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Abstract. We consider the initial-boundary value problem for the standard quasi-
linear wave equation:

uy — div{o(|Vul*)Vu} + a(x)u; =0 in Q x [0, 0)

u(x,0) =uo(x) and u,(x,0) =u;(x) and ul,, =0
where Q is an exterior domain in R, o(v) is a function like o(v) =1/v/1+v and
a(x) is a nonnegative function. Under two types of hypotheses on a(x) we prove
existence theorems of global small amplitude solutions. We note that a(x)u, is required

to be effective only in localized area and no geometrical condition is imposed on the
boundary 09Q.

1. Introduction.

In this paper we consider the initial-boundary value problem for the quasilinear
wave equation:

wy — div{o(|Vul)Vu} + a(x)u; =0 in Q x [0, o0) (1.1)
u(x,0) =up(x) and u,(x,0) =u;(x) and u|y, =0 (1.2)

where Q is an exterior domain in the N dimensional Euclidean space R" with a smooth
boundary 02 and o(v) is a function like o(v) = 1/4/1 +v. Concerning the dissipation
a(x)u; we make two types of assumptions specified later, which are intended to make the
effect of this term as weaker as possible.

When a(x) = 1 Matsumura proved the global existence of smooth solutions for
the Cauchy problem in the whole space R" and this result was generalized by Shibata
to the exterior problems with N > 3. Here we first establish a global existence
result under a weaker assumption on a(x) which admits a(x) to vanish in a large area.
We make no restriction on the shape of obstacle V.

When a(x) =0 and N = 1,2 we can not generally expect the global existence of
smooth solutions of (1.1)—(1.2) even if the initial-data are small and smooth. Indeed,
when Q = R" nonexistence was proved by Lax [8] and John [5] for the case N =1 and
Hoshiga [4] for the case N =2. For the case N >3 Kleinermann and Ponce [7],
Shatah proved global existence of small amplitude solutions when Q = R" and
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Shibata and Tsutsumi proved similar results for exterior problems under the as-
sumption that the obstacle V' = RY/Q is convex. However, if Q is a general domain
no result on global existence is known. The reason is that when V is trapping the local
energy never decay uniformly (Ralston [20]) and hence it is difficult to expect global
solutions for such an exterior domain. In this paper, by introducing a dissipative term
a(x)u,, we want to treat general exterior domains in odd dimensions and prove global
existence theorem for the problem (1.1)-(1.2). Our result admits the case a(x) =0
when V' is star-shaped.

To specify our assumption on a(x) we define I'(xy), a part of the boundary 0Q, as
follows:

I(x0) = {xe€dQ|v(x) - (x—x0) >0}, xoeR",

where v(x) is the outward normal at x € 0Q.

This set was introduced by D. Russell motivated by Morawetz and often
used in control or stabilization theory for the wave equation in bounded domains
(cf. Chen [1], Lions [10], Zuazua [25], Lasiecka and Triggiani [10], Nakao etc.). In
this paper we use this set for exterior domains.

Now, we make the following assumption on af(-).

Hyp.A. There exist xo € RY and an open set @ in Q such that

closure of I'(xp) cw and a(x)>¢g >0 for xew

with some constant g > 0.
We first consider the problem with the following additional assumption on a(x):
Hyp.B. There exist L > 1 and ¢y > 0 such that

a(x) =& >0 for |x| > L.

We note that if V' is star-shaped with respect to xy, then the set I"(xg) is empty and
hence Hyp.A imposes no restriction on a(x) and the case a(x) =0 is allowed. Hyp.B
means that the dissipation a(x)u, is effective near infinity.

The first object of this paper is to prove the global existence of small amplitude
solutions under the hypotheses A and B. It should be noted again that in our case a(x)
may vanish in a large area in Q.

Quite recently, in [18], we have proved the total energy decay and L? boundedness

1
E(f) = 5L}(|u,|2 +|Vu*)dx < CI}(1+10)~" and |lu()||, < Cly < o0

(I3 = E(0) + lluo||?) for the linear wave equation with ¢ =1 under the Hypotheses
A and B, and applied these estimates to semilinear wave equations with nonlinear term
f(u). Here, we again apply the same idea to our problem (1.1)—(1.2). But, here,
we must establish such estimates for the linear equations with variable coefficients and
also we must treat the nonlinear term more carefully. If we consider the problem in
a bounded domain, the situation is simpler and hence we can treat a more delicate
case where a(x) is degenerate also in w (cf. [17]). As a related work we mention also
Mochizuki [12], where the Cauchy problem in RV for the Kirchhoff type quasilinear
wave equation with a localized dissipation near infinity has been considered.
Secondly, we consider the problem (1.1)—(1.2) under the assumption that Hyp.A
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holds and the support of a(-) is compact. In this case, the dissipation does not work for
large x and we can no longer expect any uniform decay of total energy. While, recently
in [16], we have proved a local energy decay for the linear wave equation with such a
localized dissipation and extended the result by Morawetz to general domains. On
the basis of this result, we have further derived in L? estimates of solutions for the
linear exterior problem and applied them to semilinear wave equations in odd dimen-
sional exterior domains. In the present paper, we apply again such an estimate to the
quasilinear wave equations. Shibata and Tsutsumi already derived L? estimates
of Vu for linear wave equations and treated more general nonlinear problems. But,
they assumed that the obstacle V' is non-trapping in the sense of Vainberg, particulerly,
convex. See also Hayashi where radially symmetric solutions of fully nonlinear
wave equations outside a ball are considered. We would emphasize again that we make
no geometrical conditions on V" due to the dissipation a(x)u, and further this term can be
dropped when V is star-shaped. We also note that although our equation is restricted
to a typical case, the smoothness condition imposed on the initial data is weaker than
those in [24], which comes from a carefull treatment of the nonlinear terms.

2. Preliminaries and statement of the results.

Let V be a compact set (obstacle) in RN which may consist of several closed
domains and set Q@ = RY/V. We use only familiar functional spaces and omit the
definitions, but we note that || - ||, denotes L?” norm and W™’ (Q)(W"™?(Q)) is a com-
pletion of Ci°(Q)(Cy*(2)) with respect to the norm Y " || Dfu|,, where D} denotes
partial differentiations in x of the order k. We set H” = W™?2 and H, = L’.

Concerning o(-) we make the following assumptions.

Hyp.C. o(+) is a differentiable function on R* = [0, oo] and satisfies the conditions:

o(v) > ko >0 and o(v)—2ld'(v)v=ko >0 if 0<v<R, R>0,

where ko = ko(R) is a positive constant. (We may assume ¢(0) = 1.)
The following result concerning local in time solutions is standard (cf. Kato [6]).

ProPOSITION 1. Let m > M =[N/2]+ 1 be an integer and assume that o(-) €
C"™1([0,0)), a(-) e C"™N(Q) and 0Q is of C™' class. Let (up,uy) e H"(Q) x
H™(Q) satisfy the compatibility condition of m-th order associated with the problem (1.1)—
(1.2).  Then, there exists T = T (||uo||gmer + 1]l gm) > O such that the problem admits a
unique solution u(t) on [0,T) belonging to

X[ = () CH(0.T): H™ K@) N HY(@)) () € (0. T): L2(@)).
k=0

We set X, =X,°. From it suffices for the existence of global
solutions in X, to derive a priori estimate

m+1

sup Z | DXu(t)|| gmer- k(o) < ©
O<l<Tk 0

with all 7 > 0 where u(¢) is an assumed local solution on [0, 7). In what follows we
assume that 0 is sufficiently smooth, i.e., Q2 is of C”*! class.
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Our first main result reads as follows.

TueorEM 1. Let N be any integer > 1 and assume that o(-) e C"'(R") and
a(-) e C"Y(Q) with an integer m > [N /2] + 1. Then, under hypotheses A, B and C,
there exists & > 0 such that if (ug,uy) € H™' x H™ satisfies the compatibility condition
of the m-th order and smallness condition L, = ||uo| ym + l|urllym <O, the problem
(1.1)—(1.2) admits a unique solution u(t) in the class X,,. Further, the following estimates
hold:

1D () Fpms + | DEVU(D) |3k < CLZ(1+ 07" for 0<k <m

and

IVu(t)|[5mse < CI2(141)"" for 0 <k <m.

The results by the second approach are stated separately in the cases N >4 and
N = 3.

THEOREM 2. Let N >4. When N is even we assume that V is convex. Assume
that o and a(-) are of CM class. We assume that (ug,u;) belongs to H*M*1N
W2AMALL s gB3M O WML gnd satisfies the compatibility conditions of the 3M-th order
associated with the quasilinear problem (1.1)—(1.2) and also the linear problem with o = 1.
Further, we assume that a(-) satisfies Hyp.A and suppa(-) is compact. Then, under
Hyp.C, there exists 0 > 0 such that if

Lar = ol g + ol raveercr 4 [ [| e + Jlear [Fyanea <9,
there exists a unique solution u(t) in the class
M
Yiy = () C([0, 00); H¥M N Hy ) () CMH([0, 00); L)
k=0

ﬂ Wk,m([07 OO); WM+l—k,oo<Q)),

satisfying
3IM
S D Vu@)|| gaus < Chiy < 0
k=0
and
M

IDEVu(D) || yars e < Clipg(1+ 1)~
k=0

with d = (N —1)/2.
More interesting is the case N = 3, where the situation is also more delicate.

THEOREM 3. Let N =3. Assume that o and a(-) are of C*M*2 class. We assume
that (ug,uy) belongs to H¥*M+3 N\ WM+2.a 5 gaM+2 0 waM+La gnd satisfies the compati-
bility conditions of the 4M + 2-th order associated with the quasilinear problem (1.1)—(1.2)
and also the linear problem with ¢ = 1.  We assume that a(-) satisfies Hyp. A and supp a(-)
is compact. Then, under Hyp.C, there exists 0 such that if

Lisraa = Nluoll gases + lluollariag + el ases + el ypasea <9,
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there exists a unique solution u(t) in the class

4M+2
Yoz = () CX([0,00); H¥ 74N Hy) () CHH3([0, 00); L2),
k=0
satisfying
4AM+3 .
Z 1D Vu(t)|| gars v < Clargia < o0
k=0
and
M+1 3
S NDEVUO) | i 1p < Clagia(1+ 1)~
k=0

with d(p)=(p—-2)1—-¢)/p, 0<ex 1, where we should take 6 <p < oo and
q=p/(p—1).

REMARK. Concerning the regularity of the initial data, in (uo,uy) is required to
belong to H?® x H" if N =3, while here we impose (ug,u;) € H' x H!?,
3. Total energy decay for the linear wave equations with variable coefficients.

For preparation of the proof of [Theorem 1 we consider in this section the linear
wave equations with variable coefficients:

N
0 0 :
Uy — Z F <a,’,j(x, ?) a_u) +a(x)u, = f(x,t) in 2 x (0, 0) (3.1)
i1 O Y
u(x,0) =uo(x), w(x,0) =ui(x) and uly, =0. (3.2)
We assume

N
ayéi&; = kolé|?, EeRY,

i,j=1

with some ko >0. We also assume that a;, 0Q are of C' class and
£ € Wp2([0,00); L2()).

It is a standard result that for each (ug,u;) € H> N H} x H} there exists a unique
solution u(¢) in Xj, H?-solution, for the problem (3.1)—(3.2). We establish some decay
estimates for such H2-solutions.

Multiplying the equation (3.1) by u, and integrating by parts, we have the identity:

d 2 1 .
LE@) + — | S dyugu dx + , .
pr (1) JQ alu,|” dx 2JQ 2 At ity dx L) Su, dx (3.3)

where a@; = 0a;;/0t and

1
E(t) = EJQ <|u,|2 + Zaijuxiuxj> dx.
i,j
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Next, multiplying the equation by h-Vu, h= (hy,...,h,), and integrating we have

(ef. [16)

d 1 ) 1
E(u,,h -Vu) + ELV - h|uy|” dx — E,Zj L((h V)ay; + (V - hay)uyu,y,) dx

1 2
- = J a;v;v; @ ‘ (v-h)dS + ZJ aj ju,Vu - Oh/0x; dx + J auh - Vudx
247 Joa o i e Q
- J fh-Vudsx. (3.4)
Q

Further, multiplying the equation by nu, n€ W (Q), we get

3]

d
Najjly Uy, dX + Z J it u dx + —- (ug, nu) + J aumu dx
ij ij 78 dt Q

Q
= |, el ) . (3.5)
In particular, taking # =1, (3.5) is reduced to

d /
ZJ Qi U, dX - 7 (g, u) + J aumu dx = J (Jue|* + fur) dx. (3.5)
7 e t Q Q

Now, we take a function ¢(r), r = |x — xp|, such that

&0 ifr§L+|x0|
$(r) = {(L+ 0| )&o

. if r> L+ |xo.

Then, setting & = ¢(r)(x — xo) in we have

%(u,, $(r)(x — x0) - Vu) + %L}(w +¢'r)|ui]” dx

=3 @+ )+ 60 = x0) Ve, d

. _ 40 . _ 40
+ Z JQ a;, jli iy, <¢/ (Xz X; )r(xj X ) n ¢) dx

+ J aup(x — xo) - Vudx = J fo(x —x0) - Vudx. (3.4)
Q Q

Combining (3.3), [3.4)' and [3.5] we obtain for k >0, o> 0,
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d 1 2 ek
7 {(u,, d(x — xo) - Vu) + a(uy, u) + EL)aM x + E(z‘)}
.0 — 0
_21[{(Aw+¢>+¢<% bl x>+¢+ﬂ>%
+ %qﬁ(x — Xp) - Vaij}ux,uxj dx
+J (M _ +ka(x)) 4|
Q
k . 1
< 5% JQ Ajjllx;y; dx + 5; JF(XO) ClUV,VJ ( - X()) ds
+ JQ(¢(x —xo) -Vu+u—+ku,) fdx+ L laup(x — xo) - Vul dx. (3.6)

Here, we see

! x; — xY x,-—xo
2:{<jN¢;¢w+¢( ,g, )

1
+¢+ o<> aij — §¢(x — X) - Va,]-}uxiux/

> {_M+¢’r+¢+a_W}Zagux[uw (37)

i?j

1/2
I =ky'! <Z HVafjllic> :
i,j

Also, assuming (L + |xo|)lp < 1/4, we can choose o > 0 and k > 1 such that

where

N ' L /
_ ¢J2r¢”_( +|>2€0|)800+¢ thta §0

and

N+ ¢'r k &0
—2 —OC+§CI(X)Z§

Indeed, for example, we can take o = (N/2 —1/4)g and k > Ng
Finally, noting

1

5 J E a;, juyUy; dx
Qi

with I} = ko' (3, ; llagl| oo)1/ * we assume /, is sufficiently small so that

1
Z 5 JQ Qi Uy, dX| <

i7j

kl < 8()/4.
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Then, we obtain from (3.6) and that

i{(uz,cﬁ(x = xo) - V) + our, u) +%J

dt o
<c j
I'(xo)

with a constant C > 0.
To control the first term of the right-hand side of we again use (3.5). This
time, we take a vector field A such that

a|u|2dx-|—kE(t)} —l—%OE(t) +§J alug|* dx
Q

ou|?

ov

ds + CJQ(|Vu| + |u| + k|u|)| f| dx (3.8)

h-v>0, h=v on I'(x)) and supphc®

where @ is a bouned open set in RY with I'(xg) c@NQ < w. Then we can derive

JF(X())

with a constant C > 0 and a certain ¢y > 0. Further, taking a function 7 € W' *(Q)
such that

ou

2
as <
ov S_CJ

onQ

d
(Vul> + u]?) dx + CJ 111V dx — o 5 - Vi) (39)

n=0 on w‘, =1 on QN& and |Vy|/ne L™ (Q)

we have from (3.6) that

d
J |Vu|2dx—|—cl—(u,,17u)—|—clj anlu|? dx < CJ (Jue* + |u|*) dx (3.10)
aNQ dr Q w
for some ¢; >0, C > 0.

It follows from [3.8)-(3.10) that

dX([) &0

k
+—E(t)+—J alu|*dx < C J |u|2dx+J (IVu| + |u| + klu|)| fldx ) (3.11)
dt 8 2 )0 o o

with some C > 0 and a large k > 0, where we set

X (1) = (uy, (p(x — x0) + coh) - Vu) + (o + 2¢1m)uy, u) + : J alu|? dx + kE ().

2)q
We summarize the above argument in the following:

PropoSITION 2.  For any large k, say k > Ngoy, if

1/2 1/2
sup {(vai@) +<Zualyuio> }<5o=min{<L+xo>/4,koeo/8k} (3.12)

0<t<owo

then, the inequality (3.11) holds for the energy finite solutions u(t) of the problem
(3.1)-(3.2).

As a corollary of we can prove some convenient unique continuation
properties for the wave equation with variable coefficients. (See [17].) In particular,
the following will be used later.
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PROPOSITION 3. Let u(t) be an H?-solution of the wave equation

1

N
0 ou .
U — Z E (aﬁ/(x? l) E) =0 in Qx [07 T]? u|6Q =0

ij=1""1 7
satisfying the condition
u(x,t) =0 for 0<t<T, xewUQ;.

Then, there exist 0y >0 and Ty > 0 such that if T > Ty and

. . .0
sup sup((IVay(0)l, + s Ol + Va0l ) <o (=5)  G13)
0<t<T 1i,j

we have u(x,t) =0 on [0,T] x Q.

Outline of the proof. For convenience of the readers we give an outline of the

proof of [Proposition 3. Setting u, = U we have

N
0 ou
U[[ - ~ (CIL‘]-(X, l) _> - F ln Q X [0, T]
i;l 6x,~ an

with

N

Flx,)=>" aix, (di,j(xa 1) Z—z)

i,j=1
Applying (3.11) to this equation we have

X
O KE() < cJ (VU| + |U| + k| UJ)|F| dx

Qg

where X and E are defined with u replaced by U and we have used the assumption
U=0 on oUQE x[0,T]. Since U=0 on Qf and Ul|,, =0 we see that X(¢) is
equivalent to

E@) =3 (0P + IV U@OP) .

Thus, integrating the above inequality we have

T T
J E(s)dssC(E(O)—i-J J (|U,|+|VU|+|U|)|F|dxds)
0 0 JQgr
and hence,

T

JTE(S) ds < C(E(t*) + L JQR \F\zdxds>

0

where E(t*) =info<s<7 E(s). Here, by use of the equation and elliptic theory,
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J |F(1)|* dx < Co, (J (ID2u|* + ]Vu]2> dx
QR QR

< 5, J (el + Vi) + |u]?) dx

Qp

gcalj (U + Vul?) dx.
Further, by the equation we see
IVa* < CJ || [u] dx < C U [V
Qr

and hence,
J |F(1)|*dx < CO,E(t).
Qp
Taking 0, small we arrived at the inequality

JTE(S) ds < CE(t").
0

This implies for large 7, E(¢) =0, 0 < ¢t < T, which implies u(x,?) = u(x), independent
of . Then, by the equation we see

IVul* = 0

which combined with u|,, =0 implies u(x) = 0.

Now, let us return to the inequality (3.11). By we can prove the
following delicate inequality. Note that we may assume 7, = T].

PROPOSITION 4. Under the assumptions (3.12) and (3.13) in Propositions 2 and 3, for
any ¢ > 0 there exists a constant C, > 0 such that
+T +T +T
J J |u|? dxds < CSJ J (alu,|* +|1]?) dxds—i—eJ E(1) dt (3.14)
w Q

t t t

for any t > 0.

ProoF. We use a contradiction method (cf. Zuazua [25], Nakao [17]). If (3.20)
was false, there would exist a sequence {#,} = R" and a sequence of solutions {u;} such

that

tw+T t+T e th+T
J J |un|2dxds>nj J (a|un,|2+|f|2)dxds+ﬁj E(f)d, (3.15)
t 5} t, Q Iy

where E,(t) is defined by E(¢) with u(¢) replaced by u,(f). Setting

th+T
J2 = J J |un|2dxds and  v,(1) = up(- + t,) /2

n
In
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we have
N o o, B 4 m o
Vst — Zlﬁ_xz a,-j(x,t+ln)a—xj +a(x)vy = f(x,t+1t,)/ A4, 1n Qx[0,T]
i,j=
and by (3.15)
T T

T
limJ J a(x)|on|* dxds = limJ
Q n—0

J |f(t+ 1,))* dxds/2} =0 and 8J E,()dt <1
n—0)o 0 Jo

0

where E, (1) is defined by E(f) with u(¢) replaced by v,(¢). There exists a subsequence
{n'} which we denote again {n} such that

ai(x, -+ ty) — a;(x, 1) weakly* in Wh>(]0,T] x Q),
v, — v weakly* in L*([0, T; H; ;,.(2)) and strongly in L*([0, 7] x Qg), R> L, and
Dv, — Dv weakly in L*([0, T]; L*(Q)), D= (Dy,D,).

Therefore, v is a solution of the equation
0 (. oOv .

with
v,=0 on [0,7T] x wUQ%

and

T
J J |v|* dxds = 1. (3.16)
0 Jo

But, by the assumption on a; we see

sup_sup(IVaiy (1), + d5 (1), + [Vag()ll.,) <or. 0

0<t<T i,j

Applying (see the Remark below) to v we have v(x,7) =0 in [0, 7] x Q if
T > Ty, which contradicts to (3.16).

REMARK. By use of the mollifier p(#) with respect to r we may assume that v e
C%([0,T]; L2 .(RQ)), |Vv] € C([0, T]; L*(2)), |D*u|l e C([0, T]; L*>(22)). Further, we know

loc

that v belongs to L?([0, T, H} (L)), where H] is the completion of C{°(€2) with respect

to the norm [[Vul|, ue C;°(22). From these facts, the proof of can be
applied to v.

Without loss of generality we may assume Jp <J;. Then, by combining Propo-
sition 2 and we arrive at the following inequality, which is the basis of the
estimations for the quasilinear wave equations.

PROPOSITION 5.  Under the assumptions on a; in Propositions 2, 3 the solutions
u(t) € Xo of the problem (3.1)—(3.2) satisfy
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& t+T k t+T )
X(t+ T)—X(t)—i——J E(s)ds+—J J aluy|” dxds
16 J, 2}, e
t+T
J (IVu| + |u| + k|u.|)| f| dxds, (3.17)
Q

t

<c|

where we set
X (1) = (us, (¢p(x — x0) - +coh) - Vu) + ((o + 2¢197)uy, u) —}—%J a|u|2dx + kE(t). (3.18)
Q

Here, we note that taking a large k > 0, X(¢) is equivalent to E(¢) + |ju(r)||* since
JhﬁﬂsCJ) hﬁm+[ Vu|? dx
Qr -Q2L/QL Qo

with some C > 0.
We also note that by a standard density argument, is valid for finite energy

solutions u(?).

4. Energy decay for the quasilinear wave equation.

Let u(t) be a local solution on [0,T), 0 < T < co of the problem (1.1)~(1.2) in
In this section we first derive the L?-boundedness and decay estimate for

Proposition 1.
Next, we also derive the decay of the energy for U = u,.

E(1).
PROPOSITION 6. There exists d, > 0 such that if
sup (| DD (D), + I1D*u(0)||, + [|1Du(?)]| ) <02, D= (D, Dy), (4.1)
0<t<T
then 7
JE@m+swnmmPga§ (4.2)
0 0<t<T
and
E@)<Cl}(1+1)7", 0<t<T, (4.3)
where
1 L, [wuor
) =5 | (P +] " @z a
Q 0

ProoF. We may assume T > Tj. Otherwise, we get the results by (3.3) with
f=0. We use the notation & and k for &/16 and k/2, respectively. Then, by

Proposition 5, we have

X@+mj

T T
E(s) ds—i—kJ aluy|* dxds < X(0) < CIZ
0 0

which implies, in particular,
T

lu()|> < CI2 < % and L (4.4)

E(s)ds < CI3,
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provided that
1D Do (Vul*)|l,, + [ Da(Vul*)|,, <6

which holds under (4.1).
Next, we use
d

2 9.
th(t) + JQa|u,| dx =0

to see

d d
E{u +0E()} = (1+ Z)EE([) + E(t) < E(1),

and hence, by the latter inequality of (4.4),

T
(1+0)E(t) < J E(s)ds + E(0) < CI{.
0
We proceed to the estimation of the second order derivatives. For this, we assume
for a moment,

sup (1+ ) DF () |G + [ DEVU()][ 30k

0<t<T

7
+J (L+ 0 DS u(O) g+ |1DF V() [y dt < K
0

for 0<k<m0<t<T (4.5)

and

T
sup (1+ t)HVu(t)H%I,,,,k + J IVu(t)|[medt < K> for 0<k<m0<t<T (4.6)
0<t<T 0
with some K > 0.

First, we note that if u(¢) is a local in time solution in XI', m > [N/2] + 1, then

1DF u(O)[| + 1DfVu(0)| < C(Ln) ol grir + llearll ), 0 <k <m,
which is a standard fact for quasilinear evolution equations (cf. Kato [6]). ]

PROPOSITION 7. We assume that a local solution u(t) € X,,(T) satisfies (4.5) and
(4.6). Then, under the assumption (4.1), u(t) satisfies the estimates

T
J (14 0)E()dt < CIE, Ey(1) < C(1+ K21 +1)7? (4.7)
0
and
T
J | 4u()||? di < CI2 | Au(D) )2 < C(1 + KOI2(1 + 1) (4.8)
0
where

Ei(1) = éjguun(mz T Vo)) d.
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Proor. Setting U = u, we have
ou
Z@ (a,j X, 1) ) +ax)U; =0 (4.9)

where
a; = 0'(|Vu|2)5,~j + 20" uy u,,.

Hence, applying [Proposition § to {4.9) we obtain, under (4.1),

+T +T

Xl(t+T)—X1(t)+80J E](S)dS—l—kJ

if 14+ T < T, where X, is defined by X with u replaced by U and we use the notation

E\(t) = %JQ <|u,,(t)|2 + Z ai7ju,xiu,xj(t)> dx.

By we know already that
IU@* = llu0)|* < CIG L+ 1)~

J alug|* dxds < 0 (4.10)
Q

t t

From (4.10) we see easily

J:El(t) ds < CI? < . (4.11)
Let us show the further inequality
LT(l +)E(t)dt < CI} < . (4.12)
Indeed, by [4.10),
+T

(I1+:t+T)X1(t+T)— (14+0)X1(2) +30J (1+s)E(s)ds < TX (1)

t

and hence, taking n such that nT < T,

nT n—1
£ JO (+9)E W) ds<TY x(T) + (1 + T)X:(0)
=

n—1
< CTY (E(JT) + UG (4.13)
j=0

Here, noting the inequality

d 2
1 ) 2
= —J > ayU, Uy dx < CJ \Vu| |Vu,| |VU(2)|*> dx < COE (1),  (4.14)
2)a 3 o Q

we have
JT
EleSEl(S*+<j—1>T)+C51J E1<S)dS
(-nr
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for any 0 <s* < T, and hence,

T
El(s)ds:(1+C51T)J E\(s) ds,
(Jj-nT (j=DT (j-nT

where we have taken s* such that min;_ 7 <s<jr E1(s) = E1(s* + (j — 1)T).

Thus, we have from and that
T

&0 rT(l +5)Ei(s)ds < C(14+ T)(E(0) + E(0)) + C(1 + 9 T)J Ei(s)ds < CI}
0 0

which implies the former estimate of [4.7).
Further, by use of (4.14),

T T

TEl(]T>SJ E1(S)dS+C51TJ

L+ B0) <20+ 0B + (1 + 02 S E ()

<2(L+0)E (1) + C(1+ O |Vu(®)|| . [Vu ()| . Er (2).  (4.15)
Here, by Gagliardo Nirenberg inequality (cf. [2]) and the assumption (4.6) we see
Vu(@)|l,, < CIIVu(@ly  IVu(@)|fm < CK(1 41712
with a certain 0 < 0 < 1. Similarly,
IVu(t)l|,, < CK(1+1)"".

Therefore, we have from (4.15)

L0+ 0B} <201+ 0E (1) + CKX(1 + 0 E1 (1)

dt
and integrating,
T
(14 1)°E (1) < CE{(0) + C(1 + KZ)J (1 +5)Ei(s)ds < C(1 + KA I}
0
which implies the latter estimate of [4.7). To show we have only to return to the
original equation and use a regularity theory of elliptic equations. O

5. Estimation of higher order derivatives of solutions.

On the basis of Propositions 6 and 7 we derive in this section the estimates of the
higher order derivatives of the (local) solutions u(7) € XI. Throughout of this section
we assume (4.1), (4.5) and (4.6).

PRrOPOSITION 8. For 2 <k <m we have

T
L (1+ 0 Ec(t)dt + sup (146 E(r) < Cq(I,K) (5.1)
0<tkT
where Ey(t) is defined by

|
EJQ <|Dtk+1u(t)|2 + Z aiijf‘ux,.Dtkuxj(t)> dx

and q(1,K) denotes a polynomial of I = (Iy, 1, ...,1,) and K such that q(0,K) =0. We
note that Ei(t) is equivalent to

2 2
1D u()||* + [V Df ().
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Proor. We know already that is valid if k=1. To show this for k,
2 <k < m, we use induction and assume that is valid for all | <j<k—1. We
use the notation [ for I,,.

Differentiating the equation k times with respect to ¢ and setting U = D[ku(t), we
have

Zﬁx, (a,, X, 1) aU) +a(x)U, = F(x,1) (5.2)

with
aj = 00y + 20’ (Du)’

and

k—1 k=1
F =V CD/eD; Vu+2V>_ C;D/(c'(Du)*)D; ™ Du
=1 =1

where D! denotes any partial differentiations with respect to ¢ of order / and sum of
them. We often use the notation D for D, =V and (Dy, D;).

We apply to (5.2) to obtain

+T +T

Xi(t+T) — Xi(t) + aOJ

Ei(s) ds < CJ J (VU| + U] + |U|)|F| dxds
Q

t t

and

e t+T t+T 5
Xt+ )= %0+ [ BGds<c[ (UIIFI+IFP e 63
t t

where t+ T < T.
To estimate ||F(¢)|| we rewrite F as follows.

k—1 —1
F =" GIDuD]/D*uD;” Du + Z C/(I'"(Du)* + I')Du,D! "' D*uD~ Du
j=1 j=1
k—1 J k—1
+3 > CuD/(IDu)D] ' D*uD;Du+> " G;I'DubD]DuD; D*u
j=2 1=2 J=1

+ZC,; "(Du)* + I')Du.D!”'DuD! ™ D*u

P
—

J . .
+3 > " (I (Du)* + ') Du, D] DuD; 7 D*u
j =2

~
I
[\

I+ h+I3+J4+J5+Jg (5.4)

where
I' = I'(Du) = 66" + 46" - (Du)*.
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Estimation of J; and J,.
Taking appropriate p; > 1 and p, >2 with 1/p;+1/p, =1/2 we have

k—1
. i
Il < € |\Dull,, | D D*ul,, | DY 7 Dul,
j=1
k—
1 1-0 0 in2 k—j
< O |1Du|l "= Dul| gy || DI D0t | DF ™ Dtal| gy
j=1

< CIL'K* (140"
with a certain 0 < 6 <1 and

v=124+1+)2+(1+k—j)/2=(k+3)/2.

Similarly, we see

JTU 0 ()2 de < CK jTa )l Du(e)|2 | Du(o)|
0 0

Similar estimates hold for Jj.
Estimation of J, and Js.
We see

k—1
121 < € |1 Du D/ D*uD; ™ Du|
J=1

- s
< ||Duil| .| D! D*ull,, 1D D],

|DX Dul

Hm—i Hm—k+j

k—
ZHDMH 1 Durl -1 |1D7~ Du
-1

< C(L+ KA1+ 07" K1+ 0) /PR (1 + ) 072
< C(1+KHK (1 +07"

with a certain 0 <0 <1 and v = (k+3)/2. Similarly, we have

T
JO (14 )2 L)) dr < (1 + KK,

The same estimates as for J, hold for Js.
Estimation of J; and Jg.
Setting I" = I'Du, we have

k—

J /
eSSy

j=2 1=2 r=1

,_.

rON (D7 Du)’ - (D Du)’*| | D}~ D*uD}™ Du|

r

where

781

20 2(1-0) 1 -2(2+0
2 de < I g0,
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S S
S, = {(ocl,...,ocs,yl,...,rs)|lgocl <op--- <ocS,Zoc,~yl-:l and Zyszr}.
i=1 i=1

Hence, by choosing appropriate {p;}, p; > 2, (cf. [14]), we have

k=1 j 1
) i1 2 k—j
sl <€y > > > IDPDulf - | !7'Dull,,., I 1Df 7 Dull,
== =S,
S 0 1-0
<C Z ZHDf"DuHZmI—n DA Dul| "M
= 1= =S,
1D Dull-., | D2 Dul| =" DI D2t s | | DF 7 Dutl| gyor-ics -

Therefore, by the assumption of induction,
3]l < Cae(dy, K)(1 1) 200z
< Cq(I,K)(1 +0)" "2 < oI, KY1 + 1)
with v = (k+3)/2 and a certain quantity ¢(/,K) satisfying ¢(0,K) = 0.
We also have

T
J (1+ ) 207 de < Cq(l, K) < o0
0

J¢ 1s also treated quite similarly and satisfies the same final two estimates.
Thus, we obtain

T
sup (140 |IF(0)? +J (146> F () dt < q(1,K) < oo. (5.5)
0<i<T 0

Therefore, under the smallness assumption on J, we obtain from that

Xi(r+T) — Xi(1) +8§0JHT Ex(1) < Cq(1, K)(1+ 1) 2, (5.6)

where we have again used the assumption of induction
1T < 2B (1) < (LK) (1407

On the basis of the integral inequality (5.6) we shall prove the desired energy
estimates [(5.1). For this we first show that

JT(I +0)*E (1) dr < Cq(I,K) < 0. (5.7)
0

Indeed, by the same argument deriving the estimate of E(¢) (see (4.12)), we can show
from (5.6) that

JT(I + t)Ex(t)dt < Cq(I,K) <
0
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So, for induction, let us assume

JT(l + 1)/ Ei (1) dt < Cq(I,K) < 0
0

for some j, 0 <j<k. Then, we see from (5.5) that

& +T I
(1 +5)"" Ex(1)
t

(Lt 1Y X0 (4 T) = (14 0 (1) + 3

< Cq(I,K)(1+ 07 + C(1 + 1+ T) X, (2).

Since X;(7) is equivalent to Ei(7) + |[D¥u(r)||*> we conclude from the assumption of
induction that

ro
J (1+ 07 Eu(t) di < Cq(I,K) < oo
0

Thus, we conclude (5.7).
Finally, we return to the equation (5.2) to get the energy inequality

dﬁEk( C(|F(0)||\/Ex(t) + 00 (1) Ex(t (5.8)
Here
do(t) = S}}DHaW)Hw < C|Vu(@)||, [Vur(t)ll,, < CqI,K)(1+ 1)
and

1E (@)l Ex(2) (L O + (1 + 1) Ec(0)).
Thus, we obtain from (5.5) and (5.7) that

d
—F
o ()

< C(L+ 0)*Ex(0) + C(1 + 0 M| F@)|I* + Cq(I, K) (1 + 1)~ Ex (1)

%{(1 +)TFE)Y =1+ k)0 + 0 E() + (140"

which together with (5.7) and (5.5) implies

(40 B0 < (14 0B + ¢ [ (40> R P
0

+ C(1+4q(1,K)) JOT(I +5) Ei(s)ds < Cq(1,K) < o0

Thus, (5.1) is now proved. O

Once the energy decay for the higher derivatives are derived, the following assertion
is standard.
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PrROPOSITION 9.  Under the assumptions (4.1), (4.5) and (4.6) we have further

sup (140 (| Df* u(o)|

0<1<T

2 2
s+ | DEVU() 1)

T
+j (L 0 (IDF u(0) By« + 1 DAV U)o )
0

<q(I,K) for 0<k<m (5.9)

and

T
sup (14 0)||Vu(0)||3m -I—J IVu(0)|[3ym e dt < Cq(I,K) for 0 <k <m. (5.10)
) 0

0<t<T

ProOF. The preceding Proposition means that (5.10) is valid for k = m and further

sup (14 0)" (1D u(0)||* + | DfVu(o)|?)

0<t<T
T . .
+J (14 0/(|DI u(d)|)® + |1D/Vu()|*) dr < q(I,K) for 0 <j<m.  (5.11)
0

We show (5.9) by induction and for this we assume that

sup {(1+ 077D u(1)|

0<t<T

2 ‘ 2
Hm—j + HD{V”(Z)HHW!—/}

G+ IDIVU@D) i) di < (1K), k+1<j<m. (512)

T _ -
+J (1 + 07 (D u(s)
0

To prove (5.9) it suffices to show for 0 < k <m — 1,

T
sup (1+ ) M DEVu(t) |7 + L (1 + 0 (IDFVu(O) |G v dt < q(I,K) — (5.9)"
0<t<T

under the conditions that (5.9) with k =m, (5.11) and (5.12) hold.
Differentiating the equation k times with respect to ¢ we have

A(D¥u) = —D{D¥((6 — 1)Vu)} + DEPu(t) + a(x) DI u(t)

= I'(|Vul*)D*D%u(r) + { i cj,kD,ferfDZu} + D¥F2u(1) + a(x) DF (1)
j=1
= F(1) = Fo(t) + Fi(1) + F> (1) + F3(1) (5.13)

where I'=0 — 1. Since we may assume ¢(0) =1 we have I'(0) =0. Then, by the
elliptic regularity theory we know

IDEVU(O) i < CUDVU@O) | gynros + 1E ()] i) (5.14)

First, we note that by Gagliardo-Nirenberg inequality,
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1D DVu(a)|| < CIIDIVu(t)||'" | DIVu()| 3
< Cq(1, K)(1 4 0)" U021 4 KO(1 o)~
< Cq(1,K)(1 + )" 192
for 0 </ <m—1—; and hence
IDIVu(t)|3m s < Cq(I,K)(1+ 1)~ (5.15)

forall j, 0<j<m—1.
Similarly we have

T . .
J (1+ | DIVU(D)| 2y < Cq(IK), 0<j<m—1.
0

Further, we easily see by (5.12) that
1E2(8) + F3(0)l| gyt < CUDE2u()l| s + 1D ()| )

< Cq(I,K)(1 + 1)~ 102

and
T T
j (14 DM Fa() + Fs(Ol i di < cj (U4 O (D 2u(t) o+ DE u(0)| 16
0 0
< Cq(I1,K).

By the use of (4.5), (4.6) and (5.14) we can carry out a similar argument obtaining
(5.5) to get )
T
sup (140 B+ | (1 D IE(O s < Cyll.K) < o0
0<t<T 0

where we have used I'(0) = 0.
Treatment of the term Fj(¢) is also delicate. But, noting that

k k
ank < CY DD DUl + €Y | D" KD/ D D)
J=1 j=1

1£1(2)]

and repeating again a similar argument estimating J; through Js as in (5.5) we can
prove that

T
sup (1+ 01| Fy (1)) +j (1 + O |[F (02 de < Cq(l, K).
0<i<T 0

Thus, we conclude (5.9). O

6. Completion of the proof of Theorem 1.

The apriori estimates in preceding sections are sufficient for the proof of [Theorem 1.
Under the assumptions (4.1), (4.5) and (4.6) we have shown that any local solution
u(t) e XTI satisfies
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sup (140 (IDf u() 3y + I DEVU()|370-1)

0<1<T

T
+j (U4 0 UDE D gos + | DEVU(D) By i < g(1LK) < o0 (6.1)
0

for 0 <k <m, 0 <t< T, where ¢(I,K) is some quantity depending on 7, K in such a
way that ¢(0,K) = 0.
Thus, fixing K > 0 arbitrarily and making the additional assumption

q(1,K) < K* (6.2)

we can conclude that under (4.1), the local solutions exist in fact on [0,c0) and the
estimate (6.1) holds on [0, c0).
Finally, we note that since m > [N/2] + 2, under (4.5) and (4.6),

ID2Du(1)l., + ID?u(1)l|.. + || Du(2)]]
< CUDa =" D)5+ + 1D u(@) |~ 1 D*u(t)l| 70

—0
+ [ Du(0)||' =" | Du(0) | G0
3

Z 10+11 1= G'KO

with a certain 0 < @; < 1,i=1,2,3. Thus, (4.1) is satisfied under the further additional
assumption

3
CY (o +n) "k <5, (6.3)
i=1

for the fixed K > 0.
Since both of and are valid for small I, the proof of is now
complete.

REMARK. By a careful observation we see that ¢(/,K) 1is replaced by
q(lo,K) + CI%. Hence, for any K > CI,, there exists 6(K) such that ¢(Ip,K) + CI2 <
K? if Iy <6(K). (6.4) also holds under these conditions. Thus, the set of initial data
assuring the global existence in [Theorem 1 is in fact unbounded in H™*! x H™.

7. Proof of Theorems 2 and 3.

In this section we assume only Hyp.A. That is, we consider the case where a(x)u,
is effective only at a neighbourhood of I'(xy) and suppa(-) is compact, say,

suppa(-) € By, L > 0. (7.1)

First, let us consider the linear wave equation with a localized dissipation:
—Au+a(x)u;, =0 in Q x [0, 00), (7.2)
u(x,0) =uo(x), wu(x,0)=u;(x) and ul,, =0. (7.3)
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Under our assumption on a(x) we know a local energy decay for the solutions of the
linear problem (7.2)—(7.3) ([14]) and using this we can prove L? estimates for the linear
equation ([17]). In particular, for the odd dimensional cases we have the following.
We denote W"7(Q) norm by || - ||

m,p*

PropoOSITION 10. Let N >3 be an odd integer and m be a nonnegative integer.
Let a e C*"*"™(Q) and Hyp.A with (1.1) be valid. We set M = [N/2] + 1. Assume that
up € HY (Q) N HMMm(Q)yN w2Mm L (Q) uy e H*MIm=1(Q)y N w2Mtm=L1 qnd these data
satisfy the compatibility condition of the M + m — 1-th order. Then, there exists a unique
solution u(t) of the problem (7.2)—(7.3) in if&rm_l Ck([0, 00); H*MFm=k( QYN HL(Q))N
CM+m([0, 00); L*(Q)) and it satisfies

S IDM U iy < Clmart + Tnar2)(1+1)7" (74)
k=0
f2<p<po=2(N+1)/(N-1)
and
Z HDtku(t)Hmfk,oo < C(Ipsom—1,1 + Inom—1,2)(1 + ™, (7.5)
k=0
where we set
D1 = (luoll g g + [leall; 1),

112 = ([[uoll 41,2 + |l ll;2),
h— (N-1)(1/2—1/p) if N is odd and N > 5
S U-2/p-¢ if N=3

and
d_{(N—l)/2 if N is odd and N >5
R if N=3.

We note that 60 > 0 in the above can be chosen arbitrarily small.

REMARK. In [Proposition 10, if 7 is convex and N >4 we can take b=
(N-1)(1/2—-1/p) and d = (N —1)/2.

When N >4 we set

3IM
Y= () CH0, 7)) BT R0 Hy) () M0, T); L)
k=0

and
3MA+1

Vau(K,T) = { & Y | S IIDIVu(d)| e < K
k=0

M
and ) DfVu(O)|lyri1 s < K(1+ z)d}
k=0

for K > 0.
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When N =3 we set

4M+2
Yo = kﬂo CH(0, T); H™M - Fn Hy) () C*™ ([0, T); L?)

and
AM+2

Var2(K, T) = {” € Yahria | Z IDVu(®)|| oo v < K
k=0

M+1
—d
and S 1DVU e, < K(1+1) m},
k=0

for K >0 and 6 <p < oo, where d(p) =d(1 -2/p)=(1—-¢)(1 =2/p), 0 <e« 1.

The local existence of the solution for each (ug,u;) satisfying the compatibility
condition is standard (cf. Kato [6]). So, for the proof of Theorems 2, 3 it suffices to
derive the desired estimates. We treat mainly the case N = 3 because the other cases
are proved in a similar and simpler manner.

We set m=3M if N>4 and m=4M +2 if N=3. We may assume
u(-) e Vyu(K, T) for some K >0, T > 0, which will be shown later.

For a moment we assume that

V(D). + VD)

with some small J; > 0, which will be satisfied if I = ||ug|| w1 + ||u1]| ym 1s small.
We begin with the following observation which will make a proof a little simpler for
the case N =3.

ProposITION 11. Let N =3. If u(t) is a (local) solution € V,,,(T) it satisfies

<9 (7.6)

e e

M1 .,
> DD prir g < K147 (7.7)
k=0
with
1(p—2)(1—¢)
d, =
I1p+6
and
IDM*2Du(t) 5014 o < Ca(K)K(1+1)"" (7.8)

with dy =7d, /9, where q(K) is a quantity (in fact polynomial) depending on K and we
recall that D = (V,D,;) and 2 <p <po=2(N+1)/(N —1).
Proor. We first note that M =2 if N =3. By Gagliardo-Nirenberg inequality
we see
1-0 0 d(1-0
IDEDU() s 1 s oo < CIDFDUD) 341 1D DU() 3012 42 < CK(1+1) (=0
with

0=—
p

N p 2

1/3M+1 1 1\! 6
l1p+6

which implies (7.7).
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To prove we return to the equation. Note that 2M = M +2 =4. Then, we
see by a standard argument based on Leibniz’s formula,

1D 2Du(t)llyr-s, .. = 11D} DIV (0Vu) + aur}].,

i=1

2
< Cq(K) (Z(\IDZDM(I)IIM,CC + \!DfDu(l)l\M_l,w)-

Here, by [7.7),

2

j —d

IDDu()lyg, o + D IDDUD) gy, < K(1+1)7"
i=1

and further, by Gagliardo-Nirenberg inequality,

2
1-0 0 —(1-0)d
D7 Du(t)llay, ., < CIDIDu(®) 3721, L I1D7 Du(t)l|33,2 < CK(1+0)" 04, 6 = 5

Thus we have [7.8]). ]

We proceed to the proof of Theorem 3. Let N =3. Setting D'u(t) = U(1),
m=4M + 2, we have

—div{D;"(6Vu)} + a(x)U, = 0. (7.9)
Then, as in [5.3), we can derive

d
—E,(1) < J |D,o| |D;"\7u|2dx+J Z|Dk NP *vu| VD udx = Jy +J,  (7.10)
dt o
where I' = I'(Vu) = o(|Vu|*) + 26" (Vu)*.

Here, taking account of [7.7), we see

Ji < CIVu()|| | DV u(n)ll. | Dy Vu(n)|* < CK (1 + 1)/ Ey (o).

The treatment of J, is delicate. We first observe

Jr < C{IIVu(t)IlooIIVuz(l)llooHD,mIVu(f)H [1DVu()|

3

k
JQ > _ITD(Vu(n)*" ---IDf‘(Vu(t))2|vk\Dt’”_kVu(t)lIDT“VM(I)IdX}

2 i=1 S

e
Il

="+ .

It is easy to see
AV < CKX(1 + 1) \/E,(1).

Further, we see

3

_ 1/2

k
=¢ Z;(JQ'DI Vuls 2‘2”‘"'!Di‘<\7u<r>>2|2""|D;”-kvu<t)|2dx) En(1).

2 i=1 S;

o
||
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Here, since
k
Df(Vu(1))® = CyD{VuD; Vu
=0
and m = 4M + 2, we observe that each product of the above integrand contains the term
\D/VuD!Vu|* with j<M+1 and [<M+2=2M.
Indeed, one of the most delicate terms appears in the case kK = 2M + 2, that is
DM (Vu)? P D7MVul,
For this term, however, we see
DM (u)? = >~ GD/VuDM v,
0<j<M+l
Hence, by [7.8), we can prove that
JY < CqUR)KA(1 + 1) En (1),
We note that when N >4, we can use the estimate
|D/Vu(t)|],, < K(1+1)~
to prove
I < Ce(RVKX(1+ 1) \/En(t), 0<j<M+1,
with d = (N —-1)/2 > 1.

Thus, we obtain

%Em(t) < Cq(K)K*(1 + 1) """\ /E,(¢).

Since d; + d> > 1, this implies
E,(1) < C(q(K)K* + E,(0)). (7.11)

The same estimate is valid for the case N > 4 where we take m = 3M + 1. Note that a
standard argument shows

1/ Em(O) < q<K)Im72

where

Lo = |luo|l g + ([ || -

Now, returning to the equation and combining elliptic regularity theory with [(7.11)
we can prove as in that

4M+2
S IDEDU(0) | s < q(K)(K® + I2). (7.12)
k=0
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We summarize the estimates (7.11) and (7.12) in the following Proposition:

PropoSITION 12.  Let u(-) € V,,(K, T) be a solution of the problem (1.1)—(1.2) as in
Proposition 1. Then, we have

S IDEDU(D| g < g(K) (K> +12), D= (V. D), (7.13)
k=0

where m =3M +1 if N>4 and m =4M + 2 if N =3.
Next, we proceed to the estimation of [[DVu(?)|ly1 4, 0<k<M+1,6<p<
oo. For this we begin with L? estimates for the linear equation. By the known result
and Sobolev’s embedding theorem W/+h1 < W2M+.2 we see for the solutions u(t)
of the linear equation that
IDEVU(O)l 4, oo < ClIrens + I rar) (1 + 1)

with any nonnegative integer /.
On the other hand, by use of the energy identity, we see easily that

HDzkvu(l)Hl—k,z < C(lluollyy 2 + lurll; 2) < Clluollzaririr.a + Nullzars2)-
Thus, by interpolation, we obtain for all 2 <p < oo,
—d
||D;(V“(f)||z—k,p < C(lluollzpririr.q + lnllzpres o) (1 +2) Vo 0<k<l, (7.14)

where 1/g+1/p=1.

We use this estimate with /=M +1 and N = 3.

Let u(-) e V,,(K,T) be a solution of the quasilinear equation with initial data
(uo,u;) and let us denote the solution of the linear equation with the same initial data by
U(t;ug,u;). Then, by constant variation formula,

—d
< (lwollspriera + lleallsares )1 +10)

u(t) = U(l;uo,ul)—i—J; U(t — 5,0, F) ds, (7.15)

where .
F =V -{a(|Vu]*) = )WVu()} = T'(|Vu|*) - (Du)*D*u.
Thus, by (7.14) and (7.15) we have

t

IDEVU(D) | a1 4y < Clangsag(1+ 0P + L(l 1= ) PNE(S)largir, o 5. (7.16)

Here,
4M+1

DWHE= 3" > L pD*VuD'vuD*M vy
j=0 a<M+1,<M+1

3M
+ Z Z I, sD*VuD’vuD*M 27y
J=0 a< M+1,5>M+2

4M+1
+ > > T, D*VuDPvuDp*M vy
J=3MAL 0> M+2, 8> M+2

= T+ s+ s, (7.17)
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Noting that I'=I'(D’u), y <2M, and ||I'||, < C(K) < o0, we estimate J;,
1 <i<3, as follows. First, we see

AM+1 . 1/q
lnl, <C > (J ]D“Vu|q|DﬁVu|’1|D4M+3_/u|qdx)
j=0 e

Ll - o (2-4)/24 s (2-4)/2
< C(K) Z DM +37y| <JQ | D*| 24/ a’x) (JQ | DFy| 24/ =0 dx>
J=0

o 1-0 o 0 1-0 0
< CK|[D*vully =" D*Vu) )| DPVul| " | DPVul)

< C(K)K IO (1 4 1)) (7.18)
with 0 = (p+2)/2(p —2). Here, we note that
2d(p)0=(p+2)(1—-¢)/p>1.
For J, we see

3IM

1/q
17211, < C(K) ) > G |D“Vu|q|DﬁVu|q|D4M+2-iVu|qu)
Q

J=0 a<M+1,8>M+2

< C(K) Z Z HD“V””PHDﬂV“HZM/(p—q)||D4M+27jvu||2pq/(p—q)' (7.19)

J<3M o< M+1,p>M+2
Here, we see by Gagliardo-Nirenberg inequality,

1-0 0
||Dﬁvu||2pq/(p—q) < CIDM*'Vul|,,. ! )||V“||HI4M+2

2pq/(p—q
with
glz(ﬁ—M—ler—q_ 2pq)(4M+2—ﬁ+p—q_1) __ p(p-—M-1)
N 2pqg  p—q N 2pq 2 pAM +2—fB)— N’
and

-0 0
||DM+lvu||2pq/(p—q) =< CK”VM”I ] ||D]u+lvu||p1
with 0, =2/(p —2). Thus, we have
1DV ullypypyy < CK)(1 + 1) (7.20)

with 6, = (1 —6,)6;.
Quite similarly, since 4M +2 —j > M + 2 we can show that

1D 2V < COK)K (1 4 1)~ (7.21)

with 0, = (1 — 6,)0,, where 0; is defined by 6, with § replaced by 4M +2 — ;.
Thus, we obtain from (7.19), (7.20) and (7.21),

|72ll, < CK)K3(1 + 1)), (7.22)
Here, we observe that

01,01 <3p/(3pM — N) =p/(2p — 1)
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and
(14024 02)d(p) = (1+2(p = 3)/3p(2p = 1))(1 —¢) > 1.
Finally, we can show as in the treatment of J,,

4M+1
HJ3||q < C(K) Z Z ||D4M+2_]VMHP“DaVMHZM/(p—q)HDﬂV”Hh)q/(p—q)

J=3MA1 o= MA2, 5> M+2
< CK)K3(1 + 1) (1H0:+0)4(0) (7.23)
where 0, is defined by 6, with f replaced by o, and we know
(14 6>+ 0:2)d(p) = (1 +2(p —3)/3p(2p = 1))(1 — &) > 1.
Also we easily see
IF]l, < CllDull )| Dullyy)og < CK3(1 41727, (7.24)

Since [|Fll4p41., < C(ID*MF1F||, + || F]|,), returning to the integral inequality (7.14)
we obtain
t ~

IDEVU(Dl|yririp < Clingsag(1+ 1) 4P 4 c<K>K3j (11— P19 ds,d > 1,
0

< (Ispsn.q + C(K)KH) (1 + 1)), (7.25)
We summarize the results concerning the estimate of ||D*Vu(?)|,, +1-k,p as follows.

PrOPOSITION 13.  Let N = 3 and let u(-) € Varpr2(K, T) be a solution of the problem
(1.1)-(1.2) as in Proposition 1. Then, we have

M+1

S IDEDU()pr 1 iy < (KK + Clapgia,)(1+ 1)) (7.26)
k=0

where q(K) is a quantity depending on K continuously in such a way that ¢(0) = 0.
When N > 4, for the solution u(¢) € V3p (K, T) we have

IDEVU()| i1k oo < ClTaaz2 + Bar)(1+ )77

+ L(l 1= 8) U (IFS) a2 + 1) lspr, 1) ds. (7.27)

By use of the inequality

M

—d
S D VU lpri1 g, < K(1+17)
k=0

we can easily prove under the assumption (7.6) that

IE)3az,2 + IF($)ll3pr,1 < CK3(142)7 (7.28)
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and hence we obtain

M+1

> NDFDU() i1k o < (@K)K + Chiyg 1) (1+ 1) (7.29)
k=0

COMPLETION OF THE PROOF OF THEOREMS 2, 3.

Let us consider the case N = 3. By the proofs of Propositions [3, 14 we easily see
that if K > 2(I4ar42,2 + lapr+1,4) the local solution u(t) belongs Vi (K,T) for some
T > 0 and by Propositions [3 and 14 we know that this is valid for all 7> 0 provided
that

q(K)K + C([4M+2?2 + I4M+1,q) < K. (730)

Since ¢(K) continuously depends on K and ¢(0) = 0 the above condition (7.30) is
satisfied if we take K = C\(Ispr42,2 + Lap1,4) With Cp >»> C and if Iiprin o + Iaprin,g <0
for a small constant 0 > 0. Thus we arrived at the desired estimates for all 7" > 0.

The case N > 4 (Theorem J) is also proved quite similarly by use of [Proposition 13
and the estimate (7.29). ]
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