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Abstract. We have developed the theory of KM,O-Langevin equations for sta-
tionary and non-degenerate flow in an inner product space. As its generalization and
refinement of the results in [14], [15], [16], we shall treat in this paper a general flow in an
inner product space without both the stationarity property and the non-degeneracy
property. At first, we shall derive the KM,O-Langevin equation describing the time
evolution of the flow and prove the fluctuation-dissipation theorem which states that there
exists a relation between the fluctuation part and the dissipation part of the above KM,0-
Langevin equation. Next we shall prove the characterization theorem of stationarity
property, the construction theorem of a flow with any given nonnegative definite matrix
function as its two-point covariance matrix function and the extension theorem of a
stationary flow without losing stationarity property.

1. Introduction.

With the aim of understanding the mathematical structure of the fluctuation-
dissipation theorem in non-equilibrium statistical physics and then constructing certain
experimental and mathematical principle in the modeling problem for time series
analysis, we have developed the theory of KM,O-Langevin equations for discrete time
weakly stationary processes [5], [7], [8], [10]. In particular, we have constructed the
fluctuation-dissipation principle based on the mathematical fluctuation-dissipation the-
orem and applied it to propose the tests for stationarity, causality, determinacy and
chaotic property of time series [6], [9], [13]. [18].

As a generalization and refinement of the paper [5], we have developed in the series
of papers [14], [15], the theory of KM,O-Langevin equations for non-degenerate
flows in an inner product space and proved three kinds of theorems; one is the
characterization theorem for stationarity property of flows; the second is the construction
theorem of KM;O-Langevin matrices and stationary flows; the third is the extension
theorem of stationary flows and positive definite functions.

However, there are various kinds of non-stationary time series data that are
important to be treated from a practical point of view. Although some non-stationary
flows can be transformed into stationary flows by non-linear transformations, we need
the method to treat non-stationarity property directly. On the other hand, the theory
for degenerate flows are also important in the analysis of deterministic time series such
as those generated by dynamical systems.
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Lev-Ari and Kailath have obtained Schur and Levinson algorithms for non-
degenerate non-stationary processes [I]. These algorithms, however, cannot be applied
to degenerate processes. On the other hand, Sakai treated degenerate (singular) sta-
tionary processes [2I]. He first analyzed periodic autoregressive processes [20],
based on Pagano’s work [19]. Then, as its application, he has obtained an estimation
method for the parameters of singular stationary processes by transforming multi-
dimensional stationary processes into one-dimensional periodic stationary processes.
This argument is essentially based on stationary and periodic stationary properties.

As stated in [14], the theory of KM,O-Langevin equations is applicable to the
analysis of not only non-degenerate stationary flows, but also degenerate (or) non-
stationary flows, that is, general flows. In fact, by developping the non-linear infor-
mation analysis for local stochastic processes and then the method of weight trans-
formation by which degenerate flows can be transformed into non-degenerate flows, we
have solved in [4], the non-linear prediction problems for local stochastic processes
which remained to be solved after Masani-Wiener’s work [2]. In particular, we have
proved in [4] the fluctuation-dissipation theorem for degenerate stationary flows and then
given an algorithm for calculating KM,O-Langevin matrix from the covariance matrix
function associated with the degenerate stationary flows.

In this paper, we extend the results on non-degenerate stationary flows to general
flows, that is, degenerate and non-stationary flows. We shall explain the contents of
this paper. In Section 2, we review the fundamental facts about the KM;,O-Langevin
equations for any pair [X, Y] of two d-dimensional flows X = (X (n);0 <n < N,) and
Y=(Y();—N_-<1<0) in an real inner product space W with an inner product
(%,%). In particular, there exist various kinds of coefficients of the dissipation term in
KM,O-Langevin equations for degenerate flows. For this reason, we introduce two sets
LMD (X) and LAY _(Y) of KM,0-Langevin dissipation matrix functions associated
with the flows X and Y, respectively. The main purpose of this paper is to obtain an
algorithm for constructing all the elements of these sets.

In Section 3, we introduce the covariance matrix functions R(X) = (R(X)(m,n);
0<mmn<N;) and R(Y)= (R(Y)(k,[);—N_ <k, <0) of the flows X and Y,
respectively, by

(1.1) R(X)(m,n) = (X(m),'X(n)) (0<m,n<N,),
(1.2) R(Y)(=m,—n) = (Y(—m), Y(~n)) (0 <m,n<N_).

These functions also reflect characteristic properties of the pair [X, Y] of flows. We
will obtain a certain relation between the sets LAY, (X), LMD _(Y) and the
covariance matrix functions R(X), R(Y) in terms of a Cholesky factorization.

In Section 4, for a given d-dimensional flow X = (X (n);0 <n < N) in the real
inner product space W and any integer s (0 <s < N), we define other d-dimensional

flows XV = (XYW (n);0 <n <N —s), X9 = (XO();—s<1<0) by
(1.3) XYy =Xn+s) 0O<n<N-s),
(1.4) X =X(I+s) (-s<I1<0).

We investigate the relations between X%QJF(X@),X/%@_(X ©)) and the covariance
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matrix function of the flow X by running s from s =0 to s = N. As its result, we prove
the fluctuation-dissipation theorem for degenerate and non-stationary flows which can be
regarded as a generalization and a refinement of the fluctuation-dissipation theorem for
non-degenerate stationary flows in [14].

In Section 5, we start with any nonnegative definite matrix function R = (R(m, n);
0 <m,n < N) with its value in M(d;R). We introduce the system Z.#(R) of KM,O-
Langevin matrix functions associated with the function R and give an algorithm for
obtaining all the elements of the set £.#(R) by using the fluctuation-dissipation theorem
in Section 4. Moreover, we construct a flow X = (X (n);0 <n < N) such that the
matrix function R becomes its covariance matrix function. These results can be
considered as a generalization and a refinement of the construction theorem for non-
degenerate stationary flows in [15].

Section 6 consists of four subsections and is devoted to the analysis of stationary
flows. We shall see that most results about non-degenerate stationary flows in hold
also for degenerate stationary flows.

In Section 7, we treat periodic stationary flows as an example of non-stationary
flows (though any periodic stationary flow of period one is a stationary flow), and then
prove a characterization theorem for periodic stationarity of flows.

Finally in Section 8, we propose the test for the models of covariance matrix
functions for non-stationary time series. This is based on essentially the same
fluctuation-dissipation principle as in the test for stationarity which has been proposed

in [6].
2. Notation and basic facts.

In this section, we shall review the basic facts about the theory of KM,O-Langevin
equations ([14], [15], [18], [4]) and follow the notations and the terminologies in the
papers above.

Let (W, (x,%)) be any real inner product space with an inner product (x,%). For
a d-dimensional flow Z = (Z(n);/ <n <r) and two integers ny,n; (I <n; <ny <r), we
denote by M,?(Z) the subspace of W spanned by {Z;(m);1 <j<d,n <m<m},
where Z;(m) is the jth component of Z(m) (1 <j<d,ni <m <my).

Given a d-dimensional flow X = (X(n);0 <n < N,) in W, we derive a new d-
dimensional flow v (X) = (vi(X)(n);0 <n<N,), to be called a forward KM,O-
Langevin fluctuation flow associated with the flow X, by projecting each component of
X(n) on the space M{'(X), i.e.,

(2.1) v, (X)(0) = X(0),
(2.2) vi(X)(n) = X(n) — PMS—I(X)X(I’Z) (l<n<N,).
The matrix function V. (X) = (V. (X)(n);0 <n < N,) obtained by
(2.3) V(X)) = (v (X) (), v (X)(m)) (0 <n<N,)

is called a forward KM;O-Langevin fluctuation matrix function associated with the flow
X, where (v (X)(n), vy (X)(n)) denotes the inner product matrix of the vector v, (X)(n)
and itself.
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Given another d-dimensional flow Y = (Y(/);—N_ </<0) in W, we derive
a backward KM,O-Langevin fluctuation flow v_(Y)= (v_(Y)(/);—N_ </ <0) and
a backward KM,O-Langevin fluctuation matrix function V_(Y) = (V_(Y)(n);
0<n<N_) in a similar way:

(2.4) v-(Y)(0) = Y(0),
(2.5) v (V)() = Y(D) = Py Y() (-N_ <1< -1),
(2.6) V_(Y)(n) = (v_(Y)(=n), v_(Y)(=n)) (0<n<N_).

We have then the following fundamental theorems.
THEOREM 2.1 ([14]).

() MJ(X) = M(v, (X)) (0 <n<N,),
(i) (X(m), (X)) =0 (0 <m<n<N,),
(i) (v (X)(m), v (X) (1)) = S Vi (X)(m) (0 <mm < N).

THEOREM 2.2 ([14]).

0 M2, (¥)=M,(v-(Y)) (0<n<N_),
(i) (Y(—m), v_(¥)(—n)) =0 (0<m<n<N_),
({i) (v (¥)(=m), v_(Y)(=n)) = S V_(Y)(n) (0 <m,n<N_).

Let X=(X(n);0<n<N,) and Y= (Y(/);—N_<[/<0) be two d-dimensional
flows in W. Then there exist two matrix functions y, = (y, (n,k);0 <k <n < N.) and
y_ = (y_(nk);0 <k <n < N_) that satisfy

n—1

(2.7) Py X (1) = =)y, (nk)X(k) (1 <n<Ny),
k=0
n—1

(2.8) Py pY(=n) = - Yy (nk)Y(—k) (1<n<N.).
k=0

We call the function y, (resp. y_) a forward (resp. backward) KM,O-Langevin dis-
sipation matrix function associated with the flow X (resp. Y). In particular, we put

(2.9) 0+(n) =y, (n,0) (1<n<Ny),
(2.10) o_(n)=y_(n,0) (1<n<N.)
and call the function d; = (0:(n);1 <n<N;) (resp. o_ = (_(n);1<n<N_)) a

forward (resp. backward) KM,O-Langevin partial correlation matrix function associated
with the flow X (resp. Y).
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From (2.1, [2.2), [2.4) and [2.5), we can now derive the following form:

(2.11) X(0) = v, (X)(0),
(2.12) X(n) =~ §y+<n,k>x<k> (X)) (1<n<N.),
(2.13) Y(0) = v_(¥)(0).

(2.14) Y@ﬂy:—gi%ygmyp4j+v(yx—m (1<n<N_).

We call equation (resp. [2.14)) a forward (resp. backward) KM,O-Langevin
equation with initial condition [2.1T) (resp. [2.13]) which describes the time evolution of
the d-dimensional flow X (resp. Y) in W.

In general, KM,O-Langevin dissipation matrix functions y, and p_ are not
uniquely determined. For this reason, we define two kinds of sets L4/, (X),
LMD_(Y) by

(2.15) LMD (X)={y, = (. (n,k);0 <k <n<Ny);
v, 1s a forward KM,O-Langevin dissipation
matrix function associated with the flow X},

(2.16) Lo (Y)={y_=(@_(nk);0<k<n<N_);
y_ 1s a backward KM;O-Langevin dissipation
matrix function associated with the flow Y}.

REMARK 2.1. By using a weight transformation to be able to transform any
degenerate flow into a non-degenerate flow, we have obtained in [4] a constructive
method for finding the elements °,7° of L4, (X), LMZ_(Y) which have the
smallest norms in the sets L4/ D (X), LMD _(Y), respectively.

DEerFINITION 2.1. A flow X = (X(n);0 <n < N,) is said to be non-degenerate if X
satisfies the following condition (2.17):

(2.17) {Xj(n);1<j<d,0<n<N,;—1} is linearly independent in .

Otherwise, X is said to be degenerate. Similarly, a flow ¥ = (Y(/);—N_ <[1<0) is
said to be non-degenerate if Y satisfies the following condition (2.18):

(2.18) {Y;(I);1<j<d,—N_+1<1<0} is linearly independent in W.

Otherwise, Y 1is said to be degenerate.

inverting the time evolution of the flow X by

(2.19) XN =X(N+1) (=N <1<0).
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By applying the results above to the natural pair [X, X")] of flows to any fixed
element y, of L4/, (X) and element y_ of LMD _(X (rev)y "we can derive the following
equations:

(220) X(0) = v, (X)(0),
(2.21) X(m) = - §y+<n,k>x<k> X)) (1<n<N),

2 X(N)=v (X))

(223)  X(N-n)=— k; b ()X (N — k) + v (X)) (=n) (1 <n<N).

We call equation (resp. (2.23)) a forward (resp. backward) KM,O-Langevin
equation with initial condition (resp. [2.22)) which describes the time evolution of
the d-dimensional flow X in W.

We define the set L4 (X) by

(2.24) LMX) = {74, 7-, Ve (X), Vo (XU));
7. =, (nk);0<k<n<N)e LUND X),
y.=(_(mk);0<k<n<N)e LD (X"}

and call it the system of KM,;O-Langevin matrix functions associated with the flow X.

3. Covariance matrix functions.

Let X = (X (n);] <n <r) be any d-dimensional flow in an real inner product space
W. For any integers m,n (I <m,n <r), we denote by R(X)(m,n) the inner product
matrix of X(m) and X(n), i.e.,

(3.1) R(X)(m,n) = (X(m), X (n)) (I <mn<r).

We call the matrix function R(X) = (R(X)(m,n);l <m,n <r) the covariance matrix
function of the flow X. From definition, R(X) satisfies

(3.2) R(X)(m,n) = RX)(n,m) (I <m,n<r).

Let X=(X(n);0<n<Ny;) and Y= (Y(/);—N_ <[/<0) be two d-dimensional
flows in W. For each natural numbers n,m (1<n<N,+1,1<m<N_+1), we

define two kinds of nd x nd symmetric matrix 7'(X)(n) and md x md symmetric matrix
T(Y)(m) by

R(X)(0,0) R(X)(0,1) R(X)(0,n—1)
(33) T(X)n) = R(X):(I,O) R(X)'(l, 1) . R(X)(l.,n -1)

R(X)(r;—l,O) R(X)(n'—l,l) . R(X)(n—.l,n—l)
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and
(3.4)
R(Y)(0,0) R(Y)(0,—-1) -+ R(Y)(0,—m+1)
Y m) = R(Y)(:—I,O) RO)(=1-1) - R(Y)(—I:,—m+1)
ROV (=m+1,0) ROY)(—m+1,—1) o ROY)(—m+1,—m+1)

ProrosiTiON 3.1.

i) T(X)(n) =0 (1<n<N,+1),
(i) T(Y)(n)=0 (l<n<N_+1).

Proor. Property (i) follows from the fact

X(0) X(0
X(1) , X(1
(3.5) T(X)(n) = R I
X(n—-1) X(n—-1)
Property i1s proved in a similar way. ]

Throughout this section, we will fix any elements y, = (y, (n,k);0 <k <n < Ny),
=(y_(nk);0<k<n<N_.) of WD (X),LN2_(Y), respectively, except for
[Cemma 3.6. We will show some lemmas for later discussion.

Lemma 3.1.
(i) R(X)(n,1) = Zmnk X)(k,l) 1<n<N,0<l<n-—1),

n—1

(i) R(Y)(-n,~1)=-Y 7 (mk)R(Y)(~k,~I) (1<n<N_,0<l<n-—1).

k=0

LeEmMMmA 3.2.

n—1
i) ViX)m) =3 7. (nkRX)(k,n) + RX)(n,n) (1 <n<N,),

k=0

n—1
(i) V() =S 7_(mk)R(Y)(=k,—n) + R(¥)(=n,—n) (I <n <N_).

k=0

Proor. By taking the inner product of both-hand sides in the forward KM,O-
Langevin equation and the vector X (/) (0 </ <n), we have Lemmas B.1(i) and
3.2(i). Lemmas B.(ii) and 3.2[i1) are similarly proved. |
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For any natural numbers n,m (1 <n <N, + 1,1 <m < N_+1), we define other
nd x nd matrix G(X)(n) and md x md matrix G(Y)(m) in the following way.

1y
V+(150> Id 0
3.6)  GX)n)=| 7+(20) y+(2,1) g ,
y+(n;1,0) y+(n.—l,1) y+(n—l;n—2) 1,
1y
_(1,0) 1; 0
(3.7  GY)m)=| 7-(2,0) y-(2,1) A :
y,(m.—l,O) y,(m;l,l) yf(m—lh,m—2) 1,

where I; stands for the d x d identity matrix. Immediately from Lemmas B.1 and 3.2,
we have

LemmA 3.3.  For each natural numbers n,m (1 <n<N,+1,1<m<N_+1),

Vi (X)(0) 0
i) GX)m)T(X)(n)'G(X)(n) = Vi (X)(1) |
0 Vi(X)(n—1)
V_(Y)(0) 0
(i) G(Y)m)T(Y)(m)'G(Y)(m) = V_(Y)(1)
0 | V_(Y)(m—1)

Lemma 3.4. For each natural number n (1 <n < N, + 1), the following three
conditions are equivalent with each other:

(i) T(X)(n) > 0;
(a-i)) Vi(X)(k) >0 (0<k<n-—1);
(a-iil) {X;(/);1<j<d,0<[<n—1} is linearly independent in W.

Similarly, for each natural number n (1 <n < N_+ 1), the following three conditions are
equivalent with each other:

(b-i) T(Y)(n) > 0;
(b-il) V_(Y)(k)>0 (0<k<n-—1)
(b-iii) {Y;(I);1<j<d,—n+1<1[<0} is linearly independent in W.
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ProoF. By virtue of [Lemma 3.3, we see that (a-i) and (a-ii) are equivalent.
Moreover, (a-i) and (a-iili) are equivalent, because of [3.5]. The same proof can be
applied to the flow Y. O

By noting that G(X)(n) and G(Y)(m) are invertible, we see from that

LemmaA 3.5. For each natural numbers n,m (1 <n< N, +1,1<m<N_+1),

V(X)) 0
() TX)m) = G X)) V) G (X)(n),
0 X))
V(1)) 0
i) T(Y)m) = G (¥)(m) - G (¥)(m).
0 OV (Nm-1)

In [Cemma 3.3, both G~'(X)(n) and G~!'(Y)(n) have the form

1y

In general, any /d x Id nonnegative definite matrix 7 can be factorized as follows:
(3.8) T =LD'L,

where L is an Id x Id lower triangular matrix and D is an /d x Ild block diagonal matrix
of the form such that

1y " 0

I; 0 Vs
L= ) and D= ) )

I 0 Vi

where V; (1 <i<n) are d x d matrices. We call this factorization a d-dimensional
block Cholesky factorization. We should note that this factorization is not unique
when T is singular. gives a d-dimensional block Cholesky factorizations of
T(X)(n) and T(Y)(m). The converse is also true in the following meaning.

LeMMA 3.6. Let L, D,'L, and L_D_'L_ be any d-dimensional Cholesky factori-
zations of T(X)(Ny + 1) and T(Y)(N_ + 1), respectively. We divide L7' and D into
submatrices as follows:
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1y

yi(l,O) 1, 0
L;l = Y+ 2a0> V+ (27 1) Id ,

P+ (Nt,0)  p4(Ng, 1) P+(Nt, Ny = 1) I

v, (0) 0

V(1
D, — 4 (1) |
0 Vi (Ny)

where y_, (n,k),y_(m,1),Vi(p),V-(q) (0<k<n<N;,0</<m<N_,0<p<N,,0<
g <N_) are d xd matrices. Then the matrix functions y_ = (y_ (n,k); 0 <k <n<
Ni),y_=(y_(m1);0 <l <m< N_) belong to the sets LMD (X), LUND_(Y), re-
spectively.  Moreover, the matrix functions V., = (V,.(n);0 <n<N,) (resp. V_=
(V_(n);0 <n < N_)) is a forward (resp. backward) KM,O-Langevin fluctuation matrix
function associated with the flow X (resp. Y).

ProoF. First we note
(3.9) D, =L 'T(X)(N.+ 1)'L;".
We define a d-dimensional flow v, = (v;(n);0 <n < N,) by

(3.10) v, (0) = X(0),

n—1
(3.11) vi(m) =X+ )y (nk)X(k) (1<n<Np).
k=0

Definitions {3.10), (3.11) can be rewritten as

v (0 X(0)
(3.12) M:(l) — ! x()
Vi (Ny) X(Ny)

Then by virtue of [3.9], we have

v,(0) v,(0)

(3.13) v+:(1> ,! ”:(1) - D,
vi(Ny) v (Ny)

which shows

(3.14) (vi(m), vi(n)) =0 (0 <m,n < Ny,m+#n),

(3.15) (v (), v () = Vi(n) (0 <n <Ny,
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Hence, by (3.10), (3.11), and (3.14), the flow v, = (v4(n);0 <n < N,) is a forward
KM,O-Langevin fluctuation flow associated with the flow X and the function y, =
(y,(n,k);0 <k <n<Ny) is a forward KM,O-Langevin dissipation matrix function
associated with the flow X. Moreover, from [3.15), we see that the matrix func-
tion V, = (V,(n);0 <n < N,) is a forward KM,O-Langevin fluctuation matrix func-
tion associated with the flow X. The latter part of the lemma is also proved in the
same way. []

4. Relations between the system of KM,O-Langevin matrix functions
and the covariance matrix function.

Let (W, (%,%)) be any real inner product space with an inner product (x,x*) and let
X =(X(n);0<n<N) be any d-dimensional flow in the space W. In the previous
section, we saw that the KM,O-Langevin matrices and the covariance matrix functions
are connected by Cholesky factorizations.

For further insight into their relations, for each integer s (0 < s < N), we define
new flows X(j) = (Xf)(n);O <n<N-s)and X¥ = (X®)(]); —s <1<0) by

(4.1) X9y =Xn+s) O<n<N-—ys),

(4.2) XN =x(+s) (—s<1<0).

We define the set Z.#(X) by
(43) LX) ={(F5,7-, Vo (X), V-(X));
7= (s,nk) = yg‘:)(n,k);o <s<N-1,1<n<N-s50<k<n),
o= _(s,mk)=y9(mk);1 <s<N,1<n<s0<k<n),
Vo(X) = (Ve(X)(s,n) = Voe(X)(n);0<s < N,0<n< N —s),
V(X)) =(V_(X)(s,n) = V_(X)(n);0<s<N,0<n<5s),
2 =Ykl <n<N-—s0<k<n)eLd7.(XY) 0<s<N-1),

=YWkl <n<s,0<k<n)e 247 (XY) (1<s<N)}.

The aim of this section is to study the structure of the set ﬁ(X ). For that
purpose, we investigate the relations between LA4/Z. (X (j)), LMD_(XY) and the
covariance matrix function of the flow X by running s from s =0 to s = N and then to
prove the fluctuation-dissipation theorem which can be regarded as a generalization and
a refinement of the fluctuation-dissipation theorem for non-degenerate stationary flows
in [14].

Throughout this section, for each integer s (0 < s < N), we will fix any elements
W= 0V k);0 <k <n<N -5, =(Vmk;0<k<n<s) of 247, (XY),
LMD (X)), respectively. First of all, we have from that
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PROPOSITION 4.1.  For each integer s (0 <s < N),
@) RXY)(m,n) = R(X)(s+m,s+n) (0<mn<N —s),
(i) RXY)(=m,—n) = R(X)(s —m,s—n) (0<m,n<s),

Putting n = m = 0 in |[Proposition 4.1, we have

PROPOSITION 4.2.  For each integer s (0 <s < N),
Vi (X1))(0) = R(X)(s,5).

Furthermore, by virtue of Lemmas B.1, B.2, and Proposition 4.1, we have the

following [Lemma 4.1, [Corollary 4.1 and [Lemma 4.2

LEmMMA 4.1. For each integer s (0 <s < N),

n—1
i) R(X)(s+n,s+1 y X)s+k,s+1) (0<I<n<N-—y),
k=0
n—1
(i) RX)(s—n,s—1)= YO K)R(X)(s —k,s—1) (0<I<n<s).
k=0

COROLLARY 4.1.

(i) RX)(s+1,5)=-0Y (V. (XD)(0) (0<s<N—1),
(i) RX)(s—1,5) = -0V (XP)(0) (1 <s<N).

LemMmA 4.2.  For each integer s (0 <s < N)

n—1

(@) VX)) =39 (m, k)RX) (s + ks +n) + R(X) (s + s+ )

k=0
(I1<n<N-y),
n—1
(i1) V,(X(_s))(n):Zy(_s)(n,k)R(X)(s—k,s—n)+R(X)(s—n,s—n) (I1<n<s).
k=0
Lemma 4.3.
(i) For any integers n,s 2 <n<N,0<s<N —n),
n—1 ) n—1 (s+1) )
P )X () =S8 = 1k = 1) + 0P (m)y D — 1,n — k= 1) XY (k).

k=1 k=1
(i) For any integers n,s 2 <n<N,n<s<N),

n—1

P, k)X (—k) =3V 0 = 1k = 1) + 09 ()" (n = 1,0 — k — 1) X (~k).

1 k=1

I
|
—

T

Proor. Let /,n and s be integers such that ] </ <n <N, 0<s< N —n. From
Lemma 4.1(i), we have
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N
—_

44) RX)(s+ns+10)=—-VmRX)(s,s+1) = 7, k)RX)(s + k, s+ 1).
1

>
Il

Replacing /,n and s in [Lemma 4.1(i)) by /—1,n—1, and s+ 1, respectively, we
have

n—2 |
(4.5) RX)(s+nms+0) == ""Vn—1LERX)(s+k+1,5+1).

k=0
Furthermore, replacing /,n and s in [Lemma 4.1(ii)) by n—/—1,n—1, and s+n— 1,
respectively, we have

:
l\)

(4.6) R(X)(s,s+1) = y<s+” Dn—1,k)RX)(s+n—k—1,s+1).

W
(=)

Hence, by substituting and into the left-hand side of (4.4) and the term
R(X)(s,s+ 1) in the right-hand side of (4.4), respectively, we obtain

n—1

(4.7) > GR(X)(s+k,s+1) =0,
k=1

where C;} (1<k<n-1,0<s<N —n) are d x d matrices defined by
48)  C =9k =) —1,k=1) =6V )y Vn—1,n—k—1).

Here we define an element Z = (Z, Z,...,Z4) of W by Z= /-] C,;‘Xf) (k), which
implies that Z; e M7~ !(X ) ) (1 <i<d). On the other hand, by , we see that
(Z, iyl )( ))=0 (1<I<n-1). Hence we find that Z,e M 1(X'")" (1 <i<d),
which shows Z = 0, as required. ]

We shall prove the following dissipation-dissipation theorem.

THEOREM 4.1 (Dissipation-Dissipation Theorem). For any given elements yg‘f) of
fﬂ.@+(X$)) and y) of LuT_(XY) (0 <s<N), we can transform other matrices
besides 59(11) (1<n<N,0<s<N-—n),dm) (1<m<N,m<s<N) among them
to construct other elements y;(‘g) of g%@+(X(+s)) and y'®) of LMD_(XY)) such that the
following Dissipation-Dissipation Theorem ((DDT)) holds:

(i) For any integers nk,s (1 <k<n<N,0<s<N —n),

P (k) = = Lk = 1)+ 8 )y D (= 1n— k= 1),
(i) For any integers nk,s (1 <k<n<N,n<s<N),
YO (k) =9 D=1,k = 1)+ )y n—1,n—k—1).

Proor. DDT demands nothing for n=1. Assume that we do not change
matrices 59(71) (I<n<n—1,0<s<N-—n), 0Ym) l<m<ny—1l,m<s<N)
and can construct two systems of {yﬁr(s) (nk);0<k<n<ny—1,0<s<N—n} and
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{7 (n,k);0 <k <n<ny—1,n<s<N} that satisfy DDT. Then we define d x d
matrices y;(s) (no, k), 7'®(ng, k) by

(4.9) y;(‘y)(no, k) = yfﬂ)(no —1,k—1) +5 ) (1) !+~ Yng—1,my—k—1)
(I1<k<n—-1,0<s<N—np),
4.10) 99 (ng,k) = 9" V(ng — 1,k — 1) + 89 (ng)y" " (ng — 1,mg —k — 1)

(1<k<mny—1,ny<s<N),

@11 8'9(ng) =6 (ng) (0 <s<N—ny),
(4.12) 6" (ng) =0 (ng) (ny <s < N).
Then from (4.9), (4.11) we obtain

}’l()—l no -1
=" 9 (0, )XY (k) = =0 (no) X Zmﬁn—lww
k=0
+ 0 m)y! D (ng — 1,mo — k= 1)} (k).
Applying [Lemma 4.3(i) to the second term of the right-hand side above, we have

I’l()fl no— 1

= v (0, k)XY () = =6 (mo) X1 (0) — th, (k)
k=0

which gives

no—1
=~ 7m0, )X (k) = Py 0 X1 (m0)
k=0
Similary we have
no— 1

Therefore, we see from (4.9), (4.10), and the assumption of the induction that two
systems of {yﬁfs)(n,k),y;(”)(no,j);o <k<n<n—-1,0<j<ng—10<s<N-n0<
u<N-—ng}, and {y®(n k), “(ng,j);0<k<n<mny—10<j<ny—1l,n<s<N,
ny < u < N} become KM,0O-Langevin dissipation matrix functions that satisfy DDT for
n <np.

Therefore, we have proved [Theorem 4.1. ]

REMARK 4.1. By using the weight transformation, we can show from
that DDT holds for the minimum KM,;O-Langevin dissipation matrix function yg(X Sf))
of the flow ng) (0 <s<N) and the minimum KM,;O-Langevin dissipation matrix
function 7% (X)) of the flow X (0 <s< N).



Non-stationary and degenerate flows 537

Next, we shall prove the fluctuation-dissipation theorem. For that purpose, we
shall prepare some lemmas.

LEmMmA 4.4.
(i) For any integers n,l,s 2<n<N,0<I/<N,0<s<N —n)

n—1

STV k)RX) (s + K, 1)

k=1

S
—_

GE =1,k = 1)+ 6V )5 Dn—1,n— k — 1))R(X)(s + k, ).

b
Il

1

(i) For any integers n,l,s 2<n<N,0<I<N,n<s<N),

n—

,_.

7 (n, )R(X)(s — k. 1)

k=1
n—1
=308V 1k = 1) +09 (S (0~ 1n — k — 1)RX) (s — &, 1).
k=1
PROOF.

By taking the inner product of the both-hand sides in Lemma 4.3(i) and
the vector X(/), we have (i). Statement is similarly proved. O

LEmMma 4.5.

(i) For any integers n,s (1<n<N—-1,0<s<N-n—1),

—_

n—

RX)(s+n+1,s)=— yHl (n,k)R(X)(s+k+1,5)

— 6V (n+ V(XS (n).
0

e
Il

(i) For any integers n,s (1<n<N—-1,n+1<s<N),

._.

RX)(s—n—1,5) = — \ YWV KRX)(s—k —1,5) =0 (n

+DVL(XE)(m).
0

e
Il

Proor. Replacing n and / in [Lemma 4.1(i) by n+1 and 0, we have

R(X)(s+n+1,s) = ZV+ n+1,k)RX)(s+k,s) =% (n+ 1R(X)(s, 5).

Furthermore, by replacing n and / in [Lemma 4.4(i) by n+ 1 and s, and substituting it
into the first term of the right-hand side in the above equation, we have

RX)(s+n+1,s)=— yf“ (n,k — 1)R(X)(s + k, 5)
k=1

1){;)/(_””)(11,11 —k)R(X)(s + k,s) —|—R(X)(s,s)}.
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By [Lemma 4.2(ii), the second term of the right-hand side in the above equation is equal
to =0 (n+ 1)V_(X¥*)(n), which shows that [Cemma 4.3(i) holds. We can prove
in a similar fashion. ]

THEOREM 4.2 (Fluctuation-Dissipation Theorem I).
(i) For any integers n,s (1 <n<N,0<s<N —y),

V(X)) = (1 =65 (m)o“ ) () Vi (XT) (n — 1),
(i) For any integers n,s (1 <n<N,n<s<N),

V(X)) = (1 =39 (mol ™ (m)) V- (X0 V) (n = 1),

Proor. Applying [Proposition 4.2 and [Corollary 4.1|(ii) to the right-hand side in
[Lemma 4.2(i), we see that [Theorem 4.2(i) holds for n =1. Foreachn (2<n < N), by
virtue of [Lemma 4.2(i), we have

Vo (XW) Zy+ (0, K)R(X)(s + k, 5+ n) + 6 (W) R(X)(s,5 + n) + R(X)(s + n,s + n).
k=1

Replacing / in [Lemma 4.4(i) by s + n, and substituting it into the first term of the right-
hand side above, we obtain

[3)

n—

Ve X)) =S p8 = 1LE)RX)(s+ 1+ k,s+n) + R(X)(s +n,s+n)
0

b
Il

n—2

+5§f><n){R(X)(s,s+n) + 395 D — LK R(X) (s +n—k — 1,s+n)}.
=0

By [Cemma 4.2(i), the sum of the first and second term of the right-hand side above is

equal to Vo(XU'"™)(m—1). By Lemma 4.3(ii), the third term of the right-hand side

above equals —5(+S)(n)5(_s+”)(n) V+(ng+l))(n— 1). Thus we have (i). Statement is

similarly proved. O

THeOREM 4.3 (Burg’s relation). For any integers n,s (1 <n<N —1,
l1<s<N-—n),

—

n—

RX)(s+n,s+n—1—=k)ys D k) = Z]@ (n,k)R(X)(s+ k,s—1).
0

b
Il

Proor. Let n and s be integers such that | <n<N -1, 1 <s<N-—-nWe
define a 2d x (n+ 2)d matrix F(n+2) by

Fwe=(0 Wm0 W) o WDma—1) 1Y
Iy D —1) y¥D(nn—2) - 3 D(n,0) 0

We recall
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RX)(s—1,s—1) RX)(s—1,5) --- R(X)(s—1,s+n)
(-1) R(X)(s,s —1) R(X)(s,s) -+ R(X)(s,s+n)
T(X; )n+2)= . . .
RX)(s+ns—1) RX)(s+n,s) -+ RX)(s+ns+n)
By Lemmas 4. and 4.2, we obtain
. 51y 4 9y — A(n, s) 0 - 0 V.(XNn)
(4.13)  F(n+2)T(XY )( +2)_(V(X(_S+”_l))(n) 0 .. 0 Bny) >

where A(n,s) and B(n,s) are d x d matrices defined by

n—1
(4.14) A(n,s) = RX)(s+ns— 1)+ > 3 k)RX)(s +k,s 1),
k=0
n—1
(4.15) B(n,s) = RX)(s—1s+n)+ > 2" D, k)RX)(s +n—1—k,s+n).
k=0
Hence we have
- Vo (XYY (n) A(n, s)
4.16) Fn+2)T(X\ n+2)Fn+2)=| "++ ’ .
#16) Fn+ TOE 4 2R 2 = (D A
By noting that F(n+2)T (ng_l))(n+2) F(n+2) is a symmetric matrix, we find
(4.17) ‘B(n,s) = A(n,s),
which gives the proof of the theorem. ]

Immediately from (4.16), we have

COROLLARY 4.2. For two integers n,s (1<n<N-—-1,1<s<N —n),

Ve(XY)(n) A(n,s) >0
B(I’l,S) V_(X(_H"_l))(n) =Y

where A(n,s) and B(n,s) are defined by (4.14) and (4.15), respectively.

THEOREM 4.4 (Fluctuation-Dissipation Theorem II). For two integers n,s
(1<n<N,0<s<N—n),

S )V (XY — 1) = Vo (XS (0 — 1) 65 ().

Proor. By [Corollary 4.1, the statement is true for n = 1. Further, by
and [Theorem 4.3, we have the proof for n > 2. ]

5. Construction theorem for general flows.

Let us given any M (d; R)-valued nonnegative definite function R = (R(m,n);0 < m,
n < N) of two variables. The aim of this section is to investigate the structure of the
set of all the systems of KM;O-Langevin matrices associated with the matrix function R
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and then to obtain an algorithm of constructing all d-dimensional flows X = (X (n);
0 <n < N) whose covariance matrix function are equal to the matrix function R. Our
result here can be regarded as a generalization of the construction theorem for non-
degenerate stationary flows, which was obtained in [15]. We follow the same notation

in [15].

For any natural number n (1 <n < N), we define the set Z#(R;n) of four kinds
of matrix functions y,,y_, V., V_ by

(5.1)  LHMRn) = {75, Vi, Vo)
Vo= yls,m k) = ng)(m’k);() <s<N-1,
l<m<nm<N-—s50<k<m),
=0 (s,mk)=yY(mk);1 <s<N,1<m<nm<s0<k<m),
V.= V.(s,m) = VJ(F‘Y)(m);O <s<N,0<m<nm<N —ys),
Vo= (V_(s,m)= VY (m);0 <s <N,0<m<nm<s) satisfy

the following (PAC), (DDT), (FDT).
m—2
5(+S)(m) pltm=b(, — 1) = —{R(s +m,s) + Z y(fH)(m —1L,k)R(s+ k + l,s)}

(I1<m<n0<s<N-—m),

m—2
S )V m — 1) = —{R<s— )+ 3 9 m — 1 K)R(s — k 1,s>}
k=0

(l<m<nm<s<N),
P ko) = 9 m = 1k = 1) + 0 (m)y Do — 1m — ke = 1)
(1<k<m<n0<s<N-—m),
YO (m, k) =y V(m—1,k—1) +5(_S)(m)y(+s_m+l)(m —1m—k—1)

(I1<k<m<nm<s<N),

v Wy m—=1) 1<m<n0<s<N-—m),
VO (m) = (I =69 (m)o ™™ m)VEDim—1) (1<m<nms<s<N)},

m <s).

The aim of this section is to give an algorithm for obtaining all the elements of the
set ZM(R;N) by running n from n=1to n=N. We note from (DDT) and (FDT)
that all the elements of the set £/ (R;n) can be determined by two kinds of matrix
functions 6.,0_ defined by
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(5.2) o, = (5+(s,m) 55$)(m);0 <s<N-Ll<m<nm<N —y),
(5.3) 6. =0 _(s,m) =0 m);1<s<N,1<m<nm<s).

Therefore, for our purpose, we have only to give an algorithm for obtaining all the
matrix functions d,,0_. We shall give it in the following.

ALGORITHM 5.1.
[Step 0] We define d x d matrices Vf)(O) by

(5.4) V9(0) = R(s,s) (0<s<N).

[Step 1] We shall prove

LemmA 5.1.
(i) For any s (0 <s< N —1), the set of solutions Y. (eM(d;R)) of the following
equation
(r}) Y V0(0) = —R(s+1,5)

is equal to the set of all d x d matrices 59(1) defined by
(5.5) oY1) = =R(s + 1,9) VO (0)" + 4, (1)(I - VI (0) 7 (0)),

with an element A, (1) of M(d;R), where the matrix V) (0)" is the Moore-
Penrose generalized inverse of the matrix V¥ (0).

(i) For any s (1 <s<N), the set of solutions Y_ (eM(d;R)) of the following
equation

(r1) Y-V(0) = —R(s— 1,5)
is equal to the set of all 5(;")(1) defined by
(5.6) o9(1) = —R(s— L)V (0)" + 4 (1) = VP 0) 7P (0)h),

with an element A, (1) of M(d;R), where the matrix Vf)(O)Jr is the Moore-
Penrose generalized inverse of the matrix VJ(FS)(O).

ProoF. Since the matrix function R has a nonnegative definite property, we obtain

R(s,s) R(s,s+1) =0
R(s+1,5) R(s+1,s+1))

With the help of [5.4), we rewrite the above relation as

V$)(0) R(s,s+1) -0

R(s+1,5) R(s+1,s+1))
which shows by [Lemma All in Appendix that there exists a d x d matrix Y, such that
Y, V¥(0) = —R(s+1,s). Hence, there exists a solution of the equation to be solved.

Thus, it follows from the theory of generalized inverse matrix that (i) holds. Statement
is similarly proved. -
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Therefore, we see that

(5.7) iﬁﬁwzﬂhﬁqﬁiQ'

(7)-&-(57170) V( (17 ) SN—I))
?_(~mL®—(O,) s<N),
Vi=V(s,n)=VIn);0<s<N0O<n<N-sn<l),
V.o=V_(s,n)=VY1):;0<s<N,0<n<sn<l),
V(1,0) =0 (1),

(1,0) = 6 (1),
ve(0) = V9(0) = R(s,s) (0 <s<N),
Vo) = (1 -6 (1)0b <»V“*m><OSsSN—1m
Vo) =1 -6D st ) reho) (1 <s<N),

5@(1),5(_“)(1) are given by (5.5) and ((5.6), respectively}.

Moreover, by [Lemma 5.1 and a direct calculation, we can prove
LemMmA 5.2.

(i
(ii

)
)
i) VY1) =6V (1)R(s,s+1)+R(s+1,s+1) (0<s<N—1),
(iv)

R(s+1,5) = —6Y(DR(s,s) (0<s<N-—1),
R(s—1,5) = =09 (1)R(s,s) (1 <s<N),
iv) VO1)=091)R(s,s—1)+R(s—1,5—1) (1 <s<N).

[Step2] Let wus fix any natural number n (1 <n<N) and any element
V., V_) of the set L4 (R;n). Then we shall consider the following equations

(77,

(pE) for Y.(l,s) (eM(d;R)):

(pi) R(s+1,5) = =400 (= LE)R(s +k + 1,s) — Ya(l, ) VOH-D(1 - 1)
(2£VlSn,OSVs£N—l),

(Py)  Rls=1s)==4T60 V(= LR —k —1,5) = Y_(Ls)V "V = 1)

(2£\ﬂ£nlSVs£N)

Concerning these equations, we shall consider the following statements (b7F):
(b)) The set of solutions Y, (/,s) of equation (p;) is equal to the set of all d x d
matrices 5( (/) defined by

(5.8) V(1) = { s+ls)+Zys+l (I-1,k)R <s+k+1s)} yUtH=D( — 1)*

F AL - VI - )P — 1)) (0<s <N - 1)
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with a certain element A, (/) of M(d;R), where VU+=1(] —1)" is the Moore-Penrose
generalized inverse of the matrix V=1 (/ —1).

(b,) The set of solutions Y_(/,s) of equation (p, ) is equal to the set of all d x d
matrices 6*)(/) defined by

(5.9) oY) = { (s—ls)+Zy‘1 (I—1,k)R(s—k —1, )} S - )t

+A- (DI =V yrTT gt (1<s<N)

with a certain element 4_(/) of M(d;R), where VJF‘HJrl (I—1)" is the Moore-Penrose
generalized inverse of the matrix Vf_”l)(l —1).

Moreover, for proving the statements (b*), we shall consider the following
statements (efX) and (f*):

m—1

() V(m) =" 9P (m,k)R(s+ ks +m) + R(s +m,s +m)

(1<m<n0<s<N-—m),

3

(e;) V¥ (m)= Z Y (m, k)R(s — k,s —m) 4+ R(s — m,s — m)

=0
(l1<m<nm<s<N),
m—1
(f5) R(s+m,s+1)=— y(j)(m,k)R(s—l-k,s-l-l) 0<l<m<n0<s<N-—m),
k=0
m—1
(f,) R(s—m,s—1)=— YO (m k)R(s —k,s—1) (0<l<m<nm<s<N).
k=0

THEOREM 5.1.  The statements (by),(ex), (fxv) hold.

Proor. We shall prove the statements (b,:—’),( er),(f*) by induction with respect
to n. It follows from Lemmas 5.1 and that the statements (bi), (ei), (f;")
hold. Let us fix any natural number ny (2 <no < N) and assume that the statements
(bF),(ef),(f,*) hold for any n (1 <n<mng—1).

First, we shall prove (b, ). By using (e; ;) and ( f 1), we can see from the same
calculation as we had in the proof of [Theorem 4.3 (Corollarz 4.2) that

Ve Dimg—1)  AR)(no— 1,5+ 1) =0
B(R)(ng— 1,s+1) V&tn-l,—1) | =7

where
no— -2
AR)(no — 1,5+ 1) = Rs+no,s) + > /S (mo — LE)R(s + k + 1,5),
k=0
no—2

B(R)(ng — 1,5+ 1) = R(s,s+no) + Z YD (ng — 1,k)R(s +ng — 1 — k, s+ np).
k=0
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So by [Lemma All in Appendix, we see that there exists a d x d matrix Y such that

n072
YVEm (g — 1) = —R(s +no,8) — Y 75 (mo — LEOR(s + k +1,5).
k=0

Hence, we see from the theory of generalized inverse matrix that (b)) is true. In a
similar way, we can prove (b, ).
Next, we shall prove (e) ). By (DDT), we have

nol

Zm no, K)R(s + k,s +no) + R(s + no, s + no)

no—1

= Zys“ no — 1,k — 1)R(s + k, s + no) + R(s + no, s + no)

I’l()—l
+5$)(n0){R(s,s+ no) + Z y(_5+no—1)(n0 —1,ng—k — I)R(S—l—k,s—l—no)}-
k=1

Since (e, _;) holds, we see that the sum of the first term and the second term of the
right- hand side in the above equation is equal to V(S+])(n0 —1). Moreover, the third
term of the right-hand side above equals 5@ (no)é(er”O)(no)VfH)(no — 1), because (b, )
holds. Thus we obtain

1101

ZM 1o, K)R(s + k, s+ no) + R(s + no, s + no) = (I — 6% (n)8° 7 (o)) VE (g — 1).

It follows from (FDT) that the right-hand side above is equal to Vf) (ng). Thus (e, ) is
proved. In a similar way, we can prove (e, ).

Finally, we shall prove that (f,) holds for 1 </<mng—1, m=no. Let ! be any
integer such that 1 </ <ny—1. From (DDT), we have

1101

_ZV+ no, K)R(s + k,s +1)

no—1

——Zywl (no— 1,k—1)R(s+ k,s+ 1)

I’lo—l
_5$)(n0){R(s,s+ )+ Z pSt0 D (g — 1,mg — k — 1)R(s + k, s + 1)}
k=1

By the assumption that ( f,:g_l) holds, we see that the first term of the right-hand side in
the above equation is equal to R(s + ng,s + /). Furthermore, the second term vanishes,
because (f, ;) holds. Thus, (f) holds for 1 </<ny—1, m= ny.
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We shall now prove that (f,") is true for / =0, m =no. It follows from (DDT)
that

}’lo—l
" 9 (no, k)R(s + &, 5)
k=0

I’lo—l

— =5y — 1,k — R(s + K, 5)
k=1

no—1
—5$)(n0){2 Y80 (ny — 1,mg — k — 1)R(s + k, 5) + R(s, S)}
J=1

By (‘35071): the second term of the right-hand side above is equal to
—5@ (no) VU+m=D(ny —1). Hence, we have

I’lo—l n0—2
3" o, )R+ kys) = = > 9 (g — LE)R(s +k + 1,5)
k=0 k=0

=0 (mo) VLD (g — 1).

The right-hand side above equals R(s + ng, s) because (b, ) holds. Thus (f,") holds for
[ =0, n=mnp. It can be seen in a similar way that (f, ) holds.

Consequently, we have completed the proof of Theorem 5.1 by mathematical
induction. ]

[Last step] For any element (y,,7_, V., V_) of the set %(R; N), we can define
d x d matrices 64 (n),y,(n,k), Vi(n) by

(5.10) 6.(n)=0V(n) (0<n<N),
(5.11) 5_(n)=Mm) (0<n<N),
(5.12) v (mk) =9 k) (0<k <n<N),
(5.13) y_(m k) =yNM(nk) (0<k<n<N),
(5.14) Vi) = V) (0<n<N),
(5.15) Von)=Vv™Mm) (0<n<N)

We shall prove

THEOREM 5.2. For each integer n (0 <n < N), Vi(n)=>0.

Proor. We define (N + 1)d x (N + 1)d matrices T(R)(N +1) and G(N + 1) by
R(0,0) R(0,1) --- R(0O,N)

rRyw )= | RO RALD - ROLN)

R(]\},O) R(&,l) . R(N,N)
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Iy
7. (1,0) 1; 0
GIN+1)= 7+(2,0)  0(2,1) L
7+(NV,0) (V1) - (NN =) Iy
From (ey), (fy) in Theorem 5.1, we have
V. (0) 0
t v.(1)
(516)  G(N+ DT(R)(N +1)'G(N + 1) =
0 V.(N)
Since T( )J(N + 1) is nonnegative definite, so is G(N + 1)T(R)(N + 1)'G(N + 1).
Hence, V,.(n) >0 (0<n<N). In the same way, we can prove V_(n)>0
(0<n<N). [

Thus, by using four kinds of matrix functions y,,y_, V., V_ defined in [Last step] of
Algorithm 5.1, we define the set Z.#(R) by

(517)  ZLA(R) = {(y,,y_, V4, V_); there exists an element (y,,7_, V., V)
of ZM(R;N) such that 7. = (74 (m,k);0 <k <n<N) and
Vi =(Vy(n);0 <n<N) are defined by (5.12), (5.13),
(5.14), (5.15), respectively}.

DeriNITION 5.1. For a given M(d; R)-valued non-negative definite function
R = (R(m,n);0 <m,n <N), we call the set L#(R) defined by (5.17) the system of
KM,0O-Langevin matrix functions associated with the function R.

It is to be noted that any component V, (resp. V_) of elements of the set Z.#(R) is
the same matrix function which is uniquely determined by the matrix function R.

Let W be any real inner product space the dimension of which is equal to or
greater than (N + 1)d. For a given M(d; R)-valued nonnegative definite function R =
(R(m,n);0 <m,n < N), we construct a d-dimensional flow in W as follows.

ALGORITHM 5.2.

[Step 1] Let (y,,y_, Vi, V_) be any element of the set L. (R) defined by (5.17).
Let {&,;1<j<d,0<n<N} be any orthonormal system of W. We construct d-
dimensional vectors ¢, .(n) (0 <n < N) by

(5.18) & (n) =& oy ¢m) (0<n<N).

[Step 2] Let Wi(n) (0 <n<N) be any d x d matrices such that
(5.19) V() = W (n) W (n).
We define a d-dimensional flow v, = (vi(n);0 <n <N) in W by
(5.20) vi(n) = We(m)é (n) (0 <n<N).
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Then we have
(5.21) (vi(m), vy (n)) =6mVi(n) (0<n<N).

[Step 3] We shall inductively construct a d-dimensional flow X = (X(n);0 <n < N) in
W by

(5.22) X(0) =v,(0),
(5.23) Xn)=->» y.(nk)X(k)+vi(n) (1 <n<N).

For a d-dimensional flow X = (X (n);0 <n < N) defined by Algorithm 5.2, we
obtain the following construction theorem.

THEOREM 5.3 (Construction Theorem for general flows). The d-dimensional flow X
does not depend upon the choice of an element (y,,y_, Vi, V_) of the set LM (R) and R is
the covariance matrix function of the flow X, ie., R(X)= R.

ProoF. From |5.21)-{5.23), it is easily verified that the function y, is a forward
KM,;0O-Langevin dissipation matrix associated with the flow X. Hence, comparing

(5.16) with [Lemma 3.3(i), we see that R is the covariance matrix function of the
flow X. [

6. Stationary flows.

In this section, we shall treat degenerate stationary flows and extend the results on
non-degenerate stationary flows in [14], [15], [16]. To begin with, we recall the def-
inition of stationarity property. Let W be any real inner product space.

DEFINITION 6.1. Let X = (X(n);/ <n <r) be any d-dimensional flow in the space
W. We say that X has stationarity property if there exists an M (d; R)-valued function
R = (R(n);|n| <r—1) such that
(6.1) R(X)(m,n)=R(m—n) (I<m,n<r).

The matrix function R is called the covariance matrix function of the stationary
flow X.

DEerFINITION 6.2. Let [X, Y] be any pair of two d-dimensional flows X = (X (n);
0<n<N)and Y= (Y(/);—N <1<0) in the space W. We say that the pair [X, Y]
has stationarity property if there exists an M (d; R)-valued function R = (R(n); |n| < N)
such that

(6.2) R(X)(m,n) = R(m—n) (0<m,n<N),
(6.3) R(Y)(—m,—n) = R(—m+n) (0 <m,n < N).

The matrix function R is called the covariance matrix function of the stationary pair
(X, Y] of flows.
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6.1. Fluctuation-Dissipation Theorem.

Througout this subsection, we assume that the pair [X, Y] of two d-dimensional
flows X = (X(n);0<n<N) and Y = (Y(/);—N <[ <0) in the space W has statio-
narity property. Let R be its covariance matrix function.

We shall fix any element y, = (y,(n,k);0 <k <n<N) of 4% .(X) and any
element y_ = (y_(n,k);0<k <n<N) of LUD_(Y).

Since the pair [XS?),X (M] of flows is a stationary pair of flows whose covariance
matrix function is R, we can see from the proof of Lemmas H.1-4.5 that the following
Lemmas 6.1-6.5 hold.

LemmaA 6.1.  For any integers n,l (1 <n<N,0<[/<n-1),
6 Ro—1) E:ﬁ”k ~ ),

—1

(i) R(n—1) = Zy (n,k)'R(k —1).

LEMMA 6.2. For each natural number n (1 <n < N),

n—1

(@) V(X)) =2y, (n,k)R(n—k)+R(0),
k=0

n—1

(i) V_(Y)(n)=> 7 (nk)R(n—k)+ R(0).

k=0
LEmMA 6.3.  For each natural number n (2 <n < N),

n—1

) S r X =S (40— Lk — 1)+ 8. (m)y_(n— 1,n— k — 1)X(K),
= k=1

n—1

(ii) iy_(n,k)Y(—k) = (y-(n—=1k—=1)+0_(n)y . (n—1,n—k—1))Y(—k).
k=1 1

E
Il

LEMMA 6.4. For any integers n,l (2<n<N,0<I[<N),

n—1
@ Yy k)R(Kk—1)
k=1
n—1
= (y,(n—=1k—=1)4+04(n)y_(n—1,n—k—1))R(k —1),
k=1
n—1
(i) y—(n, k) R(k — 1)
k=1

=Y (y.m—1k—=1)4+0o_(n)y,(n—1,n—k—1))R(k—1).
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LEMMA 6.5. For each natural number n (1 <n<N —1),

n—1
() Rii+1)=—=3 p,(nk)Rk+1) =3, (n+ )V (¥)(n),
k=0

() Rn+1)=-=> y_(mk)Rlk+1)—6_(n+ 1)Ve(X)(n).

By virtue of [Cemma 6.3, we can apply the same method as in to show
the following Mheorem 6.1.

THeorREM 6.1 (Dissipation-Dissipation Theorem). For any elements y,_ of
LMD (X) and y_ of LMD _(Y), we can transform them to construct other elements 7y’
of LMD (X) and y' of LMD _(Y) such that the following Dissipation-Dissipation
Theorem holds:

(i) For any integers n,k (1 <k <n<N),

yo(nk) =y (n—1,k—=1)+0, (n)y.(n—1,n—k —1).
(i) For any integers n,k (1 <k <n<N),
Y. k)=y . (n—1,k—1)+06_(n)y.(n—1,n—k—1).

REMARK 6.1. By using the weight transformation, we can show that DDT holds
for the minimum KM,;O-Langevin dissipation matrix function yﬂ of the flow X and the
minimum KM,O-Langevin dissipation matrix function y° of the flow Y.

By virtue of Lemmas 6.2, and 6.3, we can apply the same method as in
to show the following [Theorem 6.2.

THEOREM 6.2 (Fluctuation-Dissipation Theorem 1). For each natural number
n (1 <n<N),

() Vi (X)(n) = (I =6, (mo_(n) Vi (X)(n — 1),
(i) V-(¥)(n) = (I —5_(n)o, (n)) V- (¥)(n — 1).

By using Lemmas [6.1 and [6.2, we can apply the same method as in to
show the following which is stronger than [Theorem 4.3.

THEOREM 6.3 (Burg’s relation). For each integer n (1 <n < N),

—_

n—1

Rk +1)y_(n,k) = Zy+nk +1).
0

3

~
Il

Proor. We have only to show the case for n = N. For that purpose, we define
2d x (N + 2)d matrix F(N +2) and (N +2)d x (N + 2)d matrix T(n+2) by

_ 0 y+(N>0) 7+(N71) V—i—(NaN—l) 1
FW+m:(1V(MN—UJWMN—% e (N0) 0}
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R(0) R(1) - ‘R(N) 0
R(1) R(0) -+« 'R(N—1) 'R(N)
T(n+2) ; : - : :
R(N) R(N-1) --- R(0) ‘R(1)
0 R(N) -~ R(1)  R(0)
Then, by Lemmas and 0.2, we have
. z _ Vi(X)(N) >ilo 74 (N, K)R(k +1)
F(N+2)T(N+2)F(N+2)= (Zk L (N K)RGE 4 1) V(W) )
Since F(N +2)T(N +2)'F(N +2) is symmetric, we find that holds for
n=N. []

By using and [Theorem 6.3, we can apply the same method as in
to show the following [Theorem 6.4.

THEOREM 6.4 (Fluctuation-Dissipation Theorem II). For each natural number
n(l<n<N)

S (V- (¥)(n—1) = Vo(X)(n— 1)'5_(n).

6.2. Characterization Theorem.

Let [X, Y] be any pair of two d-dimensional flows X = (X (n);0 <n < N) and
Y =(Y(l);—N <1<0) in the inner product space W. Then we have the following
theorem, that characterizes stationarity property in terms of KM,O-Langevin matrices.
This theorem has been proved in for non-degenerate stationary pair of flows.

THEOREM 6.5 (Characterization Theorem). The pair [X, Y| of flows has stationary
property if and only if there exist a KM,O-Langevin dissipation matrix function y_ of the
flow X and a KM,O-Langevin dissipation matrix function y_ of the flow Y such that

(DDT) For any integers k,n (1 <k <n<N),

(1) y+(n,k):y+(n—1,k—1)—|—5+(n)y_(n—l,n—k—l),
(11) ')/_(I’l,k) = y_(n - l,k - 1) +5*(n>y+(n - 1,1’2 -k — 1)

(FDT) For each integer n (1 <n < N),

(iv) Vi (X)(0) = V(Y)(0).

Proor. If [X, Y] has stationarity property, we have already seen that (DDT) and
(FDD) hold. Therefore it suffices to show that (DDT) and (FDT) imply stationarity
property of the pair [X, ¥Y]. First, we note that the pair [X, ¥] has stationarity property
if the following [Claim-p] is true for p = N.
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CLAM-p. There exists a matrix function R = (R(n);|n| < p) such that

(6.4) R(X)(m,n) = R(m—n) (0 <m,n <p),

(6.5) R(Y)(—m,—n) = R(—m+n) (0 <m,n<p).
We will now show two lemmas under the condition that (DDT) and (FDT) hold.
Step 1. [Claim-1] holds.

PrOOF OF STep 1. We put

(6.6) R(0) = ¥, (X)(0).
It follows from [2.1}, and (FDT)(iv) that
(6.7) R(X)(0,0) = R(Y)(0,0) = V_(Y)(0) = R(0).

Next we put

R(1) = =6,.(1) V_(Y)(0),

(68) {R(—l) = R(1).

We see from [Cemma 3.0(i) and [6.7) that
(6.9) R(X)(1,0) = =0, (1) V_(Y)(0),
(6.10) R(Y)(~1,0) = ~5_(1) V4 (X)(0)
and so by (FDT)(ii1), we obtain

R(X)(1,0) = R(Y)(0,~1) = R(1),

(e4D LR0.1) = RV)1.0) -1

Furthermore, [Lemma 3.2(i) implies that R(X)(1,1) = V. (X)(1) — 5, (1)R(X)(0,1).
Applying [(6.11) and [6.10) to the second term of the right-hand side above, we see that
(HOU—KAMU—&U()(LWIK@W%MAWJWMM@-ﬂm&

fore, by (FDT)(i) and [[6.6), R(X = V,.(X)(0) = R(0). Similarly, R(Y)(—1,—1) =
R(0). Thus, by notlng (6.7) and (61 ), we can prove Step 1. (Step 1) [

Step 2. Let py be an arbitrary natural number such that 1 <py <N —1. We
assume that [Claim-py| holds. Then, [Claim-(py + 1)] also holds.

ProOF OF STeP 2. From assumption, there exists a matrix function R = (R(n);
|n| < po) such that

(6.12) R(X)(m,n) = R(m —n) (0 <m,n < p),
(6.13) R(Y)(—m,—n) = R(—m+n) (0 <m,n < py).
Therefore we have the following relations as in Lemmas 6.1, and Theorem 6.3.

po—1

(6.14) R(po—1) = ZV+ po, k)R(k = 1) (0 <1<py—1),

po—1
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po—1
(6.16) Vi (X)(po) Z y.(Po,k)'R(po — k) + R(0),
po—1
(6.17) V_(Y)(po) = > 7-(po, K)R(po — k) + R(0),
k=0
po—1 po—1
(6.18) > R(k+ 1)y (po.k) = y.(po,k)R(k +1).
k=0 k=0

To prove Step 2, it suffices to show that

(6.19) R(X)(po+1,))=R(po+1-1) (1<I<py),
(6.20) R(Y)(—=po—1,=1)=R(—po—1+1) (1<1<py),
(6.21) R(X)(po+1,0) = R(Y)(—po — 1,0),

(6.22) R(X)(po + 1,po +1) = R(0),

(6.23) R(Y)(=po—1,—po — 1) R(0).

Let 1 </ <po. By [Lemma 3.1 and [6.12], we have

R(X)(po+1,1) = Zm po+1,k)R(k —1).

Applying (DDT)(i) into the first term of the right-hand side above, we obtain

po—1

(624)  R(X)(po+1,0) =~ 7, (po, )Rk +1-1)
k=0

po—1
—04(po+ 1){’R(l) + Z y_(po, k) R(k — po + l)}.
k=0

From [6.14), we see that the first term in the right-hand side above is equal to
R(po+1—1). Furthermore, replacing / by py —/ in [6.15), we know that the second
term of the right-hand side in (6.24) vanishes. This gives [6.19). Relation is
similarly proved.

By Lemma 3.1, [(6.12) and (DDT)(i), we have as in (6.24),
R(X)(po +1,0)

po—1 po—1
==Y 7.(po,K)R(k +1) =, (po + 1){R(0) + 3" 7 (po. k)R(po — k)}.
k=0 k=0

Substituting into the above equation, we see that

po—1
(6.25)  R(X)(po +1,0) ZV+ p0, K)R(k+1) =8, (po + 1) V_(Y)(po).
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Similarly,
po—1

(6.26)  R(Y)(—po—1,0) ==Y y_(po, k)R(—k — 1) =3_(po + 1) V- (X)(po)-
k=0

Therefore, by (FDT)(u1) and (6.18), we have (6.21).

Vi

By using [Lemma 3.2,

Do

R(X)(po+1,po+1) ==Yy (po+ 1,k)RX)(k,po+ 1) + Vi (X)(po + 1).
k=0

Applying (DDT)(i) and into the first term of the right-hand side above, we
observe

po—1
RX)(po+ 1L,po+1) == 7,(po, k) R(po — k) + V- (X)(po + 1)
k=0

po—1
— 0+ (po+ 1){R(X)(07P0 +1)+> 7 (po, k)R(—k — 1)}-
k=0

From (6.16), the first term of the right-hand side above equals R(0) — Vi (X)(po).
Moreover, (6.26) and imply that the third term of the right-hand side above is
equal to &, (po+ 1)0_(po + 1)V (X)(po), so that

R(X)(po+1,po+1) =R(0) + Vi (X)(po+ 1) — (I =6, (po + 1)5_(po + 1)) Vi (X) (po).
Substituting (FDT)(i) into the above equation, we have (6.22). We can prove in

the same fashion. Thus we have completed the proof. (Step 2) [
Therefore follows from Steps 1 and 2. O

REMARK 6.2. We can show that the necessary part of holds for the

minimum KM,O-Langevin dissipation matrix functions »?,7°.

6.3. Construction Theorem.

Let R = (R(n);|n| < N) be any M(d; R)-valued nonnegative definite function of one
variable. Then R is regarded as a nonnegative definite function of two variables by
putting

(6.27) R(m,n) = Rm—n) (0<m,n<N).

Therefore we can construct a d-dimensional stationary flow X = (X (n);0 <n < N) such
that

(6.28) R(X) =R,

by using Algorithms 5.1 and 5.2. But because of stationarity property, the system
LM (R) of KM;0-Langevin matrix functions associated with the function R can be
obtained more effectively by the following algorithm.
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ALGORITHM 6.1.
[Step 0] We define d x d matrices V. (0) by

(6.29) V. (0) = R(0).
[Step 1] We define d x d matrices 64 (1),y,(1,0), Vi (1) by

(6.30) 34(1) = —RV_(0)" + A, (1)(I = V-(0)V-(0)"),
(6.31) 5-(1) = =R V(0)" + A_(1)(I - V2 (0)V4(0)"),
(6.32) . (1,0) = 3,(1),

(6.33) y_(1,0) =3_(1),

(6.34) Vi(l) = (I =3, (1)5- (1) V4 (0),

(6.33) V_(1) = (1 —6_(1)3:(1)) V(0).

where Ay (1) are any elements of M(d;R).

[Step m] Inductively as in Algorithm 5.1, we define d x d matrix functions 64 =
(0:(n);0<n<N),y. =(:(nk);0<k<n<N),Vy =(Vi(n);0<n<N) as follows:
for any 2 <m < N,

(6.36) J,(m) = —{R(m) + mzzy+(m —1,k)R(k + 1)} Vo(m—1)"

(6.37) d_(m) = —{’R(m) +

(638) 7, (mk) =y, (m—Lk—1)+3,(my_(m—Lm—k—1) (1<k<m—1),
(6.39) y (mk)=y (m—1Lk—1)+o_(m)y.(m—1m—k—1) (I1<k<m—1),
(640) 7, (m,0) =3, (m),

(641) y_(m,0) =3_(m).

(642)  Vilm) = (I —3.(m)d_(m))Vi(m — 1),

(643) V_(m) = (I —5_(m)3,(m))V_(m - 1),

where Ay (m) are any elements of M (d;R).

As a generalization of the construction theorem proved in for non-degenerate
case to degenerate case, we have

THEOREM 6.6. The set of all quadruplets (y_,y_,Vy,V_) of d x d matrix functions
constructed by Algorithm 6.1 is equal to the system LM (R) of KM,O-Langevin matrix
functions associated with the matrix function R.
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ProOOF. Since R(s,s) = R(0) (0 <s< N), we see at [Step 0] in Algorithm 5.1 that
Vf) (0) are independent of s, i.e.,

(6.44) V9(0) = Vi (R)(0) (0 <s<N).

Moreover, at [Step 1] in Algorithm 5.1, we can choose 5@(1),@%1,0),@”(1)
independently of s, because of and the relations

(6.45) R(s+1,5)=R(1) (0<s<N-1),
(6.46) R(s—1,5)=R(-1) (1 <s<N).

In general, at [Step 2], we can choose 5S_f)(m),yg_f)(m,k), Vi(s)(m) independently of s.
Thus we have the proof. ]

6.4. Extension Theorem.

As a generalization of the extension theorem proved in for non-degenerate case
to degenerate case, for an arbitrarily given stationary flow, we would like to extend it
without losing stationarity property.

Let X =(X(n);0 <n < N) be any stationary flow in W with covariance matrix
function R = (R(n);|n| < N). We take an arbitrary element X(N +1)e W9 and
extend the flow X to the flow XV = (X(n);0 <n < N +1). To find a necessary and
sufficient condition for the extended flow XW*1 to have stationarity property, we define
a d-dimensional flow X = (X(n);0 <n < N) by

(6.47) X(n)=X(n+1) (0<n<N).
The following lemma can be easily verified.

LemMA 6.6, The flow XVt = (X (n);
and only if X = (X(n);0 <n <N) and X
matrix function, i.e., R(X) = R(X).

N + 1) has stationarity property if
<n < N) has the same covariance

Let us fix any KM,O-Langevin dissipation matrix function y, of the flow X. By
using [Cemma 6.6 and the fact that M (X) = M)~ !(X), we have

LEMMA 6.7. The extended flow X™N*Y has stationarity property if and only if

N—-1

(6.48) Py X(N) = — > 7 (N )X (k+1),
k=0
(6.49) (X(N) = Py X (N), (X (N) = Py oy X (N))) = Vi (X)(N).

Thus, we have the following extension theorem, which has been proved in for
non-degenerate and stationary flows.

THEOREM 6.7. Let X = (X (n);0 < n < N) be any stationary flow in W. We define
X(N+1)ew by

(6.50) X(N+1) == 7,(NOX(k+1)+7,,



556 M. MATSUURA and Y. OKABE

where 1, is some element of W9. Then the extended flow XVt = (X(n);
0 <n < N+ 1) has stationarity property if and only if

(6.51) (X(n),'n,)=0 (1<n<N),

(6.52) (5 'ny) = Vi (X)(N).

More generally, let X2 = (X'(n); N; < n < N,) be any d-dimensional stationary

flow in the space W. Let R™>~N) = (R(n);|n| < N, — Ni) be the covariance matrix
function of the flow XV We fix any element (y4,7_, Vi, V_) of the system

L (RN>~N)) of KM,0-Langevin matrix functions associated with the matrix function
RMN>=N),

can be restated as follows.
THEOREM 6.8. We define a d-dimensional vector X (N, + 1) by

N,—N;—1
(6.53) X(Na+1)=— > 7 (N = NLOX(Ny +k+1) 41,
k=0

where n, is some d-dimensional vector in w.
Then the flow X™NoV*Y — (X (n); Ny <n < Ny + 1) has stationarity property if and
only if n, satisfies

(6.54) {(X(n)’ n) =0 N+l <n< i)

(71, ny) = Vi(R)(N2 — Ny).

In a similar way, we have the following theorem for the backward extension.
THEOREM 6.9. We define a d-dimensional vector X (Ny — 1) by

No—N;—1

- Y. (M= N X (Na—k—1) 47,
k=0

(6.55) XNy — 1)

where n_ is some d-dimensional vector in W¢.
Then the flow X™N=1V2) — (X (n); Ny — 1 < n < N>) has stationarity property if and
only if n_ satisfies

(X(n),n.)=0 (Ni<n<Ny—1),
(6.56) {m_, ) = V_(R)(N2 — Vo).

By a repeated use of Theorems and 6.9, we have the following.

THEOREM 6.10. Let M| and M, be two integers such that M, < Ny and N, < M.
Then, the stationary flow X'V'"N2) = (X (n); Ny < n < N;) can be extended to a stationary
flow defined on the set {M, M, +1,..., M, — 1, M}, i.e., there exists a stationary flow
XWMuM) — (X (n); M, <n < M>).

Any non-negative definite function of one variable can be extended by extending
a corresponding stationary flow. Thus we have the following theorem, which can be

proved just in the same way as in in [16].
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Tueorem 6.11. Let R™) = (R(n);|n| < N) be any M(d;R)-valued nonnegative
definite function such that
(6.57) ‘R(n) = R(-n) (0<n<N).

For any fixed element (y,,y_,Vy,V_.) of the system ZLA4(R™)) of KM,O-Langevin
matrix functions associated with the matrix function RW) we define R(+(N + 1)) e
M(d;R) by

=

(6.58) RIN+1) == 7.(NKR(k+1)+ 0,
0

(6.59) R(—N —1) = R(N + 1),

?

where Q is some d x d matrix.

Then RW*) = (R(n);|n| < N + 1) has nonnegative definite property if and only
if there exist two d-dimensional vectors { and n in some real inner product space W such
that

(& 'm) =
(6.60) (&, 1) = Vi(N),
(7/7 [77) = V*(N)

7. Periodic stationary flows.

In [19], [20], [21], periodic autoregressive models are discussed and some algorithms
to estimate the parameters of the models are proposed. In this section, we introduce
the notion of periodic stationarity property for the pair of flows and characterize it in
terms of KM,O-Langevin matrix functions. Let X = (X(n);0 <n<(N+1)p—1) be
any d-dimensional flow in an real inner product space W.

DerFiniTION 7.1. We say that the flow X has periodic stationarity property of
period p if its covariance matrix function satisfies

(7.1) R(X)(m+p,n+p)=R(X)m,n) (0<mn<Np-—1).

Furthermore, we introduce the notion of periodic stationarity property for a pair
of flows. Let [X,Y] be any pair of two d-dimensional flows X = (X (n);0 <n <
(N+1p—1),and Y=(Y({);—(N+1)p+1<1<0) in W.

DErFINITION 7.2. We say that the pair [X, Y] has periodic stationarity property of
period p if its covariance matrix functions satisfy

(7.2) R(X)(m+p,n+p) = R(X)(m,n) (0<mn<Np-—1),
(7.3) R(Y)(k—p,l—p)=R(Y)(k,]) (-Np+1<k,1<0),
(7.4) R(X)(m,n) =R(Y)im—(N+1)p+1,n—(N+1)p+1)

O<m<(N+1lp—-1,0<n<p-1).

Let us given any pair [X,Y] of two d-dimensional flows X = (X(n);0 <n <
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(N+1)p—1),and Y= (Y(I);—(N+1)p+1<[/<0) in W. For any element y, =
(y.(mk);0<k<n<(N+1)p—1) of L4Z,(X) and any element y_= (y_(n, k);
O<k<n<(N+1l)p-—1)of LU _(Y), we define pd x pd matrices I\ (n,k), I (n,k)
(0<k<n<N), 4,(X)(n),4_(Y)(n) (0 <n<N) formed by elements of a KM,O-
Langevin matrix as follows.

74 (np, kp) 4 (np, (k+1)p —1)
(7.5) I.(nk)= : - :

yi((n+1Dp—1kp) - p((n+1p—1,(k+1)p—1)
(0<k<n<N),

I 0
4 (np + 1,np) 1
(7.6) Ii(n,n)= : : |
v (m+Dp—1mp) y (n+Dp—Tnmp+1) - I
(0<n<N),
Vi (X)(np) 0
(7.7) Agxmﬁ—( KR ) (0<n<N),
0 Vi(X)((n+1)p—1)

y(m+p—1,(k+1)p—=1) - y_((n+1)p—1,kp)
(7.8) I_(nk) = : .

y—(np, (k+1)p—1) y_(np, kp)
(0<k<n<N),

Ii y(m+p—1,(n+1)p—=2) -+ y_((n+1)p—1,np)
I y—((n+1)p —2,np)
(79) I'(n,n) = :
0 1y
(0<n<N),
V(Y)(n+1)p—1) 0
(7.10) A(Y)(n)—( ) (0 <n<N).
0 V_(Y)(np)

Furthermore, we define pd x pd matrices 4, (n),4__(n), 4, _(n),4_.(n) (1 <n<N)
by
(7.11) Aei(n) = Lm0 — 1,0 — 1),

(7.12) A__(n)

L (nn)['(n—1,n-1),
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(7.13) Ay () =m0 Y (n—1,n-1),
(7.14) A_s(n)=T-(n,0) ' (n—1,n—1).
Then the following theorem characterizes the periodic stationarity property.

THEOREM 7.1 (Characterization Theorem). The pair [X, Y] of flows has periodic
Stationarity property of period p if and only if there exist a KM,O-Langevin dissipation
matrix function y. of the flow X and a KM,O-Langevin dissipation matrix function y_ of
the flow Y such that

(DDT,) For two integers k,n (1 <k <n<N),

() (k) =Am(n— 1k — 1)+ Ao (I (n—1,n—k — 1),
(i) I(nk)y=d__m)[-(n—1Lk—1)+A4_ () (n—1,n—k—1),
(FDT,) For each integer n (1 <n < N),

() Ac(X)(n) = A1y ()AL (X)(n — 1
(i) A_(¥)(n) = 4 (mA_(¥)(n -1

(iif) AT, (1) A4— (M) A-(Y)(n — 1) = Ao (X)(n — DAy () A=L (),
(iv)  171(0,0)4.(X)(0)T'(0,0) = I771(0,0)4-(¥)(0) T (0,0).

To prove Mheorem 7.1, we need some preparations. For the pair [X,Y] of d-
dimensional flows, we define pd-dimensional flows X” = (X?(n);0 <n<N), Y’ =
(YP(I): =N <1 < 0) by

X (np)
(7.15) xom=| Koot (0<n<N),
X((n+1)p—1)
Y((I—1)p +1)
(7.16) yray= | YRR o),

Y (lp)

Then the following lemma is easily verified.

LemMmA 7.1.  The pair [X, Y] of flows has periodic stationarity property of period p if
and only if the pair (X, Y?] of flows has stationarity property.

Lemma 7.2.

(i) For any element y, of LMD (X) and any element y_ of LMD_(Y), there
exist an element y? of LMD (X?) and an element y? of LMD _(Y?) such that (7.17)-
(7.20) hold.
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(ii) Conversely, for any element y! of LMD, (X?) and an element y? of
LMD _(YP), there exist an element y. of LMD, (X) and an element y_ of LMD _(Y)
such that (7.17)—(7.20) hold:

(7.17) yP(n k) =TI "(n,n)(nk) (0<k<n<N),
(7.18) yP(n k) =T (m,n)I_(n,k) (0 <k <n<N),
(7.19) Vi(XP)(n) = I (n,m) A (X)(n) T (n,n) (0 <n < N),
(7.20) V_(Y?")(n) = TN (n,n) A_(Y)(n)' T~ (n,n) (0 <n<N).

Proor. Let y,,y_ be any elements of L4/D (X), LMD _(Y), respectively. It
follows from definition that

I.(0,0) 0
FJr(lJO) FJr(lvl)
(7.21) G(N+1p)=| | | ,
F+(N7O) F+<N71) F—i—(N’N)
A,(X)(0) 0

(7.22)  G((N + Dp)T(X)((N + 1)p)'G((N + 1)p) = :
0 AL (X)(N)
where G(x) is defined by (3.6). Thus applying to the flow X”, we see

from (7.22) that there exist an element y{ of L4 %, (X”) which satisfies (7.17) and
(7.19). The same is true for the flow Y”. The converse is also proved in a similar

way. ]
We now prove [Theorem 7.1.

ProOOF OF THEOREM 7.1. We assume that [X, Y] has periodic stationarity property
of period p. Then from [Lemma 7.1, [X”,Y”] has stationarity property. So, by
Theorem 6.3, there exist an element y? of Z£4/%.(X?) and an element y” of
LMD_(Y?) such that for any integers k,n (1 <k <n<N)

(7.23) yi(n k) =yl (n—1,k—1)4+06(n)y?(n—1,n—k —1).
Substituting (7.17), (7.18) into the above equation, we have
(7.24) F;l(n,n)F+(n,k) = F;l(n —ln—1)I (n—1k-1)
+ I (nn) L (n, 0) T (n— 1,n— DI (n—1,n—k —1).

Multiplying both-hand sides by Iy (n,n) from the left-hand side in the above equation,
we obtain

(7.25) Li(nk)=T(nn) 7 (n—1,n—1)I(n—1,k—1)
+ (0 (n—1,n—DI_(n—1,n—k—1).

Applying and (7.13) to the above equation, we have (DDTp)(i). Relations
(DDT,)(ii) and (FDT,)(i)—(iv) can be obtained in the same way. Conversely, we assume
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that there exist an element y, of 4%, (X) and an element y_ of L.#%_(Y) which
satisfies (DDT}) and (FDT,). Then, it follows from [7.1T}{7.14) and (7.17)-{7.20) that
there exist an element y? of L4 %, (X”) and an element y? of L.4/%_(Y”) which
satisfies (DDT) and (FDT). Thus [X?, Y”] has stationarity property, so that [X, Y| has
periodic stationarity property of period p. The proof is now complete. ]

8. The test for models of covariance matrix functions.

In the present section, we shall propose a test for models of covariance matrix
functions as an application of the theoretical results obtained in the previous sections.
This is based on the same technique as in the test for stationarity in [6]. Let
% = (Z(n);0 <n < N) be a d-dimensional time series. We assume that this time series
is a realization of an unknown d-dimensional stochastic process. We regard this
stochastic process as a flow X = (X(n);0 <n < N) in an real inner product space.
Although we would like to identify this flow explicitly, here we consider an easier but
important problem. Let R = (R(m,n);0 < m,n < N) be the covariance matrix function
of the flow X. Here R is also unknown. And let RZ = (R? (m,n);0 <m,n < N) be a
model of the covariance matrix function presumed by the time series 2. R? must be at
least nonnegative definite.

For example, when we can obtain the same kinds of d-dimensional data Z(?) =
(2P (n);0<n<N) (1 <p< M) as the data & by doing M times observations, we
can estimate a sample covariance matrix function RZ by

1 M

RY (m,n) = == (20 (m) = u? (m)) (27 (n) = ” (),
p=1

where x? (n) = (1/ M) M, 2 (n).

For simplicity, we assume that RZ has strictly positive definite property. We will
now propose a method to examine whether R? is appropriate or not as a model of the
covariance matrix function R.

ALGORITHM 8.1.
[Step 1] We calculate a forward KM,O-Langevin matrix

8.1) L (R?) = {y,(R?)(n,k),0,(R?)(n), Vi (R?)(m);0 <k <n<N,0<m< N}

associated with the matrix function R? by Algorithm 5.1.
[Step 2] We derive from the time series & a sample forward KM,O-Langevin
Sfluctuation flow v (Z) = (vi(Z)(n);0 <n < N) as follows:

52 {mﬁf)(m = 2(0), |
v (2)(n) = Z(n) + Yimar, (R (k) Z (k) (1 <n<N).

[Step 3] Let Wi(n) (0 <n<N) be dxd matrices such that

(8.3) V(R?)(n) = Wi (n)'W(n) (0<n<N).
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By standardizing the sample forward KM,O-Langevin fluctuation flow v (%), we define a
d-dimensional time series £, = (£,.(n);0 <n < N), ie.,

(84)  &i(n)="(Ca(n),Ea(n), ..., Era(m) = Wi(n) v (2)(n) (0<n<N).
Furthermore we define a one-dimensional time series £ = ({(n);0 <n< (N+1)d —1) by
(8.5) (m)=¢y(m) n=md+j—-1 (1<j<d,0<m<N).

[Step 4] It is easily verified that the following are equivalent:

(1) The time series & is a realization of some d-dimensional flow whose covariance
matrix function is RZ.

The time series ¢ is a realization of a white noise flow in a weak sense.
Thus we verify the white noise property of the time series C.

We will not go into details of the white noise test. An important conclusion here is
that the problem of examining whether R? is appropriate or not has now been reduced
to the test of white noise property.

A. Appendix.
We shall show the lemma which is used in the proof of [Lemma 5.1 and [Theorem 5.1.

LemmMA A.l. Let A and C be any d x d symmetric matrices, and B be any d x d
matrices. We define a 2d x 2d matrix M by

) e (7).

If M is nonnegative definite, then the following statements hold.
(i) There exists a d x d matrix X such that XA+ B = 0;
(i) There exists a d x d matrix Y such that YC + 'B=0.

Proor. Since M is nonnegative definite, M can be factorized as follows (d-
dimensional block Cholesky factorization):

(NGOG

where X and F denote some d x d matrices. By direct calcultion, we see that the right-
hand side above has the form

(A.3) (_iF :)

Therefore comparing with (A.1), we have X4 + B =0, which implies (i). We
shall prove [if]. Since

a9 (o) ) o)-( )

we see that

(A.5) ((; j) ~0.

Therefore follows from (i). |
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