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Abstract. Transversely piecewise linear foliations of codimension one on closed 3-
manifolds are deformed by surgery. We will show the surgery formula for the discrete
Godbillon-Vey invariant of these foliations.

1. Introduction.

The Godbillon-Vey invariant was found for C? foliations of codimension one as
a closed 3-form in 1971 ([7]). This is the first invariant defined for the foliations.
Thurston succeeded in describing it as a 2-cocycle of the groups of C? diffeomorphisms
of the circle using the area surrounded by closed curves ([I]). Because the second
derivatives of diffeomorphisms are necessary to define it, we had no invariant for
foliations which have only lower differentiabilities. In 1987, Ghys and Sergiescu [6]
defined a 2-cocycle of the groups of piecewise linear homeomorphisms of the circle using
the “discrete area.” This invariant is called the discrete Godbillon-Vey invariant. This is
extended to an invariant for transversely piecewise linear foliations of codimension one
on closed 3-manifolds by Tsuboi [11], which is denoted by GV. These foliations can be
deformed by surgery which is defined in Section 3. The surgery is topologically (1,1)
Dehn surgery. In this paper, we will describe the relation between GV and the surgery.

THEOREM. Let M be an oriented closed 3-manifold and F, a transversely oriented,
transversely piecewise linear foliation of codimension one on M. Suppose that there are
a leaf L and a simple closed curve C = L with a holonomy h; where h;(z) = ez

(A>0). If F is obtained from Fy by operating the surgery along C, then
GV(7) = GV(ZF) — I

In the last of this paper, using this theorem, we calculate the discrete Godbillon-Vey
invariants of the unstable foliations of the geodesic flows of some hyperbolic orbifolds.
From this result, we calculate the discrete Godbillon-Vey invariants in case of the
hyperbolic closed surfaces.
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2. Transversely piecewise linear foliations.

We begin in more general situation. Let M be a closed oriented 3-dimensional
manifold and %, a transversely oriented, transversely piecewise C? foliation of codi-
mension one on M.

LemMmA 1. There exist finite leaves Ly,L;,Ls,...,L; and a compact subset
KcLiUL,U---UL; such that F is of class C?* outside K.

Proor. For a foliated atlas, the changes of transverse coordinates are piecewise C?
homeomorphisms of intervals. Let K be the union of the closures of intersections of
plaques which correspond to the bending points of the changes of transverse coordinates.
Then Z is of class C? outside K. If K intersects infinitely many leaves, there exists
a change of transverse coordinates whose bending points are accumulated since M is
closed. Hence K is contained in only finite leaves L;,L,,Ls,...,L;. By the same
argument, for all i=1,2,...,/, KNL; is compact in L;. O

Therefore, # is defined by a I-form w on M — K and there exists a 1-form #
defined on M — K such that do = w An.
Let L:L1UL2U---UL1.

LeEMMA 2. ® and n are smoothly extended to the boundary of the closure of M — L.

PrOOF. Let B be the bending points of a piecewise C? homeomorphism f defined
on an interval / < R. Because B has no accumulating points in R, each restriction of f
to a component of / — B smoothly extends to the boundary. Hence #|,, , induces a
smooth foliation on the closure M — L. Then ® and # are smoothly extended to
o(M —L). n

The extension of # is denoted by 7. We set (M —L)=L UL ULy U---U
L;FULI‘ where Ll.i ~ [; and the transverse orientation of % is inward on L; and
outward on L;. Then 7|, + is regarded as the 1-form on L; which is denoted by ;72—:.
For each leaf L e # — {Li,L,,...,L;}, we set ni =n; =nl,. Let Er be the 2-form
ny an; for Le Z.

LEMMA 3. (1) ’72,_,'|L,'—K — 7721 Li—K-
(2) For Le Z, Ep is closed and compactly supported on L.

PrOOF. Since # is originally a smooth 1-form defined on M — K, ;7{[ =n=1ng, on
L, —K. ]

Lemma 4. For L e F, the compactly supported de Rham cohomology class repre-
sented by E; depends only on 7.

PROOF. 7j is uniquely determined by w as a 1-form on L. If we take other & to
define #, @ = vw outside a compact set which is contained in finite leaves where v is a
C? function and never vanishes.

do =dvAnw+vdo =vw A (17—%) = A (7 — dlog|v|).

So, we set 7 =#n — dlog|v|.
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We can define vi in the same way as #;. Then

i =ni — dloglvf|.

A AL = (. — dloglv|) A (n — dlog|v,])
=1~y —d(loglvy [y, —loglvy|ny) + dlog|v| A dlog|vy].
Because v; = v; = v outside a compact set of L, log|v} |n; — log|v; |#] has a compact

support. Hence the second term is an exact l-form of the de Rham complex with
compact supports. The third term is equal to

1 _ _
d{§(10g|vﬂdlog|vL| — log|v; |d log|v} )}
So, this term is also exact. O

The closed 1-forms 772, and # represent the infinitesimal holonomy class of L;.
772’1_ — g, is also a compactly supported 1-form on L;. Let Hllf (L;; Z) be the locally
finite first homology group of L;. If De Hff (Lj; Z) satisfies that u= [,,(n;, —ng,) #0,

then there are bending points along D. For every indivisible element D e Hllf (Li; Z),
there is a simple closed curve C which represents the Poincaré dual of D in H,(L; Z).
In particular, the intersection number C - D is equal to 1.

From now on, we suppose that % is transversely piecewise linear. For 4 > 0, let
h; be a linear map, z — e %z, on a neighborhood of 0.

THEOREM 1. [If the holonomy of C is h,, then

J ELi - _/1:“
Ko

where Ky is the component of KN L; which contains C.

Proor. It is sufficient to prove the statement in the case of a cylindrical leaf since
Ky is contained in a tubular neighborhood of C. Then we may assume that D is a
simple curve which connects two ends of the cylindrical leaf and that C is a simple
closed curve which intersects D with a point. In this case, we can realize a neigh-
borhood of this leaf as follows.

Put

N={(x,9,2)eR* x>0} ={[x, Y, 4| eR*|x>0,Y >0,—n < ¢ < 7}
where [x, Y, ¢| is the cylindrical coordinate of R’, i..,
[x,Y,¢] = (x, Ycosg, Ysing).
We also define
N. = {lx. Y,9leN|0 < ¢ <7},
N_={[x,Y,¢|eN|-n< ¢ <0}
and
N° =N_ —{(x,0,0) | x > 0}.
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N,N, and N_ are given the trivial foliation whose leaves are half planes
(0,00) x R x {z}.

We define two diffeomorphisms S, : N — N and F,: N° — N° by S;([x,Y,q]) =
[e*x,e*Y,¢] and F,([x,Y,q]) = [ /iy Y, 4].

We use these maps to make a transversely piecewise linear foliation in a solid
torus. We glue N, and N° by identifying [x, Y, n] (resp. [x, Y,0]) and [x, Y, —n] (resp.
F,([x, Y,0])) in order to obtain N° Since S;|N° and F, commute and they preserve
the trivial foliation, S, induces a foliation preserving diffeomorphisms S7: N — N©
and No = N%/[x, Y, 4] ~ SP([x, Y, ¢]) is a foliated solid torus. Let IT be the projection
N — Nj.

Now we notice a neighborhood of the cylindrical leaf L, induced from the x-y
plane. We will see that L satisfies the condition of the theorem.

@ =dz/r defines the trivial foliation of N and is invariant by S, where

do =wndlogr.
Hence
nt =dlogr.
Let Ny be {(x,»,z) e N|y <0} and Ng, {(x,»,z) e N|y>0}. Then

N | awv nn,y = dlogr,

and
N v g = dlog(ro Fy).

Let Dy be the arc I1({(cos0,sin0,0) e Ny | —n/2 < 0 < n/2}) in Ly. Dy is given
the same orientation as the unit circle in the x-py plane.

0

/2
J (" —n) = (dlogr—dlogr)+J (dlogr — dlog(ro F,))
Dy —7'(/2 0

/2
= (dlogV cos? 0 + sin? 0 — d log\/ezﬂ cos2 @ + sin® 0) d

0

B ”/z(ezﬂ—l)cosﬁsinﬁde
0 eXcos20+sin’ 0

:ﬂ'

Let Cy be the simple closed curve in Ly which is induced from the x-axis. Cj is
also given the same orientation as the x-axis. Then the intersection number Cj - Dy is
equal to 1. It is easy to see that the holonomy of Cy is the linear map h;.

Hence, Ly, Cy and D, satisfy the condition of the theorem.

On the other hand, we can easily find a neighborhood of L in M which is
equivalent to a neighborhood of L.

To finish the proof, we calculate [, E.
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J E = ntang
Lo

+ —

= Nt An + noAn

JLonI(Ny) JLODH(N_R)

= dlogr ndlog(ro F)
JLoNIT(NR)

= dlog\/x? + y2 Adlogy/e?#x2 + y?

LoNII(Ng)

= X (1— 62/‘) dxdy

Lonnn(We) (2 + p?)(e#x? + y?)

e’ /2 :
:(1_ezﬂ>J ﬂj cosHst o
1 I )o e2cos?0+sin” 0

3. Discrete Godbillon-Vey number and surgery formula.

DerFiniTION 1. We define the discrete Godbillon-Vey number for % by

/
GV(7) = J E.
(7) X_; 3
Remark 1. In [6], [5], the discrete Godbillon-Vey cocycle is defined as a two
cocycle of PL,(S!') which is the group of orientation preserving piecewise linear
homeomorphisms of S'. For g;,¢9> € PL,(S'),

GSGV(g1,92)
1 Z log gj(x + 0) log(g1 © ¢2)"(x +0)
2 £ |loggs(x +0) —loggy(x —0) log(g1 0 g2)'(x + 0) — log(g1 © g2)"(x — 0)

Let # be a foliated S' bundle over an oriented closed surface X and ¢: 7 (2) —
PL, (S!), the global holonomy of Z#. Then

GSGV(p.(12])) =GV(7)

where [X] € Hy(X; Z) is the fundamental class of X. This is proved by using foliated S'!
products as we have done in the case of the Godbillon-Vey invariant.

It is easy to define the surgery now.

DerINITION 2. For A > 0, the surgery along a simple closed curve in a leaf with the
holonomy #;, is defined by the operation used in order to obtain Ny from N/[x, Y, ¢| ~
S,[x,Y,¢] with g =1 in the proof of Theorem 1.

REMARK 2. This is topologically (1,1) Dehn surgery. Goodman and Fried define
the surgery for Anosov flows [8] [4] (see also [3]).
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From [Theorem 1, we show

THEOREM 2. Let %\ be a transversely oriented, transversely piecewise linear foliation
of codimension one on an oriented closed 3-manifold. If F is obtained from F, by the
surgery, then

GV(7) = GV(Fy) — i°.

We apply the surgery formula to some examples now. There is other good
application in [2].

EXAMPLES.

Let p,q,r be positive integers satisfying that (1/p)+ (1/¢q)+ (1/r) <1 and
S(p,q,r), the 2-sphere with three singular points whose cone angles are 27/p,2n/q and
2r/r. We consider S(p,q,r) as a quotient space of the Poincaré disk by a triangle
group. Then its geodesic flow is defined in its unit tangent circle bundle M (p,q,r),
which is a Seifert fibered space, and of Anosov. Let #  be the unstable foliation of
the geodesic flow. This flow is obtained from an element of SL(2;Z) (see [10]). For
example, if p=¢g=2g9+1 and r=g+1 (9 =2,3,4,...), then the geodesic flow is
obtained by two surgeries along closed orbits of the suspension flow of the diffeo-
morphism of 2-torus induced by

29> —1 4g
glg> - 1) 2¢°—1
We can calculate the discrete Godbillon-Vey invariant from the surgery for-

mula. Since the unstable foliation of the suspension flow has no bending points and the
holonomy of closed orbits are /g

Aogi1,2g41,g+1 = ( ) e SL(2,Z).

—~\/ u 2
GV(%g+l,2g+l7g+l) = —2(log 4y)

where 4, is the larger eigenvalue of Asyi1 2441, g41-

Let X2, be a closed surface of genus g. X, is given a hyperbolic metric. The
geodesic flow of X, is of Anosov in the unite tangent bundle 772,. The unstable
foliation of the geodesic flow is denoted by #". There is a (2g + 2)-fold covering
T2y — M(2g9+ 1,29+ 1,9+ 1) which preserves geodesic flows and unstable foliations.
Therefore,

GV(Z") = —2(2g + 2)(log /).

In [9], we showed this from the definition of the discrete Godbillon-Vey cocycle by
another monotonous way.
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