jaj < 1Þ and for hðe iyÞ ¼ �ð2=lÞ cos y ðl > 0Þ.

Finally, for every h A CRðTÞ let n
h
0 be the unique maximizer of �mðhÞ þ SðmÞ

(i.e. the perturbed measure of n0 by h via free relative entropy), and let gnðhÞ be

a distribution on UðnÞ (or a unitary random matrix) defined by

gnðhÞ :¼
1

ZnðhÞ
expð�n2 trnðhðUÞÞÞ dgnðUÞ:

Then we have

�Sðnh0 Þ ¼ Sðnh0 ; n0Þ ¼ lim
n!y

1

n2
SðgnðhÞ; gnÞ:
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