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Abstract. In this paper, we give a necessary condition for the Cauchy problem for
parabolic equation in order to be uniquely solvable in the analytic class.

1. Introduction.

We are concerned with the Cauchy problem for the following parabolic equation
with the coefficient depending only on x

{ﬁ,u(t, x) = a(x, D)u(t,x) + b(x, D )u(t,x), (t,x)e[0,T] x R, B
u(0,x) = up(x), xeR —
where
! !
a(x,Dy)u = Z a;j(x)DiDju, b(x,Dy)u = Z bi(x)Dju + c(x)u
i,j=1 i=1
and D; = —id,,. Here, we assume that the coeflicients a;(x),b;(x) and c¢(x) are real
analytic in the sense that there are constants ¢, > 0 and p, > 0 such that
ID2a(x)| < cap; ol (1.2)

for xeR', a = (oy,...,04) e N', where D, = —id, and N ={0,1,2,...}.

We call that the Cauchy problem 1s H*-wellposed for ¢ >0, if for any
uo € H* there exists a unique solution u(r,x) e H*(R"), t>0. It is known that the
condition

Rea(x,&) <0 for all (x,&) e R' x R’ (1.3)

is necessary in order for to be H>-wellposed. Historically, the condition (1.3)
was proved by Petrowsky in the case where the coefficients depend only on ¢, and
Mizohata [S] proved it in the case of variable coefficients. Sadamatsu [8] considered the
necessary condition in order for to be L>-wellposed. D’Ancona and Spagnolo [1]
considered the following equation

du(t,x) = (1 —cosx)d2u(t,x), xeR. 1.4)
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They constructed a solution of (1.4) with an analytic initial datum which is not analytic
with respect to x for ¢z > 0.

In this paper, we shall try to generalize the result of D’Ancona and Spagnolo.
Denote by L/% the set of functions with radius of convergence p > 0 which is defined by

LX(R') = {u(x) € L*(R');e"©u(¢) e L*(R)}, (1.5)

where (& = \/1+ [&|%, |&| = /&> + -+ &7 and @ means the Fourier transform of u.
In particular, we should mention that the function belonging to L/% in (1.5) gives to be a
real analytic function with radius of convergence p > 0. Then, the wellposedness in the
analytic class should be defined by the following

DeriNiTION 1.1. We call that the Cauchy problem (1.1) is analytically wellposed in
[0, T, if there are p, > 0 and a monotone increasing function x(z) continuously defined

in [0,7] and x(0) =0 such that for any uge ﬂp>o L/% there is a solution u(z,x) €

C'([0,T]; Ly ) of the Cauchy problem (I.1) satisfying
le”P2u(t, )| 2 < Clle! D P2 (1.6)
for 0 <¢< T and any p with 0 < p < p,.

Concerning the wellposedness in the analytic class, we should mention that if there
1S a constant Jy such that

Rea(x,&) < —0|é|* <0 for all (x,&) e R' x R’

then for a function p(z) with 0 < p(f) < Jy the solution u(¢,x) of the Cauchy problem
1.1) satisfies

1e”OPOY(1, )| 12 < Clle”OPOug()]] 5 (1.7)

for 0 <t < T. In particular, (1.6) with u(z) = 0 follows when p(¢) is constant in (1.7).
Our main result is the following

THEOREM 1.2. In order that (1.1) is analytically wellposed, the condition (1.3) is

necessary, moreover, if there exist xo and &y such that Rea(xg,&y) = 0 then Rea(x,&y) =
0 for all xeR'.

2. Proof of Theorem 1.2.

In this section we shall prove [Theorem 1.2 by reduction to absurdity. The argu-
ment is carried out in the following way. We assume that there exist xo and &, such
that

Rea(xgp,&y) =0 (2.1)

(see Step 1), and that is analytically wellposed. Then, from these two assumptions,
we deduce two inequalities which are not compatible by choosing an initial data suitably
(see Step 5). Mainly, we use the micro-local energy method devised by Mizohata [6]
(see Step 2 and Step 4).
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Step 1. Exponential map.

The assumption in contraposition to is divided into two cases,
(i) there are xo and &, such that Rea(xo,&;) =0, and there exists
a x; satisfying Rea(xy,&)) # 0
and
there exist xo and &, such that Rea(xo,&y) > 0.

We transform u(z,x) in (1.1) into v(z,x) by
v(1,x) = e"Pxu(t, x) = 2n) ! Ll e StPOCh(t E) dE
for p>0 and we C' with |w| =1 as Kajitani [3]. Then, since
o = e”*Pou
= e’ Px(a(x,Dy) + b(x,Dy))u
= e’ Pxq(x, D,)e " Pry 4 e’ Prp(x, D, )e P Pry,

is transformed into the Cauchy problem below

{8,1)(1, x) = A(x,Dy)o(t,x), (t,x)€[0,T] xR, (2.5)
v(0,x) = e’Pruy(x), xeR .
where A(x, Dy)v = e’*Pxa(x, Dy)e P Pxp + er?Pxp(x, Dy )e P*Pry.
Here, let us define the pseudo-differential operator on L? by
as(x,D)u = e’ Pra(x,D,)e PPy (2.6)
= (2n)_lJ l e™ea(x — ipw, E)u(E) dé. (2.7)
R

(2.7) can be calculated, since a(x,&) is a real analytic function with respect to x.
Therefore, a,(x,D,) in (2.6) is a pseudo-differential operator whose symbol has the
representation

as(x,&) =alx —ipw,&). (2.8)
In the case (i), we get the following lemma.

Lemma 2.1.  Let a(x,&) is a real analytic function with convergence radius p, with
respect to x. If there are xo and &y such that Rea(xo,&y) =0, and Rea(x,&y) = 0 does
not identically vanish in R', then for any p € (0,p,) there exists w € C' satisfying || = 1
such that

Rea(xy — ipw, &) > 0. (2.9)

PrROOF. a(x,&)) can be extended to a holomorphic function a(z,&)) by analytic
continuation, since a(x,¢,) is a real analytic function with respect to x. If we assume
that there exists w € C' such that |w| = 1 and Rea(x — ipw, &) <0 for all x € R’, then
max__ Rea(z, &) = Rea(xo, &) = 0 in contradict to the maxmin principle. Therefore,
we can get (2.9). ]
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Hereafter, we consider only the case (i). We assume (2.9) for the Cauchy problem
(2.5) transformed by the exponential mapping defined in (2.4). On the other hand, in
the case [ii), we can also carry the same argumemt below without the transformation by
exponential mapping in terms of p =0 in (2.4).

Step 2. Micro-localizer.

Following Mizohata [6], we give here the definition of micro-localizers. For a
some positive number ry, we take the sequence {fy(x)}y_;, . of functions in Cg°
possessing following properties, /

(i) 0=<py¥=<1,

1 for |x — xo| < lr
.. — A0 = F10,
(ii)  By(x) = 2
0 for |X— X()| = 1o,
(i) |y @] < K Vlall, gl <N=12,.... 2.10)

In the same way, we take the sequence {on(&)}y_;,

i) O0<oay(é) <1,

of functions in Cg° such that

gooe

1
1 for |f—éo < 51”0,

0 for |f— éo‘ > 1o,

an($) =

(i) |« (&) < K"Npll, |pl<N=1,2,....

For such a sequence of functions in C;° as to satisfy the property (iii), refer to

Hormander [2].  Let
ann (&) = oy <§>>

n
which is particularly estimated by
o) (&) < KN |pl Pl |pl < N=1,2,..., (2.11)

where n is a large parameter. oy,(Dy)v(x) is defined by Fourier transform as follows

—

(annv)(¢) = ann(£)0(E)-

We consider the function oy, (D, )fx(x)v(¢, x), instead of the solution v(¢, x) of (2.5) and
put

L[v] = 0,v — A(x, Dy)v.
Operating the micro-localizer ay,(D)fy(x) from the left, that is,
0 = oty (Dx) By () L[]
= Llonn(Dx) B (x)0] = [own(Dx) By (x), A(x, Dy)]v,
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we have

Llon(Dx)fy (x)v] = F,

where F = [an,(Dyx)fn(x), A (x D «)Jv and [,] stands for a commutator. Similarly,
operating the micro-localizer oan (D )Br(g(x) with 0 < |p+¢| < N —1 from the left on
L[v], we have

LI (D)) (1] = Fpg,
where
Fyq = [0 (D)) (x), A(x, D).
Thus, by putting

Up,q(1, x)_O‘Nn( BN (X)o(2, x),

we have the micro-localized Cauchy problem
010p,q(t,x) = A(X, Dx)vp, (1, x) + Fpy(t, X),
Up,q(0,x) = OCNn( B (g (¥)e” Prug (x).

Here, the symbol of A(x,D,) = e’*Pxa(x, D,)e ¥ Px 4 e/ Pxp(x,D,)e "*Px, by
(2.8), can be written by

(2.13)

A(x’ é) :a/l(x7é) +b/1(x’ é)

Step 3. Asymptotic expression.

In our argument, the commutator [«\?) (D)8 Vg (X), A(x, Dy)] defined in plays
a crucial role. We shall give here its asymptotic expression. We take the sequence
{en(&)}y=12.. of functions in Ci° such that

yeoe

i) O0<ay(é) <1,

1 for |&—¢&)| <
0 for |f— éo‘ > 2r,

. &N(é) =

(i) &0 (&) < K"Vplt, |pl<N=12,...,

ann(E) = o (g)

whose support contains the support of ay, (&), where n is a large parameter. Then

and let

[0 (D) B (X), A(x, D))
= [0/ (D)) (¥)s A(X, Dy)ann(Dy)]

+ o8 (D2) B (%), A(x, D) (1 — Gnn(Dy))]. (2.15)
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In order to show the asymptotic expression of [oc%f (Dx)Bwy) (x), A(x, Dy)], where
A(x,Dy) = A(x, Dy)an,(Dy), we consider the asymptotic expression in the case of |p| =0,

|g| = 0 hereafter, that is, [oan,(Dy)By(x),A(x,Dy)]. The symbol of ay,(Dy)fy(x) is ex-
pressed by

(2n)” ” ¢ Maa(& + )Py (x4 7) dydn.

Moreover, the symbol of oy, (Dy)fy(x)A(x, Dy) is expressed by
o J J J J e o (& ") B (x + ) A(x + ¥, &) dydndy'dy’. (2.16)

In the same way, the symbol of A(x,D,)on,(Dy)fy(x) is expressed by

(2n) ”” eI 4(x, &+ o (E+ )y (x + y + V) dydndy'dy’. (2.17)

By the change of variables y =w’, y' =w—w' and n =z+ 2/, ' =z in (2.17), noting
—iyn — iy'n’ = —iwz — iw'z’
and

A(x, E+n)oana(E+m)By(x+ ¥+ ') = A(x, &+ 2)owu(E+ 2+ 2 )Py (x + W),

we have

(2.17) = 2n) ™ JJJJ e M f(x, &+ 2)ann (€ + 2 + 2) By (X + w) dwdzdw'dz'  (2.18)

=@n™ J J J J eV o (&4 1) B (x + 2)A(x, &+ ) dydndy'dn’ (2.19)
by replacing w=y, w' =y’ and z=1y, z/ =#' in (2.18). Therefore, the symbol of

[O‘Nn(Dx)ﬁN(x)H‘I(xa D,)] = O‘Nn(Dx)ﬂN(x)/I(x?DX) - A~(x, Dy )onn(Dy) By (x)

which is the difference between (2.16) and (2.19) can be expressed by

) [[[[ e amte 4+ n0Bytx+ )

x {A(x+y', &) — A(x,&+n)} dydndy'dn'. (2.20)

Now, by Taylor expansion to A(x + y',&) — A(x, & + ) with respect to y' and —7, it
follows

A~(x+y/7£) _AN(x’é_F’/’)
= > Dokl A (x )
I<|pu+v| <N’

1
+(N'+1) JO A=0)N Sty (=) atatA(x + 0y’ & +n — On) dO.
|+v|=N"+1
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Then, we can write

(220)= 2m) Y ”” e o (E+ 41" By (x+ )

1< |pu+v| <N’
X ,u!’lv!’ly”‘(—l)'v‘;yv&gag/f(x, &+ n)dydndy'dn’
1
VD J (-0% > o7 ””eiyniylnlo‘fvn(f +n+n)By(x+y)
0 |v[=N+1
x =y (D)oo A(x + 0y & + 1 — On) dOdydndy'dy'. (2.21)

Similarly, in general case for p and ¢ with 0 < |p+ ¢| < N — 1, the asymptotic expres-
sion of [cx%) (Dx)Bn(g)(x), A(x, Dy)] can be written by

Y ”“ eI LN E + 1) By (X + 9)

I<|pu+v| <N’

x =y ()M atar A(x, & + i) dydndy'dn'
1

+(N'+ 1) j 1-o¥ 3 o j m eI G0 (E Yy (X + )
0 lu+v|=N"+1

X ,u!_lv!_ly”‘(—l)lv‘nvéi‘@gﬁ(x +0y', & +n — On) dOdydndy'dn’

= fN/pq(XJ <)+ Fvpg(x, €)- (2.22)

fN,pq(x, &) and 7y1p.(x, ) shall be estimated in [Lemma 2.4 and [Lemma 2.3 after in Step
4 respectively.

Here, let us state a well known fact on pseudo-differential operators.

LEmmA 2.2. Let a(x,&) € S™. Then, there exists a positive constant C such that

la(x, Dx)ul| < Clal{"™ l[ull (2.23)

with semi-norm

(m) __ (o) —m-+|o
a = max su a; o (x,E)KE
| ‘10 Wiy x@elze”{‘ (/})( )l }

for ue H™, where ||u(-)]

ym means ||[<DY"u(-)]| 2.
Proor. For the proof, refer to [4] for example. ]
Next, we consider the remaining term in (2.15), [oc%;) (Dx)B(g) (%), A(x, Dy)], where

A(x,Dy) = A(x, D)(1 — @ny(Dx)). The symbol of af)(Dy)By(, (%) is calculated by

) [[emadf)e + miig e+ ) vy = ay(x,8) + .,

where

ay(x,8) = 3 a0 () Buigrn ()

[y <N’
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and
VN/(x, f)
1
=(N'+1) > J 11— 0N 2m)~! ” W (E 4 ) By gy (X + O9) dOdydy
pl=N"+170
which is estimated by
)6, €)1 < CRA N WD (N 1)1+ g+ B
Then
[OC%;)(D)C)ﬁN(q)(X),/I(X, D‘C)] = [CIN/(X, DX)v/I(xa D‘C)] + [VNI(X,DX),/I(X, D’C)] (224)
We get the symbol of [ay:, 4],
S A Ha (O A (x,€) — A9 (x, Ean o (x, )} + Fyi(x,€), (225

0<|t|<N’

where

f]W(X, é)

1

= (N'"+1) T_EN;H J 71— 0N ) ” e~

0

x {al9) (3, &+ n) Ay (x + 09, &) — A9 (x,& + n)aw: (o (x + O, &)} dOdydn

- fN’l(-x?é) - ’7N’2(x75>-

Now, as to (2.25), we remember putting ay' =}y y!‘la%fy)ﬁ]v(qﬂ) and 4 =
A(1 — ayy), and so can see that the first term in (2.25) is vanishing, since

supp oy, Nsupp(l — ay,) = .
We put

1
Pvi(x, &) =(N'"+1) Y J a1 -0 2n)” “ e Mgy (x, & y,n) dOdydy,

le|=N"+1"0
where
g1(%,& y,m) = <> DYy D, Y ) (x, & + 1) Ay (x + 09, &).

Then we can write by putting (D> = ZM oy C;,D% and for multi-indices m,k e N !

9105 (x, & ».1)]

= <77>_2l ( Z ClmD§m> <y>_2l (Z ClkD,?k) Z Coy Z C/?/}’

lm| <1 k| <1 o' <o B <p

X an (gt (e, EA AL (x4 09,8)
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=7 Cm > Cik Y Cur Y Cp Z Coj

|m| <1 k| <1 o' <a B <p j=0

x D"y 2 DR a5 (x, ¢+ ))DIAT) L (x4 09, )]

(0
From the estimates (2.11), (2.10) and (2.14), we have

< C<y>_2]<l’]>_2[K2(l+N) C(N/+l)+\oc+,3|+2/n2—(N/+1)—|p\—\o€| (N/ + 1)||p + q“‘(x _’_ﬁ"
Moreover, putting

1
na(x,E) = (N'"+1) > J (1= 0)Y (2n) ! ” e Mga(x, & ,n) dOdydy,

[t|=N"+10

where
g2(x, & yom) = DY A (x, & + n)ans ) (x + Oy, &),

we can estimate

Igz ( &y

= <77>721 Z Cim Z Cowr Z Cﬁ/)” Z Cro

|m| </ o <o B <p <1

% AEHM (%, & +m)of T (1~ “Nn(f+’7))D2maN’<( v )ﬁ (x + 0y, &)

< Cpy? 23BN 2= VD= N - D)1 p + g+ B
Hence, we can see, by
[7no(z, )] < C(N' D!+ qltn> N2 (s, ).
From (2.24), it follows

1[5 (D) By (%), A(x, D)o < coe™™" o] (2.26)
Thus we get from and (2.26)
qu :fN’pqv+’7N/qu+ [OCNn (D )ﬁN ( )7/1(-)67 Dx)]l). (227)

Step 4. Energy estimate.
We can write from (2.13)

d

ar (||Up~,q||2) =2 Re(AUp,qa Up,g) +2 Re(fN’qu’ Uzw) + 2 Re(Fyrpgv, Up.q)

+ 2Re([oy) (D)By(g) (x), A(x, D)o, 0y, q), (2.28)
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in view of (2.27). In order to estimate the right hand side of (2.28), each term can be
estimated in [Lemma 2.3, [Lemma 2.4 or [Lemma 2.5 separately.

LeEMMA 2.3. There is a positive constant Cy satisfying
2
2Re(A(x, Di)vp,¢(1,-), 0pq(t,-)) = C0n2||vp7q(l> ol (2.29)
PrOOF. We can see from (2.14)
Re(an(x, Dx)vp,q,p,.q) = ({aa(x, Dx) — a(x0, Dx)}vp ¢ Vp,q)

+ ({aa(xo0, Dx) — as(x0,1&o) }0p, 45 Vp,q)

+ (aa(x0,n&0)0p, ¢, Up.q)- (2.30)
Note that the first term in |2.30) gives, for some operator a,(x, D),
({aa(x, Dx) = a(x0, Dx)}vp.g 0p.q) = ((x = x0) Ao (X, Dx)Up.q: Up.q): (2.31)

and, since |x —xo| <rg on x € suppfly,, there is a positive constant C; satisfying
(2.31) < Crron?||,. 4> (2.32)
Concerning the second term in (2.30), for some function a,, we have

(a4(x0,&) — aa(x0,nSo))vp.q = (& — n&o)as(xo, n&o + O(E — no))vp,4- (2.33)
Noting |£ — né&y| < ron on supp ocgfn), we get, for some positive constant C,,
(2.33) < Caron®||v, 4| (2.34)
Concerning the last term in [2.30), in veiw of
Re a(xo,né) = Rea(xg — ipw, &)n?,
we have, for some constant ¢ > 0,
Rea,(xo,néy) > cn’

because of the assumption of (2.9). Hence it can be estimated from below that

Re(a(x0,nE0)0p. g, Up.q) = cn*||v, 417 (2.35)

Collecting (2.32), (2.34) and (2.35) in [2.30), and choosing ry small enough such that

Ciro + Czrg <,

we get, for some constant ¢, > 0,

Re(an(x, Dx)0p,q: Up.g) = can’||p,q|*. (2.36)
Moreover, from (2.14),
2 2
Re(A(x, Dx)vp, g5 Up,q) = €ant®[[0p, g~ = conllvp, o] (2.37)
Hence (2.29) holds. [

In the following lemma, we give the estimate of the second term in (2.28).
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LemMma 2.4. There is a positive constant Cy satisfying

Ivpr@ < C > 2 Mo, g (1,9 (2.38)

1 <|ut+v| <N’

Proor. To begin with, let us remember fN,pq(x, &) in (2.22).

fN’pq(xa é)

= (2n) ¥ Z ,u!_lv!_l(—l)M JJJJnVe_iy”y’”e_iy,”'

1< |p+v| <N’
X a0 (& + 11+ 1) By (X + ¥)OLOLA(x, & + 1) dydndy'dy’
= (2n>_21 Z w1l ” e~ (— 1)""(_i)#a’?,(e—iy"?')(_l)\ﬂ\
1< |pu+v| <N’

x ol (& + 1+ 1" )Brg (X + ¥)OLOLA(x, &+ i) dydndy'dn’'

=@m > e 1)'”J DY (e~ )(=1)Mak (e ) (1)1

1< |pu+v| <N’

X U(E 5+ n")By (g (X + ¥)DEOLA(x, & + i) dydndy'dy’

A
= (2n)_21 Z ,u!’lv! 1 I)IVJ J —iyn—iy'n’

Now,

2.39

Vi

Thus,

Now,

I<|ut+v|<N'

X o (E 40" By (X + 1AL (x, € + 1) dydndy'dy (2.39)

in veiw of the fact

(2n)"! ” I h(p') dy'dy’ = Jel‘y’%(y') ' = h(0),

gives
fN’pq(xa é)
=@n > = “ e
I<|u+v|<N'
x AU (6, &+ )™ (E 4+ m)Bygen (X + ) dydy. (2.40)

we can see that (2.40) represents the symbol of the operator product, that is

Fapgx D)= 3 ™ (=) MAR) (D)ol (D) B (x). (241)

1 <|ut+v| <N’

from (2.14)
A(x,D.) = a(x, Dy)any(Dy) + b4(x, Dy)ony(Dy). (2.42)
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Applying (A&N,,)E‘;))(x, D,) to [Lemma 2.2, we get

(@adinn) () (5, D)ol < Cae i+ V10?04 gl
and

1(Badin) ) (%, D)ol < Coch ™4 ] [0 g
From (2.41), we can write
fN’pq(x’Dx)U: Z ﬂ!il"rl(_l)'vl/fgg)(xvDx)”p+uyq+v-
I<|u+v|<N'

Thus, from (2.43) and (2.44), we get

Sl (@adinn + bading) () (5 Da)Opiggiol
I<|u+v|<N'

<C Z i el 7S V|!”27‘v‘||vp+ﬂ7q+v||
I <|utv| <N’

u+v
< C Z C\u+v| || |'|V||' > MH P-Hl ¢I+V||
I <|utv| <N’ K

(2.42) implies (2.38).

(2.43)

(2.44)

]

Finally, the third term on the right hand side in (2.28) can be estimated as follows.

LemMA 2.5. There is a positive constant C, satisfying
IFnpgv (e, )l < NN+ D) p + gl NP u(z, )|
PROOF. From #y1,,(x, &) in (2.22),

FN'Pq(xv é)

=(N'+1) ﬂu —oMen ST (=l

lu+v|=N"+1

<[ [ sty e n e By )

x AU (x+ 0y, & +n — On) dOdydndy'dy'
1

= (N'+ 1)I (1 _H)N'(Zn)le Z Iu!flv!fl(_DM

0 |uv[=N"+1

X ”” e~V B, &y, v ') dOdydndy'dy’

where

h(x, &y, ¥'n') = 2Dy 2D ' > Dy Y (> Dy Y

X et (E 1+ 0" By (X + P)AL) (x4 OV, &+ 1 — On).

(2.45)
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By putting (D>* = stl ClyDzy, and for multi-indices d,m,n ke N/,

A (x, & v, ')

=Y CuD ) 7 DD CuD) [ <> DD CuDy | T

|d| <l |n| <! Im| <1

x | Y CuDyf | DY Co > Copra™ (& 4+ + 1)BN(g g (X + )
k| <1 o/ <o B'<B

T(v+o—a’) /
X A(/H_p_ﬂ/)<x + 0y, E+n— 0’7) )

2m

=KADY Cud Cu Y Cin Y Ci Y Cor Y Cpyr > Coy

|d| <l n|<! |m| <l k|l o' <a B <p j=0
2n 2d - _ A
XY Gy CanD} DIy DY D (& )
i=0 h=0
X DY By (¥ + VDIDLAG D (6 09" &+ — 0| (2.46)

In {2.46), by the estimates [2.11), (2.10) and (2.14),

[ (%, & 3, )|
< COY Yy K p o + A1) g + v+ B 2| e
x Clervbaa s h=p el oy g ol 4 B — B4 4|

< Cxyy 2y 2y ' SN THN + Do+ Bl p + g|ln> WV HD=lPI=RL
Hence, (2.45) holds. O

Collecting [Lemma 2.3, Lemma 2.4, [Lemma 2.5 and (2.26) in (2.28), we conclude
that

d _
S ol = Com?llvy 42, )] = G Yo O Mgy ()]
1 <|ut+v| <N’

— GEVIN + Dl p+ gt N (e, )| = coe o, )]l (2.47)

Multiplying (2.47) by M!P*4lp~ldl and summing up them for 0 < |p +¢| < N — 1,
we have the following estimate.

LEMMA 2.6. There are positive constants ¢',c"” and 0 satisfying

d )
ESN > c'n*Sy —n?c"e |||, (2.48)
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where

Sy = Z M, ).
0<|p+ql<N-1

ProOF. As to the second term in (2.47), it follows that

Z Mrtdy-ld e, Z M vy 4 g

0<|p+g|<N-1 I<|p+v|<N'

<G > e M 2 gl (2.49)
0<|p+q|<N—-1 0<|utVv| <N’

in veiw of (CM """ < CcM~! if M > C. Moreover, by taking N' = N — |p + ¢|,

1,2 +ptg+v]—lg+
(2.49) < C,CM'n > M =l L
0<|p+q+ut+v|<N

<CICM ' Sy + Y My, )| 5. (2.50)
|[p+4l=N

Here, we choose M =1/c’ such that C;CM~! < C;. The second term in is
estimated as follows. From (2.10) and [2.11), we have

Z Mir+dld|y, | < Z MIPal P 20Ny 4 )|
|p+al=N [pral=N

< CMN KN NNy
< C/K2 — eMK B n|| ||
< C"em|o]]. (2.51)

Then we put N = n/eMK?, and e~¢MK*)'n — g=in since letting K = 1/¢”. The third
term in (2.47) is estimatd by

> MG T N 4 Dl p -+ gltn® (1
|p+q|=N

< GCNN' + > Y MIPH 1P p gl
[p+ql=N

< GCV TR MY(N'+ DINN|v||
< Cyn?e "||v)|. (2.52)

Hence, putting 6 = min{¢o, ¢1,c2} where &p,¢; and ¢, are represented in (2.47), (2.51)

and respectively, we can prove (2.48) from (2.50), and (2.52). O
From (2.48) in Lemma 2.6, we have

t
Sw(f) = e ™18y (0) — nie"e J o) () | ds. (2.53)
0
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Step 5. Initial data.
Here, we consider the function ¢(¢) be a function whose support is located in small
neighbourhood of &,

o) =0, suppi] < {esle - el <gmf and [pOPde =1

Let us note that ax (&) = 1 on the support of 45 Then we put the initial data as follows.

~

00(&) = $(< — ny), (2.54)
namely, vo(x) = e™*¢(x). As to Sy(0) in [2.53), since

[lovn (D) By (x)vol| = llonn (Dix)vol| = €
we can see

Sn(0) = > Mo (D), (X)wol| = C. (2.55)
0<|pt+g|<N-1

And, we have from (1.6) in [Definition 1.1
lo(z, )| < e Pu(z, -]
< CHe(p‘H‘(Z))<D,\'>u0H

< CHe—pw-¢+p<é>+ﬂ(t)<é>ﬁOH

< cne?" N, (2.56)

Thus, since u(¢) is a monotone increasing function continuously defined in [0, '] with
w(0) =0, we can see

t t
J ec’nz(tfs)HU(s)H ds < Cnec’nthr/)nJ e,u(s)nfc’sn2 ds < C/e/)n+,u(t)nec’n21. (257)
0 0

Consequently, from (2.57) and (2.55), can be estimated by
SN(I) > ec,/nZzSN(O) . C/C//nzef(();p)nJrﬂ(,)neclnzl
> Ce ™, (2.58)

where u(t) should be taken as satisfying u(t) < d — p for any p possessing p <. On the
other hand, Sy(#) can be estimated by, from (2.56)

)

Svi)= Y Mo (DB ()]
0<|p+g|<N-1

< C(M)N |||
< C(M)n2elrrin, (2.59)

Hence, two inequalities and (2.59) are not compatible by defining an initial data
as (2.54). Thus we completed the proof of Theorem 1.2l



922

H. HonNbpa

ACKNOWLEDGMENT. The author is greatly indebted to Professor Kunihiko Kajitani

for supervising the work. Also his thanks to all members of Professor Kajitani’s
seminar for valuable discussions and comments.

References

P. D’Ancona and S. Spagnolo, The Cauchy probrem for weakly parabolic systems, Math. Ann., 309
(1997), 307-330.

L. Hormander, Uniqueness theorems and wave front sets for solutions of linear differential equations
with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704.

K. Kajitani, Global real analytic solutions of the Cauchy problem for linear partial differential
equations, Comm. Partial Differential Equations, 11 (1986), 1489-1513.

H. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, 1981.

S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961), 109-127.
S. Mizohata, On the Cauchy-Kowalewski theorem, Math. Anal. & Appl. part B Advances in Math.,
Suppl. Studies, 7B (1981), Academic Press, 617-652.

I. G. Petrowsky, Uber das Cauchysche Problem fiir ein System linearer partieller Differentialgleichungen
im Gebiete der nicht analytischen Funktionen, Bull. Univ. Moscow, Sér. Int. 1, 7 (1938), 1-74.

T. Sadamatsu, A property of an analytic semi-group, J. Math. Kyoto Univ., 31 (1991), 931-936.

Hironobu HonNDA

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571
Japan



	1. Introduction.
	THEOREM 1.2. ...

	2. Proof of Theorem 1.2.

