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Geometry of decomposable directing modules over tame algebras

By Grzegorz BOBINSKI
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Abstract. Let 4 be a tame algebra and M a directing A-module (there exists
no sequence M; — -+ — 74X —* —- X — .-+ — M, of nonzero maps between inde-
composable 4-modules for some indecomposable nonprojective 4-module X and in-
decomposable direct summands M;, M, of M). Then the variety mod,(dim M) of A-
modules with dimension vector dim M is a complete intersection. If, in addition, M is a
tilting A-module then mod,(dim M) is normal.

Introduction and the main result.

Throughout the paper K denotes a fixed algebraically closed field. By an
algebra we usually mean a finite dimensional basic connected K-algebra with an
identity. For an algebra 4 we write mod A4 for the category of finite dimensional
left A-modules.

According to the Drozd’s theorem ([13], see also [I1]) finite dimensional al-
gebras can be divided into two disjoint classes. One class is formed by the wild
algebras for which the classification of indecomposable modules is equivalent to
the classification of finite dimensional indecomposable modules over the free non-
commutative algebra with two generators. Another class is the class of tame al-
gebras. An algebra A is tame if, for each natural number d, there exist 4-K[X]-
bimodules M, ..., M,,, which are free of finite rank as right K[X]-modules, such
that all but a finite number of indecomposable A-modules of dimension d are (up
to isomorphism) of the form M; ®x) K[X]/(X — 4) for some i and € K.

Let 4 be an algebra. Since 4 is basic there exist a quiver Q and an admis-
sible ideal 7 in the path algebra KQ of Q such that 4 ~ KQ/I. The category
mod A4 is equivalent to the category repy(Q,I) of K-linear representations of Q
satisfying the relations from /. Using this equivalence we get an isomorphism
Ko(A) ~ Z? where Ky(A) denotes the Grothendieck group of A4 and Qy is the
set of vertices of Q. The isomorphism is given by assigning to each 4-module M
its dimension vector dim M € Z9°, (dim M ), :=dimg e, M, x € Qp, where e, de-
notes the trivial path at vertex .x.
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Given a vector d € Ky(A4) with nonnegative entries it is an interesting task to
study the module variety mod,(d) of A-modules of dimension vector d. It is the
set of all collections (M,), cp,» Where Oy is the set of arrows in Q, such that, for
each arrow o : x — y, M, is the linear map from K% to K% and, for each rela-
tion Y Aok, - ;1 in I, we have Z/l,-Mmi .-+ M,,, = 0. Using the above men-
tioned equivalence of repg(Q, I) and mod 4 we get that each point M of mod,(d)
determines the 4-module structure on [], ., K 4« (multiplication by an arrow « is
given by M,). We will denote this module also by M.

The reductive group GL(d):=[], o, GL(dy) acts on mod,(d) by con-
jugations, that is, (g- M), :=g,M,g;' for each arrow o:x— y in Q, where
M = (M,) e mody(d) and g = (g) € GL(d). For each M € mod,(d) we denote
by O(M) the orbit of M under this action. We have (M) = (O(N) if and only
if M ~N.

The path in modA4 is a sequence Xy — X; — --- — X, of nonzero maps
between indecomposable 4-modules. An A-module M is called directing if there
exists no path of the form M; — --- - 14X — * - X — --- — M, for some inde-
composable direct summands M; and M, of M and an indecomposable nonpro-
jective A-module X. By 74 we denote the Auslander-Reiten translate in mod 4
(see [20, (2.4)]). It is known due to Happel and Ringel [16, Section 1] that if M
is indecomposable then the above definition coincides with the usual one, that is,
M 1is directing if and only if there exists no path Xy — X; — --- — X, of non-
zero nonisomorphisms between indecomposable modules in mod A such that X ~
M~X, t>0.

Let g4 denote the Tits form of the algebra A, that is, the quadratic form on
Ko(A4) defined by the formula

qad) =Y d>— > ddy+ Y dimg Ext](Si(x), S4(1))dd,.

xe Qo a:x—y e 0 x,y€ Qo

Here, S4(x) denotes the simple A-module at vertex x given by the representation
(Vy, Vy) such that Ve =K, V, =01if y #x and V, =0 for any a € Q;. We also
put ay(d) :=dim GL(d) — q4(d).

The following theorem, which generalizes [3, Theorem 1] to decomposable
directing modules, is the main result of the paper.

MAIN THEOREM. Let A be a tame algebra, M a directing A-module and d :=
dim M. The variety mody(d) has the following properties:
(1) mody(d) is a complete intersection of dimension ay(d);
(2) O(M) is an irreducible component of mody(d) and O(M) is the unique
orbit of maximal dimension in mod,(d);
(3) maximal orbits in mody(d) consist of nonsingular points in mod,(d);
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(4) there is only a finite number of orbits of codimension 1 in mod,(d), they
are contained in O(M) and consist of nonsingular points in mody(d);
(5) N emod,(d) is nonsingular in mody(d) if and only if Ext;(N,N) = 0.
Moreover, if M is tilting then mody(d) = O(M), is irreducible and normal.

Recall that an 4-module T is called tilting if pd, T < 1, Ext}(T, T) = 0 and
there exists a short exact sequence 0 - 4 — T’ — T” — 0, where T', T" eadd T.
Here, by add T we denote the full subcategory of mod A whose objects are finite
direct sums of direct summands of 7. For the definitions of a complete inter-
section, a normal variety, etc., we refer to [14].

It should be added that it has been proved in [8, Proposition 6] (see also [9,
Corollary 3.5]) that if A is any algebra and M a directing preprojective A-module
then the variety mod,(dim M) is a normal and irreducible complete intersection
of dimension a,(dim M).

The paper is divided in two parts. First part is devoted to recalling and
proving some preliminary facts on directing modules. There are also contained
some geometric tools we use. In the second part we present the proof of the above
theorem.

1. Preliminaries.

Let A = KQ/I be an algebra. For an A-module M we denote by supp M
the support of M, that is, the full subquiver of Q given by all vertices x such that
exM # 0. By Supp M we denote the support algebra of M, which is the quo-
tient of the algebra 4 by the ideal generated by all e, for x not in supp M. The
support supp M is said to be convex in Q if, for any path ay —a; — - — &,
in Q with ay and 4, in supp M, a; belongs to supp M for each i. If supp M is
convex in Q then Exty (M, My) ~ Extg,\,(My, M) for i > 0 and any 4-modules
M, and M, with support contained in supp M. Moreover a,(d) = asupp m(d) for
any d € Ky(A) such that d, =0 for x not in supp M.

In view of the above remarks the following fact generalizing the result of
Bongartz from [6] is of particular importance.

Lemma 1.1. Let A= KQ/I be an algebra and M a directing A-module.
Then the support supp M of M is convex in Q.

PrROOF. Assume this i1s not the case and let ag — a1 — -+ — a,_1 — ay,
t>2, be a path in Q such that @y and a, belong to suppM and ay,...,
a,-; do not. The minimal projective presentation of Sy(a, ;) is of the form
Py(a;) ® P — Py(a;—1) — S4(a;—1) — 0 for some projective A-module P, where
Py(x) := Ae, for xe Qp. Let I4(x):= D(e.A), where D(—):= Homg(—,K) is
the usual duality. From the construction of 74S4(a;—1) (see [20, (2.4)]) it
follows that we have a short exact sequence 0 — 74S4(a,—1) — I4(a;) ® 1 —
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I4(a;—y) for some injective A-module /. Applying Hom,(M,—) we get an
exact sequence 0 — Hom (M, 74S4(a;—1)) — Homy, (M, I4(a;)) ® Homy(M,I) —
Hom,(M,14(a;—1)). Since a, € supp M we have Homy(M,1,(a,)) ~ D(e,M) #
0. Similarly Homy (M, I4(a; 1)) ~ D(e;.1 M) = 0, because a, | ¢ supp M. Thus
Hom,(M,t4S4(a;—1)) #0. In the same way we show Hom,(t;S4(a1), M) # 0.
The existence of the arrow a; — a;,; implies Extj(SA (a;),S4(air1)) # 0 for each i.
We obtain this way a path M| — ©Sy(a,-1) — * — Sy(a,—1) — -+ — Sy(a;) —
* — 7,S4(a1) = M, in modA for some indecomposable direct summands M,
and M, of M, what contradicts our assumption. ]

From this point we assume that M is sincere. Then according to the result
of Bakke in [1] the algebra A is tilted, that is, 4 is the endomorphism algebra of
a tilting module over a hereditary algebra. In particular, 4 is triangular (there is
no cycle in the ordinary quiver of 4) of global dimension at most 2 and we have
pd, X <1 or idg X <1 for each indecomposable 4-module X (see [15]). It fol-
lows from the result of Bongartz [6, Section 1] that if r, , denotes the number of
relations from x to y in the minimal set of relations generating the ideal / then
rv., equals dimg Ext?(Sy(x),Sy(y)). Thus the Tits form ¢4 of A can be also de-
fined by the formula

qad) =Y di— > dudy+ Y ryydid,.

xeQo o x—y x,y € Qo

Moreover the variety mod,(d) can be described in [[,..., K% x K% by
> x.ye g, Ixydxdy equations. Hence by Krull Principal Ideal Theorem it follows
that each irreducible component of the variety mod,(d) has dimension at least
Ea:x—»y dxdy - Zx,ye 0o l”x7ydxdy = aA(d)'

Since A4 is tilted, we get using the result of Kerner [17, Theorem 6.2] that the
algebra A is tame if and only if its Tits form ¢4 is weakly nonnegative, that is,
g4(dim M) > 0 for each A-module M. We also have the bilinear nonsymmetric
Euler form {—,—>, on Ky(4) such that {dim M,dim N ), = dimg Hom,(M,N) —
dimg Extj(M, N) + dimg Ext3(M, N) for any A-modules M, N (see [20, (2.4))).
It follows from [6, Proposition 2.2] that g4(d) = {d,d>, in our case.

An easy consequence of the definition of a directing module and the sincer-
ity of M is that if Hom (X, M) # 0 for some indecomposable 4-module X then
pd, X < 1. Here we use that Hom, (M, I) # 0 for each indecomposable injective
A-module I and pd, X <1 if and only if Hom,(/,74X) = 0 for any injective A-
module 7 (see [20, (2.4)]). Similarly Hom4 (M, X) # 0 implies idy X < 1. In par-
ticular, pd, M < 1 and idy M < 1. Moreover, we have Hom 4 (M, 74 M) = 0, thus
Ext!(M, M) =0, by the Auslander-Reiten formula (see again [20, (2.4)]). Using
the result from we know there exists a directing tilting module 7' such that
M eaddT.
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Assume now that M is tilting. By [5, Theorem 2.1] it is equivalent to
say that the number of isomorphism classes of indecomposable direct sum-
mands of M equals the number of isomorphism classes of simple 4-modules.
From the definition of a tilting module it easily follows that Hom,(M,N) =0
and Extj(M ,N) =0 implies N =0. Obviously every tilting module is sincere,
hence idy M < 1. Thus M is also cotilting, that is, D(M) is a tilting 4°°-module,
where A°P denotes the opposite algebra of 4. In particular, either Hom (N, M) #
0 or Ext}(N, M) # 0 for each nonzero A-module N. The module M induces the
torsion pair (7 (M), (M)), where 7 (M) = {N e mod 4| Ext}(M,N) = 0} and
F(M):={Nemod 4 |Hom,(M,N)=0}. Notethatadd M = 7 (M). By[1]the
torsion pair (7 (M), 7 (M)) is splitting, that is, each indecomposable A-module
belongs either to 7 (M) or #(M). Moreover, since M is cotilting it follows that
F (M) is the class of all A-modules N such that X ¢ add M for each indecom-
posable direct summand X of N and Ext}(N, M) =0. Similarly, an indecom-
posable A-module X ¢ add M belongs to 7 (M) if and only if Hom (X, M) = 0.
Thus it follows that if Homy,(M,X) # 0 and Hom, (X, M) # 0 for some inde-
composable 4A-module X then X e add M. We also have the following useful
lemma.

LemmA 1.2.  Let A be a tame algebra and M a directing tilting A-module. If
h e Ky(A) is a connected positive vector such that q4(h) =0 then |{d,h),| > 2 and

Proor. It follows from that there exist pairwise nonisomorphic in-
decomposable 4-modules X, A € K, such that dim X, = & for each A. Since the
torsion pair (7 (M), 7 (M)) is splitting there exists an infinite set .# < K such
that either X, € 7 (M) for each 1€ J or X, € #(M) for each 1€ #. Assume
the first possibility holds. Then Extj(M,X;) =0 for each 1e./. In addition,
Ext?(M, X;) =0 for any Z, because pd, M < 1. On the other hand by the Brenner-
Butler theorem (see also [15, Section 2]|) Homy (M, X)), A€ .4, are pairwise
nonisomorphic indecomposable Endy (M )°?-modules. Since there is only a finite
number of isomorphism classes of indecomposable one dimensional End, (M)°P-
modules we get that dimg Hom (M, X)) > 2 for all but a finite number of 4 € .#.
Fix Ay € # with this property. Since Extj(M X)) =0= Extj(M , X,,) we have
{d,h), = dimg Hom,(M, X;,) > 2. We proceed similarly if the second possibil-
ity holds. The other inequality follows by duality. OJ

We will also need some links between properties of modules and properties
of the corresponding points of module varieties. The following proposition will
play a crucial role in our investigations. Recall that an orbit O(M) < mod,(d)
is called maximal in mod(d) if and only if (M) < O(N) implies O(N) = O(M).
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PROPOSITION 1.3.  Let A be a triangular algebra of global dimension at most 2
and d € Ky(A) a positive vector. If BExt2(M, M) = 0 for each maximal orbit O(M)
in mody (d), then the variety mod,(d) is a complete intersection of dimension a,(d).
Moreover, for each N € mod,(d), we have dim O(N) = a,(d) — dimg Ext} (N, N) +
dimg Ext?(N,N), and N is nonsingular in mod,(d) if and only if Ext>(N,N) = 0.

Proor. Using the arguments presented in the proof of |7, Proposition 2] we
get that if Extj(M, M) =0 for any maximal orbit ¢(M) in mod,(d) then the
corresponding module scheme is reduced and mody(d) is a complete intersec-
tion of dimension a,(d). The formula dim O(N) = a,(d) — dimg Extj(N, N) +
dimg Extj(N , V) now follows from the calculations presented in the same proof.
Finally, these calculations also imply that we have dimg Ty (mod,(d)) = a4(d) +
dimg Ext}(N, N), hence N is nonsingular if and only if Ext?(N,N) = 0. O

We see from the above proposition that an important role is played by
maximal orbits in a module variety. The following characterization of maximal
orbits is a direct consequence of [21, Corollary 6].

PrOPOSITION 1.4. Let A be a tame tilted algebra and d € Ky(A) a posi-
tive vector. An orbit O(N) is maximal in mody(d) if and only if we have
Extj(Nl,Nz) =0 for any decomposition N ~ Ny @ N,.

2. Proof of the main result.

Fix a tame algebra A4 and a directing 4-module M. Put d:=dim M.
Using we may assume that M is sincere. Then pd, M <1 and
idy M < 1. Moreover A is tilted, hence the Tits form ¢, 1s weakly non-
negative and Ext?(X,X) =0 for each indecomposable A-module X.

We start with the following lemma.

LemMA 2.1. Let O(N) be a maximal orbit in mody(d).

(1) If X is an indecomposable direct summand of N with the property
Hom, (X, M) =0 then

(dimX,dYy, =0,q4(dimX) =0 and Extj(X,N)=0.

(2) If X is an indecomposable direct summand of N with the property
Hom, (M, X) =0 then

(d,dimX Y, =0,q4(dimX) =0 and Ext}(N,X)=0.

Proor. We shall prove only the first statement, because the proof of the
second one is dual. We have the inequality

(dim X ,d, = {(dim X,dim M), = —dimg Ext}(X, M) <0,
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since idy M < 1. We know that N = X @ L for some A-module L. From Prop-
osition 1.4 we get Extl(X,L)=0. Thus

0> (dim X, d),
= ¢4(dim X') 4+ {(dim X ,dim L),
= q4(dim X) + dimg Hom (X, L) + dimg Ext3(X, L) > 0.

It follows that {dim X,d>, =0, q,(dimX) =0 and Ext}(X,L)=0. It finishes
the proof since Ext’(X,X) = 0. O

We have the following consequence of the above lemma.

ProPOSITION 2.2. For each maximal orbit O(N) in mody(d), we have
Ext?(N,N) = 0.

ProoF. Fix a maximal orbit O(N) in mod(d). We show Ext}(X,N) =
0 for each indecomposable direct summand X of N. If Homy(X, M) # 0 then
pd, X <1 and the claim follows. If Hom,(X, M) =0 then we get it by the pre-
vious lemma. [

The immediate consequence of the above proposition and [Proposition 1.3 is
the following corollary.

COROLLARY 2.3. The variety mody(d) is a complete intersection of dimen-

sion ay(d). Moreover maximal orbits in mody(d) consist of nonsingular points,
and N e mod,(d) is nonsingular if and only if Ext3(N,N) = 0.

Since Extj(M,M) =0 and Extj(M,M) =0 we have by [Proposition 1.3
dim O(M) = ay(d) — dimg Ext} (M, M) + dimg Ext>(M, M) = as(d). In partic-
ular, O(M) is the irreducible component of mod,(d) and O(M) is the orbit of
maximal dimension in mod,(d). We shall show that it is the unique orbit with

this property. We start with the following lemma.

LemMa 2.4. Let O(N) be a maximal orbit in mody(d). If N#M then
dim O(N) < ay(d) — 2.

Proor. Fix a directing tilting 4-module 7" such that M eadd 7. We first
show that N ¢ .7 (T). Assume this in not the case. Then by the arguments pre-
sented in the proof of [S, Proposition 1.4(b)] there exists an exact sequence 0 —
L— Ty— N — 0suchthat Tyeadd T and Le 7 (T). We have Homy, (X, T) #
0 and Hom, (T, X) # 0 for each indecomposable direct summand X of L, hence
Leadd T, since T is a directing tilting A-module. Note dim 7y =dim L +dim N =
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dim L +dim M =dim(L ® M). Since TpeaddT and L ® M € add T, it follows
that 7y ~ L @ M, because modules in add 7" are uniquely determined by their di-
mension vectors. Indeed, from the proof of [15, Proposition (3.2)] we know that
the dimension vectors of indecomposable direct summands of 7" form a basis of
Ky(A). Thus we get an exact sequence 0 — L — L@ M — N — 0 and by the result
of Riedtmann [19, Proposition 3.4] O(N) < ¢(M). Consequently O(N) = O(M)
and N ~ M, since ()(N) is a maximal orbit in mod,(d), contradiction.

It follows from the above considerations that there exists an indecomposable
direct summand X of N such that X € % (T), since the torsion pair (7 (T), #(T)) is
splitting. Then Hom, (M, X) =0. Since T is a cotilting module we show dually
that there exists an indecomposable direct summand Y € 7 (T)\add T of N such
that Hom, (Y, M) =0. Note that X#Y. By we get g4 (dim X)
0=q,(dim Y). Particularly, Ext}(X,X)#0#Extj(Y,Y) and dimg Extj(N,N)
2. From [Proposition 2.J we have Ext2(N,N) = 0, hence we obtain dim ¢(N)
ay(d) — dimg Ext}(N, N) < ay(d) — 2 using [Proposition 1.3.

(I \VA

The immediate consequence of the above lemma is the following corollary.

COROLLARY 2.5.  The orbit O(M) is the unique orbit of maximal dimension in
modA (d)

We finish our considerations in the general case by remarks on codimension
1 orbits.

PROPOSITION 2.6.  There is only a finite number of orbits of codimension 1 and

they are contained in O(M). Moreover, if O(N) is an orbit of codimension 1 in
mody(d) then Exti(N,N) = 0.

Proor. By [Lemma 2.4 it follows that all orbits of codimension 1 are con-
tained in O(M). Thus obviously there is only a finite number of them.

Let O(N) be an orbit of codimension 1 in mody(d). Since O(N) is not
maximal in mod,(d) we have by [Proposition 1.4 Ext;(Ny, N,) # 0 for some de-
composition N ~ Ny @ N, of N. Without loss of generality we may assume that
N is indecomposable. We get a nonsplit exact sequence 0 — N, — L — N; — 0
for some A-module L. Then O(N) < O(L)\O(L). Since O(N) is an orbit of co-
dimension 1 and O(M) is the unique orbit of codimension 0, it follows that L ~ M.
Hence L is a sincere directing 4-module. In particular, we get pd, N, <1 and
idgy N; < 1, since Hom,4 (X, L) # 0 for each indecomposable direct summand X of
N,, and Homy(L,N;) #0. Thus we only need to show that Extj(Nl,Nz) = 0.

We have Homy(L,74N,) =0, as L is directing and Homy(X,L) # 0 for
each indecomposable direct summand X of N,. As a consequence we obtain,

using the Auslander-Reiten formula ([20, (2.4)]), that Ext}(N,,L)=0. More-
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over, if Hom,(Nj,L) # 0 then pd, Ny <1 and we are done. Thus we may as-
sume Hom (N, L) = 0 and proceed exactly in the same way as in the proof of
[4, Lemma 7]. O

Now we assume that M is tilting and show that in this case the variety
mody(d) is irreducible and normal. We have {d,dim X), < 0 or {dim X,d), <
0 for each indecomposable A-module X such that X ¢ add M. Indeed, if X €
T (M)\add M then Hom,(X, M) =0 = Ext;(X, M) and Extj(X, M) # 0, hence
{dim X,d), < 0. Similarly, we show that {d,dimX ), <0 if X € #(M). Since
the torsion pair (7 (M), Z (M)) is splitting, it finishes the proof. Using [Lemmal
2.1 we conclude that if ((N) is a maximal orbit in mod,(d) then Hom, (X, M) #
0 and Homy (M, X) # 0 for each indecomposable direct summand X of N. It
means that N eadd M. Hence N ~ M, since dimN = dim M. Thus we get the
following fact.

ProposITION 2.7. If M is tilting then O(M) is the unique maximal orbit in
mody(d). In particular, mody(d) is the closure O(M) of O(M), hence is irre-
ducible.

The only thing which remains to show is the normality of mod,(d) for M
tilting. Since mody(d) is a complete intersection, hence due to Serre’s criterion
[14, Theorem 11.5] (see also [3, Theorem 2.4]) we have to show that mod,(d) is
nonsingular in codimension one, that is, the set of singular points in mod,(d) is
of codimension at least 2. By [Proposition 2.6 we already know that the orbits
of codimension 1 consist of nonsingular points. To treat the general case we in-
troduce some notation.

An indecomposable A-module X is called homogeneous if 74X ~ X. It
follows from that if X is an indecomposable homogeneous A-module then we
have ¢4(dim X) = 0 (recall that A4 is assumed to be tame tilted). On the other
hand, if he Ky(A4) is a connected positive vector such that ¢,(h) =0, then all
but a finite number of indecomposable A-modules with dimension vector & are
homogeneous. Moreover, there exists an open subset % of P'(K) and a regular
map p: % — mody(h) such that p(/) is an indecomposable homogeneous A-
module for 4 € % and for each indecomposable homogeneous A-module X with
dimension vector & there exists A € % with the property p(4) ~ X. Indeed, there
exists a tame canonical (in the sense of Ringel [20]) algebra A and a tilting A-
module 7 such that End,(7) is (isomorphic to) the support algebra of h (see
[18, Section 5]). In addition, each indecomposable homogeneous A-module of
dimension vector A is of the form Hom,(7',Y) for some indecomposable homo-
geneous A-module Y, where ¢ := dim Y has the property ¢, = 1 for each x. Since
there exists an open subset 7~ of P!(K) and a regular map ¢ : ¥~ — mod 4(c) such
that ¢(4) is an indecomposable homogeneous A-module for each 1€ 7" and for
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each indecomposable homogeneous 4-module Y there exists A € ¥~ with the prop-
erty a(4) ~ Y (see for example [2, Lemma 4.9]), the claim follows from [12, Lemma
6.3].

Let L be a direct sum of indecomposable nonhomogenecous A-modules
and hy, ...,k be connected positive vectors from Ky(A4) such that g4(h;) =0 for
each i. Assume that dimL +hy +---+ b =d and let # (L, hy,... k) be the
set of all N e mod,(d) such that N~L@® H, @ --- @ Hy, where H; is an inde-
composable homogeneous 4-module with dimension vector h;, i=1,..., k. It
follows from the above remarks that % (L, hy,..., k) is an irreducible construc-
tible set of dimension maxyecy (L 4. 5) dimO(N) + k.

We keep the above notation in the following lemma.

LemmA 2.8.  If M is tilting and k > 1 then dim W (L, hy, ... h) < a4(d) — 2.

Proor. For simplicity we write %" instead of ¥ (L,hy,... k). Let H
be an indecomposable homogeneous 4-module of dimension vector h;. Since
Ext}(H, H) # 0 we have H ¢ add M. Moreover, H € 7 (M) or H € # (M), as the
torsion pair (7 (M), #(M)) is splitting. Without loss of generality we may as-
sume that the first possibility holds. Then Hom,(H, M) = 0 = Ext}(H, M), thus
Chy,dy, = —dimg Ext) (H, M) <0. Then using Cemma 1.2, we get <hy,d), < —2.

According to the formula on the dimension of % and the formula on
the dimension of an orbit given in [Proposition 1.3 it is enough to show that
dimg Ext?(N, N) < dimg Ext}(N,N)—k—2 for Ne#". Note that Ext}(X,X)=
0 for each indecomposable A-module X. Moreover, we have Ext}(X, X) # 0 for
each indecomposable homogeneous A-module X. Using these remarks we have
to show that 3°, Ext(X, Ny) < Y, Ext}(X, Ny) — 2, where the sums run over all
indecomposable direct summands X of N. Here, for each indecomposable direct
summand X of N, we denote by Ny such a direct summand of N that N =X @ Ny.

Fix Ne# . Let H be a homogeneous indecomposable direct summand of
N of dimension vector h;. We have

dimg Ext’(H, Ny)
= (hy,dim Ny >, — dimg Hom(H, Ny) + dimg Ext(H, Ny)

< (hy,dy, + dimg Ext! (H, Ny),

since ¢4(h;) =0. Using the inequality <{h;,d), < —2 shown above we get
dimg Ext?(H, Ny) < dimg Ext}(H, Ny) — 2.

Let X be an indecomposable direct summand of N different from H.
If Homy(X, M) #0 then pd, X <1, hence Ext;(X,Ny)=0. In particular,
dimg Ext?(X, Ny) < dimg Ext}(X, Ny). If Homy(X, M) = 0 then {(dim X,d), =
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—dimg Ext} (X, M) <0. Since g¢4(dimX)>0 we get {dimX,dimNy), <0.
Using this inequality we obtain similarly as above that dimg Extj(X ,Ny) <
dimg Ext} (X, Ny), and this finishes the proof. ]

The following consequence of the above lemma finishes the proof of Main
Theorem.

ProposITION 2.9. If M is tilting then mody(d) is normal.

Proor. We need to show that mod,(d) is nonsingular in codimension
one. By it follows that mod,(d) is a finite union of sets ¥ (L, hy,... k)
defined above. Thus we only need to show that dim % (L, hy, ... k) < ay(d)—2

if #'(L,h,..., k) contains a nonsingular point in mod,(d). It trivially follows

from the previous lemma if k > 1. If k=0 then # (L) = O(L) and the claim

follows from |[Proposition 2.6, ]
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