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Abstract. We prove an analog to the classical Mikhlin-Hérmander multiplier
theorem for Markov chains.

1. Introduction.

Let m(¢) be a bounded measurable function in R" and let 7, be the operator
defined by T,/ (&) = m(&)f(&) (where f denotes the Fourier transform of the function
f). Then, by the Plancherel formula, 7}, is an operator bounded on L?>. The Mikhlin-
Hormander multiplier theorem (cf. [Ho]) asserts that if
n

sup [ m(@)] < +oo, k=0,1,..., [2

QVERH

|+

then T, extends to an operator bounded on L? 1 < p < co and from L' to weak-L'.
This result has had many generalisations to abstract contexts (see for example [A1], [An],
[He], [CS] and the refferences therein). In this article we shall prove an analogous result
for Markov chains.

More precisely, let X be a measurable space endowed with a positive o-finite
measure dx and a measurable distance d(.,.) and let us denote by B(x,r), xe X, r > 0
the ball of center x and radius r. If 4 is a measurable subset of X, then we shall set
|A| = dx-measure(A4).

We shall assume that X has the doubling volume property, i.e. there is ¢ > 0 such
that for all xe X and r >0

[B(x,2r)| < c|B(x,r)|.
This implies that there is D > 0 such that

B(x.r)
(D B(xs)]

D
p

gc(—) , r=s>0 xelX.
K

Note that X is a space of homogeneous type in the sense of Coifman and Weiss [CW].

Let P(x, y) be a bounded symmetric Markov kernel on X and let us set Py(x, y) =
Oy, where 0, is the Dirac mass at x, Pi(x,y) = P(x,y) and P,(x,y) = [P_i(x,z)
P(z,y)dz, for n > 2.

2000 Mathematics Subject Classification. 22E25, 22E30, 43A80.
Key Words and Phrases. Markov chain, multiplier, singular integral.



834 G. K. ALEXOPOULOS

We shall assume that there is ¢ > 0 such that

2
ek <‘ o

Note that the above estimate is satisfied by the transition probabilities of random walks
on discrete groups of polynomial volume growth (cf. [HS]). It is also satisfied by a
large class of random walks on graphs (see for example [De]).

We shall denote also by P, the operator

(1.2) Py(x,y) <

>, x,yeX,neN.

Pf(x) = an (x, )1 () dy.

The operator I — P is symmetric. It is also positive, since for all f e L?

W=ty =3 | [ - 10)2Pex ) dsay >0,

Furthermore,

I = P)fll < 1Al + 1271l < 211 £l

So, I — P admits the spectral decomposition I — P = [; 2dE; (cf. [Yo]). Let m be a
bounded Borel measurable function. Then, by the spectral theorem we can define the

operator
2

m(I — P) = J m(7) dE;.
0
Note that m(I — P) is bounded on L?: ||m(I — P)|,_, < ||m]|,,.
Let us consider a function 0 < pe C*(R) and let us assume that ¢(f) =1 for
te[1,2] and that ¢(¢) =0 for ¢ ¢ [1/2,4].
In this article, we shall prove the following analog to the Mikhlin-H6rmander
multiplier theorem.

THEOREM 1.1.  Let ¢ be as above and let us assume that supp(m) < [0,1/2] and that,
for some &> 0,
(1.3) sup {l@()m(z.)|| cwozrery < -
0<r<1

Then, m(I — P) extends to an operator bounded on L”, 1 < p < oo and from L' to weak-
L'

The part of the spectrum of I — P which lies in the interval [1/2,2] can be treated
by making use of the following:

PROPOSITION 1.2.  Let us assume that supp(m) is a compact subset of (0,00) and
that, for some ¢ > 0, one of the following three conditions is satisfied.

(1) me C(D/2)+1+6(R).

(2) 1¢supp(m) and m e CP/D+(R).

(3) The space X has the discrete topology and m e CP/2+#(R).
Then the operator m(I — P) is bounded on L7, 1 < p < o0.



Spectral multipliers for Markov chains 835

In the case of random walks with finite range on discrete groups of polynomial
volume growth, the above results have been proved in [A3]. The proofs in though
rely on the assumption that the random walk has finite range. For example the proof
of |Proposition 1.2 given in does not make use of the estimate (1.2).

The operator m(/ — P) in the above theorem is, in general, a singular integral
operator. It is enough to prove that it is bounded from L! to weak-L!. Then by
interpolating with the L? result, it will follow that it is bounded on L?, for 1 < p <2
and by duality that it is bounded on L7, for 2 < p < co. In order to prove that
m(I — P) is bounded from L' to weak-L' we shall perform a Calderon-Zygmund
decomposition.

Let us denote by K(x, y) the kernel of the operator m(/ — P). The standard way
to proceed is to divide the multiplier m(4) into pieces of compactly supported ones m;(/)
(cf. [H6]). Thus, we get operators m;(L) with kernels K;(x,y). The goal now is to
obtain good enough estimates for the kernels K;(x, y) which will imply that their sum,
the kernel K(x,y), satisfies for example the Hormander integral condition. This
condition translates into some regularity assumption for the kernels P,(x, y). We avoid
making such assumptions by using an adaptation in the semigroup context (see for
example [CD], [DO], [Ru], [SW]) of an argument originally due to [Fe].

A technical aspect of the proofs is that we must consider the operator I — P. If
we set f;(s) = m;(s?) then we have m;(I — P) = f;(v/T — P). Since the function f; is
even we have

0

ﬁ(z) cos(tvV' I — P)dt.

(1.4) (1~ P) = (1/V2m) |

Now we can observe that the function cosx developped in a power series involves
only even powers of x. So the operator cos(zv/I — P) can be written as a series in-
volving only integral powers of the operator I — P. In this article we shall exploit these
observations.

Let us now assume that L is a symmetric differential operator (for example the
Laplace-Beltrami operator on a Riemannian manifold, or a sub-Laplacian on a con-
nected Lie group of polynomial volume growth) and that the associated heat kernel
P,(x,y) (or else the kernel of the semigroup T, = e L) satisfies a Gaussian estimate
similar to (1.2). In the last section, we shall explain how one can adapt the arguments
given in this article in order to prove analogous results for the operator L.

Throughout this article, the different constants will always be denoted with the same
letter . When their dependence or independence is significant, it will be clearly stated.

If K(x,y) and S(x,y) are kernels on X then we shall denote by KS their con-
volution product defined by KS(x,y) = [K(x,z)S(z,y)d=.

We shall set

Ap(x) = B(x, 27 VN\B(x,22), peN.
Note that by

(15) |Ap<x)| < csz/Z

, peN,xelX.
|B(x,1)]



836 G. K. ALEXOPOULOS
2. An approximation lemma.
We shall need the following:

LEmMMA 2.1.  Assume that the function f(x)e C(R) has compact support and that it
possesses n continuous derivatives f'(x), f"(x),..., f"(x) and let M, = sup{|f" (x + t) —
FM(x)|/t*t>0,xe R}y, 0<a<1. Then, for every 1> 0, there is an even bounded
integrable function ;(x) € C(R) and a constant ¢ > 0, independent of /. and f, such that

(2.1) Il <
supp(y;) < [~ 4, /]

()~ f (0] S ey, xR,

The above lemma can be proved by induction on n, in the same way as in the
periodic case (cf. [Lo, p.57], [Na, p.88]). The only change is that instead of using
Jackson’s kernel U,(x) = ky[sin(nx/2)/sin(x/2)]*, ne N, (k, is a constant making the
integral jozn U,(x)dx = 1) we must use its analog for R, H,(x) = K;[sin(Ax/2)/(x/2)]*,
A >0 (again K; is such that [* H,(x)dx =1).

3. Auxiliary estimates.
We shall also need the following:

LemMa 3.1. There is ne (0,1) and ¢ >0 such that for all pe N, xe Ay(y),
|t <527 and all 1 < k < 27/?

eitP x ¢ efd(x,y)/c
— ¥ _ G /e
(3.2) |(cos(tVI — P))Pr(x, y)| < By V)

ProOF. We shall only prove [3.2). The proof of is similar.
We have

cos(tvl — P) = Z—(\/ Z tzn

n>0( ) n>0

Since, (I — P)"Pi(x,y) < (I + P)"P(x, y), we have

|(cos(tv/'T = P)) Pi(x, y)| < Z )"Pi(x,¥), x,yeX.

n>0

By and the binomial formula

] ¢ d(x, )’
I+ P)"P <2t — X N.
( + ) k(xv y) = |B(y, \/E)| eXp( c(n+k) , X, VEA,NE
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It follows that if x e 4,(y) and |¢| < #2?/?, then

12n " (t)Zn n c d(x7y)2
33) > i+ P Pelx, y) < > 1> 1By, \/75)|6Xp<__02p/_2 >

0<n<2r/? 0<n<2r/2

< Z (;72P/2\/§> 2n c 8_21)/2/6
0<n<2r/? (21’1)' ‘B(ya \/l;)l

< C 2p/2/ Z 772P/ \/-
a |B<y7\/7 n>0

C _9p/2 p/2
e 2 /cer]\/ZZ

" |B(y, VK|

— ¢ jg-nvaper
|B(y, Vk)|

Also by Stirling’s formula I'(1 4+ n) = n! > \/n\/nn"e™, ne N. So, by choosing 7
small enough, we have

t2n ; N (l)2n . c
(3.4) n;ﬂ (Zn)!(I+P) Pi(x,y) < n;ﬂ <2n>!2 N

¢ (n272v/2)>
= |B(y, \/];)!n;;/z (2n)!

¢ (127/2)*
B ’B<y7 \/];)’ n>2r/? ﬁ@(zn)zne—Zn

¢ n2r/%e )n
S
|B(y,\/_)|n>22;/z( V2n
2/2,\"
- ¢ Z (172 e)
|B(y7 \/76—)|n>21>/2 \/Zzp/2

< B2 (%)

c 721’/2/0
< —F¢ .
|B(y,Vk)|
follows from (3.3) and [3.4). O

4. Proof of proposition 1.2.

Let us assume that the condition (1) is satisfied by the multiplier m(4).
Let K(x,y) denote the kernel of the operator m(I — P) —m(1)I. Then to prove
the proposition it is enough to prove that there is ¢ > 0 such that for all ye X

(4.1) IK(, )|, <c< 0.
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Let i(2) = (m() —m(1))(1 —2)"'. Then he CP/2D+)(R) and K = h(I — P)P.
Hence

42) KG9y = I = PYP(, y)ly

= [1A(I = PYP(, )l r(ayry) + D AT = PYPC W)y )

p=0

<|B(y, DI'"IIA(I = PYP(., 9)ll 2501

+ ) AT = PYP(-, )l 114, 0))-

p=0
We have

43) By, V)"0 = PYP(, )l 21y < 1B DI IRNPC )

< [B(y, D"\ h)l . |B(y, V2)|'? < 0.

To estimate the remaining terms in (4.2), we observe that

1 .
h(I — P) = EJM(I)e”(I_P) dt

and hence

K(x,y) = \/%Jﬁq(t)ei’(’P)Pdt.

Making use of let us consider, for all p >0, a function i, such that
suppy, < [—n2"/, 27/

lm —m ||, < 2 (P/2FaP/2]

Then
44)  |[h(I = P)P(, 2L, < A, (DI211((m = m o ) (I — P))PY. s P24, (09
+ llm o, (I = P)P(, Y) |20
< 14, (D"2IPC, ) llm = ms ||,

+ [Ap (D) s b, (I = PYP(, p)ll o (4, ) -
If xe A,(y) then by

(4.5) |(m 4y, (T = P)P(.., y))(x (1), (1)e" P P(x, ) dt

=[]

Scj e P(x, y)| i
) <n20P

1 p/2
N ——
[B(y, 1)]

__°¢ e 2" e,
|B(y,1)]
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By (4.4) and we have
(46) ||h([ o P>P<>y)||L1(AI,(y)) < c2Dp/427((D/2)+8)p/2 + Csz/Zefzp/Z/c,

< 27?2,

It follows from (4.2), (4.3) and that

1K, < c—|—c22*8p/2 < o

p=0
which proves [4.1).

If the condition (2) is satisfied by m(4), then we set i(2) = m(A)(1 — 1)~'. Then
he CP/2%(R) and the kernel K(x, y) of the operator m(I — P) can be written as K =
h(I — P)P. So, arguing again in the same way, we can prove that K(x, y) satisfies [4.1).

Finally, if the condition (3) is satisfied and if [{y}| =0 then m(I — P)1;,, =0. If
{»}| # 0 then the kernel K(x, y) of the operator m(I — P) can be written as

K(x,y) = (m(f - Py, H—iH) )

and arguing in the same way, we can prove again that K(x, y) satisfies (4.1

)8

5. Proof of theorem 1.1.

It is enough to prove that m(I — P) is bounded from L' to week-L!. Then by
interpolation and symmetry, we can conclude that m(/ — P) is also bounded on L7,
l < p<oo.

5.1. Preliminary considerations.
Let us observe that

1/n
- j (1= 2) " dE;(P,f)

0

Jl/n dE;(f)

0

2 2

< |Puflly sup{|(1 — 4)""[; [0, 1/n]}.
Since, by (1.2}, lim,_|/B.f], =0, we conclude that

=0.
2

lim

n— oo

Jl/n dE;(f)

0

This shows that the point A =0, in the spectral resolution of / — P, may be neglected.
Let us consider a C* function ¢ satisfying

suppg < (1/8,3/2), Y ¢(2/n =1, 1€(0,1/2]

j>1

and set m;(A) = m(A)¢(2/4), j > 1. Then
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Let us denote by K(x, y) and K;(x, y), j > 1 the kernel of the operators m(I — P)
and m;(I — P), j>1 respectively. Then

y) = Ki(x, ).

j>1

We have

j

my(2) = m(2) (1 — 1) (1 = 1)
Let

J

hi(s) = my(s*) (1 — s%) 7
B o(s) = my(s?)(1 — %)/ (1 — s%)*
G(s) = s2my(s2)(1 —52) 7.

Let us recall that supp(m;) = (27//8,2773/2) and hence the above defined functions are

supported in (277/2/y/8,27/2\/3/\/2). Also, if se (27/2//8,277/>\/3/1/2), then
(1—5%)7 = e2e=) 1 27log(l — s?) ~ 27(—s?) ~ =277
Thus the functions 7;,/; . and (; satisfy

(5.1.1) 11| ooy < 2((D/2)+2)j/2

1y ell cororeagry < QP22 o 2

HCjHC(DﬁHS(R) < 27/2((D/2)+¢)j/2

Finally, since the functions 4;,h; . and (; are even, we have

my(I — P) = (VT — P)Py; = (21)™"/2 v hi(t) cos(tv/T — P) dtPy;

— 0

+0

m;(I — P)Py = hj (VT — P)Py = (2n) 2| Iy (1) cos(tv/T — P) dtPy,

+0o0

(I = Pym;(I — P) = (VT — P)Pyy = (2n) 2| &(2) cos(tv/T — P) dtPy;.

— 0

5.2. Calderon-Zygmund decomposition.

Let us consider a function 0 < f e L' NL? with bounded support and let a > 0.
Then, following [CW, pp. 73-75], there are constants C = C(X) > 0 and k = k(X) > 0
and a sequence of balls B(x;,r;), such that
(1) f(x) < Ca, for almost all x e X\, B(x;, 1),

(2)  (1/IB(xi,10)]) Jp,.ry S (x) dx < Ca,
(3) X2 |B(xi,m)| < (C/a) IX X)dx and
(4) each point x € X belongs to at most k balls B(x;,r;).
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Let

lB(xIxri) (X)
;/]l.(x) = Z]. ls(xj,rj)(x)
0, x ¢ B(xi,r;)

, x€B(x;,r)

and set w; =#,f.
Now, arguing as in (see [CD], [Ru], [SW] for an adaptation of this argument in
the semigroup context) we set

b — Poywi, =1
T Pw;, O<r<l1

where [t =n, for n<t<n+1, neZ.
We observe that for all xe X

Z bi(x) = Z Pwi(x) <

A0y |

O<ri<l 0<ri<l 0< <1
(x,x;) /c|B xl,r,)]
B(x, 1 |0<rz<l
L awe
a e T
(X, 1)| 1
< ca.
Let
0,’ =w;—b
gZIX\UiB(Xivri)f-i_ Z bi.
O<ri<l
Then
(5.2.1) f=g+) b +Ze

ri>1
lg(x)| <ca, xeX.

5.3. Kernel estimates.

LemMmA 5.3.1. There is ¢ > 0 such that for all p,jeN, 1 <j<pand yeX
(5.3.1) G (o D)y < 27072

PrOOF. We have

K; = hj(VI = P)Pyy.

By and [5.1.1), there is a function y,; , such that
(5.3.2) supp @’p < [—n2r? y2r/?

b = by 5, < 2P/ 2 (D12 e/
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By [3.2), if xe 4,(y), then
(5.3.3) |y * Wy, (VI = P)Pai(x, p)|

_ \/%n_ J+: 10, , (s (1) cos(V/T — P)Pys(x, )| dr

< cJ |cos(tVI — P)Py(x, y)| dt
|t| <20/

1 _ /2 /. C /2,
< 2p/2— 2712 ¢ < - 2 /c,‘
=BG 2 ¢ T B, 2R

By and
1K (s WL a0y = |h; (VT = P)Py (., LIAIRES
< ||(h; = hj %, ) (VT = P)Pos (., W Lrea, ()
+ || , (VT = P)Pys (., WLipa,)
<[4,V N(hy = By x4, ) (VT = P)Pys (-, ),
+ 14, (D) |y =y ,(VT = P)Pys (., I ey ()
< 4, ()21l = By 5y L 1P (5 )

C _21)/2 c
+ ’Ap(y)fme /

< |4, ()| 22PRI2Y BIrR Py ()22
+ 2 Pr/29=Dj/2 ;=277 /¢
< 2~#p=0)/2 | p=Di/2pDp/2 ;=27 [c
< 2-ep=))/2
which proves the lemma.
Lemma 5.3.2. There is ¢ > 0 such that for all te N, 0<j<7tand ye X
(5.3.4) 1K Py (., p)||, < ce /e

ProOF. We have
I<jPZT = hj7f(m>P2j'
Let
1(j, p) = .« (VT = P)Pys (-, )l 10, -

Then

(53.5)  NKPa (- 0l < Wy e VT =P)Pos(c, 2l risiyanronmy + D 10, p)-

p=j+4
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We have
(5.3.6) 1.« (VT = P)Poi (-, ¥)ll L1y, 4200012
< |B(y, 42092y (VT = P)Pys (- 3),
< [B(y, 2V )2y | 1Pys (- 2)
<ce ¥
On the other hand, by [2.1) and [5.1.1), there is a function Y ., such that
(5.3.7) supp l/;jmp c [—;72”/2,;72”/2]
Wi — by o, < 2(P/DHIT20 (02400122
By [3.2), if xe 4,(y), then
(5.3.8) \hj e ;. , (VI — P)Pyi(x, y)|
1 (. -
= | W 1) cosVT= PPy (. )]
< ce_yj/CJ |cos(tVI — P)Pyi(x, y)| dt
|t <n2r/?
¢ =202 )¢ 27T /¢
< ———5= .
RSO

If p> j+4, then by and
(5.39) 1, p) < (hjx = hje %W« ) (VI = P)P2i (s )l 114, (1))

+ |lhje % ., (VT = P) Py (., WNLi(yay)
<Ay (e = e % W ) (VT = PYPy (-, p)

+ [Ap(0)] (|1, j,r,p(m)P2/(' I, 00)
< Ayl e = By 5 Wl 1P (5 )

¢ 202 f¢ 27 ¢
+ |Ap(J’)|We e

< |4, ()] 22D 2= (DI 2 =2 e Py ()2
+ 2 PP/29=Dif25=2"[c (=27 /¢
< 2PNl DE) A2 e | o D(pi)[2g 2 e g2 e
< 2N e
The lemma follows from (5.3.5), (5.3.6) and (5.3.9). ]
An immediate consequence of and is the following:



844 G. K. ALEXOPOULOS

COROLLARY 5.3.3. There is ¢ >0 such that for all te N, 1< j<tand ye X
(5.3.10) 1K (T = Pao) (s 2| 1 gy 520y < €272
LemMA 5.3.4. There is ¢ > 0 such that for all j>1 and ye X
(5.3.11) 1K= P2, < 2.
Proor. The proof of is similar to the proof of [5.3.4]. We have
Ki(I = P) = (VI P)Py.

Let again

1(j, p) = [IGVI = P)Pos(-, )l 114y (1))
Then

(53.12) KU = PY(»)y < 16T =P)Pyi( W aagyaooney + 3 10, p).

p=jt4

We have
(5.3.13) 1G(VT = P)Pi (-, 9)ll 1 oy, a0
< By, 420 ) I G(T = P)Poi (-, )l
< [B(y, 29 ) G 1P (- 9 < 27
By and [5.1.T), there is a function v; , such that
(5.3.14) suppy; , < [—n27/%, 203
16— G Wl < 2 72((D/2)+2)j/29=((D/2)+e)p/2
By [3.2), if x€ 4,(y), then

(5.3.15) G+ W ,(VI = P)Pa(x, y)

= \/%_ﬂ[r:: \@p(t)fj(t) cos(tvVI — P)P,i(x, y)|dt

<27/ J e |cos(tv/T — P)Py,(x, y)| dt
H<n

i 1 Y
<J - 2012 /¢
= B2
If p> j+4, then by [5.3.14) and [5.3.15)
(5.3.16) 1(j,p) < (G = Gy ) ) (VI = P)Poi (-, V)l L1 4, 49

+ NG * W, (VI = P)P2i (-, ¥)l 24, 00
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<A IG = Gl P2 (L )
+ 1 ApDING by, (VI = P)Pai (o, ¥)ll 1o (4, (1)

< (2 J¥/2p~p/2 | C2—j20(p—j)/2e_21>/2/c‘

The lemma follows from (5.3.12), (5.3.13) and (5.3.16). O

An immediate consequence of the previous lemma is the following:
COROLLARY 5.3.5. There is ¢ >0 such that for all ye X
(5.3.17) (I —P)K(.,»|, <ec.
Another consequence of lemma 5.3.4 is the following:
COROLLARY 5.3.6. There is ¢ >0 such that for all j >1>0 and all ye X
(5.3.18) K (1 — Pye)(., p)||; < 2727,

Proor. We have

K(I-Py)= Y K(I-P)P.

0<i<2r
So [(5.3.18) follows from (5.3.11). O

Combining the [5.3.18) and (5.3.10) we have the following:
COROLLARY 5.3.7. There is ¢ > 0 such that for all te N, j>0 and ye X

(5.3.19) 1K = Pr) (s V|1 (ae 2202y < €

LemMa 5.3.8. Let be L' and let us assume that supp(b) < B(z,r) for some ze X
and r > 0. Then there is ¢ > 0, independent of b such that for all ue L?> and all n > r*

151l
32 Pb> < Mu, 15,
(53 0) <u7 b> C’B(Z,V)|< u B(7 )>
where  Mu(y) = sup,-o(1/|B(y,7) IB x)|dx is the Hardy-Littlewood maximal
Sfunction.

The above lemma is implicit in [CD, pp. 1158—1160]. For reasons of completeness,
we reproduce below its proof.

Proor. It follows from [1.1) and [1.2) that for all xe X

(5.3.21) P.b(x) < JPn<x, y)[b(y)| dy

¢ —d(x,7) [en
< e 1b(»)| dy
|B(Z, \/ﬁ)| JB(z7r)

¢ —d(x,2)?/en
g v -vE R (|
|B(z, vn)] :
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b
¢ €—d(sz)2/"" ” Hl JIB(z,r)O;)dy

< —
|B(z, /)] B(z, 7]
1]], J L gy
<c e dxy) feny z,r (y) dy.
1B(z, )] ) |1B(y, V)] B

On the other hand

(5.3.22) e’d(x’y)z/c”|u(x)| dx

[

1 J ~d(x.9)/
S e WM y(x)| dx
B0, m( e )

+ =G fen)y x| dx>

>0 J\/EZP <d(x,y) </nm2r+!

= [B(y, Vi) (JBW) jule)l

+ Z —2%/c

p=0

B 2p+1 )
<c<1+2‘ y’\[ ’e_zz/C)Mu(y)

P>O |B y?

J - lu(x)] dx>

< c(l + Z2D”ezzp/c> Mu(y) < cMu(y).

p=0

Making use of [5.3.21) and |(5.3.22), we have

u, Phby = Ju(x)Pnb(x) dx

c Hb”l ulx 1 e d(x,y)*/en X
= I8z, ™ ”(J\B(ywn Lo ( )dy)d

161]; (J 1 —d(x,y)* /e )
= UX)| ———=—e " INdx |1, o (y) dy
3G\ "G, ) 0 (V)

b
|B||( ||1)| Mu(y)lg(l,)(y) dy || ||1 <Mu’ 13(271,)>

which proves the lemma. [

COROLLARY 5.3.9. Let the functions b; be as in section 5.2. Then there is ¢ > 0,
independent of [ such that

< ca| fll;-

Zb

ri>1

(5.3.23)
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Proor. Let ue L?. Then, by [5.3.20)

(5.3.24) <u > b,.> ¢y |B||xz\|; (Mu g 0>

ri>1 ri>1

< CCl<Mu, Z lB(x,-,r,-)>

ri>1

< ca| Mul,

Z lB(xf,r,-)

ri>1

Z lB(x,», ri)

I‘,‘Zl

2

< calfull,

2

On the other hand, it follows from the properties (3) and (4) of the Calderon-Zygmund
decomposition that

(5.3.25) 213(%” <c||> Mpry| <D 1B < (c/a)llf]l,-
ri=>1 ri>1 1 ri>1
(5.3.23) follows from (5.3.24) and [5.3.25). O

5.4. End of the proof of theorem 1.1.
We want to prove that there is ¢ > 0 such that for all f e L'

(5.4.1) {|m(I — P)f] > a}] gc@.

{
)

With the notation of section 5.2 we have

(5.42)  [lm(I = P)f| > a}| < [{Im(I — P)g| > a/4}| +

m(I—P))

}",'21

b,‘ > Cl/4}‘

+ {m(I—P)ZHI-

ri<l
+ { Zm([—P)H,- >a/4}‘.
ri>1
We have
16 P c 2
(5.43) [{im(z = P)gl > a/4}] < = |m(I = Pygll} < <5 lgl
c llg c c
< —all= < - < - .
< a9 = Slall = S
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By [5.3.23)

2

1
(5.44) |{‘m([—P) Zbi > a/4}‘ < —S m(I — P) Zb,-
r,-Zl a }’,-Zl 2
2
c C
}",-21 2
By [5.3.17)
(54.5) || > m(I=P)o;| =|> (I —-Pym(I —Pyw|| <c||> wil| <clfl-
O<ri<1 1 r<l 1 ri<l 1

Finally, if r; > 1, then it follows from (5.3.19) that

lm(l = P)OX) | 1 o\ B, ey < €llwilly-

Hence
(5.4.6) {x¢ U B(xi,eri) < |y m(I — P)0 H Z||w,||1 < —||f||1.
i ri>1 l i>1
Since by construction
c
UB(xi,CVi) < a“f”n
we can conclude that
a ¢
4. I1—P -5 < - .
(54.7) HZm( )0 >4H_a||f||1

(5.4.2), (5.4.3), [(5.4.4), (5.4.5) and [5.4.7) prove and the theorem follows.

6. Differential operators.

Let X be a differentiable manifold endowed with a distance d(.,.) and a o-finite
measure dx satisfying and let L be a formally symmetric and non-negative second
order differentiable operator on X. Let P(x,y) be the associated heat kernel, i.e. the
kernel of the heat semigroup e~'* and let us assume that there is ¢ > 0 such that

éexp —M x,yeX, t>0
~[B(x, V1) ct )T ’ '

Examples of such operators are the left invariant sub-Laplacians on connected Lie
groups of polynomial volume growth and the Laplace-Beltrami operator on Riemannian
manifolds with non-negative Ricci curvature.

(6.1) Px,y) <
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As before, the operator L admits a spectral resolution L = jOT’ AdE;, and given a
bounded Borel measurable function m we can define the operator

m(L) = J: m(2) dE;.

We have the following analog to the Mikhlin-Hérmander multiplier theorem:

THEOREM 6.1. Let ¢ be as in Theorem 1.1 and let us assume that for some &> 0

(6.2) sug lo()m(2)[| corme gy < 00
>

Then, m(L) extends to an operator bounded on L?, 1 < p < oo and from L' to weak-L'.

SKETCH OF THE PROOF. The above result can be proved by arguing in a similar way
as in the proof of Theorem 1.1. We shall sketch below the main modifications that one
has to make. The details are given in [A2].

If f; is a compactly supported function, then instead of (1.4), we must use the
expression

(1.4 fi(Py) = (1/\/2n)J fi(t)e”sz dt.
Arguing as in the proof of [Lemma 3.1, we can prove that there is ¢ > 0 and

ne(0,1) such that for all p,jeZ, p>j, xe A,(y) and [t| < n2(P=)/2

itP. : c —2(r=N12 /¢
(3.2) €27 Py (x, )| < B2 ¢ e

We break, in the same way, the multiplier m(4) into compactly supported mul-
tipliers m;(A) and denote by Kj(x,y) the kernels of the operators m;(L). The only
difference is that now je Z.

We observe that m;(1) = mj(—27loge 2"*)e?"*e 2% and set

h(s) = m;j(—27 logs)s™!
Gols) = (1 =5 Why(s), T<
&ols) = Iy(s)s™ ', T2 .
Then, there is ¢ > 0 such that
(5.1.17) 11| coryeemy < €
18l comeery < €277
1€ ell coormrvery < ce™2%.

Also
I/)’lj(L) = hj(sz)sz

(I = Py )mj(L) = {j :(Paj) Py,
m;(L)Py: = &, j(Pri) Py
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Arguing in a similar way as in the Section 5.3, we can prove that there is ¢ > 0 such
that for all p,jeZ, pt>j and ye X

(5.3.1°) 1K (s )21y 0y < €270,

(5.3.4') IK;Pye (-, p)lly < e,

which imply that there is ¢ > 0 such that for all 7,jeZ, j<t and ye X
(5.3.10) IKi(I = Pa) (s V| 1 (qage ) 220y < 2—eT=0)/2

Finally, we prove that there is ¢ > 0 such that for all j,teZ, j>7 and ye X

(5.3.18") IK;(I — Pye) (., p)||; < c2777.
(5.3.10/) and [(5.3.1§') imply that there is ¢ > 0 such that for all j,7e N and ye X
(5319/) ”K(I - PZ’)(' ) y)||L‘({d(x,y)22f/2}) <c.

Once we have proved these estimates, we proceed by performing a Calderon-
Zygmund decomposition as before. We define the functions w; exactly in the same way
and we set

b; = Pr,-z w;
0; = w; — b;
g =1x\)Bx.r)S"
We finish the proof by arguing in the same way as in Section 5.4.

6.1. Examples of spectral multipliers.
Particularly interesting examples of spectral multipliers are the Riesz means and the

oscillating multipliers (see for example [DC], [Fe], [FeS]).
The Riesz means of order a > 0, are defined as the family of operators

ma,R(L):J (1—%) dE;, R> 0.

0 +

Oscillating multipliers are multipliers of the type
_ i a/2
man(2) = YDAV, ab >0,

where (1) is a C* function, such that (1) =0, for [A| <1 and (1) =1, for || > 2.
These multipliers provide examples of strongly singular operators. They are intimately
related to the Cauchy problem for the wave and Schrédinger operators. They are also
related to the Riesz means for the Schrodinger operator, which are defined by

t
I o(L) = kt_kJ (t— s)k_le"su/2 ds, k,a>D0.
0
In [A4], [AL], we have studied the above operators, using the finite propagation
speed for the wave operator. Our results can also be reproduced by using the previous
arguments.
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6.2. Higher order differential operators.
Let us assume that L is a higher order differential operator, of order 2m and that
the associated heat kernel P,(x,y) satisfies the estimate

c d(X, y)Zm/(Zm—l)
10 N T ) P\~ )

x,ye X, t>0.

Such operators have been studied, for example, by [BD], [Da], in the context of R" and
by [Ro], in the context of Lie groups of polynomial volume growth. is still
valid for such operators and the proof is essentially the same (we just have to make the
obvious modification in the definition of the sets 4,(x)). An extension of
to this family of operators has been obtained in [DO], by means of the Davies-Helffer-
Sjostrand functional calculus. The order of differentiability required is (D/2) +2. So
using our arguments we can slightly improve that result.

6.3. Homogeneous dimensions.
Let us assume that there are constants Dy, D, > 0 and ¢ > 0 such that for all xe X

1 1
—r? < |B(x,r)| <c?, 0<r<l1, —rP= <|B(x,r)| <crP*, r>1.
¢ ¢

This is the case for example when L is a left invariant sub-Laplacian on a nilpotent Lie
group. Dy and D, > 0 are called, respectively, the local homogeneous dimension and
the homogeneous dimension at infinity.

The condition can be modified to reflect the existence of these two different
dimensions (cf. [A1]). For example, if Dy > D, then can be replaced by

sup ||(ﬂ(.)n’l(l.)||C(DO/2)+3(R) < 0, sup ||(ﬂ<-)m<t-)||C(D;,g/2)+e(R) < 00.
0<r<1 >1
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