Global smoothing of singular weak Fano 3-folds

By Tatsuhiro MINAGAWA

(Received Dec. 16, 1999) (Revised Feb. 6, 2002)

Abstract. In this paper, we will study smoothability of a weak Fano 3-fold with only canonical singularities which is obtained as an image of a crepant primitive birational contraction from a smooth weak Fano 3-fold. Main part is on a contraction of type III.

0. Introduction.

We will work over C in this paper.

DEFINITION 0.1. Let X be a 3-dimensional normal Gorenstein projective variety which has only canonical singularities.

- (i) We call X a weak Fano 3-fold when $-K_X$ is nef and big.
- (ii) We call X a Fano 3-fold when $-K_X$ is ample.

DEFINITION 0.2. Let X be a 3-dimensional normal Gorenstein projective variety which has only canonical singularities, $(\Delta, 0)$ a germ of the 1-dimensional disk, and $f: \mathscr{X} \to (\Delta, 0)$ be a small deformation of X over $(\Delta, 0)$. We call f a smoothing of X when the fiber $\mathscr{X}_s = f^{-1}(s)$ is smooth for any $s \in (\Delta, 0) \setminus \{0\}$.

Let X be a smooth weak Fano 3-fold and $\phi: X \to \overline{X}$ a birational projective contraction to a weak Fano 3-fold with only canonical singularities. If \overline{X} has a smoothing, then we have another smooth weak Fano 3-fold $\overline{\mathscr{X}}_s$. We want to connect weak Fano 3-folds by deformations and birational contractions as above. We call this problem Reid's fantasy for weak Fano 3-folds.

REMARK. "Original" Reid's fantasy is for Calabi-Yau 3-folds.

Thus we consider the following problem.

PROBLEM. Let X be a weak Fano 3-folds with only canonical singularities. When does X have a smoothing?

Known results on Problem are as follows.

1. (Namikawa, Mukai Cf. [Na 3] and [Mu])

Let X be a Fano 3-fold with only terminal singularities. Then X has a smoothing.

2. (Namikawa, Takagi Cf. [Na 3], [Ta] and [Mi]) Let X be a weak Fano 3-fold with only terminal singularities. Assume that there exists a birational proper morphism $\phi : X \to \overline{X}$ to a Fano 3-fold with only

²⁰⁰⁰ Mathematics Subject Classification. Primary 14J10; Secondary 14J30, 14J45.

Key Words and Phrases. Deformation, weak Fano 3-fold, crepant contraction.

canonical singularities such that dim $\phi^{-1}(x) \le 1$ for any $x \in \overline{X}$. Then X has a smoothing.

3. ([**Mi**])

Let X be a weak Fano 3-fold with only terminal singularities. Then there exists a small deformation of X over $(\Delta, 0)$ $\mathfrak{f} : \mathscr{X} \to (\Delta, 0)$ such that the fiber $\mathscr{X}_s = \mathfrak{f}^{-1}(s)$ has only ordinary double points for any $s \in (\Delta, 0) \setminus \{0\}$.

4. ([**Mi**])

Let X be a weak Fano 3-fold with only terminal singularities. If X is Q-factorial, then X has a smoothing.

If the condition "Q-factorial" is dropped, then there exists an example which does not have a smoothing.

Extending the method in Section 3 of [Mi], we will show the following theorems in Section 1 and 2 of this paper.

THEOREM 0.3. Let X be a weak Fano 3-fold with only terminal singularities, $\{p_1, p_2, \ldots, p_l\} \subset \operatorname{Sing}(X)$ the ordinary double points on X, and $f: Z \to X$ a small partial resolution of X such that $C_i =: f^{-1}(P_i) \cong \mathbf{P}^1$ and that f is an isomorphism over $X \setminus \{p_1, p_2, \ldots, p_l\}$. If there is a relation in $H_2(Z, \mathbf{C}) : \sum_{i=1}^l \alpha_i [C_i] = 0$ with $\alpha_i \neq 0$ for all i, then X has a smoothing.

THEOREM 0.4. Let X be a weak Fano 3-fold with only isolated canonical singularities. Assume that

- (i) X is **Q**-factorial,
- (ii) for any $p \in \text{Sing}(X)$, the Kuranishi space of (X, p) is smooth, and

(iii) for any $p \in \text{Sing}(X)$, (X, p) has a smoothing.

Then X has a smoothing.

REMARK (Cf. [Na 1], [Na 2], [Na 4] and [Na-St]).

Namikawa proved the same statements of Theorem 0.3 and Theorem 0.4 for Calabi-Yau 3-fold. But the condition in Theorem 0.3 is a necessary and sufficient condition of smoothability in the case of Calabi-Yau 3-fold.

In order to consider Reid's fantasy for weak Fano 3-folds, we study "Smoothing problem" of a weak Fano 3-fold with only canonical singularities obtained as an image of a crepant primitive birational contraction from a smooth weak Fano 3-fold.

DEFINITION 0.5. Let X be a smooth weak Fano 3-fold, and $\phi: X \to \overline{X}$ a crepant birational projective morphism. We call ϕ primitive when its relative Picard number $\rho(X/\overline{X}) = 1$. Moreover, letting E be the exceptional locus of ϕ , we will define as follows.

- (i) ϕ is a crepant primitive birational contraction of type I when dim(E) = 1.
- (ii) ϕ is a crepant primitive birational contraction of type II when dim(E) = 2 and dim $\phi(E) = 0$.
- (iii) ϕ is a crepant primitive birational contraction of type III when dim(E) = 2and dim $\phi(E) = 1$.

We treat a crepant primitive birational contraction of type III from a smooth weak Fano 3-fold in Section 3, which is the main part of this paper. On a crepant primitive

birational contraction of type III from a smooth weak Fano 3-fold, we have the following theorem.

THEOREM 0.6. Let X be a smooth weak Fano 3-fold and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III contracting a divisor E to a curve C. Then

- (i) C is smooth.
- (ii) $\phi|_E : E \to C$ is a conic bundle, and each fiber is a non-singular conic, a union of two lines meeting at a point, or a double line.
- (iii) If the general fiber of $\phi|_E$ is a non-singular curve, then E is normal and E has only rational double points.
- (iv) If the general fiber of $\phi|_E$ is two lines meeting at a point, then singularities of E on the double line are pinch point singularities (of the form $x^2 + tz^2 = 0$ in $(C^3, 0)$).

PROOF. We can show this by the same method in [Wi 1], [Wi 2] and Section 3 of [Wi 3]. \Box

DEFINITION 0.7. Let X be a smooth weak Fano 3-fold and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III contracting a divisor E to a curve C. We call $p \in C$ is a dissident point if the fiber of $\phi|_E: E \to C$ over p is not isomorphic to general fiber. We call the fiber over a dissident point the dissident fiber.

Theorem 0.6 enables us to define the following.

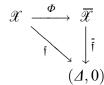
DEFINITION 0.8. Let X be a smooth weak Fano 3-fold and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III contracting a divisor E to a curve C.

- (i) The case *E* is normal: We call ϕ a contraction of (g, d)-type when g = g(C)and $d = -K_{\overline{X}} \cdot C$. Moreover we call ϕ without dissident fibers when $\phi|_E$: $E \to C$ is a P^1 -bundle and ϕ with dissident fibers when $\phi|_E$ is not a P^1 -bundle.
- (ii) The case E is non-normal: Let \tilde{E} be the normalization of E, and $\tilde{E} \rightarrow \tilde{C} \rightarrow C$ the Stein factorization. We call ϕ a contraction of (g, \tilde{g}, d) -type when $g = g(C), \ \tilde{g} = g(\tilde{C}), \ \text{and} \ d = -K_{\bar{X}} \cdot C.$

We will prove the following theorem on deformations of \overline{X} and ϕ .

THEOREM 0.9. Let X be a smooth weak Fano 3-fold and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III contracting a divisor E to a curve C.

- (i) X has a smoothing unless ϕ is of (0,0), (0,1), $(0,\tilde{g},0)$, or $(0,\tilde{g},1)$ -type, or (0,3)-type without dissident fibers, or (1,1)-type without dissident fibers.
- (ii) Let $\mathscr{X} \to Def(X)$ be the Kuranishi family of X. Assume that ϕ is a contraction of (0,0), (0,1), $(0,\tilde{g},0)$ or $(0,\tilde{g},1)$ -type. Then E will deform in the family.
- (iii) Assume that ϕ is a contraction of (0,3)-type without dissident fibers, or (1,1)type without dissident fibers. Then there exists a small deformation of ϕ over $(\Delta, 0)$



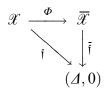
such that, for any $t \in (\Delta, 0) \setminus \{0\}$,

 $\Phi_t: \mathscr{X}_t \to \overline{\mathscr{X}}_t$

is a crepant primitive birational contraction of type I which is a contraction of a single P^1 .

Key ideas of the proof of (i) of this theorem are

(1) We will find a small deformation of ϕ over $(\Delta, 0)$



such that, for any $t \in (\varDelta, 0) \setminus \{0\}$,

$$\Phi_t: \mathscr{X}_t \to \overline{\mathscr{X}}_t$$

is a crepant primitive birational contraction of type I, and

(2) We will count the number of curves which are contracted by such Φ_t . It depends on not only g or \tilde{g} but also d. We remark that there are similar results for Calabi-Yau 3-folds (Cf. [Wi 1], [Gr 1], [Gr 2]). But there are differences in the case of type III with $d \neq 0$.

ACKNOWLEDGEMENT. I would like to thank Professor Yujiro Kawamata for useful discussions, giving the author useful suggestions, and encouraging the author during the preparation of this paper. I also express my gratitude to Professor Hiromichi Takagi for stimulating discussions and giving the author beneficial comments. Lastly I thank Doctor Hokuto Uehara and Doctor Natsuo Saito for stimulating discussions on this paper.

NOTATIONS.

- (1) In this paper, $(\Delta, 0)$ means a germ of the 1-dimensional disk.
- (2) $Def(\bullet)$ means the Kuranishi space of \bullet and T_{\bullet}^{1} means its tangent space at 0. We also use this notation in the case that \bullet is a morphism.
- (3) Let $G \cong \mathbb{Z}/2\mathbb{Z}$ acting on a *C*-vector space *F* (resp. a coherent sheaf \mathscr{F} on a scheme *X* over *C*. In this case *G* acts on *X* trivially.). Let σ be the generator of *G*. We set $F^G = \{s \in F \mid \sigma s = s\}$ (resp. we define \mathscr{F}^G by $\mathscr{F}^G(U) = \{s \in \mathscr{F}(U) \mid \sigma s = s\}$ for an open set *U* of *X*).
- (4) Let $G \cong \mathbb{Z}/2\mathbb{Z}$ acting on a \mathbb{C} -vector space F (resp. a coherent sheaf \mathscr{F} on a scheme X over \mathbb{C} . In this case G acts on X trivially.). Let σ be the generator of G. We set $F^{[-1]} = \{s \in F \mid \sigma s = -s\}$ (resp. we define $\mathscr{F}^{[-1]}$ by $\mathscr{F}^{[-1]}(U) = \{s \in \mathscr{F}(U) \mid \sigma s = -s\}$ for an open set U of X).

1. On a contraction of Type I.

We will prove Theorem 0.3 in this section, and we have a theorem on a contraction of type I as a corollary of Theorem 0.3. We prove the following theorem first.

THEOREM 1.1. Let X be a weak Fano 3-fold with only ordinary double points, $\{p_1, p_2, \ldots, p_l\} = \operatorname{Sing}(X)$, and $v : Z \to X$ be a small resolution of X such that v is an isomorphism over $X \setminus \operatorname{Sing}(X)$. Let $C_i = v^{-1}(P_i)$. Assume that there exists a relation in $H_2(Z, \mathbb{C}) : \sum_{i=1}^l \alpha_i [C_i] = 0$ with $\alpha_i \neq 0$ for all i, then X has a smoothing.

PROOF. Let $U = X \setminus \text{Sing}(X)$, X_i a sufficiently small neighborhood of p_i , and $U_i = X_i \setminus \{p_i\}$. Under these setting, we consider the following commutative diagram:

We remark that γ and γ_i 's are defined by a section of $H^0(Z, \omega_Z^{-1})$, and the upper horizontal sequence is exact. By the assumption, there exist elements $(\eta'_i | i = 1, 2, ..., l) \in \bigoplus_{i=1}^l H^2_{C_i}(Z, \Omega_Z^2)$ such that $\eta'_i \neq 0$ and $\beta'((\eta'_i | i = 1, 2, ..., l)) = 0$. Thus there exists $\eta \in H^1(U, \Theta_U)$ such that $\alpha(\eta)_i = \gamma_i(\eta'_i)$ for i = 1, 2, ..., l.

Case 1. (The case that there exists a smooth member $S \in |-K_X|$.)

We may assume that γ and γ_i are defined by v^*S . In this case, γ_i is an isomorphism for any *i*. Thus $\gamma_i(\eta'_i) \neq 0$. Since Def(X) is smooth as in [Mi], η can be realized as a smoothing of X.

Case 2. (The case that $|-K_X|$ does not have a smooth member.)

Let $\phi_{ac}: X \to X_{ac}$ be a multi-anti-canonical morphism. In this case, as in Section 3 of [**Mi**], we may assume that $Bs|-K_X| = \{p_1\}$, ϕ_{ac} is an isomorphism near p_1 , X_{ac} is isomorphic to $X_{2,6} \subset P(1,1,1,1,2,3)$ which is a weighted complete intersection of multi-degree $\{2,6\}$, and its defining homogeneous equation of degree 2 of $X_{2,6}$ in P(1,1,1,1,2,3) is given by $X_0^2 + X_1^2 + X_2^2 + X_3^2 = 0$. By the structure of X_{ac} , there exists an element $\zeta' \in T_{X_{ac}}^1$ such that ζ is locally a non-trivial deformation at $\phi_{ac}(p_1)$ and is locally the trivial deformation at any other singularities.

Let $U' = X_{ac} \setminus \text{Sing}(X_{ac})$, X'_j a sufficiently small neighborhood of each connected component of Sing(X), $U'_j = X'_j \setminus (\text{Sing}(X_{ac}) \cap X'_j)$, and $E = \phi_{ac}^{-1}(\text{Sing}(X_{ac})) \cap U$. We may assume that $U_1 \cong U'_1$. Under these setting, we consider the following diagram:

In this diagram, the upper horizontal sequence is exact. By the choice of ζ' , we have that $r(\zeta')_j = 0$ for $j \neq 1$. Since ϕ_{ac} is an isomorphism near p_1 , we have that $\tau_i(r(\zeta')_1) = 0$. Since $\tau(\zeta'|_{U'}) = 0$, there exists an element ζ such that $\zeta|_{U'} = \zeta'|_{U'}$. Thus we have that $\alpha(\zeta)_1 \neq 0$.

Suppose that γ and γ_i are defined by $S \in |-K_X|$ such that $S \cap \text{Sing}(X) = \{p_1\}$, We know that γ_i is an isomorphism for $i \neq 1$. Thus $\alpha(\eta)_i \neq 0$ for $i \neq 1$. Thus there exists a complex number ε such that $\alpha(\eta + \varepsilon\zeta)_i \neq 0$ for all *i*. Since Def(X) is smooth as in [Mi], there exists a realization of $\eta + \varepsilon\zeta$ which is a smoothing of X.

PROOF OF THEOREM 0.3. By Theorem 1.1 and its proof, it is enough to show that all singularities of X which are not ordinary double points are smoothed by a suitable deformation of X. There is a deformation of X to a 3-fold with only ordinary double points by (2) of Main Theorem of [Mi]. Considering Section 3 of [Mi] (refined in Section 2 of this paper), it follows from the method in the first part of the proof of Theorem 2.5 (3) \Rightarrow (2) of [Na 2].

We can show the following theorem as in Theorem 5.1 of [Gr 1].

THEOREM 1.2. Let X be a smooth weak Fano 3-fold, and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type I. Then \overline{X} has a smoothing unless ϕ is a contraction of a single \mathbf{P}^1 to an ordinary double point.

2. On a contraction of Type II.

In this section, we prove Theorem 0.4. To prove this theorem we need the following which we can prove by a little refinement of the method in Section 3 of [Mi].

THEOREM 2.1. Let X be a weak Fano 3-fold with only isolated canonical singularities. Assume that, for any singularity p, the Kuranishi space of (X, p) is smooth. Then the Kuranishi space Def(X) of X is smooth.

PROPOSITION 2.2. Let X be a weak Fano 3-fold with only isolated canonical singularities. Assume that X is **Q**-factorial. Then there exists a smooth member $S \in |-K_X|$.

We prove now Theorem 0.4.

PROOF OF THEOREM 0.4. Let $\{p_1, p_2, \ldots, p_n\} = \operatorname{Sing}(X)$. Let $v : \tilde{X} \to X$ be a resolution of X such that v is an isomorphism over $U := X \setminus \operatorname{Sing}(X)$ and its exceptional divisors $E_i := v^{-1}(p_i)$ have simple normal crossings. Let X_i be a sufficiently neighborhood of p_i , $U_i = X_i \setminus \{p_i\}$. We know the following proposition.

PROPOSITION 2.3 (Cf. The proof of Proposition 4 of [Na 4]). If (X, p_i) is not a rigid singularity, then the homomorphism

$$l_i: H^2_{E_i}(\tilde{X}, \Omega^2_{\tilde{X}}) \to H^2(\tilde{X}, \Omega^2_{\tilde{X}})$$

is not injective.

By Proposition 2.2, there exists a smooth member $S \in |-K_X|$, then we have the following commutative diagram defined by v^*S :

By this diagram and Proposition 2.3, t'_i is not injective for any *i*. We consider the following commutative diagram:

We remark that the upper horizontal sequence is exact, and the homomorphism δ_i is factorized as follows:

$$H^1(U_i, \mathcal{O}_{U_i}) \to H^2_{E_i}(\tilde{X}, \mathcal{O}_{\tilde{X}}) \to H^2_{E_i}(\tilde{X}, \Omega^2_{\tilde{X}} \otimes \nu^* \omega_X^{-1}).$$

By the exactness, there exists an element $\eta \in H^1(U, \Theta_U)$ such that $\alpha'(\eta)_i \neq 0$ for any *i*. By Theorem 2.1, we can prove Theorem 0.4 by the Namikawa's stratification method (cf. the proof of Theorem 5 of [Na 4]).

3. On a contraction of type III.

We use the following theorem of Takagi in this section,

THEOREM 3.1 (Takagi) (Cf. [Ta]). Let X be a weak Fano 3-fold with only canonical singularities. The complete linear system $|-2K_X|$ is base-point free.

PROPOSITION 3.2. Let X be a smooth weak Fano 3-fold, and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III contracting a divisor E to a curve C. Let \tilde{E} be the normalization of E (when E is normal $\tilde{E} = E$), $\tilde{E} \to \tilde{C} \to C$ the Stein factorization, and $f: \tilde{E} \to X$ the induced map. Then the image of the natural map $Def(f) \to Def(X)$ has codimension

- (i) $\geq \max\{g, g+d-1\}$ when ϕ is a contraction of (g, d)-type.
- (ii) $\geq \max{\{\tilde{g}, \tilde{g} + 2d 1\}}$ when ϕ is a contraction of (g, \tilde{g}, d) -type.

PROOF. We first show codimension $\geq g$ when ϕ is (g, d)-type (resp. $\geq \tilde{g}$ when ϕ is (g, \tilde{g}, d) -type). (This was proved in Proposition 4.2 of [**Pa**] in the case that E is P^1 -bundle or any fiber of $\phi|_E$ is union of two lines meeting at a point, and this proof is a modification of it.) To show this, we need the following lemma:

LEMMA 3.3. Let $\tilde{\Omega}_{\overline{X}}^2$ be the double dual of $\Omega_{\overline{X}}^2$. We have that $H^0(\overline{X}, \tilde{\Omega}_{\overline{X}}^2) = 0$.

PROOF OF LEMMA. Let $U = \overline{X} \setminus C$, which is a smooth locus of \overline{X} . By Theorem 3.1, $|-2K_{\overline{X}}|$ is base-point free. Since \overline{X} has generically cA_1 or cA_2 singularities, there exists a member $D \in |-2K_{\overline{X}}|$ such that D is smooth except $D \cap C$ and D has an A_1 or A_2 singularity at each point of $D \cap C$. Let $\pi : Y = \operatorname{Spec}(\mathcal{O}_{\overline{X}} \oplus \mathcal{O}_{\overline{X}}(K_{\overline{X}})) \to \overline{X}$ be the double cover of \overline{X} ramified along D, then Y is a Calabi-Yau 3-fold with only canonical singularities. Let $V = \pi^{-1}(U)$ and $G = \mathbb{Z}/2\mathbb{Z}$. We have that $(\pi_*\Omega_V^2)^G = \Omega_U^2$. So we have $H^0(V, \pi_*\Omega_V^2) = H^0(V, \Omega_V^2) = H^0(V, \mathcal{O}_V) = H^0(Y, \mathcal{O}_Y) = 0$ by the result of Kawamata [Ka]. Thus $H^0(\overline{X}, \tilde{\Omega}_{\overline{X}}^2) = H^0(U, \Omega_U^2) = H^0(V, \pi_*\Omega_V^2)^G = 0$.

Step 1. When ϕ is (g,d)-type, the codimension $\geq g$.

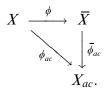
PROOF. This is a modification of the argument from the proof of Proposition 6.5 of [Na 1]. Let T_f^1 be the tangent space of Def(f). We have an exact sequence by [Ra]

$$T_f^1 \to T_X^1 \oplus T_E^1 \to H^1(X, f^* \Theta_X).$$

This induces an exact sequence

$$T_f^1 \xrightarrow{\alpha} T_X^1 \xrightarrow{\beta} H^1(E, N_{E/X}).$$

We know that Def(X) is smooth by $[\mathbf{Pa}]$ and $[\mathbf{Mi}]$, thus it is enough to show that $\operatorname{rank}(\beta) \ge g$. Using the identification $\Theta_X \cong \Omega_X^2 \otimes \omega_X^{-1}$ and $N_{E/X} \cong \omega_E \otimes \omega_X^{-1}$, we may view β as a map $\beta : H^1(X, \Omega_X^2 \otimes \omega_X^{-1}) \to H^1(E, \omega_E \otimes \omega_X^{-1})$. While we can choose $S \in |-K_X|$ such that $F = S \cap E = \sum_{i=1}^d F_i$, where $F_i \cong \mathbf{P}^1$ is a fiber of E over C for each i, and $F_i \cap F_j = \emptyset$ if $i \ne j$. In fact there exists a member $S \in |-K_X|$ which has only rational double points by $[\mathbf{Re}]$, so C is not a base locus of $|-K_X|$. If there is a base point p on C, we consider the anti-canonical model X_{ac} of X:



As in Section 3 in [Mi], $Bs|-K_{X_{ac}}| = \{\overline{\phi}_{ac}(p)\}\)$, and general member $S_{ac} \in |-K_{X_{ac}}|\)$ has a single ordinary double point only at $\overline{\phi}_{ac}(p)$. By Proposition 2.1 of [Pa], for a general member $S \in |-K_X|$, $S \to S_{ac}$ is the minimal resolution of the ordinary double point. Thus we can choose a member of $|-K_X|$ as desired. We consider the following commutative diagram whose vertical arrows are defined by an $S \in |-K_X|$:

$$\begin{array}{cccc} H^1(X, \Omega_X^2) & \stackrel{\beta}{\longrightarrow} & H^1(E, \omega_E) \\ & & & & \downarrow^a \\ & & & \downarrow^a \\ H^1(X, \Omega_X^2 \otimes \omega_X^{-1}) & \stackrel{\beta}{\longrightarrow} & H^1(E, \omega_E \otimes \omega_X^{-1}) \end{array}$$

By the exact sequence

$$0 \to \omega_E \to \omega_E \otimes \omega_X^{-1} \to \omega_E \otimes \omega_X^{-1}|_F \to 0,$$

and $H^0(\omega_E \otimes \omega_X^{-1}|_F) = H^0(\omega_F) = 0$, we have that *a* is injective. Thus we have that

$$\operatorname{rank}(\tilde{\beta}) \le \operatorname{rank}(a \circ \tilde{\beta}) = \operatorname{rank}(\beta \circ b) \le \operatorname{rank}(\beta).$$

So it is enough to show that $g(C) \leq \operatorname{rank}(\tilde{\beta})$.

Let $v: X' \to X$ be a embedded resolution of the pair (X, E). Let $\mu = \phi \circ v$, E' the proper transform of E by v. There is a commutative diagram

$$\begin{array}{cccc} H^{1}(E, \mathcal{O}_{E}) & \stackrel{\delta}{\longrightarrow} & H^{2}(X, \Omega^{1}_{X}) \\ & & & \downarrow \\ & & & \downarrow \\ H^{1}(C, \mathcal{O}_{C}) & \stackrel{\simeq}{\longrightarrow} & H^{1}(E', \mathcal{O}_{E'}) & \stackrel{\delta'}{\longrightarrow} & H^{2}(X', \Omega^{1}_{X'}). \end{array}$$

The vertical arrow of left-hand side is an isomorphism because E has only rational double points by Theorem 0.6, and the first horizontal arrow at the bottom is an isomorphism because a general fiber of $\phi|_E : E \to C$ is isomorphic to P^1 . We remark that δ is the dual map of $\tilde{\beta}$. If we can show that δ' is injective, we have that

$$\operatorname{rank}(\boldsymbol{\beta}) = \operatorname{rank}(\boldsymbol{\delta}) \ge \operatorname{rank}(\boldsymbol{\delta}') \ge g(C)$$

Thus it is enough to show that $H^1(X', \Omega^2_{X'}) \to H^1(E', \omega_{E'})$ is surjective. By the Hodge symmetry it is enough to show that $H^2(X', \Omega^1_{X'}) \to H^2(E', \Omega^1_{E'})$ is surjective. By the following 2 exact sequences

$$\begin{split} 0 &\to \mathscr{O}_{E'}(-E') \to \Omega^1_{X'}|_{E'} \to \Omega^1_{E'} \to 0 \\ 0 &\to \Omega^1_{X'}(-E') \to \Omega^1_{X'} \to \Omega^1_{X'}|_{E'} \to 0, \end{split}$$

it is enough to show that $H^3(X', \Omega^1_{X'}(-E')) = 0$. By the Serre duality

$$H^{3}(X', \Omega^{1}_{X'}(-E')) \cong H^{0}(X', \Theta_{X'}(K_{X'}+E')) \cong H^{0}(X', \Omega^{2}_{X'}(E')).$$

There is an injection

 $\mu_* \varOmega^2_{X'}(E') \hookrightarrow \tilde{\varOmega}^2_{\overline{X}}$

because both sheaves are isomorphic to each other outside a subset of codimension ≥ 2 and $\tilde{\Omega}_{\bar{X}}^2$ is a reflexible sheaf. Then we have $H^0(X', \Omega_{X'}^2(E')) = 0$ because $H^0(\bar{X}, \tilde{\Omega}_{\bar{X}}^2) = 0$ by the Lemma.

Step 2. When the ϕ is (g, \tilde{g}, d) , the codimension $\geq \tilde{g}$.

PROOF. This is a modification of the argument from the proof of Proposition 1.2 of [Gr 2]. By Theorem 0.6, $\tilde{\phi}_{\tilde{E}} : \tilde{E} \to \tilde{C}$ is a P^1 -bundle over \tilde{C} . Define N_f by the exact sequence

$$0 \to \mathcal{O}_{\tilde{E}} \to f^* \mathcal{O}_{\tilde{X}} \to N_f \to 0.$$

We remark that N_f is torsion free, locally free away from the inverse image of pinch points of E. Thus we have that the double dual \tilde{N}_f of N_f is isomorphic to $\omega_{\tilde{E}} \otimes f^* \omega_X^{-1}$. We have an exact sequence as in [**Ra**],

$$T_f^1 \to T_X^1 \oplus T_{\tilde{E}}^1 \to H^1(X, f^* \Theta_X).$$

This induces an exact sequence

$$T_f^1 \xrightarrow{\alpha} T_X^1 \xrightarrow{\beta'} H^1(\tilde{E}, N_f).$$

Let β be a composition homomorphism $T_X^1 \to H^1(\tilde{E}, N_f) \to H^1(\tilde{E}, \tilde{N}_f)$. We know that Def(X) is smooth by [**Pa**] and [**Mi**], thus it is enough to show that $rank(\beta) \ge \tilde{g}$. Using the identifications $\Theta_X \cong \Omega_X^2 \otimes \omega_X^{-1}$ and $\tilde{N}_f \cong \omega_{\tilde{E}} \otimes f^* \omega_X^{-1}$, we may view β as a map $\beta : H^1(X, \Omega_X^2 \otimes \omega_X^{-1}) \to H^1(E, \omega_{\tilde{E}} \otimes f^* \omega_X^{-1})$. We consider the following commutative diagram:

We remark that injectivity of the first vertical map of the right-hand side is because of the same reason in Step 1. Thus it is enough to show that $\operatorname{rank}(\tilde{\beta}) \geq \tilde{g}$. Since $h^1(\tilde{E}, \omega_{\tilde{E}}) = \tilde{g}$ (because $\tilde{\phi}_{\tilde{E}} : \tilde{E} \to \tilde{C}$ is a P^1 -bundle over \tilde{C}), it is enough to show that $\tilde{\beta}$ is surjective. By the Hodge symmetry, it is enough to show that $H^2(X, \Omega_X^1) \to$ $H^2(\tilde{E}, \Omega_{\tilde{E}}^1)$ is surjective.

We consider the following 2 exact sequences,

$$0 \to \mathscr{F}_1 \to \Omega^1_X \to f_* f^* \Omega^1_X \to \mathscr{F}_2 \to 0$$

where \mathscr{F}_2 has support on the singularities of E, and

$$0 \to \mathscr{F}_3 \to f^*\Omega^1_X \to \Omega^1_{\tilde{E}} \to \mathscr{F}_4 \to 0$$

where \mathscr{F}_4 has support on the pinch point of \check{E} . By the second exact sequence, we have that the map $H^2(\check{E}, f^*\Omega^1_X) \to H^2(\check{E}, \Omega^1_{\check{E}})$ is surjective. Thus it is enough to show that $H^3(X, \mathscr{F}_1) = 0$. By the Serre duality, $H^3(X, \mathscr{F}_1) \cong H^0(X, \mathscr{F}_1^{\vee} \otimes \omega_X)^{\vee}$. There is an injection

$$\phi_*\mathscr{F}_1^{\vee} \otimes \omega_X \hookrightarrow \tilde{\Omega}_{\bar{X}}^2$$

because both sheaves are isomorphic to each other outside a subset of codimension ≥ 2 and $\tilde{\Omega}_{\bar{X}}^2$ is a reflexible sheaf. Thus we have that $H^0(X, \mathscr{F}_1^{\vee} \otimes \omega_X) \subseteq H^0(\bar{X}, \tilde{\Omega}_{\bar{X}}^2) = 0$ by Lemma 3.3.

We next show that the codimension $\geq g + d - 1$ when ϕ is (g, d)-type (resp. $\geq \tilde{g} + 2d - 1$ when ϕ is (g, \tilde{g}, d) -type). If d = 0, then $g \geq g + d - 1$ (resp. $\tilde{g} \geq \tilde{g} + 2d - 1$). So we may assume $d \neq 0$. Define N_f by the exact sequence

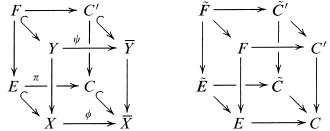
$$0 \to \mathcal{O}_{\tilde{E}} \to f^* \mathcal{O}_{\tilde{X}} \to N_f \to 0$$

as in Step 2. We remark that $N_f = N_{E/X}$ when E is normal.

LEMMA 3.4. The homomorphism $H^1(X, \Theta_X) \to H^1(\tilde{E}, \omega_{\tilde{E}} \otimes f^* \omega_X^{-1})$ is surjective, where the homomorphism is induced by the composition of homomorphisms

$$\Theta_X \to f^* \Theta_X \to N_f \to N_f \cong \omega_{\tilde{E}} \otimes f^* \omega_X^{-1}.$$

PROOF OF LEMMA. By Theorem 3.1, there exists a member $\overline{D} \in |-2K_{\overline{X}}|$ such that $\overline{D} \cap C \cap \{\text{dissident points}\} = \emptyset$ and $D := \phi^* D \in |-2K_X|$ is smooth. Taking double cover of X and \overline{X} branched along D and \overline{D} , we have the following commutative diagrams.



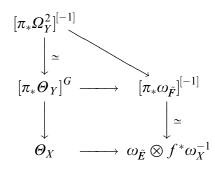
By the results of Wilson, Namikawa, and Gross of Calabi-Yau 3-folds (Cf. [Wi 1], [Wi 2], [Na 1] and [Gr 2]), we have that the homomorphism

$$H^1(Y, \Omega_Y^2) \to H^1(\tilde{F}, \omega_{\tilde{F}})$$

is surjective. We have that

$$\gamma: \omega_{\widetilde{F}} \xrightarrow{\simeq} \pi^*(\omega_{\widetilde{E}} \otimes f^* \omega_X^{-1}).$$

Let σ be the involution on Y. We remark that $\sigma \circ \gamma = -\gamma$. We have that $(\pi_* \omega_{\tilde{F}})^{[-1]} \cong [\pi_* \pi^* (\omega_{\tilde{E}} \otimes f^* \omega_X^{-1})]^G \cong [(\omega_{\tilde{E}} \otimes f^* \omega_X^{-1}) \otimes (\mathcal{O}_{\tilde{E}} \oplus f^* \omega_X)]^G \cong \omega_{\tilde{E}} \otimes f^* \omega_X^{-1}$. We consider the following commutative diagram.



This induces a commutative diagram

Since the upper horizontal homomorphism is surjective, so is the horizontal homomorphism at the bottom. $\hfill \Box$

As in Step 1 and 2, we have a commutative diagram with an exact row

and we know that Def(X) is smooth. By Lemma 3.4, we know that $\operatorname{Im} \beta = h^1(\tilde{E}, \omega_{\tilde{E}} \otimes f^* \omega_X^{-1})$. Thus it is enough to show that $h^1(\tilde{E}, \omega_{\tilde{E}} \otimes f^* \omega_X^{-1}) \ge g + d - 1$ (resp. $\tilde{g} + 2d - 1$).

As in Step 1, we can show that there exists a member $S \in |-K_X|$ such that $F = f^*S = \sum_{i=1}^d F_i$ (resp. $\sum_{i=1}^{2d} F_i$), where $F_i \cong \mathbf{P}^1$ is a fiber of \tilde{E} over \tilde{C} for each *i*, and $F_i \cap F_j = \emptyset$ if $i \neq j$. Since $\omega_{\tilde{E}} \otimes f^* \omega_X^{-1}|_{F_i} \cong \omega_{F_i}$, we have an exact sequence induced by the choice of S

$$0 \to \omega_{\tilde{E}} \to \omega_{\tilde{E}} \otimes f^* \omega_X^{-1} \to \bigoplus_{i=1}^d \omega_{F_i} \to 0.$$

$$\left(\text{resp. } 0 \to \omega_{\tilde{E}} \to \omega_{\tilde{E}} \otimes f^* \omega_X^{-1} \to \bigoplus_{i=1}^{2d} \omega_{F_i} \to 0.\right)$$

This induces the following exact sequence:

$$\begin{split} \bigoplus_{i=1}^{d} H^{0}(F_{i},\omega_{F_{i}}) &\to H^{1}(\tilde{E},\omega_{\tilde{E}}) \to H^{1}(\tilde{E},\omega_{\tilde{E}} \otimes f^{*}\omega_{X}^{-1}) \\ &\to \bigoplus_{i=1}^{d} H^{1}(F_{i},\omega_{F_{i}}) \to H^{2}(\tilde{E},\omega_{\tilde{E}}). \end{split}$$

$$\begin{pmatrix} \operatorname{resp.} \ \bigoplus_{i=1}^{2d} H^{0}(F_{i},\omega_{F_{i}}) \to H^{1}(\tilde{E},\omega_{\tilde{E}}) \to H^{1}(\tilde{E},\omega_{\tilde{E}} \otimes f^{*}\omega_{X}^{-1}) \\ &\to \bigoplus_{i=1}^{2d} H^{1}(F_{i},\omega_{F_{i}}) \to H^{2}(\tilde{E},\omega_{\tilde{E}}). \end{pmatrix}$$

$$\to \bigoplus_{i=1}^{2d} H^{1}(F_{i},\omega_{F_{i}}) \to H^{2}(\tilde{E},\omega_{\tilde{E}}). \end{split}$$

Since $h^0(F_i, \omega_{F_i}) = 0$, $h^1(F_i, \omega_{F_i}) = 1$, $h^1(\tilde{E}, \omega_{\tilde{E}}) = g$ (resp. $=\tilde{g}$), and $h^2(\tilde{E}, \omega_{\tilde{E}}) = 1$, Proposition 3.2 follows from this exact sequence.

By Proposition 3.2, *E* will not deform under a generic deformation of *X*, unless ϕ is a contraction of (0,0), (0,1), $(0,\tilde{g},0)$, or $(0,\tilde{g},1)$ -type. Thus there exists a deformation of ϕ which is a crepant primitive birational contraction of type I. We want to count the number of curves contracted by the contraction of type I in the following proposition.

PROPOSITION 3.5. Let X be a smooth weak Fano 3-fold and $\phi : X \to \overline{X}$ a crepant primitive birational contraction of type III. Assume that ϕ is neither (0,0), (0,1), $(0,\tilde{g},0)$, nor $(0,\tilde{g},1)$ -type. Then there exists a small deformation of ϕ over $(\varDelta,0)$



such that, for any $t \in (\Delta, 0) \setminus \{0\}$,

$$\Phi_t: \mathscr{X}_t \to \overline{\mathscr{X}}_t$$

is a crepant primitive contraction of type I which contracts

- (i) just $2g 2 + d\mathbf{P}^{1}$'s when ϕ is a contraction of (g, d)-type without dissident fibers with $d \ge 2$.
- (ii) at least $2\tilde{g} 2 + 2d\mathbf{P}^{1}$'s when ϕ is a contraction of (g, \tilde{g}, d) -type.
- (iii) $l\mathbf{P}^{1}$'s where $2g 2 \le l \le 2g 1$ when ϕ is a contraction of (g, 1)-type without dissident fibers.
- (iv) a single \mathbf{P}^1 when ϕ is a contraction of (1,1)-type without dissident fibers.

PROOF. We will divide the proof into 3 cases.

Case 1 (ϕ is of (g, d)-type without dissident fibers).

Let $Z \cong \mathbf{P}^1$ be any fiber of $\phi|_E$ over $p \in C$ and $i: Z \hookrightarrow X$ the natural closed embedding. We have that $N_{Z/X} \cong N_{Z/E} \oplus (N_{E/X}|_Z)$ where $N_{Z/E} \cong \mathcal{O}_Z$. We consider the following commutative diagram:

We remark that the upper horizontal sequence is exact as in [**Ra**]. Thus for $\eta \in T_X^1$, Z extends sideways to first order in the first order deformation corresponding to η if and only if $\tau \circ \beta(\eta) = 0$. Using the identification $N_{E/X} \cong \omega_E \otimes \omega_X^{-1}$, we may view τ as a map

$$\tau: H^1(E, \omega_E \otimes \omega_X^{-1}) \to H^1(\omega_E \otimes \omega_X^{-1}|_Z).$$

By the relative duality, we know that

$$R^{1}\phi_{*}\omega_{E} \cong R^{1}\phi_{*}(\omega_{E/C} \otimes \phi^{*}\omega_{C}) \cong (R^{1}\phi_{*}\omega_{E/C}) \otimes \omega_{C} \cong \omega_{C}$$

Thus we have the isomorphisms

$$R^{1}\phi_{*}(\omega_{E}\otimes\omega_{X}^{-1})\cong R^{1}\phi_{*}(\omega_{E}\otimes\phi^{*}(\omega_{\overline{X}}^{-1}|_{C}))\cong (R^{1}\phi_{*}\omega_{E})\otimes\omega_{\overline{X}}^{-1}\cong\omega_{C}\otimes\omega_{\overline{X}}^{-1}.$$

Considering the Leray spectral sequence, we have an identification

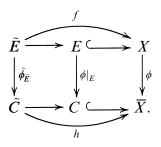
$$\begin{array}{cccc} H^{1}(E, \omega_{E} \otimes \omega_{X}^{-1}) & \stackrel{\tau}{\longrightarrow} & H^{1}(Z, \omega_{E} \otimes \omega_{X}^{-1}|_{Z}) \\ & & & \downarrow \simeq & \\ & & & \downarrow \simeq & \\ H^{0}(C, \omega_{C} \otimes \omega_{\overline{X}}^{-1}) & \stackrel{\overline{\tau}}{\longrightarrow} & H^{0}(p, \omega_{C} \otimes \omega_{\overline{X}}^{-1}|_{p}). \end{array}$$

By the assumption, there exists an element $\xi \in H^0(C, \omega_C \otimes \omega_{\overline{X}}^{-1})$ such that $\eta \neq 0$. Then there exists an element $\eta \in T_X^1$ such that $\beta(\eta) = \xi$ by Lemma 3.4. From the above argument, the fiber over a point where $\overline{\tau}(\xi)$ vanishes extends sideways to first order in the first order deformation corresponding to η . Because $\overline{\tau}(\xi)$ vanishes at 2g - 2 + dpoints, $2g - 2 + d\mathbf{P}^1$'s extends sideways in a general first order deformation.

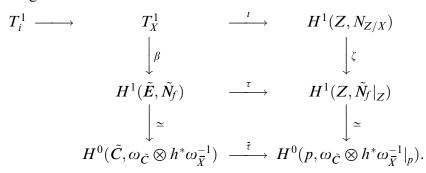
Next, we consider the obstruction of the morphism $i: Z \hookrightarrow X$. We consider the following commutative diagram:

We remark that the upper horizontal sequence is exact. If $d \neq 1$, the linear system $|K_C - (K_{\bar{X}}|_C)|$ is base-point free. Thus $\bar{\tau}$ is surjective. We know that β is surjective by Lemma 3.4, thus ι is surjective. If d = 1, in this case $g \neq 0$ by the assumption, we have that $|K_C - (K_{\bar{X}}|_C)| = |K_C| + q$ where $q = -K_{\bar{X}} \cdot C$. Thus $\bar{\tau}$ is surjective if $p \neq q$. This completes the proof in this case except (iv).

Case 2 (ϕ is of (g, \tilde{g}, d) -type). Let \tilde{E} be the normalization of E, and $\tilde{E} \to \tilde{C} \to C$ the Stein factorization. We consider the following commutative diagram:



Let $Z \cong \mathbf{P}^1$ be any fiber of $\tilde{\phi}_{\tilde{E}}$ over $p \in \tilde{C}$ and $i: Z \hookrightarrow X$ be the natural closed embedding. There is a natural morphism $N_{Z/X} \to \tilde{N}_f|_Z$ for any fiber Z. We remark that $N_{Z/X} \cong N_{Z/\tilde{E}} \oplus (\tilde{N}_f|_Z)$ where $N_{Z/\tilde{E}} \cong \mathcal{O}_Z$ for a general fiber Z. We consider the following commutative diagram:



We remark that ζ is an isomorphism for a general fiber Z and we can show that the lower vertical arrows are isomorphisms by the similar reason in Step 1. The above commutative diagram tells us that Z will not extend in a first order deformation corresponding to η if $\overline{\tau} \circ \beta(\eta) \neq 0$ for any fiber Z, and that Z extends sideways to first order in the first order deformation corresponding to η if $\overline{\tau} \circ \beta(\eta) = 0$ for a general fiber Z. Since the degree of $K_{\tilde{C}} + h^*(-K_{\bar{X}})$ is $2\tilde{g} - 2 + 2d$ and $d \neq 0$, $|K_{\tilde{C}} + f^*(-K_{\bar{X}})|$ is basepoint free. Thus we can show this proposition by the same method in Step 1 in this case. We remark that we only considered a fiber of $\tilde{\phi}_{\tilde{E}}$ in this proof, thus we need "at least" in this statement.

Case 3 ((iv) of this proposition). If any fiber will not deform, then the Kähler cone of X is not locally constant at $0 \in Def(X)$. But it contradicts Page 63 of [Pa] and Theorem 3.1.

PROPOSITION 3.6. Let X be a smooth weak Fano 3-fold, and $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III. Assume that ϕ is a contraction of (g, d)-type with dissident fibers and is neither (0,0) nor (0,1)-type. Then there exists a small deformation of ϕ over $(\Delta, 0)$

such that, for any $t \in (\Delta, 0) \setminus \{0\}$,

 $\Phi_t: \mathscr{X}_t \to \overline{\mathscr{X}}_t$

is a crepant primitive birational contraction of type I which is not a contraction of a single P^1 to an ordinary double point.

PROOF. We can show this proposition by the same method in the proof of Theorem 1.3 of [Gr 2].

PROPOSITION 3.7. Let X be a smooth weak Fano 3-fold, $\phi: X \to \overline{X}$ a crepant primitive birational contraction of type III, and $\mathscr{X} \to Def(X)$ the Kuranishi family of X. Assume that ϕ is a contraction of (0,0), (0,1), $(0,\tilde{g},0)$, or $(0,\tilde{g},1)$ -type. Then E will deforms in the family.

PROOF. The case d = 0 was proved by Paoletti (cf. the proof of Lemma 3.6 of **[Pa]**), thus we may assume d = 1.

We first treat the case ϕ is of (0,1)-type. When ϕ is without dissident fibers, $h^1(E, \mathcal{O}_E(E)) = h^1(E, \omega_E \otimes \omega_X^{-1}) = h^0(C, \omega_C \otimes \omega_{\overline{X}}^{-1}) = 0$. Consider the exact sequence in Step 1 of Proposition 3.6,

$$0 \to \omega_E \to \omega_E \otimes \omega_X^{-1} \to \omega_F \to 0$$

where $F \cong \mathbf{P}^1$. This induces a long exact sequence

$$0 = H^{1}(E, \omega_{E} \otimes \omega_{X}^{-1}) \to H^{1}(F, \omega_{F}) \to H^{2}(E, \omega_{E})$$
$$\to H^{2}(E, \omega_{E} \otimes \omega_{X}^{-1}) \to 0.$$

Thus we can show that $h^2(E, \mathcal{O}_E(E)) = h^2(E, \omega_E \otimes \omega_X^{-1}) = 0$. Thus *E* will deform in the Kuranishi family of *X*.

When *E* is of (0, 1)-type with dissident fibers. As in the case *E* is (0, 1)-type without dissident fibers, we can prove that $h^2(E, \mathcal{O}_E(E)) = 0$ if $h^1(E, \mathcal{O}_E(E)) = 0$. So it is enough to show that $h^1(E, \mathcal{O}_E(E)) = 0$. We can consider the following commutative diagram:

where $\mu: \hat{E} \to E$ is the minimal resolution of E, and $\phi': E' \to C$ is a P^1 -bundle. Since $\omega_{\hat{E}} \simeq \mu^* \omega_E$, we have that

$$H^1(\hat{E}, \omega_{\hat{E}} \otimes \mu^* \omega_X^{-1}) = H^1(\hat{E}, \mu^*(\omega_E \otimes \omega_X^{-1})).$$

Since $\mu_*\mu^*(\omega_E \otimes \omega_X^{-1}) \simeq \omega_E \otimes \omega_X^{-1}$, we have that

$$H^{1}(E, \mathcal{O}_{E}(E)) \cong H^{1}(E, \omega_{E} \otimes \omega_{X}^{-1}) \hookrightarrow H^{1}(\hat{E}, \omega_{\hat{E}} \otimes \mu^{*} \omega_{X}^{-1})$$

by the Leray spectral sequence.

Thus it is enough to show that

$$H^1(\hat{E}, \omega_{\hat{E}} \otimes \mu^* \omega_X^{-1}) \cong H^1(\hat{E}, \mu^* \omega_X) = 0.$$

Since $\phi^* \omega_{\overline{X}} \simeq \omega_X$, we have that $v^* (\phi')^* \omega_{\overline{X}} \simeq \mu^* \phi^* \omega_{\overline{X}} \simeq \mu^* \omega_X$, thus

$$H^1(\hat{E}, \mu^* \omega_X) = H^1(\hat{E}, \nu^* (\phi')^* \omega_{\overline{X}}).$$

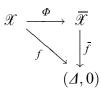
Since $v_*v^*((\phi')^*\omega_{\overline{\chi}}) \simeq (\phi')^*\omega_{\overline{\chi}}$, we have that

$$H^1(E',(\phi')^*\omega_{\overline{X}}) \cong H^1(\hat{E},\nu^*(\phi')^*\omega_{\overline{X}})$$

by the Leray spectral sequence. As is the case ϕ is a (0, 1)-type without dissident fibers, we can show that

$$H^1(E',(\phi')^*\omega_{\overline{X}}) \cong H^1(E',\omega_{E'}\otimes(\phi')^*\omega_{\overline{X}}^{-1}) = 0.$$

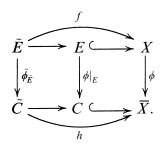
Thus the rest is the case ϕ is of $(0, \tilde{g}, 1)$ -type. If there exists a small deformation of ϕ over $(\Delta, 0)$



such that, for any $t \in (\Delta, 0) \setminus \{0\}$,

 $\Phi_t:\mathscr{X}_t\to\overline{\mathscr{X}}_t$

is a crepant primitive birational contraction of type I. We consider the following commutative diagram as in Case 2 of the proof of Proposition 3.6:



Then Φ_t contracts at least $2\tilde{g}P^1$'s for $t \in (\varDelta, 0) \setminus \{0\}$ which are deformations of fibers of $\tilde{\phi}_{\tilde{E}}$, and these fibers are chosen generically in fibers of $\tilde{\phi}_{\tilde{E}}$ as in Case 2 of the proof of Proposition 3.6. We remark that the morphism $\tilde{C} \to C$ is a finite morphism branched over at least 2 points on C by Hurwitz formula, and these points on C are dissident points. By [**Pa**], we know that the fiber of $\tilde{\phi}_{\tilde{E}}$ whose image by $\phi \circ f$ is a dissident point deforms in the Kuranishi family of X. It is a contradiction.

Combining these propositions and Theorem 1.2, we can prove Theorem 0.9.

References

- [Gr 1] M. Gross, Deforming Calabi-Yau threefolds, Math. Ann., 308 (1997), 187-220.
- [Gr 2] M. Gross, Primitive Calabi-Yau threefolds, J. Differential Geom., 45 (1997), 288-318.
- [Ka] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., 363 (1985), 1–46.
- [Mi] T. Minagawa, Deformations of weak Fano 3-folds with only terminal singularities (1999), To appear in Osaka J. Math.
- [Mu] S. Mukai, Gorenstein Fano threefolds, Proceedings of Alg. Geom. Symposium, Saitama, 1994, 87–90.
- [Na 1] Y. Namikawa, On deformations of Calabi-Yau 3-folds with terminal singularities, Topology, 33 (1994), 429-446.
- [Na 2] Y. Namikawa, Stratified local moduli of Calabi-Yau threefolds, Preprint, 1995.
- [Na 3] Y. Namikawa, Smoothing Fano 3-folds, J. Algebraic Geom., 6 (1997), 307-329.
- [Na 4] Y. Namikawa, Deformation theory of Calabi-Yau threefolds and certain invariants of singularities, J. Algebraic Geom., 6 (1997), 753–776.
- [Na-St] Y. Namikawa and J. Steenbrink, Global smoothing of Calabi-Yau threefolds, Invent. Math., 122 (1995), 403–419.
- [Pa] R. Paoletti, The Kähler cone in families of quasi-Fano threefolds, Math. Z., 227 (1998), 45-68.
- [Ra] Z. Ran, Deformations of maps, Alg. curves and proj. geom., C. Ballico and C. Ciliberto Eds. LMN1389, Springer-Verlag, 1989, 246–253.

- [Re] M. Reid, Projective morphism according to Kawamata, Preprint.
- [Ta] H. Takagi, On classifications of *Q*-Fano 3-folds with Gorenstein index 2 and Fano index 1/2, Preprint, 1999.
- [Wi 1] P. M. H. Wilson, The Kähler cone on Calabi-Yau threefolds, Invent. Math., 107 (1992), 561-583.
- [Wi 2] P. M. H. Wilson, Erratum to "The Kähler cone on Calabi-Yau threefolds", Invent. Math., 114 (1993), 231–233.
- [Wi 3] P. M. H. Wilson, Symplectic deformations of Calabi-Yau threefolds, J. Differential Geom., 45 (1997), 611–637.

Tatsuhiro MINAGAWA

Department of Mathematics Tokyo Institute of Technology Ohokayama, Meguro Tokyo 152-0033 Japan E-mail: minagawa@math.titech.ac.jp