J. Math. Soc. Japan
Vol. 56, No. 2, 2004

Capelli type identities on certain scalar generalized Verma modules, II

Dedicated to Professor Ryoshi Hotta on his sixtieth birthday

By Akihito WAcHI

(Received Mar. 30, 2001)
(Revised Oct. 24, 2002)

Abstract. In the preceding paper we gave an analogue of the Capelli identity for
relative invariants in Hermitian symmetric settings, and the analogue was constructed on
scalar generalized Verma modules. In this paper we give an analogue of the Capelli
identity of lower degrees. This analogue contains non-principal minors in contrast with
the original Capelli identity.

Introduction.

In the nineteenth century, Capelli discovered the following identities:
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where n? variables x; are natural coordinate functions on the vector space V =
Mat(n, C) of n x n matrices, and 7 and J run over all subsets of {I,...,n} with car-
dinality d. These formulas, called the Capelli identities, play an important role in clas-
sical invariant theory.

Let us interpret the Capelli identities from two different points of view. A simple
interpretation of the Capelli identities is to regard them as a non-commutative version
of the formula of the determinant over a commutative ring: det’d det B = detAB.
Another interpretation is more representation theoretical. Set L = GL(n,C) x GL(n,C)
and [ = Lie(L). Let U(I) denote the enveloping algebra of I, and Z(I) its center. Let
Dy be the ring of differential operators on V' with polynomial coefficients. Since L
acts on V by (g,h).X = gXh~', we have an algebra homomorphism ¢ from Z(I) to the
subalgebra DL of all the L-invariants of Dy. Then, the Capelli identities are regarded
as the formulas representing an element in D% (the left hand sides in and (0.2)) as
the image of an element in Z(I) through ¢ (the right hand sides there). Moreover, the
differential operators in and (0.2) give a generator of the algebra DL.
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A century after, Howe and Umeda |5] investigated, from the representation theoret-
ical view point, the Capelli identity and its generalization in the context of multiplicity-
free action. Precisely, an action of a connected complex algebraic group L on a vector
space V is said to be multiplicity-free, if the L-module C[V] of all the polynomials
on V¥ decomposes into irreducibles with multiplicity one. Kac [6] completely classified
multiplicity-free actions (L, V') such that V is irreducible under L-action. In [5], the
Capelli identities were studied for every irreducible multiplicity-free action (L, V).

A large number of irreducible multiplicity-free actions come from prehomogeneous
vector spaces (L,n") of commutative parabolic type, attached to complex simple Lie
algebras g of Hermitian type. Namely, n' is the nilradical of a maximal parabolic
subalgebra p of g, and n™ is assumed to be commutative. We write [ for a Levi sub-
algebra of p. Then, a connected algebraic group L with Lie algebra [ acts on n*
prehomogeneously through the adjoint representation, and this action is irreducible and
multiplicity-free. For such a pair (g,p), we construct the scalar generalized Verma
modules M (1) = U(g) ®yy) C, induced from one-dimensional representations C; of p.
M (2) is realized on the polynomial ring C[n"] in the canonical way, and we denote by
¥, the corresponding g-action on C[n'].

The purpose of this paper is to give a ¥;-analogue of the Capelli identities of lower
degrees (0.2) on scalar generalized Verma modules M (1) for classical Lie algebras g of
Hermitian type—(A, 41, p), (B, 1),(Cy,n) and (D,,1) (for the notation, see §1). We
also give the ¥,;-analogue of the Turnbull identities for the case (D,,n). This is a
continuation of our work [12], where we established such an analogue of the identity
for the relative invariants of regular prehomogeneous vector spaces (L,n") of
commutative parabolic type. In what follows, the original Capelli identities (due to
Capelli, Howe and Umeda) will be called classical, in order to distinguish them from our
¥,-analogue.

Taking (A, 1,n) for example (Theorem 2.2)), we give further explanations of our
result:

(0.3) v <Z fu[fu> = (=) Voo (urr) Polusr),
1

1J
fU = det[En‘*'jai]ieI,jeJ’ tf]J = det[El'Jl‘*‘j]ieI,jeJ’

Uy = det[—Eij + (] - 1)547]ie1,j€]’

where / and J run over all subsets of {1,...,n} with cardinality d, and Ej; is the matrix
unit of g = gl(2n,C). The ¥;-analogue (0.3) expresses an L-invariant operator (left
hand side) as an image of Z(I) (right hand side). On the left hand side, the term
Sy fir'fir is a generator of (S(n”)S(nt))* corresponding to the left hand side of (0.2)
through the canonical isomorphism from (S(n~)S(n™))" to DL. On the right hand
side, the summands contain non-principal minors contrary to the classical Capelli iden-
tities. Both sides of have order 2n as differential operators, which is a funda-
mental difference from the classical Capelli identity. To prove the ¥;-analogue for
(Apig-1,p),(Cp,n) and (D,,n), we use the idea of Noumi, Umeda and Wakayama [7].
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The essence of the idea is to use an exterior algebra for expressing determinants. In the
forthcoming paper, we will discuss the ¥;-analogue for the case (E¢,1) and (E7,7).

Let us explain a close connection between the ¥)-analogue and the structure of gen-
eralized Verma modules. Every irreducible unitary highest weight module is expressed
as a quotient of a generalized Verma module M (1) of g of Hermitian type [3], and the
b-function of the prehomogeneous vector space (L,n") controls which 4 gives the irre-
ducible unitary quotient. In addition, the b-function controls the irreducibility of gen-
eralized Verma modules ([8], [4]). Using the classical Capelli identity we can compute
the b-function, and, analogously, using the ¥;-analogue we can compute an analogue
of the h-function, which is twisted by the character 4. This analogue of the h-function
intrinsically reveals why the b-function controls the structure of the generalized Verma
modules [11]. The ¥;-analogue thus has a close connection with the structure of the
generalized Verma modules via the b-function.

The author would like to express his thanks to Professor Mutsumi Saito for his
guidance and constant encouragement, and to Professor Hiroshi Yamashita and the
referees for their helpful suggestions. The author would also like to thank Professor
Toru Umeda for his valuable comments, information of the reference [10], and a lecture
at Hokkaido University.

1. Scalar generalized Verma module.

In this section we will give a realization of scalar generalized Verma modules as a
representation on a certain polynomial ring. We first fix the notation. Let g,}, 4 and
A1 be a simple Lie algebra, its Cartan subalgebra, the root system and a positive root
system, respectively. We denote the simple roots by oy,...,a, and the corresponding
fundamental weights by wy,...,w,. Let p be a parabolic subalgebra of g including b
and all the positive root spaces. Let [ be the Levi subalgebra of p including b, and n*
the nilpotent radical of p. Let 4, and 4} be the sets of roots occurring in I and n™,
respectively. Set n~ =) _ 4% g %, where g* denotes the a-root space of g. We fix an
invariant bilinear form {,)» on g.

Throughout this paper, a pair (g, p) is assumed to be of Hermitian symmetric type,
that is, n" is nonzero and commutative. In this situation, p has to be a maximal
parabolic subalgebra, and therefore there exists the unique simple root o;, which does
not belong to 4;,. We often denote (g,p) by (g,ip) using Bourbaki’s numbering of
simple roots ([I]).

For a character A € Hom(p, C), we define
(1.1) M(2) = U(g) ®u() Cis

which is said to be the scalar generalized Verma module induced from /A, where C)
denotes the representation space of A. There exists a linear isomorphism M (1) ~
Un ) =Sn") ~ C[n'], since both n~ and n* are commutative Lie algebras, in which
formula the last isomorphism is due to the identification n~ ~ (n")* via <,». This
isomorphism yields a representation (U(g), ¥, C[n'*]), and its explicit form is as follows:

Lemma 1.1 (cf. [11]). Let {Fy} be a basis of w. Then we have
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(1) ¥(X)=X (X en),
(2) ¥.(X) =ad(X) + 4(X)

ZXFka—ijL).( ) (X €l),
k

0 0 N
; (X, F], F] — aF 8F,+Z/1 XFk])aFk (X en®).

l\)l’—‘

The operator in (1) means the multiplication operator.

Next we fix a Chevalley basis {X, € g*|ae A}U{H;|i=1,...,n} of g, where H;
denotes the coroot of «;. In addition, for P e S(nt), we define a constant coefficient
differential operator P(d) on n* by

P(0) exp<{x, y) = P(y)exp{x,y) (xen",yen).

We define three involutions; one is on U(g) and the rest are on Dy-.

DeriNITION 1.2, Let Dy+ be the ring of polynomial coefficient differential operators
on n". For a linear endomorphism  on some ring, we call it an anti-involution if
Y #1id, ¥? =id, and ¥(xy) = y(»)Y(x) for all x,y. We have

(1) Define an anti-involution x — ‘x on U(g) by

‘X, =X, (x€4),
tHi:Hi (ie{l,._.,n}),

where X, and H; are members of the fixed Chevalley basis.
(2) Define an anti-involution ¢ on D,: by

O-(P}) - Fiv

ON__
’\eF,) = " aF’

where {F;} is a basis of n~, and this definition is clearly independent of the choice of a
basis.
(3) Define an anti-involution ¢ on D,: by

(X ) = X, (0),
1(X,(0)) = Xy (x€ 4Y),
where X, is a member of the fixed Chevalley basis, and we note that

o 2 0
0X_, (ow,0) 0X_,

Xa(a) = <Xoc7 Xfoc>

Then we have the following lemma.

LemMma 1.3 (cf. [12]). (1) The anti-involution x — 'x on U(g) is the identity mapping
on the center Z(1) of U(l).
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(2) The anti-involution ¢ on Dy satisfies

a(¥i(u)) = ¥_jp(s(u)) (ue U(g)),
where s is the anti-involution on U(g) defined by

=X (Xel,
S(X) = {X (X ent +n7),

and p € Hom(p, C) is the half sum of roots in A3;.
(3) The anti-involution t on Dy« satisfies

(W () = ¥, ("w)  (ue UQ)).

(4)  The anti-involution < is the identity mapping on Ad(L)-invariant subspace DE,
Of Dn+.

2. Main theorems.

In this section we will give a realization of g, and give the ¥;-analogue on M (A) of
the classical Capelli identity for each type of (A, 4—1,p), By, 1),(Cy,n),(Dy, 1), (Dy,n),
or for each type of GL,® GL,;, 0,, ® GL, S?GL,, Oy_1 ® GL,, AZGLn using the
notation of [5], and the point of the analogue in this paper is that there appear minors
in contrast with [12].

For the pair (D,,n) or A%GL,, the classical Capelli identity is a formula using
Pfaffians. We, however, give the ¥;-analogue of the Turnbull identity instead, which is
a formula using permanents. The Turnbull identity first appeared in [9], and in this
paper we mean the Turnbull identity by the formula explicitly given in [10]. We note
that the Turnbull identity, however, is not a complete substitute for the Capelli identity,
since the Turnbull identity does not write all generators of DL as images of Z(I).

We make a note on the proofs of the ¥,-analogues. For the cases where the
prehomogeneous vector space (L,Ad,n") is regular (i.e. has a relative invariant),
gives a type-independent proof of ¥;-analogues of the classical Capelli identities for the
relative invariants. In this paper we generalize the result of [12], the idea of the proof
in this paper is due to [7], and the proof depends on the types of pairs of (g, o).

21. (Ay4-1,p) or GL, ® GL,.

Set g=gl(p+¢q,C). Leth be the set of diagonal matrices of g, and E; the matrix
unit, and we define ¢; e b* (ie {1,...,p+q}) by &(Ej;) =0J;. We summarize data such
as the root system or a Chevalley basis (C. B.) in the following list, where /7 and 17,
denote the sets of simple roots of g and [, respectively.

II={e1 —&,....8014-1 — €piq}s
AT ={e—¢|l<i<j<p+gq}
Ejj : (& — ¢j)-root vector for i # j,
I = IT\{&y — &p11},

A ={ei—¢g|l<i<j<plU{e—g|p+1<i<j<p+tgq},
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wi, = (q(er + -+ &) = pleps1 + -+ &p1g)) /(P + q),
2p = (p + @),
X, Yy=Tr(XY) (X,Yeqg),
C. B.:{E;|li# jIU{E;i— E1,i1|1 <i<p+gqg}.

Subalgebras p,n™ and [ are as follows:

A B
p= {(O D) €9|Aegl(p,C),BeMat(p,q;C),Degl(q’C)}’

0 B
nt = {(0 0) eg|B€Mat(p,q;C)},

[= {(61 g) eglAegl(p,C),Deqlg, C)}.

We have 'Ej;; = E;; with respect to the involution x — ‘x of [Definition 1.2l We obtain
a linear coordinate system {x;} on n* by defining x; = E,.;;, and we set 0; = 0/0x;.
The lemma below follows from an easy calculation using [Cemma 1.1.

LemMA 2.1. (1) Yi(Eyj) = — > 0, xi0u + AM(Ey) (1 <i,j < p),

Q) Wi Epsipri) = 21 Xkl + M Epsiprs) (1 <, j < q),

S, 10

where 2° is the complex number such that i = ’w;,.
For 1 <d <min(p,q), we set

fu = det[x1(s)J(t)]1gs,zsd’

where I < {1,...,p}, J={l,...,q} with #I = #J = d, and then we have

thJ(a) = det[aI(S)J(t)] 1<s,t<d>

where 1(1),1(2),...,1(d) are members of I in ascending order. In the special case
where p = g,

S =detlxy]y ;<

is the relative invariant with weight —2w;,.
THEOREM 2.2. For 1 <d <min(p,q), H,I < {1,...,p} with #H = #I = d, we set
ugyy = det[~Ep 1 + (t = Douio) < =a
ugyy = det{~Enqyrc) + (d = 00nwi) <5 i<ar
vyip = det=Enoi + (¢ = d + D0nii s i=ar

vi = detl—Epg + (¢ — 1+ Duis) <5 <ar
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and we first have

(2.1) ;futflf(@) = z}: ad(uy),
(22) ;m%@=;w%%
(2.3) Z f10(0) fis = Zad(vu)
(2.4) %: f1(0) f1s = 21: ad(vg;")

Second we have

(2.5) %: ¥ (fu'f) = (=1)° ; (o) Cosar (Win) Po Uiy,

(2.6) Z Y (fu'fu) = Z o ( uHI p+q)/q)/1+(2p/q)/)(“lLHT )

(2.7) %: (i fur) = (1) ; Yo (1) Y pray /a2 (Vi)

(2.8) %: v fufu) = Z Y(pra)/a) /1+2p(UH1 )TO(UIH)

In the summations above, H and I run over all subsets of {1,..., p} with cardinality d, and
J runs over all subsets of {1,...,q} with cardinality d. We regard fi; as an element in

C[n"] from (2.1) to (2.4), and as an element in S(n~) from (2.5) to (2.8).

REMARK 2.3. (1) The formula does not hold if we interchange
¥ ((prq) a0+ pjap(Uiy) With Wo(ufy), because ufj, does not belong to Z(I) in general.
Similarly in the equalities [2.6), and [2.8), we can not interchange the order of the
multiplications in the right hand sides.

(2) There only appear principal minors in the right hand sides of the classical
Capelli identities from to [2.4), while there appear all d x d minors in the ¥;-
analogues from to (2.8).

The rest of this subsection is devoted to proving [Theorem 2.2 We first recall the
way to express determinants in terms of an exterior algebra. We take the exterior alge-
bra /\ (C") of C", and we define a ring structure on the tensor product A\ (C") ® ¢ Dy
by (x®u) - (y®v) =xy @uv. We omit symbols A in writing elements of A\ (C"), like
xy instead of x A y. Let {al, ...,a,} be a basis of C". For a matrix [4;] € Mat(n, m;
D,+), we define 7; € /\ (C ®C D, by

M1 ty) = (a1, - - 7an)[Aii]1gign,lgjgm'

Then we can compute determinants as follows, for J < {1,...,m} with #J = d:
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Ty "My = Z ai Ay - @igAiga)

= > ar(o(1)) " Ar(o(d) Ao (1)~ AL(a(d))) (d)

= ary-ana) Y &0 Aroan) - Ariotania)

1
(2.9) = Zal(l) Cdp(d) det[AI(S)J(t)]lss,zsd-
7

We prove two lemmas before proving the theorem.

Lemma 2.4. For H,I = {1,...,p} with #H = #I = d, we have

(1) Zﬁjtﬁw(@) = ad(det[—En(r) + (d — D0u01(9))1 <5.1<a)
7

(2) ) fus(0) S = ad(det[—Egris) + (¢ — 1+ Domris)i <s.s<a)-
7

In the summations above, J runs over all subsets of {1,...,q} with cardinality d. We
remark that we can obtain the classical Capelli identities, when we consider the special
case of H =1 in each of the formulas above, and take a sum over I.

ProOF. [proof of (1)]
First we set

(nla"'anq) = (a1>""ap)[xif]l<i<p I<j<q’

SISp, =]

and then it follows from for J = {l1,...,q} with #J = d that

My M) = Z arqy - anayfu-
T {1, p) #I=d

In addition, we have n;;7; = —n;n;, since x;’s commute with each other. Second we set

(Cla"'?ép) = (7717"";7q)[aij]1<j<q 1<i<p

=]54, 151

and we then have the commutation relation {;n; = —#,{, + n;a, using [0, ;] = Sxjan.

We can also show that (y,...,{,) = (a1,...,ax)[ad(—Eu)]; ., <, Next we set

(i(u), - Gp(u) = (ar, ..., ap)[ad(=Epi) — udnly <; p<ps
and then we have {,(u) = {, — ua,. Hence we have the commutation relation Ch(u);yj =
_”jéh(u + 1)
Let wus calculate CH(1)<_d + 1) s CH(d,l)(—l)CH(d) (0) for H < {1, e ,p} with
#H = d in two different ways. First we calculate as follows:

q
Cay(=d + 1) L1y (=)@ (0) = Cuy(=d + 1) -+ - Cya—1y(—1) Ziz,-,,aH(d)jd-

jd:l
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Here we repeatedly use {j(u)n; = —n;{(u+ 1), and thereby we can calculate the right
hand side of this formula as follows:

DS,y (=d +2) - S (0)dprcay,
Jd

= (=DM T e mtnay e nay,

L<ji,nja<q

= > &)1+ Ny O )Ia() ** * OH(d)I(ola)
J{l,..,q},#J=d,ce S,

= Z ary - aa) Z S fus(0).

Ic{l,. p},#I=d JA{l,...,q}, #J=d

In the last equality above we used [2.9).
Second we calculate as follows:

Cay(=d + 1) - Lpa—1)(=1)u(a)(0)
= {Zail (ad(—EH(l),-l) - ( d+ 1 } {Za,d ad EH ”) 05}1 )}
=1
= Z ai, "'aid{ad(_EH(l)h) ( d+ 1)5H } {ad( H(d)ig ) 05H 1,1}

= Z ary - - ar(a) ad(det[—EH( 1)1 ( d+ l‘)éH ]1<3 z<d)

Here we have calculated in a way similar to [2.9). Taking a look at these two result of
the calculations, we conclude (1) holds since a summand in the first result and that in the
second result must coincide, when they correspond to the same 1.

[proof of (2)]

First it follows from [Oj, ;] = dyay that qu:l oym; = >, (n;05 + 0jai) = §; + qa; =
{i(—¢q). This time we calculate {y(1)(—¢q){no)(—¢+1)---L{u@(—g+d—1) for H <
{1,..., p} with #H = d in two different ways like the proof of (1). Then we have the
assertion. ]

Lemma 2.5. For I <{1,...,p}, J<{l,...,q} with #1 = #J = d, we have

(1 W,{(f].] Z fHJ ad det[EI —|— ().0 + P — d + t)él(l)H(S)]lgs,tgd)v

(2) ¥('fw) =D ad(det(Exyu + (2° + 1 = Dorm)i <y i<a) Tr(9),

H

where H runs over all subsets of {1,...,p} with cardinality d.
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ProOOF. [proof of (1)]

While we have discussed in /\ (C?) ®¢ Dy+ in the previous lemma, we will discuss
in A\ (C?) ®c Dy+ in this lemma. We set (uy,...,4,) = (ai,... 2 ag) 041 < j<g1<i<p> and
it follows from for I < {1,...,p} with #I =d that

Hray M) = Z ajuy - ajd f11(0).
Je{l,nq) #i=d
Similarly we set (Sy,...,&,) = (a1, @) [Vi(Eip+j))i< <4 1<i<p and we have
(2.10) Sray Sy = Z asay - aya) i ('fir),

J{l,...,q},#J=d

for I <{l,...,p} with #I =d. Here we have two expressions of &, (1 <h < p).
First one is

)4

&= _(ad(Ep) + A'0m);,

i=1

which is proved easily. Using the commutation relation [ad(Ep), ;] = oy, for 1 < g,
h,i < p, we can obtain the second expression:

)4
& =Y u{ad(En) + (A° + p)oni}.
i=1

We have the relation &u, = —u &) — wyp,, thanks to the relation [ad(Ex), 1] = digiy,
used before.

Next we set (1(u), ..., Ep(u) = (- - -5 1) [ad(Epi) + W+ p+ W)onli <; p<p- Then
we have &,(u) = &, + uyy,, and hence we obtain the commutation relation between &, (u)
and g2 & (u)p; = —pilp(u —1).

Let us calculate &;py---&y(q) for I = {1,..., p} with #I = d in a way different from

#A0)
Eray - Srgay = €1y (0) - - - &gy (0)

]

=& (0) -+ Era-1y(0) Y wy(ad(Egayn) + (A° + p)Sriapm)-
=

Here we repeatedly use &,(u)y; = —p;&,(u — 1), and thereby we can calculate the right
hand side of the formula above:

P
=D Gy (=) - Eaey (=D {ad(Erap,) + G + p)oram, }
ha=1

= ((—l)d_l)d Z My M Aad(Epyn,) + (A +p—(d- 1))0r(1ym } ¥
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= > asy - Adyd) > s (0)

x ad(det[Erme) + (A0 + p— d + 00100 m))1 <5 <a)-

Fixing J, we compare this formula with [2.10), and we thus have proved (1).

[proof of (2)]

We calculate ¢;p)---Cyq) In another way. The strategy of the last calculation of
the proof of (1) is to bring x,’s to the front of the expression. Here we bring y,’s to the
end of the expression. We then obtain

Sry - Cray = Z ayy - aya) Z ad(det[E(ss)

Fixing J, we compare this formula with (2.10), and thereby we obtain (2). O

PrROOF OF THEOREM 2.2. First of all, we can prove and by setting H = I
and taking sums over I in (1) and (2), respectively. Let us prove [2.6).
We first note that u(E;) = uq/(p + q) for a character u = u’w;, of p and 1 <i < p,
and we can rewrite (1) as follows:

Vi ('fir) = (=) Y Fus () P () sgyi psarp it )
H

and (1) as follows:
> fu'fus(9) = ad(ugy) = olufy).
7

Using these expressions, we have

V(' f) = (=)D fu > Y117 (0) P (pay it i) (Uiit )
J

Ic{l,..,.p},J={l,..q},
d
=(=1) Z Spo(MIEUT>SP((p+q)/q)/1+(2p/qr)p(ulLHT)a
HI

and hence we obtain [2.6). We also obtain similarly from (2) and

Let us prove the rest of the formulas by using the anti-involutions g, s and ¢ defined
in [Definition 1.2 A composite mapping ot, as well as so’ is an algebra auto-
morphism, and so’ acts on [ by s(‘X,) = —X_, (x€ 4;), and we therefore obtain for
H, I c{l,...,p} with #H = #[ = d:
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ot(Pulugir ) = Pp2p(s("(ugiz )
= ¥op2p(detExnq + (d = 00r9n)i <5, 1<a)
= Y_u(det[Eyu) + (d — 1 = q)015)n(]1 <5.1<a)
= (=) (vfp)-
Using this formula and the formula ad(u) = Yo (u) for ue U(l), we have

ot((2.2) RHS) =071 <Z ad(uf; ))

1

= (=D"Y "ad(vf) = (-1)"((2.3) RHS).

1

Next we note that the left hand side of belongs to DL, and hence it is t-invariant.
Then using the definition of g, we have

o7((2.2) LHS) = ¢((2.2) LHS)

= 0<qutfu(a)>
= (=D (@) fu = (-1)’((2.3) LHS).
1J

Thus we obtain by comparing these two formulas. Similarly we have by

applying o7 to (2.4).
Let us prove [2.7). We calculate in a way similar to the calculation above. On
the one hand we have

ot((2.6) RHS) = W( Z Po(utis ) Y((p+a)/ayitColap Uit )>

= (_1>dZ(_l)dyl0(UlLH) : (_1>dgl—((p—i-q)/q)l—(Zp/q)p(UIEU)'
HI

On the other hand we have

07((2.6) LHS) = ¢((2.6) LHS)

_ a(Z v ﬁJ’fu))
J
= Z Tfﬂfzp(lﬁjﬁj)
1J

We replace 4 with —4 — 2p, compare these two formulas, and thus we have proved [2.7).
We can prove similarly. |

2.2. (C,,n) or S’GL,.
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Set
A B Aegl(n C),
=sp(n,C) = e gl(2n,C .
§=sv(n C) {(C —’A> alt )‘B,CeSym(n,C)
Let h be the set consisting of diagonal matrices of g. For 7,je{l,...,n}, we set

Hj;=Ej— E,\ jni,
Gij = Einj+ Ejnyis
Fj=Eui;+ Enji,
and then we have bracket relations

[Hjj, H| = 0y Hy — 0y Hy,

[Hjj, Gig] = 0 Git + 0 G,

(Hjj, Fry) = —0acFj — 0iF,

(Gij, Fr) = 0 Hiy + 6uHj + 6 Hy + 0 Hjy.

We define ¢; e b® (ie{l,...,n}) by ¢(Hj;) =0J;. We summarize data such as the root
system in the following list.

II ={e —¢,...,60-1 — &n, 280},
A" ={a g |l <i<j<n}U{2&},
Hj; : (¢ — ¢j)-root vector for i # j,
Gj : (& + ¢&)-root vector,
Fjj : —(&; + ¢)-root vector,
1, = 11\{2¢,},
Ap ={e—gll <i<j<n},
Wiy, = &1 + -+ &,
2p = (n+ 1w,

X, Y)=Tr(XY)/2 (X,Yeyg),

C. B.: {H;} U{G;|i < jIU{(1/2)G;} U{F;|i < j}U{(1/2)F;}.

Subalgebras p,n™ and [ are as follows:

A B
={(5 ) eslacao.c)mesmmno)f,

n+:{(8 g) eg|Besym(n,C)},

(0 ) ealacamo)
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With respect to the anti-involution x — ‘x of [Definition 1.2, we have
'Hj = Hy, 'Gy=F; 'Fj=Gj.

For i,je{l,...,n}, we set x; = Fj;, and then {x;|i < j} forms a linear coordinate
system on n". In addition, we set 0; = d/0x;. For i # j, we have ‘Fj;(0) = Gj;(0) =
(Gyj, F;j»0; = 0;;, while we have 'Fj;(0) = {Gy, F;i»0;; = 20;. For this reason, we set
0 = (14+;)0;. We use Lemma L1, and we easily have the following lemma.

LEMMA 2.6. For 1 <i,j<n, we have
(1) ¥i(Hy) = = S0, xu0 + 205,

(2) T)(Gy) = — ZZJ:] xkléiléjk + 2/10&].
For 1 <d <n, we set
Ju = det[xl(s)J(t)]lgs,tgd

where I,J < {1,...,n} with #I =#J =d. In particular, when I =J ={1,...,n}, a
function

S =det[xyl; o <
is the relative mvariant with weight —2w;. We also have
f1s(0) = det[0r()s())1 <y r<a-
THEOREM 2.7. For 1 <d <n and J,K < {1,...,n} with #J = #K = d, we set
ugy = det[—Hy) + (1 = Doxs0) <5 <as

ugy = det{=Hi(s9) + (d = 00ks9)1 <5120
vy = det[=H(s)s() + (n+1 = d + 1)0k(s)s0)]1 <512
vy = det{—Hgs() + (n = 14+ 2)0k(s(9)1 <512 ar

and we then have

(2.11) > fu'fu(@) = ad(us),
7 7

(2.12) > fu'fin(@) = ad(ug)),

(2.13) Z (0 Z ad(vyy),
7] 7

(2.14) > @) fu = ad(vg).

Moreover we have

(2.15) S (') = (1) Pargay(urs) Polusk),
7 JK
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(2.16) S W (fu'fi) = (=)D Wolugy) Pariap(ujy),
I JK
(2.17) Z (" fur) = (=1)° Z Yo(vkr)¥Yaritop(vik),
I JK
(2.18) S (ufu) = (DD P (vi) Polvjx)-
7 JK
In the summations above, I,J and K run over all subsets of {1,...,n} with cardinality d.

REMARK 2.8. In the last formula above, we can not interchange 5”2;,5_2/,(1)%) with
¥o(vly), since vl, does not belong to Z(I) in general. Similarly we can not interchange
the order of multiplications on the right hand sides in the formulas from |2.15) to [2.18).

The rest of this subsection is devoted to proving [Theorem 2.7. The essence of the
proof is the same as in the case of (A,,,_1,p), and we give only outlines of the proofs
of the theorem and lemmas. The main differences of the proof are just differences of
commutation relations.

LemMma 2.9. For J,K e{l,... ,n} with #J = #K = d, we have

ZfIJ fix (0 ad(det[-H 5 T (d — [)51( ]1<v t<d)
Z ik (0) f17 = ad(det[—Hg (5 + (n — 1+ 2)0k(07(5))1 <5, 1<a)-
7

In the summations above, I runs over all subsets of {1,...,n} with cardinality d. We
remark that we can obtain the classical Capelli identities, when we consider the special
case of K =J in each of the formulas above, and take a sum over J.

Proor. We work in A\ (C") ® ¢ Dy+ as in the case of (Ap4_1,p). Let{ai,...,a,}
be a basis of C".  Set (1,,...,1n,) = (a1,...,an)[xy];; jo,» Then we have n;y; = —nn;
and

Ny i) = Z ay - aya) Ju-
J{l,..,n}, #J=d

Next we set ((py...,00) = (ys-- )[04 < j<py and (G (w), ..., C(w) = (a1, ... an) -
[ad(—Hj) — udyli<; j<,- Then we have (;(0) =¢; and (i(u)n, = —n;(i(u+ 1).

These relations are the same as in the proof of (1). We thus have (1)
of this lemma by computing {xy(—=d + 1) ---{x(4)(0) in two different ways like Lemmal
2.4 (1),

For proving (2), we can show that [5,7]19’].9’(771,...,77") ="(=n=1),...,
{u(—n —1)), which is the difference from the case of (A,;,_1,p). We then have (2)
of this lemma by computing {x()(—n —1)---{g@(—n+d —2) in two different ways.

[

LemMma 2.10. For I,J < {1,...,n} with #1 = #J = d, we have
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(1) Ti(tf‘]‘]) = Z tﬁ]{(&) ad(det[HJ(,)K(S) + (210 +n+ 1 + 1 — d)éJ(l)K(S)]lgs,lgd)7

K
(2) Wul'fu) = ad(det[Hyke) + 22 + 1 = Dosxo) <5i2a) Tix (9),
K
where K runs over all subsets of {1,...,n} with cardinality d.
Proor. Set (uy,...,u,) = (a17...7an)[5y]13[7j3n. Then we have
Bty Baga) = Z azay - aya) f(0).

Next we set (&y,...,&,) = (ar,...,an)[¥i(Gy)l < j<p» and we have
Sy ey = Z asay - aya) V(')

We can obtain two more expressions for £yqy--- &y as follows, and each of them
proves (1) or (2) of this lemma by comparing with the formula for &) - -- &g stated
above.

We set (& (u),...,E(w) = (g, .., ) [ad(Hji) + (24° + n+ 1+ u)5), _; ;,» Which
is different from the case of (A,,,1, p) in the diagonal shift, and then we have ¢&;(0) = ¢
and &;(u)y; = —w;¢;(u—1). Here we can compute ;- - gy in @ way to bring u;’s to
the front of the expression as in the proof of (1). Comparing it with the
formula for &;(1y--- &) above, we have (1) of this lemma.

For proving (2), we can show that ‘(& (u),...,&,(w) = [ad(Hy) +
(210 + W)jil1<; j<n' (M1, -5 4,), and we can compute y() -+ &y(q) in @ way to bring p’s
to the end of the expression. We thus have (2) of the lemma. ]

PROOF OF THEOREM 2.7. and are proved by (1) and (2),
respectively. is proved by (1) and (1). is proved
by (2) and (2). Similarly to the case of (A,,_1,p), we can
show the rest of the formulas by applying the anti-automorphisms ¢ and 7 to the proved
formulas. [

23. (D,,n) or A*GL,.

Set
A B A egl(n, C),
= e gl(2n, C ,
? {(C —’A) ol )‘B,CeAlt(n,C)

and let [) be the set of diagonal matrices in g. For i,j€{l,...,n}, we set
H; =E;— Ey\jnii,
Gy = Einyj— Ejnviy
Fj=E\;i— E\.ij,

and we have the following relations:



Capelli identities on generalized Verma modules 11 463

(Hjj, H| = 63 Hy — 6y Hyg,

[Hjj, G| = 0 Gyt + 01 Gy,

(Hjj, Fra] = 0uFyy + 0 Fp,

(Gij, Fri) = 0pHi + ouHy — 0y Hyy — 0y Hjy.

Define ¢ eb” (ie{l,...,n}) by &(H;) =0;, and we list the data such as the root
system in the following list.

IT = {e; — &, ..., 6n—1 — &n,En—1 + &n},
AT ={g+ |l <i< j<n},
Hj; : (¢ — gj)-root vector for i # j,
Gjj : (¢ + ¢)-root vector for i # j,
Fjj : —(& + ¢&)-root vector for i # j,
II; = II\{ey—1 + &},
Af ={e—¢ |1 <i<j<n},
wiy = (e1 4+ +&)/2,
2p =2(n—1)w,,
(X,Y)=Tr(XY)/2 (X,Ye€eqg),
C. B.: {Hy} U{Gy|i < j}U{F;]i < j}.

Subalgebras p,n™ and [ of g are as follows:

A B
P:{(O _tA)6§;|AegI(n,C),BeAlt(n,C)}7

nt = {(g g) eg|BeAlt(n7C)},

() eatacnmo)

It follows from the definition of x — ‘x in Definition 1.2] that
‘Hy = Hji, 'Gy=F; 'Fj=Gj.

We define x; = F; for i,je{l,...,n}, and then {x;|i <j} forms a liner coordinate
system on n*. In addition, we set 0; = 0/0x;;. The next lemma follows easily from
Lemma I.1.

Lemma 2.11. For 1 <i,j<n, we have

1
(D) YuHy) = =D <henkri XkiOki +§/1°51-j,

(2) Yj)v(Gi]') = — Zk;éjJ;éi xklailakj + }voaij'
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In the case of (D,,n), the classical Capelli identity has a complicated expression, and
moreover we can not prove the ¥;-analogue by a method similar to that of (A, , 1, p)
or (C,,n). We therefore give a ¥)-analogue of the Turnbull identity. We first define
the permanent of matrices in which entries do not necessarily commutes with each other,
which are called column permanents. Set

PCI‘[AU 1<ij<d — Z A (d)d-

0'6\3,/

The column permanent and the row permanent, which is defined similarly, coincide
when the entries commute with each other. The multiplication formula of permanents
is more complicated than that of determinants, even when the entries commute with
each other. Let R be a commutative ring, 4, B, C € Mat(n,R), C = AB and 1 <d < n,
and we then have the multiplication formula of permanents,

1
PCI‘(C[K> = Z ﬁ Per(AU) Per(BJK)
#J=d

where /,J, K are indices such that 1 < /(1) <.-- <I(d) <n and so on, in which case
we simply write #1 = d, and Cjx is the d x d matrix determined according to / and K,
which is not a submatrix of C in general, and

J! = (the number of 1’s appearing in J)!---(the number of n’s appearing in J)!.
For indices I,J with #I =#J =d (1 <d <n), we set

fi = PCI'[XI(S)J(Z)]ISS,ISQ"
and we then have

fir = Per[GI(s)J(t)]lgs,tsd’ ZfU(a) - Per[aI(S)J(l)]ISS,tsd'
THEOREM 2.12. Let 1 <d <n, and let I be an index satisfying 1 <I(1) <--- <
I(d) < n, in which case we write #1 = d, and let J be an index with #J =d. We set

Uy = Per[—H](S)J() (t - 1)51 ]1<3 t<d>
u;} = Per[—Hl(,)J(s) - (d - t>51(l)J(S)]1£s,t£d’
vy = Per[—HI(S)J([) +d+n—-1- l)él(s).](t)]lgs,tsd’

UI.]; = Per[—H](,)](S) + (7’1 -2 + l)él(f)‘](s)]lgs.,tsd’

and we then have

(2.19) S %IJJ'(@) _y ad%{n))
#IHI=d #1=a 1

(2.20) 3 W -y ad(ﬁﬁ)’
#I=HJ=d o #1=d :

(2.21) 3 fIJI(U)'ﬁJ -y ad(;'m)’
#I=#J=d #I=d :

1 () /1 ad(v})

(2.22) Z %: Z II!JH .

HI=#J=d HI=d
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Moreover we have

Ju'fi 1
(223) S w(T) =0 S ) ot
HI=H]=d HIH) =
Su'fur d 1 T T
(2.24) Z v )= (—1) Z I o (usy) Yoo (g,
HI=H]=d ey
i fu 1
(2.25) > ‘PA( ) = S g1 Do) ¥aiip(var),
Sy I =d
i fu ‘ 1
(2.26) Z lPA( ) - (- Z I Vi (vgy) Po(vgy).
Sy HIH=d

REMARK 2.13. (1) The formulas [2.19) and [2.20) in the theorem above are exactly
the same as the formulas of [10, Theorem 3.1], where we use [10, expression (2.8)] and
[10, expression (2.7)], respectively, for Dy. Thus we give the outline of the proof, in the
proof of [Lemma 2.14.

(2) We have Y uy/I!, S, ul/I' e Z(1) due to [10, Theorem 2.3], and >, vy /1!,
S vk /1Y are also in Z(I).

We prove two lemmas before we prove the theorem. As we have discussed the
cases of determinants using /\ (C") ®¢ Dy+, we will discuss this case of permanents using
Clbi,...,by) ®c Dy, where Clby,...,b,] is the polynomial ring with indeterminates b;.
Set

15 esmy) = (b1, ba)[Agli<; j<n  (Aij € Die),

and we then have the following formula for #I =d,

’7[ Z bll l,[ 111 Aidl(d)

1<i<n

1
= D iy bretayAsemy) - Aseayia)

#J:d,aeed ’
= Z —bJ @ Y Aol - Aj(o(apia)
#J= d O’E@d
227 = Z —bJ J(a) Per Ay
H#HJ= d

Lemma 2.14. For #1 = #J = d, we have

(1) Z fKJfKI() (=1)" ad(Per[Hy() + (d = 0610051 <5 12a):

i K
1 t d
(2) Z K fx1(0) fxr = (—=1)" ad(Per[Hy(y5(5) + (2 =1 — 0105091 <5.1<a)-
dxa ™

We remark that we can obtain the Turnbull identity, when we consider the special case of
1 =1J in each of the formulas above, divide it by I!, and take a sum over I.
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ProOOF. [proof of (1)]
First we note that Per 4 = Per 4 for a square matrix 4 in which all the entries
commute with each other, and that x; = —x; in the present setting. Set
(7717 ce 7'711) = (b17 ce 7bn)[xij]lsi7jsw
and, for the reason above, it follows for #I = d from that

1
Ny - Nia) = Z ﬁbJ by S
#I—d
1
=(-D"> T1bsy by S
#I=d
We set ((y,...,80) = (myy---.1m,)[05)1<; j<p» and then we have the commutation

relation between (; and 7;: (i, = n;{; —n;b;. We also set

1

(&), ..., Gu(w) = (b1, bu)[ad(Hji) + udji]| <; ;<
and then it follows that {;(u) = {; 4+ ub;, and hence we have the commutation relation

Gi(wn; = ni(u—1).
Let us calculate {;1y(d — 1){;2)(d —2) -+ - {54)(0) in two different ways for #1 = d.
First we have

Cry(d = 1)) (d = 2) - La)(0) = (-1)¢ Z % Z Jl, by (@) Jxr ' fxi(0),
HK—d ™ #7=d

using the commutation relation between (;(u) and #;. Second we calculate as follows:

1
Crn(d = 1)+ Cray(0) = Y 57bary -+ batay ad(Per{Hi ) + (d = 0010s(9)1 < 1a)-
J=d "’

These two results of the calculations above must coincide summand by summand with
respect to J, and we therefore obtain (1).

[proof of (2)]

We have ) 0;n;,={((1—n). We calculate {;i(1—-n—0){;(1—n—1)--
{i@y(1 =n—(d—1)) in two different ways as in the proof of (1), and we have the
assertion. ]

LEmMMA 2.15. For #1 =#J = d, we have

(1) () =D > = I ’fm(é) ad(Per[H, k() + (A° + 1 = 1+ d = 1)0,()k(5)y0):

(2) () = (D" D = ad(Per[Hyk() + (2° = 14+ sk Fir (0).

ProoFr. [proof of (1)]
First we set (41, ...,4,) = (b1,...,b2)[04]; <; ;<> and then it follows from that

1
Kty Hia) = (—-1)¢ ﬁbJ( (@) f1:(0).
#J=d



Capelli identities on generalized Verma modules I 467

Next we set (&q,...,&,) = (bl,...,bn)[%(Gg,-)]lgugn, and we then have

(2.28) &y iy = Y ﬁb] by V().
Py

Here we give two different expressions of &. First one is & = > (ad(Hy) + A%,
which is proved easily. Here we can find the commutation relation between ¢; and u;:
ity = w;(&; + w;), using [ad(Hy), p;] = dig; — b0y Applying these relations to the first
expression of &;, we have the second expression, & = >, w,(ad(Hy) + (A% 41— 1)d;).

Next we set (&(u),..., &) = (... w,)[ad(Hy) + (A° +n— 1+ )il s j <
and we then have &;(u) = & +uy;. Hence we obtain the commutation relation between

i) and gz &i(u)py = pi(u +1).
Let us calculate &;(jy--- &g for #1 =d in a way different from [2.28).

Eray - ray) = E1y(0) - - - &gy (0)
= &) (0) -+ E1a-1)(0) Z pi(ad(Hyay) + (2° 4+ n — 1)070a)0).-

Here we repeatedly use &;(u)u; = p;¢;(u+ 1), and we can calculate the expression above
as follows:

Z/«tifz(l)(l) s Eqamny (D {ad(Hygay) + (A0 +n— 14 0)574)}

= Y wy e {ad(Hyay) + (A0 +n— 1+ (d = 1)1}

1Sl‘1,-.47l}[ <n

- x {ad(Hyay,) + (A0 +n—140)07a),}

=(-n'> % (Z %bJ(l)"’bJ(d)thJ(a)>
P \#r=a?

HK=d
X ad(Per[HI(,)K(s) + (ﬂ +n—1+d-— t>51 ]1<3 t<d)

Fixing J, we compare this expression with [2.28), interchange I with J, and thereby
obtain (1).

[proof of (2)]

The strategy of proof is the same as in the proof of (2). We will bring
;s to the end of the expression, using the commutation relation between y; and ;. We
then obtain

1
&y Ly = Y 1 ad(Per[H )k ki) + (20 = 14+ D1k <41<4)
#HK=d

x(=D)" Y %bJ (@) fx1(0)-

#J=d
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Fixing J, we compare this expression with [(2.28), interchange I with J, and thereby we
obtain (2). O

PrOOF OF THEOREM 2.12. First we can obtain from Lemma 2.14 (1) by
setting I = J, dividing by /! and taking a sum over / in the lemma. We can prove
(2.22) similarly. Second we prove (2.24). It follows from Lemma 2.15 (1) and Lemma
2.14 (1) that

AL S RN S ONCREIT AN
#Il=

#I1=H#J=d

1 1
= (-1)¢ Z i { Z ﬁfIJZfIK(a)}YIZ/l—kZP(”JTK)
C ezt

#J=HK=d " '

1
= (_l)d Z J'K' ad(uKJ) y12/»Jr2/’(u}ﬂ1()
#JI=#HK=d

and this proves [2.24). We can prove similarly from Lemma 2.15 (2) and Lemma
2.14 (2).

For proving the rest of the assertion, we use anti-involutions o,s and 7 defined in
[Definition 1.2  Let us prove [2.21]. Since the left hand side of belongs to DL,

it is rz-invariant, and hence we have

o7([2.20] LHS) = o((2.20) LHS)

=" ﬁJ;U)'ﬁJ_( 1)“((2.21) LHS).
J

Next we note that a composite mapping o7, as well as so /-, is an automorphism, and we
have

(2.29) ot(W(ufy)) = (=1) V(o).
Using this equation and the fact that ad(u) = ¥o(u) for ue U(l), we have

ot([2.20) RHS) = ar(Z ad(;;,?))

#I1=d

=(-D*Y" ad(orr) _ (—=D9((2.21) RHS).

|
#1=d 1!

These two formulas prove [(2.21). Similarly is proved by applying a7 to [2.22).
Finally we apply the automorphism o7 to (2.24) and (2.26) using (2.29), replace A

with —1 — 2p, and thereby we obtain 2.25) and 2.23), respectively. O
2.4. (Dn, 1) or Ozn,1 ® GL].

Set
A B A egl(n, C),
= e gl(2n, C ,
: {(C —’A> ol >’B,C6A1t(n,C)
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and let ) be the set of diagonal matrices in g. We take a basis of g in a way different
from that of §§2.3. Set

Hl'j = Ei—f_ Em’m (l,] S Z>0>,
where i is the integer satisfying 1 <7 <2n and i =i (mod2n). Thanks to this setting,
some formulas become simpler. All H; belong to g and they satisfy

Hn+i,n+j = _I_Ijia
Hi,n+i = Oa
[Hjj, Hy) = Ol — 05:Hij — 05, Hinske + O Hnt -

We define ¢ ebh” (ie{l,...,n}) by &(Hy) =0, (je{l,...,n}), and summarize
data such as the root system in the following list.

IT = {e1 — &, ..., 6n—1 — &ny&n—1 + &n},
A" ={g+ |l <i< j<n},
Hj; : (¢ — ¢j)-root vector (1 <i,j<n,i# j),
H;pnij: (& +¢)-root vector (1 <i,j<n,i#j),
H,.ji:—(& +¢)-root vector (1 <i,j<mn,i# j),
I, = I1\{¢ — &},
A7 ={e + gl <i< j<n},
Wi, = &1,
p=(n—1)wi,
X, Yy=Tr(XY)/2 (X,Y €qg),
C.B.:{Hj|l<i,j<n}U{Hi|1<i<j<n}U{H,;;|1<i<j<n}.
Set M ={1,...,2n}\{l,n+ 1}. Subalgebras p,n" and [ are as follows:
I[=spanc{H\,Hj(l <i,j<n),Hi, ;(1<i<j<n),H,;(l<i<j<n)},
n'" = spanc{Hy(j e M)},
p=1I+n".
With respect to x +— ’x in [Definition 1.2, we have
'Hj = Hj:.
We set x; = H;; for ie M, and {x;} forms a linear coordinate system on nt. We

denote 0/0x; by 0; and x; by x; etc. The following lemma follows directly from [Lemmal
1.1.

LemMa 2.16. (1) Wi(Hi1) = — e ar Xk0k + A°,
(2)  Yi(Hy) = Xi0; — Xt jOnti (i, € M),

1
(3)  alHy) = = 2ken ¥,0k0j + 5 2 ke s Xt jOk Ok + 20, (jeM).
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The relative invariant f € C[n"] with weight —2;, is given by
S = XoXni2 + X3Xpi3 + 00+ XpXan,
and we have
f(0) = 020n12 + -+ + 0n0n.
THEOREM 2.17. We set
uy = —Hyy,
vy = —Hj 4+ 2n— 2,

1 1
Uy = ZHH(HH — 2n+4) —ZC,

1
05} :Z(Hll —2)(H11 —2n+2) —ZC,

where ¢ € U(l) is the Casimir element of [I,1] with respect to {,». Then we have

Z .Xj@j = ad(ul),

jeM

> ox; = ad(v),

jent
J7(0) = ad(uy),
S(0)f = ad(va),
and moreover we have

1 1
> Wi(HuHy) = — 5 Polu1) Vi (u1) — 5 ad(c),

jeM

jeZM ¥, (H\Hj1) = —% Po(v1) Vais2p(v1) —% ad(c),
V(f'f) = Polur) Pajsap(u2),
V(") = Polv2) Paigap(v2).

PrOOF. As for the relative invariant f, we have proved the assertion in [12]. For
the ¥;-analogue corresponding to the Euler operator, we can prove the assertion by

direct calculations using [Cemma 2.16. O
2.5. (Bn, 1) or 02n ® GLl.
Set

0 a b A e gl(n, C),
g= (fb A B)egl(2n+1,C) B,Ce Alt(n,C), ;,
—la C -4 a,beC”
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and let b be the set of diagonal matrices in g. We take a basis of g by extending the
basis in §§2.4. Counting the row number and the column number from zero, we set

Hlj = El.—jT— EI’EI’I_—H (Z7J € Z>0>’

gi:Eol.-—E— (i€Z>Q),

n+i0

where i is the same as in §§2.4. Then all H; and g; belong to g, and they satisfy

Hn+i,n+j = —Hji;
H;,. =0,
Invi = —'gis
[Hyj, Hu] = 055 Hi — 057Hyy — 05 Hinikc + Oz Hn

[Hijagk] = —5,-‘;;%‘ +51€mgn+i7
9:,9j] = Husji-

We define ¢; e h” (ie{l,...,n}) by &(H;) =0; (je{l,...,n}), and we list data
such as the root system in the following list.
IT={e —¢&,...,&1-1 — &nén},
A" ={e te|l<i<j<n}U{e|l <i<n},
Hj; : (¢ — ¢)-root vector (1 <i,j<n,i# j),
H; . j: (& +¢)-root vector (1 <i< j<n),
H,.ji:—(& +¢)-root vector (1 <i< j<n),
gn+i : &-root vector (1 <i<n),
gi : —¢&-root vector (1 <i<n),
I = I1\{¢ — &},
A7 ={e+ gl <i<j<ntU{e|l <i<n},
Wi, = &1,
2p=(2n—1)w;,,
X, Yy=Tr(XY)/2 (X,Y€g),
C.B.:{Hj|l<i,j<njU{Hinj|l <i<j<n}

Subalgebras p,n™ and [ are as follows:
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l=spanc{H,H;(1 <i,j<n),Hinj(1<i<j<n),H,;(1<i<j<n),g(iecM)},
TI+ = SpanC{Hlj(jE M>7gn+1}7
p=1+n",

where M = {1,...,2n}\{1,n + 1}, which is the same as in §§2.4. With respect to x — ‘x
defined in [Definition 1.2 we have

'Hj = Hji, 'gi = —guis-

We set x; = H;; and xo = ¢g; for i e M, and we then obtain a linear coordinate system
{xi]ie My} on n*, where My =M U{0}. In addition, we set J; = d/0x; for i e M.
The following lemma follows easily from [Cemma 1.1.

Lemma 2.18. (1) ¥Y,(Hy) = _ZjeMO x;0; +2°,

(2) W;(H,J) = X,'aj — xn+j8n+,- (l,] S M),
(3) Y.(g9:) = x00; — x;00 (ie M),

1
(4) WalHy) = = >kemy Xk0k0j + 5 X+ (X ogee pr Oknse +0000) + A°0;,

1
(5) ¥i(gnt1) = D ke ns, XkOk0o — Exo(zkeM OkOn sk + 000o) — A0
The relative invariant f € C[n"] with weight —2c;, is given by

1
2
S = XoXpq0 + X3Xp43 + -0+ XX, + %0

and we have

1
f(0) = 020us2 + -+ + 82 + 50000,

THEOREM 2.19. We set
uy = —Hyy,
vy =—Hj +2n—1,

1 1
Uy = ZHM(HH —2n+ 3) —ZC,

1
25} :Z(H“ —2)(H11 —2n+ 1) —ZC,

where ¢ € U(l) is the Casimir element of [I,1] with respect to {,». Then we have

> x50 = ad(w),

JjeMo

Z @Xj = ad(vl),

Sf(0) = ad(up),
7(0)f = ad(vy),
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and moreover we have

jeM

1 1
= =5 Yo(v1) Par129(01) — 5 ad(c),

Z H\jHj) — gni191 5

jeEM

1 1
Z HjHj— glgn+1> =3 Po(ur) Vaiqap(ur) — 3 ad(c),

v
LAV

PrOOF. As for the relative invariant f, we have proved the assertion in [12]. For

=% (1/{2) '1’/2).+2/) (u2> )

)
) = ¥o(v2) Pai42,(02).

the ¥;-analogue corresponding to the Euler operator, we can prove the assertion by
direct calculations using Lemma 2.18. ]
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