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Geometry of decomposable directing modules over tame algebras
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Abstract. Let A be a tame algebra and M a directing A-module (there exists

no sequence M1 ! � � � ! tAX ! � ! X ! � � � ! M2 of nonzero maps between inde-

composable A-modules for some indecomposable nonprojective A-module X and in-

decomposable direct summands M1, M2 of M). Then the variety modAðdimMÞ of A-

modules with dimension vector dimM is a complete intersection. If, in addition, M is a

tilting A-module then modAðdimMÞ is normal.

Introduction and the main result.

Throughout the paper K denotes a fixed algebraically closed field. By an

algebra we usually mean a finite dimensional basic connected K-algebra with an

identity. For an algebra A we write modA for the category of finite dimensional

left A-modules.

According to the Drozd’s theorem ([13], see also [11]) finite dimensional al-

gebras can be divided into two disjoint classes. One class is formed by the wild

algebras for which the classification of indecomposable modules is equivalent to

the classification of finite dimensional indecomposable modules over the free non-

commutative algebra with two generators. Another class is the class of tame al-

gebras. An algebra A is tame if, for each natural number d, there exist A-K ½X �-

bimodules M1; . . . ;Mnd , which are free of finite rank as right K ½X �-modules, such

that all but a finite number of indecomposable A-modules of dimension d are (up

to isomorphism) of the form Mi nK½X � K ½X �=ðX � lÞ for some i and l A K .

Let A be an algebra. Since A is basic there exist a quiver Q and an admis-

sible ideal I in the path algebra KQ of Q such that AFKQ=I . The category

modA is equivalent to the category repKðQ; IÞ of K-linear representations of Q

satisfying the relations from I . Using this equivalence we get an isomorphism

K0ðAÞFZ
Q0 , where K0ðAÞ denotes the Grothendieck group of A and Q0 is the

set of vertices of Q. The isomorphism is given by assigning to each A-module M

its dimension vector dimM A Z
Q0 , ðdimMÞx :¼ dimK exM, x A Q0, where ex de-

notes the trivial path at vertex x.

2000 Mathematics Subject Classification. Primary 16G10; Secondary 14L30.

Key Word and Phrases. module variety, directing module, tilting module, complete intersection,

normal variety.

Supported by the Polish Scientific Grant KBN No. 2PO3A 012 14.



Given a vector d A K0ðAÞ with nonnegative entries it is an interesting task to

study the module variety modAðdÞ of A-modules of dimension vector d. It is the

set of all collections ðMaÞa AQ1
, where Q1 is the set of arrows in Q, such that, for

each arrow a : x ! y, Ma is the linear map from K dx to K dy and, for each rela-

tion
P

liai;ki � � � ai;1 in I , we have
P

liMai; ki
� � �Mai; 1

¼ 0. Using the above men-

tioned equivalence of repKðQ; IÞ and modA we get that each point M of modAðdÞ

determines the A-module structure on
Q

x AQ0
K dx (multiplication by an arrow a is

given by Ma). We will denote this module also by M.

The reductive group GLðdÞ :¼
Q

x AQ0
GLðdxÞ acts on modAðdÞ by con-

jugations, that is, ðg �MÞ
a
:¼ gyMag

�1
x for each arrow a : x ! y in Q, where

M ¼ ðMaÞ A modAðdÞ and g ¼ ðgxÞ A GLðdÞ. For each M A modAðdÞ we denote

by OðMÞ the orbit of M under this action. We have OðMÞ ¼ OðNÞ if and only

if MFN.

The path in modA is a sequence X0 ! X1 ! � � � ! Xt of nonzero maps

between indecomposable A-modules. An A-module M is called directing if there

exists no path of the form M1 ! � � � ! tAX ! � ! X ! � � � ! M2 for some inde-

composable direct summands M1 and M2 of M and an indecomposable nonpro-

jective A-module X . By tA we denote the Auslander-Reiten translate in modA

(see [20, (2.4)]). It is known due to Happel and Ringel [16, Section 1] that if M

is indecomposable then the above definition coincides with the usual one, that is,

M is directing if and only if there exists no path X0 ! X1 ! � � � ! Xt of non-

zero nonisomorphisms between indecomposable modules in modA such that X0 F

MFXt, t > 0.

Let qA denote the Tits form of the algebra A, that is, the quadratic form on

K0ðAÞ defined by the formula

qAðdÞ :¼
X

x AQ0

d 2
x �

X

a :x!y A Q1

dxdy þ
X

x;y A Q0

dimK Ext2AðSAðxÞ;SAðyÞÞdxdy:

Here, SAðxÞ denotes the simple A-module at vertex x given by the representation

ðVy;VaÞ such that Vx ¼ K , Vy ¼ 0 if y0 x and Va ¼ 0 for any a A Q1. We also

put aAðdÞ :¼ dimGLðdÞ � qAðdÞ.

The following theorem, which generalizes [3, Theorem 1] to decomposable

directing modules, is the main result of the paper.

Main Theorem. Let A be a tame algebra, M a directing A-module and d :¼

dimM. The variety modAðdÞ has the following properties:

(1) modAðdÞ is a complete intersection of dimension aAðdÞ;

(2) OðMÞ is an irreducible component of modAðdÞ and OðMÞ is the unique

orbit of maximal dimension in modAðdÞ;

(3) maximal orbits in modAðdÞ consist of nonsingular points in modAðdÞ;
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(4) there is only a finite number of orbits of codimension 1 in modAðdÞ, they

are contained in OðMÞ and consist of nonsingular points in modAðdÞ;

(5) N A modAðdÞ is nonsingular in modAðdÞ if and only if Ext2AðN;NÞ ¼ 0.

Moreover, if M is tilting then modAðdÞ ¼ OðMÞ, is irreducible and normal.

Recall that an A-module T is called tilting if pdA Ta 1, Ext1AðT ;TÞ ¼ 0 and

there exists a short exact sequence 0 ! A ! T 0 ! T 00 ! 0, where T 0;T 00 A addT .

Here, by addT we denote the full subcategory of modA whose objects are finite

direct sums of direct summands of T . For the definitions of a complete inter-

section, a normal variety, etc., we refer to [14].

It should be added that it has been proved in [8, Proposition 6] (see also [9,

Corollary 3.5]) that if A is any algebra and M a directing preprojective A-module

then the variety modAðdimMÞ is a normal and irreducible complete intersection

of dimension aAðdimMÞ.

The paper is divided in two parts. First part is devoted to recalling and

proving some preliminary facts on directing modules. There are also contained

some geometric tools we use. In the second part we present the proof of the above

theorem.

1. Preliminaries.

Let A ¼ KQ=I be an algebra. For an A-module M we denote by suppM

the support of M, that is, the full subquiver of Q given by all vertices x such that

exM0 0. By SuppM we denote the support algebra of M, which is the quo-

tient of the algebra A by the ideal generated by all ex for x not in suppM. The

support suppM is said to be convex in Q if, for any path a0 ! a1 ! � � � ! at
in Q with a0 and at in suppM, ai belongs to suppM for each i. If suppM is

convex in Q then Ext iAðM1;M2ÞFExt iSuppMðM1;M2Þ for ib0 and any A-modules

M1 and M2 with support contained in suppM. Moreover aAðdÞ ¼ aSuppMðdÞ for

any d A K0ðAÞ such that dx ¼ 0 for x not in suppM.

In view of the above remarks the following fact generalizing the result of

Bongartz from [6 ] is of particular importance.

Lemma 1.1. Let A ¼ KQ=I be an algebra and M a directing A-module.

Then the support suppM of M is convex in Q.

Proof. Assume this is not the case and let a0 ! a1 ! � � � ! at�1 ! at,

tb 2, be a path in Q such that a0 and at belong to suppM and a1; . . . ;

at�1 do not. The minimal projective presentation of SAðat�1Þ is of the form

PAðatÞlP ! PAðat�1Þ ! SAðat�1Þ ! 0 for some projective A-module P, where

PAðxÞ :¼ Aex for x A Q0. Let IAðxÞ :¼ DðexAÞ, where Dð�Þ :¼ HomKð�;KÞ is

the usual duality. From the construction of tASAðat�1Þ (see [20, (2.4)]) it

follows that we have a short exact sequence 0 ! tASAðat�1Þ ! IAðatÞl I !
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IAðat�1Þ for some injective A-module I . Applying HomAðM;�Þ we get an

exact sequence 0 ! HomAðM; tASAðat�1ÞÞ ! HomAðM; IAðatÞÞlHomAðM; IÞ !

HomAðM; IAðat�1ÞÞ. Since at A suppM we have HomAðM; IAðatÞÞFDðetMÞ0

0. Similarly HomAðM; IAðat�1ÞÞFDðet�1MÞ ¼ 0, because at�1 B suppM. Thus

HomAðM; tASAðat�1ÞÞ0 0. In the same way we show HomAðt
�
A SAða1Þ;MÞ0 0.

The existence of the arrow ai ! aiþ1 implies Ext1AðSAðaiÞ;SAðaiþ1ÞÞ0 0 for each i.

We obtain this way a path M1 ! tASAðat�1Þ ! � ! SAðat�1Þ ! � � � ! SAða1Þ !

� ! t
�
A SAða1Þ ! M2 in modA for some indecomposable direct summands M1

and M2 of M, what contradicts our assumption. r

From this point we assume that M is sincere. Then according to the result

of Bakke in [1] the algebra A is tilted, that is, A is the endomorphism algebra of

a tilting module over a hereditary algebra. In particular, A is triangular (there is

no cycle in the ordinary quiver of A) of global dimension at most 2 and we have

pdA Xa 1 or idA Xa 1 for each indecomposable A-module X (see [15]). It fol-

lows from the result of Bongartz [6, Section 1] that if rx;y denotes the number of

relations from x to y in the minimal set of relations generating the ideal I then

rx;y equals dimK Ext2AðSAðxÞ;SAðyÞÞ. Thus the Tits form qA of A can be also de-

fined by the formula

qAðdÞ ¼
X

x AQ0

d 2
x �

X

a :x!y

dxdy þ
X

x;y A Q0

rx;ydxdy:

Moreover the variety modAðdÞ can be described in
Q

a :x!y K
dx � K dy byP

x;y A Q0
rx;ydxdy equations. Hence by Krull Principal Ideal Theorem it follows

that each irreducible component of the variety modAðdÞ has dimension at leastP
a :x!y dxdy �

P
x;y A Q0

rx;ydxdy ¼ aAðdÞ.

Since A is tilted, we get using the result of Kerner [17, Theorem 6.2] that the

algebra A is tame if and only if its Tits form qA is weakly nonnegative, that is,

qAðdimMÞb 0 for each A-module M. We also have the bilinear nonsymmetric

Euler form h�;�iA on K0ðAÞ such that hdimM; dimNiA ¼ dimK HomAðM;NÞ�

dimK Ext1AðM;NÞ þ dimK Ext2AðM;NÞ for any A-modules M, N (see [20, (2.4)]).

It follows from [6, Proposition 2.2] that qAðdÞ ¼ hd; diA in our case.

An easy consequence of the definition of a directing module and the sincer-

ity of M is that if HomAðX ;MÞ0 0 for some indecomposable A-module X then

pdA Xa 1. Here we use that HomAðM; IÞ0 0 for each indecomposable injective

A-module I and pdA Xa 1 if and only if HomAðI ; tAXÞ ¼ 0 for any injective A-

module I (see [20, (2.4)]). Similarly HomAðM;XÞ0 0 implies idA Xa 1. In par-

ticular, pdA Ma 1 and idA Ma 1. Moreover, we have HomAðM; tAMÞ ¼ 0, thus

Ext1AðM;MÞ ¼ 0, by the Auslander-Reiten formula (see again [20, (2.4)]). Using

the result from [1] we know there exists a directing tilting module T such that

M A addT .
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Assume now that M is tilting. By [5, Theorem 2.1] it is equivalent to

say that the number of isomorphism classes of indecomposable direct sum-

mands of M equals the number of isomorphism classes of simple A-modules.

From the definition of a tilting module it easily follows that HomAðM;NÞ ¼ 0

and Ext1AðM;NÞ ¼ 0 implies N ¼ 0. Obviously every tilting module is sincere,

hence idA Ma 1. Thus M is also cotilting, that is, DðMÞ is a tilting Aop-module,

where Aop denotes the opposite algebra of A. In particular, either HomAðN;MÞ0

0 or Ext1AðN;MÞ0 0 for each nonzero A-module N. The module M induces the

torsion pair ðTðMÞ;FðMÞÞ, where TðMÞ ¼ fN A modA jExt1AðM;NÞ ¼ 0g and

FðMÞ :¼fN AmodA jHomAðM;NÞ ¼ 0g. Note that addMHTðMÞ. By [1] the

torsion pair ðTðMÞ;FðMÞÞ is splitting, that is, each indecomposable A-module

belongs either to TðMÞ or FðMÞ. Moreover, since M is cotilting it follows that

FðMÞ is the class of all A-modules N such that X B addM for each indecom-

posable direct summand X of N and Ext1AðN;MÞ ¼ 0. Similarly, an indecom-

posable A-module X B addM belongs to TðMÞ if and only if HomAðX ;MÞ ¼ 0.

Thus it follows that if HomAðM;X Þ0 0 and HomAðX ;MÞ0 0 for some inde-

composable A-module X then X A addM. We also have the following useful

lemma.

Lemma 1.2. Let A be a tame algebra and M a directing tilting A-module. If

h A K0ðAÞ is a connected positive vector such that qAðhÞ ¼ 0 then jhd; hiAjb 2 and

jhh; diAjb 2.

Proof. It follows from [17] that there exist pairwise nonisomorphic in-

decomposable A-modules Xl, l A K , such that dimXl ¼ h for each l. Since the

torsion pair ðTðMÞ;FðMÞÞ is splitting there exists an infinite set IHK such

that either Xl A TðMÞ for each l A I or Xl A FðMÞ for each l A I. Assume

the first possibility holds. Then Ext1AðM;XlÞ ¼ 0 for each l A I. In addition,

Ext2AðM;XlÞ ¼ 0 for any l, because pdA Ma1. On the other hand by the Brenner-

Butler theorem [10] (see also [15, Section 2]) HomAðM;XlÞ, l A I, are pairwise

nonisomorphic indecomposable EndAðMÞop-modules. Since there is only a finite

number of isomorphism classes of indecomposable one dimensional EndAðMÞop-

modules we get that dimK HomAðM;XlÞb 2 for all but a finite number of l A I.

Fix l0 A I with this property. Since Ext1AðM;Xl0
Þ ¼ 0 ¼ Ext2AðM;Xl0

Þ we have

hd; hiA ¼ dimK HomAðM;Xl0
Þb 2. We proceed similarly if the second possibil-

ity holds. The other inequality follows by duality. r

We will also need some links between properties of modules and properties

of the corresponding points of module varieties. The following proposition will

play a crucial role in our investigations. Recall that an orbit OðMÞHmodAðdÞ

is called maximal in modAðdÞ if and only if OðMÞHOðNÞ implies OðNÞ ¼ OðMÞ.
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Proposition 1.3. Let A be a triangular algebra of global dimension at most 2

and d A K0ðAÞ a positive vector. If Ext2AðM;MÞ ¼ 0 for each maximal orbit OðMÞ

in modAðdÞ, then the variety modAðdÞ is a complete intersection of dimension aAðdÞ.

Moreover, for each N A modAðdÞ, we have dimOðNÞ ¼ aAðdÞ � dimK Ext1AðN;NÞþ

dimK Ext2AðN;NÞ, and N is nonsingular in modAðdÞ if and only if Ext2AðN;NÞ ¼ 0.

Proof. Using the arguments presented in the proof of [7, Proposition 2] we

get that if Ext2AðM;MÞ ¼ 0 for any maximal orbit OðMÞ in modAðdÞ then the

corresponding module scheme is reduced and modAðdÞ is a complete intersec-

tion of dimension aAðdÞ. The formula dimOðNÞ ¼ aAðdÞ � dimK Ext1AðN;NÞþ

dimK Ext2AðN;NÞ now follows from the calculations presented in the same proof.

Finally, these calculations also imply that we have dimK TNðmodAðdÞÞ ¼ aAðdÞþ

dimK Ext2AðN;NÞ, hence N is nonsingular if and only if Ext2AðN;NÞ ¼ 0. r

We see from the above proposition that an important role is played by

maximal orbits in a module variety. The following characterization of maximal

orbits is a direct consequence of [21, Corollary 6].

Proposition 1.4. Let A be a tame tilted algebra and d A K0ðAÞ a posi-

tive vector. An orbit OðNÞ is maximal in modAðdÞ if and only if we have

Ext1AðN1;N2Þ ¼ 0 for any decomposition NFN1 lN2.

2. Proof of the main result.

Fix a tame algebra A and a directing A-module M. Put d :¼ dimM.

Using Lemma 1.1 we may assume that M is sincere. Then pdA Ma 1 and

idA Ma 1. Moreover A is tilted, hence the Tits form qA is weakly non-

negative and Ext2AðX ;X Þ ¼ 0 for each indecomposable A-module X .

We start with the following lemma.

Lemma 2.1. Let OðNÞ be a maximal orbit in modAðdÞ.

(1) If X is an indecomposable direct summand of N with the property

HomAðX ;MÞ ¼ 0 then

hdimX ; diA ¼ 0; qAðdimX Þ ¼ 0 and Ext2AðX ;NÞ ¼ 0:

(2) If X is an indecomposable direct summand of N with the property

HomAðM;XÞ ¼ 0 then

hd; dimXiA ¼ 0; qAðdimX Þ ¼ 0 and Ext2AðN;XÞ ¼ 0:

Proof. We shall prove only the first statement, because the proof of the

second one is dual. We have the inequality

hdimX ; diA ¼ hdimX ; dimMiA ¼ �dimK Ext1AðX ;MÞa 0;
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since idA Ma 1. We know that N ¼ X lL for some A-module L. From Prop-

osition 1.4 we get Ext1AðX ;LÞ ¼ 0. Thus

0b hdimX ; diA

¼ qAðdimXÞ þ hdimX ; dimLiA

¼ qAðdimXÞ þ dimK HomAðX ;LÞ þ dimK Ext2AðX ;LÞb 0:

It follows that hdimX ; diA ¼ 0, qAðdimXÞ ¼ 0 and Ext2AðX ;LÞ ¼ 0. It finishes

the proof since Ext2AðX ;XÞ ¼ 0. r

We have the following consequence of the above lemma.

Proposition 2.2. For each maximal orbit OðNÞ in modAðdÞ, we have

Ext2AðN;NÞ ¼ 0.

Proof. Fix a maximal orbit OðNÞ in modAðdÞ. We show Ext2AðX ;NÞ ¼

0 for each indecomposable direct summand X of N. If HomAðX ;MÞ0 0 then

pdA Xa 1 and the claim follows. If HomAðX ;MÞ ¼ 0 then we get it by the pre-

vious lemma. r

The immediate consequence of the above proposition and Proposition 1.3 is

the following corollary.

Corollary 2.3. The variety modAðdÞ is a complete intersection of dimen-

sion aAðdÞ. Moreover maximal orbits in modAðdÞ consist of nonsingular points,

and N A modAðdÞ is nonsingular if and only if Ext2AðN;NÞ ¼ 0.

Since Ext1AðM;MÞ ¼ 0 and Ext2AðM;MÞ ¼ 0 we have by Proposition 1.3

dimOðMÞ ¼ aAðdÞ � dimK Ext1AðM;MÞ þ dimK Ext2AðM;MÞ ¼ aAðdÞ. In partic-

ular, OðMÞ is the irreducible component of modAðdÞ and OðMÞ is the orbit of

maximal dimension in modAðdÞ. We shall show that it is the unique orbit with

this property. We start with the following lemma.

Lemma 2.4. Let OðNÞ be a maximal orbit in modAðdÞ. If NVM then

dimOðNÞa aAðdÞ � 2.

Proof. Fix a directing tilting A-module T such that M A addT . We first

show that N B TðTÞ. Assume this in not the case. Then by the arguments pre-

sented in the proof of [5, Proposition 1.4(b)] there exists an exact sequence 0 !

L ! T0 ! N ! 0 such that T0 A addT and L A TðTÞ. We have HomAðX ;TÞ0

0 and HomAðT ;XÞ0 0 for each indecomposable direct summand X of L, hence

L A addT , since T is a directing tilting A-module. Note dimT0 ¼ dimLþdimN ¼
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dimLþ dimM ¼ dimðLlMÞ. Since T0 A addT and LlM A addT , it follows

that T0 FLlM, because modules in addT are uniquely determined by their di-

mension vectors. Indeed, from the proof of [15, Proposition (3.2)] we know that

the dimension vectors of indecomposable direct summands of T form a basis of

K0ðAÞ. Thus we get an exact sequence 0!L!LlM !N! 0 and by the result

of Riedtmann [19, Proposition 3.4] OðNÞHOðMÞ. Consequently OðNÞ ¼ OðMÞ

and NFM, since OðNÞ is a maximal orbit in modAðdÞ, contradiction.

It follows from the above considerations that there exists an indecomposable

direct summand X of N such that X A FðTÞ, since the torsion pair ðTðTÞ;FðTÞÞ is

splitting. Then HomAðM;XÞ ¼ 0. Since T is a cotilting module we show dually

that there exists an indecomposable direct summand Y A TðTÞnaddT of N such

that HomAðY ;MÞ ¼ 0. Note that XVY . By Lemma 2.1 we get qAðdimX Þ ¼

0¼ qAðdimYÞ. Particularly, Ext1AðX ;XÞ000Ext1AðY ;YÞ and dimK Ext1AðN;NÞb

2. From Proposition 2.2 we have Ext2AðN;NÞ ¼ 0, hence we obtain dimOðNÞ ¼

aAðdÞ � dimK Ext1AðN;NÞa aAðdÞ � 2 using Proposition 1.3. r

The immediate consequence of the above lemma is the following corollary.

Corollary 2.5. The orbit OðMÞ is the unique orbit of maximal dimension in

modAðdÞ.

We finish our considerations in the general case by remarks on codimension

1 orbits.

Proposition 2.6. There is only a finite number of orbits of codimension 1 and

they are contained in OðMÞ. Moreover, if OðNÞ is an orbit of codimension 1 in

modAðdÞ then Ext2AðN;NÞ ¼ 0.

Proof. By Lemma 2.4 it follows that all orbits of codimension 1 are con-

tained in OðMÞ. Thus obviously there is only a finite number of them.

Let OðNÞ be an orbit of codimension 1 in modAðdÞ. Since OðNÞ is not

maximal in modAðdÞ we have by Proposition 1.4 Ext1AðN1;N2Þ0 0 for some de-

composition NFN1 lN2 of N. Without loss of generality we may assume that

N1 is indecomposable. We get a nonsplit exact sequence 0 ! N2 ! L ! N1 ! 0

for some A-module L. Then OðNÞHOðLÞnOðLÞ. Since OðNÞ is an orbit of co-

dimension 1 and OðMÞ is the unique orbit of codimension 0, it follows that LFM.

Hence L is a sincere directing A-module. In particular, we get pdA N2a 1 and

idA N1a 1, since HomAðX ;LÞ0 0 for each indecomposable direct summand X of

N2, and HomAðL;N1Þ0 0. Thus we only need to show that Ext2AðN1;N2Þ ¼ 0.

We have HomAðL; tAN2Þ ¼ 0, as L is directing and HomAðX ;LÞ0 0 for

each indecomposable direct summand X of N2. As a consequence we obtain,

using the Auslander-Reiten formula ([20, (2.4)]), that Ext1AðN2;LÞ ¼ 0. More-
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over, if HomAðN1;LÞ0 0 then pdA N1a 1 and we are done. Thus we may as-

sume HomAðN1;LÞ ¼ 0 and proceed exactly in the same way as in the proof of

[4, Lemma 7]. r

Now we assume that M is tilting and show that in this case the variety

modAðdÞ is irreducible and normal. We have hd; dimXiA < 0 or hdimX ; diA <

0 for each indecomposable A-module X such that X B addM. Indeed, if X A

TðMÞnaddM then HomAðX ;MÞ ¼ 0 ¼ Ext2AðX ;MÞ and Ext1AðX ;MÞ0 0, hence

hdimX ; diA < 0. Similarly, we show that hd; dimXiA < 0 if X A FðMÞ. Since

the torsion pair ðTðMÞ;FðMÞÞ is splitting, it finishes the proof. Using Lemma

2.1 we conclude that if OðNÞ is a maximal orbit in modAðdÞ then HomAðX ;MÞ0

0 and HomAðM;X Þ0 0 for each indecomposable direct summand X of N. It

means that N A addM. Hence NFM, since dimN ¼ dimM. Thus we get the

following fact.

Proposition 2.7. If M is tilting then OðMÞ is the unique maximal orbit in

modAðdÞ. In particular, modAðdÞ is the closure OðMÞ of OðMÞ, hence is irre-

ducible.

The only thing which remains to show is the normality of modAðdÞ for M

tilting. Since modAðdÞ is a complete intersection, hence due to Serre’s criterion

[14, Theorem 11.5] (see also [3, Theorem 2.4]) we have to show that modAðdÞ is

nonsingular in codimension one, that is, the set of singular points in modAðdÞ is

of codimension at least 2. By Proposition 2.6 we already know that the orbits

of codimension 1 consist of nonsingular points. To treat the general case we in-

troduce some notation.

An indecomposable A-module X is called homogeneous if tAX FX . It

follows from [17] that if X is an indecomposable homogeneous A-module then we

have qAðdimXÞ ¼ 0 (recall that A is assumed to be tame tilted). On the other

hand, if h A K0ðAÞ is a connected positive vector such that qAðhÞ ¼ 0, then all

but a finite number of indecomposable A-modules with dimension vector h are

homogeneous. Moreover, there exists an open subset U of P1ðKÞ and a regular

map r : U ! modAðhÞ such that rðlÞ is an indecomposable homogeneous A-

module for l A U and for each indecomposable homogeneous A-module X with

dimension vector h there exists l A U with the property rðlÞFX . Indeed, there

exists a tame canonical (in the sense of Ringel [20]) algebra L and a tilting L-

module T such that EndLðTÞ is (isomorphic to) the support algebra of h (see

[18, Section 5]). In addition, each indecomposable homogeneous A-module of

dimension vector h is of the form HomLðT ;YÞ for some indecomposable homo-

geneous L-module Y , where c :¼ dimY has the property cx ¼ 1 for each x. Since

there exists an open subset V of P1ðKÞ and a regular map s : V ! modLðcÞ such

that sðlÞ is an indecomposable homogeneous L-module for each l A V and for
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each indecomposable homogeneous L-module Y there exists l A V with the prop-

erty sðlÞFY (see for example [2, Lemma 4.9]), the claim follows from [12, Lemma

6.3].

Let L be a direct sum of indecomposable nonhomogeneous A-modules

and h1; . . . ; hk be connected positive vectors from K0ðAÞ such that qAðhiÞ ¼ 0 for

each i. Assume that dimLþ h1 þ � � � þ hk ¼ d and let WðL; h1; . . . ; hkÞ be the

set of all N A modAðdÞ such that NFLlH1 l � � � lHk, where Hi is an inde-

composable homogeneous A-module with dimension vector hi, i ¼ 1; . . . ; k. It

follows from the above remarks that WðL; h1; . . . ; hkÞ is an irreducible construc-

tible set of dimension maxN AWðL;h1;...;hkÞ dimOðNÞ þ k.

We keep the above notation in the following lemma.

Lemma 2.8. If M is tilting and kb 1 then dimWðL; h1; . . . ; hkÞa aAðdÞ � 2.

Proof. For simplicity we write W instead of WðL; h1; . . . ; hkÞ. Let H

be an indecomposable homogeneous A-module of dimension vector h1. Since

Ext1AðH;HÞ0 0 we have H B addM. Moreover, H A TðMÞ or H A FðMÞ, as the

torsion pair ðTðMÞ;FðMÞÞ is splitting. Without loss of generality we may as-

sume that the first possibility holds. Then HomAðH;MÞ ¼ 0 ¼ Ext2AðH;MÞ, thus

hh1; diA ¼�dimK Ext1AðH;MÞa0. Then using Lemma 1.2, we get hh1; diAa�2.

According to the formula on the dimension of W and the formula on

the dimension of an orbit given in Proposition 1.3 it is enough to show that

dimK Ext2AðN;NÞadimK Ext1AðN;NÞ�k�2 for N AW. Note that Ext2AðX ;XÞ ¼

0 for each indecomposable A-module X . Moreover, we have Ext1AðX ;XÞ0 0 for

each indecomposable homogeneous A-module X . Using these remarks we have

to show that
P

X Ext2AðX ;NX Þa
P

X Ext1AðX ;NX Þ � 2, where the sums run over all

indecomposable direct summands X of N. Here, for each indecomposable direct

summand X of N, we denote by NX such a direct summand of N that N ¼XlNX .

Fix N A W. Let H be a homogeneous indecomposable direct summand of

N of dimension vector h1. We have

dimK Ext2AðH;NHÞ

¼ hh1; dimNHiA � dimK HomAðH;NHÞ þ dimK Ext1AðH;NHÞ

a hh1; diA þ dimK Ext1AðH;NHÞ;

since qAðh1Þ ¼ 0. Using the inequality hh1; diAa�2 shown above we get

dimK Ext2AðH;NHÞa dimK Ext1AðH;NHÞ � 2.

Let X be an indecomposable direct summand of N di¤erent from H.

If HomAðX ;MÞ0 0 then pdA Xa 1, hence Ext2AðX ;NX Þ ¼ 0. In particular,

dimK Ext2AðX ;NX Þa dimK Ext1AðX ;NX Þ. If HomAðX ;MÞ ¼ 0 then hdimX ; diA ¼
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�dimK Ext1AðX ;MÞa 0. Since qAðdimXÞb 0 we get hdimX ; dimNXiAa 0.

Using this inequality we obtain similarly as above that dimK Ext2AðX ;NX Þa

dimK Ext1AðX ;NX Þ, and this finishes the proof. r

The following consequence of the above lemma finishes the proof of Main

Theorem.

Proposition 2.9. If M is tilting then modAðdÞ is normal.

Proof. We need to show that modAðdÞ is nonsingular in codimension

one. By [17] it follows that modAðdÞ is a finite union of sets WðL; h1; . . . ; hkÞ

defined above. Thus we only need to show that dimWðL; h1; . . . ; hkÞaaAðdÞ� 2

if WðL; h1; . . . ; hkÞ contains a nonsingular point in modAðdÞ. It trivially follows

from the previous lemma if kb 1. If k ¼ 0 then WðLÞ ¼ OðLÞ and the claim

follows from Proposition 2.6. r
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