Spherical rigidities of submanifolds in Euclidean spaces

Dedicated to Professor Buchin Su for his 100th birthday

By Qing-Ming Cheng

(Received Sept. 6, 2001)
(Revised Oct. 25, 2002)

Abstract

In this paper, we study n-dimensional complete immersed submanifolds in a Euclidean space \boldsymbol{E}^{n+p}. We prove that if M^{n} is an n-dimensional compact connected immersed submanifold with nonzero mean curvature H in \boldsymbol{E}^{n+p} and satisfies either: (1) $S \leq \frac{n^{2} H^{2}}{n-1}$, or (2) $n^{2} H^{2} \leq \frac{(n-1) R}{n-2}$, then M^{n} is diffeomorphic to a standard n-sphere, where S and R denote the squared norm of the second fundamental form of M^{n} and the scalar curvature of M^{n}, respectively.

On the other hand, in the case of constant mean curvature, we generalized results of Klotz and Osserman [11] to arbitrary dimensions and codimensions; that is, we proved that the totally umbilical sphere $S^{n}(c)$, the totally geodesic Euclidean space \boldsymbol{E}^{n}, and the generalized cylinder $S^{n-1}(c) \times \boldsymbol{E}^{1}$ are only n-dimensional $(n>2)$ complete connected submanifolds M^{n} with constant mean curvature H in \boldsymbol{E}^{n+p} if $S \leq n^{2} H^{2} /(n-1)$ holds.

1. Introduction.

It is well known by Nash that every finite dimensional Riemannian manifold possesses an isometric embedding into a Euclidean space of a sufficiently high dimension. Therefore, research of submanifolds in a Euclidean space \boldsymbol{E}^{n+p} of $n+p$ dimensions requires some additional conditions. In this paper, we shall agree that a submanifold means an immersed submanifold. A classical theorem of Hadamard states that a compact connected orientable hypersurface in \boldsymbol{E}^{n+1} with positive sectional curvature is diffeomorphic to a standard sphere $S^{n}(c)$. This result was generalized by Van Heijenoort [18] and Sacksteder [15]. They proved that an n-dimensional complete connected orientable hypersurface M^{n} in \boldsymbol{E}^{n+1} is a boundary of a convex body in \boldsymbol{E}^{n+1} if every sectional curvature of M^{n} is non-negative and at least one is positive. In particular, they proved that an n-dimensional locally convex (that is, the second fundamental form is semi-definite) compact connected orientable hypersurface M^{n} in \boldsymbol{E}^{n+1} is diffeomorphic to $S^{n}(c)$. In [6] and [7], Chern and Lashof studied the total curvature of an n-dimensional compact connected orientable submanifold in \boldsymbol{E}^{n+p}. They showed that the total cur-

[^0]vature of an n-dimensional compact connected orientable submanifold in \boldsymbol{E}^{n+p} is not less than $2 c_{n+p-1}$, and also that, if the equality holds, then M^{n} is diffeomorphic to $S^{n}(c)$, where c_{n+p-1} is the volume of the unit sphere $S^{n+p-1}(1)$. Recently, using a theorem introduced by Lawson and Simons in [12], Shiohama and Xu [17] proved that an n dimensional connected orientable complete submanifold M^{n} in \boldsymbol{E}^{n+p} is homeomorphic to $S^{n}(c)$ if $n>3$ and $\sup _{M^{n}}\left(S-\left(n^{2} H^{2} /(n-1)\right)\right)<0$. It is clear that this condition $\sup _{M^{n}}\left(S-\left(n^{2} H^{2} /(n-1)\right)\right)<0$ yields that the mean curvature is nonzero at each point of M^{n} and M^{n} is compact by Myers theorem. In this paper, we shall prove a stronger result under a weaker condition than the one in [17]. That is, we first prove the following:

Main Theorem 1. An n-dimensional compact connected submanifold M^{n} with everywhere nonzero mean curvature H in \boldsymbol{E}^{n+p} is diffeomorphic to a sphere $S^{n}(c)$ if one of the following conditions is satisfied:
(1) $S \leq \frac{n^{2} H^{2}}{n-1}$,
(2) $n^{2} H^{2} \leq \frac{(n-1) R}{n-2}$,
where S and R denote the squared norm of the second fundamental form of M^{n} and the scalar curvature of M^{n}, respectively.

On the other hand, Klotz and Osserman [11] proved that a complete orientable surface M^{2} with constant mean curvature H and non-negative Gaussian curvature is isometric to a totally umbilical sphere $S^{2}(c)$, a totally geodesic plane \boldsymbol{E}^{2}, or cylinder $\boldsymbol{E}^{1} \times S^{1}(c)$. It is well known that the Gaussian curvature is non-negative if and only if $S \leq n^{2} H^{2} /(n-1)$ holds in the case of $n=2$. Next, we shall generalize the result due to Klotz and Osserman to higher dimensions and higher codimensions under the same condition of constant mean curvature.

Main Theorem 2. Let M^{n} be an n-dimensional ($n>2$) complete connected submanifold with constant mean curvature H in \boldsymbol{E}^{n+p}. If $S \leq n^{2} H^{2} /(n-1)$ is satisfied, then M is isometric to the totally umbilical sphere $S^{n}(c)$, the totally geodesic Euclidean space \boldsymbol{E}^{n}, or the generalized cylinder $S^{n-1}(c) \times \boldsymbol{E}^{1}$, where S denotes the squared norm of the second fundamental form of M^{n}.

Remark. The result due to Klotz and Osserman [11] was extended by the author and Nonaka [5] to higher dimensions and higher codimensions under the stronger condition that the mean curvature vector is parallel.

Acknowledgement. I would like to express my gratitude to Professors B. Y. Chen, K. Enomoto, K. Kenmotsu, R. Miyaoka, S. Montiel, and K. Shiohama for their valuable suggestions and discussion.

2. Preliminaries.

Let \boldsymbol{E}^{n+p} be an $(n+p)$-dimensional Euclidean space and M^{n} an n-dimensional connected submanifold in \boldsymbol{E}^{n+p}. We choose a local field of orthonormal frames
$\left\{e_{1}, \ldots, e_{n+p}\right\}$ adapted to \boldsymbol{E}^{n+p} and dual coframes $\left\{\omega_{1}, \ldots, \omega_{n+p}\right\}$ in such a way that, restricted to the submanifold $M^{n},\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M^{n}. Let $\left\{\omega_{A B}\right\}$ denote the connection forms of \boldsymbol{E}^{n+p}. The canonical forms $\left\{\omega_{A}\right\}$ and connection forms $\left\{\omega_{A B}\right\}$ restricted to M^{n} are also denoted by the same symbols. We then have

$$
\begin{equation*}
\omega_{\alpha}=0, \quad \alpha=n+1, \ldots, n+p \tag{2.1}
\end{equation*}
$$

We see that e_{1}, \ldots, e_{n} is a local field of orthonormal frames adapted to the induced Riemannian metric on M^{n} and $\omega_{1}, \ldots, \omega_{n}$ is a local field of its dual coframes on M^{n}. It follows from (2.1) and Cartan's Lemma that

$$
\begin{equation*}
\omega_{\alpha i}=\sum_{j=1}^{n} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{2.2}
\end{equation*}
$$

Second fundamental form $I I$ and mean curvature vector \boldsymbol{h} of M^{n} are defined by

$$
\begin{align*}
I I & =\sum_{\alpha=n+1}^{n+p} \sum_{i, j=1}^{n} h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}, \tag{2.3}\\
\boldsymbol{h} & =\frac{1}{n} \sum_{\alpha=n+1}^{n+p}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right) e_{\alpha} . \tag{2.4}
\end{align*}
$$

The mean curvature H of M^{n} is defined by

$$
\begin{equation*}
H=\frac{1}{n} \sqrt{\sum_{\alpha=n+1}^{n+p}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right)^{2}} . \tag{2.5}
\end{equation*}
$$

Let $S=\sum_{\alpha=n+1}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{\alpha}\right)^{2}$ denote the squared norm of the second fundamental form of M^{n}. The connection form of M^{n} is characterized by the structure equations

$$
\begin{align*}
d \omega_{i} & =-\sum_{j=1}^{n} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0, \tag{2.6}\\
d \omega_{i j} & =-\sum_{k=1}^{n} \omega_{i k} \wedge \omega_{k j}+\frac{1}{2} \sum_{k, l=1}^{n} R_{i j k l} \omega_{k} \wedge \omega_{l}, \tag{2.7}\\
R_{i j k l} & =\sum_{\alpha=n+1}^{n+p}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{2.8}
\end{align*}
$$

where $R_{i j k l}$ represents components of the curvature tensor of M^{n}. Letting $R_{i j}$ and R denote components of the Ricci curvature and the scalar curvature of M^{n}, respectively, we obtain from (2.8):

$$
\begin{align*}
R_{j k} & =\sum_{\alpha=n+1}^{n+p}\left(\sum_{i=1}^{n} h_{i i}^{\alpha} h_{j k}^{\alpha}-\sum_{i=1}^{n} h_{i k}^{\alpha} h_{j i}^{\alpha}\right), \tag{2.9}\\
R & =n^{2} H^{2}-S \tag{2.10}
\end{align*}
$$

We also have

$$
\begin{align*}
d \omega_{\alpha \beta} & =-\sum_{\gamma=n+1}^{n+p} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\frac{1}{2} \sum_{i, j=1}^{n} R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j}, \tag{2.11}\\
R_{\alpha \beta i j} & =\sum_{l=1}^{n}\left(h_{i l}^{\alpha} h_{l j}^{\beta}-h_{j l}^{\alpha} l_{l i}^{\beta}\right) . \tag{2.12}
\end{align*}
$$

By taking the exterior differentiation of (2.2) and defining $h_{i j k}^{\alpha}$ by

$$
\begin{equation*}
\sum_{k=1}^{n} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\sum_{k=1}^{n} h_{i k}^{\alpha} \omega_{k j}-\sum_{k=1}^{n} h_{j k}^{\alpha} \omega_{k i}-\sum_{\beta=n+1}^{n+p} h_{i j}^{\beta} \omega_{\beta \alpha} \tag{2.13}
\end{equation*}
$$

we obtain Codazzi equation by straightforward computation:

$$
\begin{equation*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha}=h_{j i k}^{\alpha} . \tag{2.14}
\end{equation*}
$$

We take the exterior differentiation of (2.13) and define $h_{i j k l}^{\alpha}$ by

$$
\begin{equation*}
\sum_{l=1}^{n} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}-\sum_{l=1}^{n} h_{l j k}^{\alpha} \omega_{l i}-\sum_{l=1}^{n} h_{i l k}^{\alpha} \omega_{l j}-\sum_{l=1}^{n} h_{i j l}^{\alpha} \omega_{l k}-\sum_{\beta=n+1}^{n+p} h_{i j k}^{\beta} \omega_{\beta \alpha} . \tag{2.15}
\end{equation*}
$$

Then, Ricci formula for the second fundamental form is given by

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m=1}^{n} h_{m j}^{\alpha} R_{m i k l}+\sum_{m=1}^{n} h_{i m}^{\alpha} R_{m j k l}+\sum_{\beta=n+1}^{n+p} h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{2.16}
\end{equation*}
$$

The Laplacian $\Delta h_{i j}^{\alpha}$ of $h_{i j}^{\alpha}$ is defined by

$$
\Delta h_{i j}^{\alpha}=\sum_{k=1}^{n} h_{i j k k}^{\alpha} .
$$

From the Codazzi equation (2.14) and the Ricci formula (2.16), we obtain for any α, $n+1 \leq \alpha \leq n+p$,

$$
\begin{align*}
\Delta h_{i j}^{\alpha} & =\sum_{k=1}^{n} h_{k i j k}^{\alpha} \tag{2.17}\\
& =\sum_{k=1}^{n} h_{k k i j}^{\alpha}+\sum_{k, m=1}^{n} h_{k m}^{\alpha} R_{m i j k}+\sum_{k, m=1}^{n} h_{m i}^{\alpha} R_{m k j k}+\sum_{k=1}^{n} \sum_{\beta=n+1}^{n+p} h_{k i}^{\beta} R_{\beta \alpha j k} .
\end{align*}
$$

The following Generalized Maximum Principle of Omori [14] and Yau [21] will be used in section 3 .

Generalized Maximum Principle (Omori [14] and Yau [21]). Let M^{n} be a complete Riemannian manifold whose Ricci curvature is bounded from below and $f \in C^{2}(M)$
a function bounded from above on M^{n}. Then for any $\varepsilon>0$, there exists a point $p \in M^{n}$ such that

$$
f(p) \geq \sup f-\varepsilon, \quad\|\operatorname{grad} f\|(p)<\varepsilon, \quad \Delta f(p)<\varepsilon
$$

3. The reduction of codimensions.

In this section, we shall prove the following:
Theorem 3.1. Let M^{n} be an n-dimensional submanifold with everywhere nonzero mean curvature H in \boldsymbol{E}^{n+p} which satisfies one of the subsequent conditions. Then M^{n} lies in an $(n+1)$-dimensional totally geodesic submanifold congruent to \boldsymbol{E}^{n+1} of \boldsymbol{E}^{n+p} if $S \leq$ $n^{2} H^{2} /(n-1)$ holds:
(1) M^{n} is compact.
(2) M^{n} is complete and the mean curvature of M^{n} is constant.
S denotes the squared norm of the second fundamental form of M^{n}.
Proof. Since the mean curvature of M^{n} is nonzero at each point of M^{n}, we know that $e_{n+1}=\boldsymbol{h} / H$ is a unit normal vector field defined globally on M^{n}. Hence, M^{n} is orientable. We define S_{1} and S_{2} as

$$
\begin{equation*}
S_{1}=\sum_{i, j=1}^{n}\left(h_{i j}^{n+1}-H \delta_{i j}\right)^{2}, \quad S_{2}=\sum_{\alpha=n+2}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{\alpha}\right)^{2}, \tag{3.1}
\end{equation*}
$$

respectively. Then, S_{1} and S_{2} are functions defined on M^{n} globally, which do not depend on the choice of the orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$. Also,

$$
\begin{equation*}
S-n H^{2}=S_{1}+S_{2} \tag{3.2}
\end{equation*}
$$

From the definition of mean curvature vector \boldsymbol{h}, we know that $n H=\sum_{i=1}^{n} h_{i i}^{n+1}$ and $\sum_{i=1}^{n} h_{i i}^{\alpha}=0$ for $n+2 \leq \alpha \leq n+p$ on M^{n}. Setting $H_{\alpha}=\left(h_{i j}^{\alpha}\right)$ and defining $N(A)=$ trace $\left({ }^{t} A A\right)$ for $n \times n$-matrix A, by making use of a direct computation we have, from (2.12) and the Gauss equation (2.8),

$$
\begin{aligned}
\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k, l=1}^{n} h_{i j}^{\alpha} \alpha_{k l}^{\alpha} R_{l i j k}= & \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{n+p}\left[\operatorname{trace}\left(H_{n+1} H_{\alpha}\right)\right]^{2} \\
& +\sum_{\alpha, \beta=n+2}^{n+p} \operatorname{trace}\left(H_{\alpha} H_{\beta}\right)^{2}-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{trace}\left(H_{\alpha} H_{\beta}\right)\right]^{2} \\
\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k, l=1}^{n} h_{i j}^{\alpha} h_{l i}^{\alpha} R_{l k j k}= & n H \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}^{2}\right) \\
& -\sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1}^{2} H_{\alpha}^{2}\right)-\sum_{\alpha, \beta=n+2}^{n+p} \operatorname{trace}\left(H_{\alpha} H_{\beta} H_{\beta} H_{\alpha}\right),
\end{aligned}
$$

and

$$
\sum_{\alpha, \beta=n+1}^{n+p} \sum_{i, j, k=1}^{n} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}=\sum_{\alpha, \beta=n+1}^{n+p} \operatorname{trace}\left(H_{\alpha} H_{\beta}\right)^{2}-\sum_{\alpha, \beta=n+1}^{n+p} \operatorname{trace}\left(H_{\alpha} H_{\beta} H_{\beta} H_{\alpha}\right) .
$$

Hence, we conclude from the formula (2.17) in section 2, that

$$
\begin{align*}
\frac{1}{2} \Delta S_{2}= & \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha=n+2}^{n+p} \sum_{i, j=1}^{n} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \tag{3.3}\\
= & \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+n H \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}^{2}\right)-\sum_{\alpha=n+2}^{n+p}\left[\operatorname{trace}\left(H_{n+1} H_{\alpha}\right)\right]^{2} \\
& -\sum_{\alpha, \beta=n+2}^{n+p} N\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{trace}\left(H_{\alpha} H_{\beta}\right)\right]^{2} \\
& +\sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1}^{2} H_{\alpha}^{2}\right) .
\end{align*}
$$

According to the following Lemma 3.1 and the definition of S_{2}, we obtain

$$
\begin{equation*}
-\sum_{\alpha, \beta=n+2}^{n+p} N\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)-\sum_{\alpha, \beta=n+2}^{n+p}\left[\operatorname{trace}\left(H_{\alpha} H_{\beta}\right)\right]^{2} \geq-\frac{3}{2} S_{2}^{2} \tag{3.4}
\end{equation*}
$$

Lemma 3.1 (see [13]). For symmetric matrices $A_{1}, \ldots, A_{q}(q \geq 1)$, put $S_{\alpha \beta}=$ $\operatorname{trace}\left(A_{\alpha} A_{\beta}\right), S_{0}=\sum_{\alpha=1}^{q} S_{\alpha \alpha}$, and $N\left(A_{\alpha}\right)=\operatorname{trace}\left({ }^{t} A_{\alpha} A_{\alpha}\right)$. Then

$$
\sum_{\alpha, \beta=1}^{q} N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)+\sum_{\alpha, \beta=1}^{q} S_{\alpha \beta}^{2} \leq \frac{3}{2} S_{0}^{2}
$$

Since $e_{n+1}=\boldsymbol{h} / H$, we have $\operatorname{trace}\left(H_{\alpha}\right)=0$ for $\alpha=n+2, \ldots, n+p$ and $\operatorname{trace}\left(H_{n+1}\right)$ $=n H$.

$$
\begin{aligned}
& -\sum_{\alpha=n+2}^{n+p}\left\{\operatorname{trace}\left(H_{n+1} H_{\alpha}\right)\right\}^{2}+\sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}\right)^{2}-\sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1}^{2} H_{\alpha}^{2}\right) \\
& =\sum_{\alpha=n+2}^{n+p}\left[-\left\{\operatorname{trace}\left(H_{n+1} H_{\alpha}\right)\right\}^{2}+\operatorname{trace}\left(H_{n+1} H_{\alpha}\right)^{2}-\operatorname{trace}\left(H_{n+1}^{2} H_{\alpha}^{2}\right)\right] \\
& =\sum_{\alpha=n+2}^{n+p}\left[-\left\{\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}\right\}^{2}\right. \\
& \left.\quad \quad+\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}^{2}-\operatorname{trace}\left\{\left(H_{n+1}-H I\right)^{2} H_{\alpha}^{2}\right\}\right],
\end{aligned}
$$

where I denotes the unit matrix.
For a fixed $\alpha, n+2 \leq \alpha \leq n+p$, we can take a local orthonormal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $h_{j i}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$. Thus, we have $\sum_{i=1}^{n} \lambda_{i}^{\alpha}=0$ and trace $H_{\alpha}^{2}=\sum_{i=1}^{n}\left(\lambda_{i}^{\alpha}\right)^{2}$. Let $B=H_{n+1}-H I=\left(b_{i j}\right)$. We have $b_{i j}=b_{j i}$ for any $i, j=1, \ldots, n, \sum_{i=1}^{n} b_{i i}=0$ and $\sum_{i, j=1}^{n} b_{i j}^{2}=S_{1}$.

$$
\begin{aligned}
& -\left[\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}\right]^{2}+\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}^{2}-\operatorname{trace}\left\{\left(H_{n+1}-H I\right)^{2} H_{\alpha}^{2}\right\} \\
& \quad=-\left\{\operatorname{trace}\left(B H_{\alpha}\right)\right\}^{2}+\operatorname{trace}\left(B H_{\alpha}\right)^{2}-\operatorname{trace}\left(B^{2} H_{\alpha}^{2}\right) \\
& \quad=-\left(\sum_{i=1}^{n} b_{i i} \lambda_{i}^{\alpha}\right)^{2}+\sum_{i=1}^{n} b_{i j}^{2} \lambda_{i}^{\alpha} \lambda_{j}^{\alpha}-\sum_{i=1}^{n} b_{i j}^{2}\left(\lambda_{i}^{\alpha}\right)^{2}
\end{aligned}
$$

Clearly, λ_{i}^{α} and $b_{i j}$ for $i, j=1, \ldots, n$ satisfy the conditions in (1) of Lemma in the Appendix, which is algebraic; a proof of it can be found in [3]. For the reader's convenience, we shall give the proof in the Appendix. We obtain

$$
\begin{gathered}
-\left[\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}\right]^{2}+\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}^{2} \\
-\operatorname{trace}\left\{\left(H_{n+1}-H I\right)^{2} H_{\alpha}^{2}\right\} \geq-S_{1} \text { trace } H_{\alpha}^{2} .
\end{gathered}
$$

Since the two sides of the above inequality do not depend on the choice of local orthonormal frame fields, we have

$$
\begin{align*}
\sum_{\alpha=n+2}^{n+p}[& {\left[\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}\right]^{2} } \tag{3.5}\\
& \left.+\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}\right\}^{2}-\operatorname{trace}\left\{\left(H_{n+1}-H I\right)^{2} H_{\alpha}^{2}\right\}\right] \\
\geq & -S_{1} \sum_{\alpha=n+2}^{n+p} \operatorname{trace} H_{\alpha}^{2}=-S_{1} S_{2} .
\end{align*}
$$

Making use of the same assertion as above, we obtain, for fixed $\alpha, n+2 \leq \alpha \leq n+p$,

$$
\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}^{2}\right\}=\sum_{i=1}^{n} b_{i i}\left(\lambda_{i}^{\alpha}\right)^{2} .
$$

From (2) and (3) of Lemma in the Appendix, we obtain

$$
\operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}^{2}\right\} \geq-\frac{n-2}{\sqrt{n(n-1)}} \sqrt{S_{1}} \text { trace } H_{\alpha}^{2}
$$

Hence, we conclude

$$
\begin{align*}
n H \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left(H_{n+1} H_{\alpha}^{2}\right) & =n H \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}^{2}\right\}+n H^{2} \sum_{\alpha=n+2}^{n+p} \operatorname{trace} H_{\alpha}^{2} \tag{3.6}\\
& =n H \sum_{\alpha=n+2}^{n+p} \operatorname{trace}\left\{\left(H_{n+1}-H I\right) H_{\alpha}^{2}\right\}+n H^{2} S_{2} \\
& \geq n H^{2} S_{2}-\sqrt{\frac{n}{n-1}}(n-2) H \sqrt{S_{1}} S_{2} .
\end{align*}
$$

From (3.3), (3.4), (3.5), and (3.6), we have

$$
\begin{align*}
\frac{1}{2} \Delta S_{2} & \geq \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\left(n H^{2}-\sqrt{\frac{n}{n-1}}(n-2) H \sqrt{S_{1}}-S_{1}-\frac{3}{2} S_{2}\right) S_{2} \tag{3.7}\\
& \geq \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\left(n H^{2}-\frac{n(n-2)}{2(n-1)} H^{2}-\frac{n-2}{2} S_{1}-S_{1}-\frac{3}{2} S_{2}\right) S_{2} \\
& =\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\left(n H^{2}-\frac{n(n-2)}{2(n-1)} H^{2}+\frac{n^{2} H^{2}}{2}-\frac{n}{2} S+\frac{(n-3)}{2} S_{2}\right) S_{2} \\
& =\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\left\{\frac{n}{2}\left(\frac{n^{2} H^{2}}{n-1}-S\right)+\frac{(n-3)}{2} S_{2}\right\} S_{2} \\
& \geq \sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}+\left\{\frac{(n-3)}{2} S_{2}\right\} S_{2} \geq 0
\end{align*}
$$

When M^{n} is compact, from Stokes formula we obtain

$$
\begin{equation*}
\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}=0 \tag{3.8}
\end{equation*}
$$

on M^{n}; and all inequalities are equalities. Hence, we have $S_{2} \equiv 0$ for $n>3$. When $n=3$, we obtain

$$
S_{2} \equiv 0 \quad \text { or } \quad S \equiv \frac{n^{2} H^{2}}{n-1} \quad \text { and } \quad \sqrt{\frac{n}{n-1}} H \equiv \sqrt{S_{1}} .
$$

From $S=S_{1}+S_{2}+n H^{2}$, we also infer that $S_{2} \equiv 0$.
When M^{n} is complete and the mean curvature is constant, from the condition $S \leq n^{2} H^{2} /(n-1)$ and from (2.9) we know that the Ricci curvature of M^{n} is bounded from below. Applying the Generalized Maximum Principle of Omori [14] and Yau [21] stated in section 2 to the function S_{2}, we find that there exists a sequence $\left\{p_{k}\right\} \subset M^{n}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} S_{2}\left(p_{k}\right)=\sup S_{2} \quad \text { and } \quad \lim _{k \rightarrow \infty} \sup \Delta S_{2}\left(p_{k}\right) \leq 0 \tag{3.9}
\end{equation*}
$$

Since $S \leq n^{2} H^{2} /(n-1)$, we know that $\left\{h_{i j}^{\alpha}\left(p_{k}\right)\right\}$, for any $i, j=1,2, \ldots, n$ and any $\alpha=n+1, \ldots, n+p$, is a bounded sequence. Hence, we can assume $\lim _{k \rightarrow \infty} h_{i j}^{\alpha}\left(p_{k}\right)=$ $\tilde{h}_{i j}^{\alpha}$; if necessary, we can take a subsequence. From (3.7) and (3.9), by obtaining the limit of (3.7), we know that all inequalities are equalities. Hence, $\sup S_{2}=0$ for $n>3$. When $n=3$, if $\sup S_{2} \neq 0$, we know $\lim _{k \rightarrow \infty}\left(n^{2} H^{2} /(n-1)-S\right)\left(p_{k}\right)=0$ and $\lim _{k \rightarrow \infty} \sqrt{n /(n-1)} H\left(p_{k}\right)=\lim _{k \rightarrow \infty} \sqrt{S_{1}\left(p_{k}\right)}$. Let $\lim _{k \rightarrow \infty} H\left(p_{k}\right)=\tilde{H}, \lim _{k \rightarrow \infty} S\left(p_{k}\right)=$ \tilde{S} and $\lim _{k \rightarrow \infty} S_{1}\left(p_{k}\right)=\tilde{S}_{1}$. Then, we have $n^{2} \tilde{H}^{2} /(n-1)=\tilde{S},(n /(n-1)) \tilde{H}^{2}=\tilde{S}_{1}$ and $\tilde{S}=\sup S_{2}+\tilde{S}_{1}+n \tilde{H}^{2}=\tilde{S}+\sup S_{2}$. This is impossible. Hence, we obtain $\sup S_{2}=0$. That is, $S_{2}=0$ on M^{n}. From (3.7), we have

$$
\begin{equation*}
\sum_{\alpha=n+2}^{n+p} \sum_{i, j, k=1}^{n}\left(h_{i j k}^{\alpha}\right)^{2}=0 \tag{3.10}
\end{equation*}
$$

on M^{n}. Thus, we infer $S_{2} \equiv 0$ and (3.10) holds on M^{n} under the assumption of Theorem 3.1.

From (2.13), we have, for any $\alpha \neq n+1$,

$$
\sum_{i, k=1}^{n} h_{i i k}^{\alpha} \omega_{k}=-n H \omega_{\alpha n+1}
$$

Hence, (3.10) yields $\omega_{\alpha n+1}=0$ for any α. Thus, we know that e_{n+1} is parallel in the normal bundle $T^{\perp}\left(M^{n}\right)$ of M^{n}. Hence, if we denote by N_{1} the normal subbundle spanned by $e_{n+2}, e_{n+3}, \ldots, e_{n+p}$ of the normal bundle of M^{n}, then M^{n} is totally geodesic with respect to N_{1}. Since e_{n+1} is parallel in the normal bundle, we know that the normal subbundle N_{1} is invariant under parallel translation with respect to normal connection of M^{n}. Then, from Theorem 1 in [20], we conclude that M^{n} lies in a totally geodesic submanifold congruent to \boldsymbol{E}^{n+1} of \boldsymbol{E}^{n+p}. This completes our proof.

4. Proof of Main Theorems.

This section presents a proof of our Main Theorems.
Proof of Main Theorem 1. From Gauss equation (2.10), we have $R=n^{2} H^{2}-S$. Hence, we know that these two conditions in Main Theorem 1 are equivalent to each other. Thus, we shall only prove Main Theorem 1 under the condition $S \leq n^{2} H^{2} /$ $(n-1)$. From Theorem 3.1, we know that M^{n} lies in a totally geodesic submanifold \boldsymbol{E}^{n+1} of \boldsymbol{E}^{n+p}. We denote by H^{\prime} the mean curvature of M^{n} in \boldsymbol{E}^{n+1}. Since \boldsymbol{E}^{n+1} is totally geodesic in \boldsymbol{E}^{n+p}, we have $H=H^{\prime}$; that is, the mean curvature H^{\prime} of M^{n} in \boldsymbol{E}^{n+1} is the same as in \boldsymbol{E}^{n+p}. We also know that the squared norm S^{\prime} of the second fundamental form of M^{n} in \boldsymbol{E}^{n+1} is the same as in \boldsymbol{E}^{n+p}. Hence, $S^{\prime} \leq n^{2}\left(H^{\prime}\right)^{2} /(n-1)$ and $H^{\prime} \neq 0$. We choose a local orthonormal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $h_{i j}=\lambda_{i} \delta_{i j}$ for $i, j=1,2, \ldots, n ; h_{i j}$ and λ_{i} denote components of the second fundamental form and principal curvatures of M^{n} in \boldsymbol{E}^{n+1}, respectively. Thus, we obtain

$$
\sum_{i=1}^{n}\left(\lambda_{i}\right)^{2} \leq \frac{\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}}{n-1}
$$

From Lemma 4.1 in Chen [1, p. 56], we have, for any i, j,

$$
\lambda_{i} \lambda_{j} \geq 0
$$

Hence, we know that the principal curvatures are non-negative on M^{n} because the mean curvature is nonzero at each point of M^{n}. Namely, M^{n} is locally convex. Therefore, M^{n} is diffeomorphic to $S^{n}(c)$ from the result obtained by Van Heijenoort [18] and Sacksteder [15]. This completes the proof of Main Theorem 1.

Proof of Main Theorem 2. Since mean curvature H is constant, we have $H=0$ or $H>0$. In the case of $H=0$, we have $S=0$ on M^{n}, since $S \leq n^{2} H^{2} /(n-1)$ holds. Therefore, we know that M^{n} is totally geodesic. Hence, M^{n} is isometric to the hyperplane \boldsymbol{E}^{n}. Next, we assume $H>0$. Thus $e_{n+1}=\boldsymbol{h} / H$ is a unit normal vector field defined globally on M^{n}. Hence, M^{n} is orientable. From the proof of Theorem 3.1,
we know that the unit normal vector field $e_{n+1}=\boldsymbol{h} / H$ is parallel in the normal bundle of M^{n}. Since the mean curvature is constant on M^{n}, we conclude that the mean curvature vector $\boldsymbol{h}=H e_{n+1}$ is also parallel in the normal bundle of M^{n}. From results obtained by the author and Nonaka [5], we know that Main Theorem 2 is true. This completes the proof of Main Theorem 2.

5. Appendix.

In the Appendix, we shall prove the following:

Lemma.

(1) Let a_{1}, \ldots, a_{n} and $b_{i j}$ for $i, j=1, \ldots, n$ be real numbers satisfying $\sum_{i=1}^{n} a_{i}=0$, $\sum_{i=1}^{n} b_{i i}=0, \sum_{i, j=1}^{n} b_{i j}^{2}=b$, and $b_{i j}=b_{j i}$ for $i, j=1, \ldots, n$. Then

$$
\begin{equation*}
-\left(\sum_{i=1}^{n} b_{i i} a_{i}\right)^{2}+\sum_{i, j=1}^{n} b_{i j}^{2} a_{i} a_{j}-\sum_{i, j=1}^{n} b_{i j}^{2} a_{i}^{2} \geq-\sum_{i=1}^{n} a_{i}^{2} b . \tag{5.1}
\end{equation*}
$$

(2) Let b_{i} for $i=1, \ldots, n$ be real numbers satisfying $\sum_{i=1}^{n} b_{i}=0$ and $\sum_{i=1}^{n} b_{i}^{2}=B$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{4}-\frac{B^{2}}{n} \leq \frac{(n-2)^{2}}{n(n-1)} B^{2} . \tag{5.2}
\end{equation*}
$$

(3) Let a_{i} and b_{i} for $i=1, \ldots, n$ be real numbers satisfying $\sum_{i=1}^{n} a_{i}=0$ and $\sum_{i=1}^{n} a_{i}^{2}=a$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i}^{2} \geq-\sqrt{\sum_{i=1}^{n} b_{i}^{4}-\frac{\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{2}}{n}} \sqrt{a} \tag{5.3}
\end{equation*}
$$

Proof. In order to prove (1), we consider the function

$$
\begin{equation*}
f\left(x_{i j}\right)=-\left(\sum_{i=1}^{n} x_{i i} a_{i}\right)^{2}-\frac{1}{2} \sum_{i, j=1}^{n} x_{i j}^{2}\left(a_{j}-a_{i}\right)^{2} \tag{5.4}
\end{equation*}
$$

subject to the constraint conditions

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i i}=0 \quad \text { and } \quad \sum_{i, j=1}^{n} x_{i j}^{2}=b \tag{5.5}
\end{equation*}
$$

Making use of Lagrangian multipliers, we shall calculate the minimum of the function $f\left(x_{i j}\right)$ with constraint conditions (5.5). Let

$$
g=f\left(x_{i j}\right)+\lambda \sum_{i=1}^{n} x_{i i}+\mu\left(\sum_{i, j=1}^{n} x_{i j}^{2}-b\right),
$$

where λ and μ are the Lagrangian multipliers. We have

$$
g=-\left(\sum_{i=1}^{n} a_{i} x_{i i}\right)^{2}-\frac{1}{2} \sum_{i, j=1}^{n} x_{i j}^{2}\left(a_{j}-a_{i}\right)^{2}+\lambda \sum_{i=1}^{n} x_{i i}+\mu\left(\sum_{i, j=1}^{n} x_{i j}^{2}-b\right)
$$

If f attains its minimum f_{0} at some point $\left(x_{i j}\right)$, we have

$$
\begin{align*}
& -2 \sum_{i=1}^{n} a_{i} x_{i i} a_{j}+\lambda+2 \mu x_{j j}=0, \quad \text { for } j=1, \ldots, n, \tag{5.6}\\
& -x_{i j}\left(a_{j}-a_{i}\right)^{2}+2 \mu x_{i j}=0, \quad \text { for } i \neq j \tag{5.7}
\end{align*}
$$

Hence,

$$
\begin{array}{r}
-\left(\sum_{i=1}^{n} a_{i} x_{i i}\right)^{2}+\mu \sum_{j=1}^{n} x_{j j}^{2}=0, \\
-\frac{1}{2} \sum_{i, j=1}^{n} x_{i j}^{2}\left(a_{j}-a_{i}\right)^{2}+\mu \sum_{i, j=1, i \neq j}^{n} x_{i j}^{2}=0 .
\end{array}
$$

Thus,

$$
f_{0}=-\mu b
$$

From (5.6) and $\sum_{i=1}^{n} a_{i}=0$, we obtain $\lambda=0$ and

$$
\begin{aligned}
& \left(\mu-\sum_{j=1}^{n} a_{j}^{2}\right) \sum_{i=1}^{n} x_{i i} a_{i}=0 \\
& \mu \sum_{j=1}^{n} x_{i j}^{2}-\left(\sum_{i=1}^{n} x_{i i} a_{i}\right)^{2}=0
\end{aligned}
$$

If $\sum_{i=1}^{n} x_{i i} a_{i} \neq 0$, we have $\mu=\sum_{j=1}^{n} a_{j}^{2}$. Hence,

$$
f_{0}=-\mu b=-\sum_{j=1}^{n} a_{j}^{2} b
$$

If $\sum_{i=1}^{n} x_{i i} a_{i}=0$, we have $\mu \sum_{j=1}^{n} x_{j j}^{2}=0 . \quad \mu=0$ yields $f_{0}=0$. If $\mu \neq 0$, we have $\sum_{j=1}^{n} x_{j j}^{2}=0$. Hence, $b=0$ or there exists $i \neq j$ such that $x_{i j} \neq 0$. From (5.7), we obtain

$$
2 \mu=\left(a_{i}-a_{j}\right)^{2} \leq 2 \sum_{j=1}^{n} a_{j}^{2}
$$

Therefore,

$$
f_{0} \geq-\sum_{j=1}^{n} a_{j}^{2} b
$$

Since $\sum_{i=1}^{n} a_{i}=0, \sum_{i=1}^{n} b_{i i}=0, \sum_{i, j=1}^{n} b_{i j}^{2}=b$, and $b_{i j}=b_{j i}$ for $i, j=1, \ldots, n$ hold, we have

$$
-\left(\sum_{i=1}^{n} b_{i i} a_{i}\right)^{2}+\sum_{i, j=1}^{n} b_{i j}^{2} a_{i} a_{j}-\sum_{i, j=1}^{n} b_{i j}^{2} a_{i}^{2}=-\left(\sum_{i=1}^{n} b_{i i} a_{i}\right)^{2}-\frac{1}{2} \sum_{i, j=1}^{n} b_{i j}^{2}\left(a_{j}-a_{i}\right)^{2} \geq-\sum_{j=1}^{n} a_{j}^{2} b .
$$

Thus, we complete the proof of (1) of Lemma.
For the proof of (2), we consider the function

$$
f(y)=\sum_{i=1}^{n} y_{i}^{4}-\frac{B^{2}}{n}
$$

with constraint conditions $\sum_{i=1}^{n} y_{i}=0$ and $\sum_{i=1}^{n} y_{i}^{2}=B$.
Since $\sum_{i=1}^{n} y_{i}^{2}=B$, we know that at least one of the y_{i}^{2},s is not less than B / n. We assume the $y_{n}^{2} \geq B / n$, without loss of generality. From $\sum_{i=1}^{n} y_{i}=0$, we have

$$
\begin{aligned}
y_{n}^{2} & =\left(\sum_{i=1}^{n-1} y_{i}\right)^{2} \leq(n-1) \sum_{i=1}^{n-1} y_{i}^{2}=(n-1)\left(B-y_{n}^{2}\right), \\
y_{n}^{2}-\frac{B}{2} & =\sum_{1 \leq i<j \leq n-1} y_{i} y_{j}, \\
y_{n}^{2} & \leq \frac{(n-1) B}{n} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f(y) & =\sum_{i=1}^{n-1} y_{i}^{4}+y_{n}^{4}-\frac{B^{2}}{n} \\
& =\left(\sum_{i=1}^{n-1} y_{i}^{2}\right)^{2}-2 \sum_{1 \leq i<j \leq n-1} y_{i}^{2} y_{j}^{2}+y_{n}^{4}-\frac{B^{2}}{n} \\
& \leq\left(B-y_{n}^{2}\right)^{2}-\frac{4}{(n-1)(n-2)}\left(\sum_{1 \leq i<j \leq n-1} y_{i} y_{j}\right)^{2}+y_{n}^{4}-\frac{B^{2}}{n} \\
& =\frac{2 n(n-3)}{(n-1)(n-2)}\left(y_{n}^{4}-B y_{n}^{2}\right)+\left(\frac{n-1}{n}-\frac{1}{(n-1)(n-2)}\right) B^{2} .
\end{aligned}
$$

Since the maximum of the function $t^{2}-B t$ in the interval $[(1 / n) B,((n-1) / n) B]$ is $-\left((n-1) / n^{2}\right) B^{2}$, we obtain

$$
f(y) \leq \frac{(n-2)^{2}}{n(n-1)} B^{2}
$$

This completes the proof of (2) of Lemma.
Making use of the Lagrangian multipliers, we calculate the minimum of the function $g(x)=\sum_{i=1}^{n} x_{i} b_{i}^{2}$ with constraint conditions $\sum_{i=1}^{n} x_{i}=0$ and $\sum_{i=1}^{n} x_{i}^{2}=a$. If the function $g(x)$ attains its minimum g_{0} at some point x, then we have, at x,

$$
b_{i}^{2}+\lambda+2 \mu x_{i}=0, \quad \text { for } i=1, \ldots, n,
$$

where λ and μ are the Lagrangian multipliers. Hence, we have

$$
\begin{aligned}
& g_{0}=-2 \mu a, \quad \lambda=-\frac{\sum_{i=1}^{n} b_{i}^{2}}{n} \\
& \sum_{i=1}^{n} b_{i}^{4}-\frac{\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{2}}{n}+2 \mu g_{0}=0
\end{aligned}
$$

Thus, (3) of Lemma is true.

References

[1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[2] Q.-M. Cheng, Complete hypersurfaces in a Euclidean space \boldsymbol{R}^{n+1} with constant scalar curvature, Indiana Univ. Math. J., 51 (2002), 53-68.
[3] Q.-M. Cheng, Submanifolds with constant scalar curvature, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1163-1183.
[4] Q.-M. Cheng and H. Nakagawa, Totally umbilical hypersurfaces, Hiroshima Math. J., 20 (1990), 1-10.
[5] Q.-M. Cheng and K. Nonaka, Complete submanifolds in Euclidean spaces with parallel mean curvature vector, Manuscripta Math., 105 (2001), 353-366.
[6] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math., 79 (1957), 306-318.
[7] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds II, Michigan Math. J., 5 (1958), 5-12.
[8] M. P. do Carmo and E. Lima, Immersions of manifolds with semi-definite second quadratic forms, Arch. Math. (Basel), 20 (1969), 173-175.
[9] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math., 81 (1959), 901.
[10] W. Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces I, J. Differential Geom., 17 (1982), 337-356.
[11] T. Klotz and R. Osserman, On complete surfaces in \boldsymbol{E}^{3} with constant mean curvature, Comm. Math. Helv., 41 (1966-67), 313-318.
[12] B. Lawson and J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. of Math., 98 (1973), 427-450.
[13] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. (Basel), 58 (1992), 582-594.
[14] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.
[15] R. Sacksteder, On hypersurfaces with no negative sectional curvature, Amer. J. Math., 82 (1960), 609-630.
[16] Y. B. Shen, Complete submanifolds in \boldsymbol{E}^{n+p} with parallel mean curvature, Chinese Ann. Math. Ser. B, 6 (1985), 345-350.
[17] K. Shiohama and H. W. Xu, The topological sphere theorem for complete submanifolds, Compositio Math., 107 (1997), 221-232.
[18] J. Van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math., 5 (1952), 223-242.
[19] H. Wu, The spherical images of convex hypersurfaces, J. Differ. Geom., 9 (1974), 279-290.
[20] S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math., 96 (1974), 346-366.
[21] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.
[22] X. S. Zhang, Geometry and Topology of submanifolds immersed in space forms and ellipsoids, Kodai Math. J., 17 (1994), 262-272.

Qing-Ming Cheng
Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga 840-8502
Japan
E-mail: cheng@ms.saga-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 53C42.
 Key Words and Phrases. Submanifolds, differentiable sphere, locally convex hypersurfaces, generalized cylinder, mean curvature, squared norm of the second fundamental form.

 Research partially supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

