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Abstract. We show the existence of solutions for Dirichlet problem of evolutionary
surfaces of prescribed mean curvature. Usually the lateral boundary needs to satisfy a
kind of convexity, more precisely H-convexity condition. But in this article we do not
assume it on a portion S of the lateral boundary. Under some assumptions on the
exterior forces and the shape of S we prove that the solution satisfies Dirichlet boundary
condition on S in a weak sense.

1. Introduction.

Let Q < RN, N > 2, be a bounded domain with smooth boundary 0Q. We denote
D;=0/0x; and D= (Dy,...,Dy). Let T be any fixed positive number and Qr =
Qx(0,T). We denote by 0,07 the parabolic boundary of Qr. We consider the
Dirichlet problem

Du

" JTEDE

- 6,14 - NH 11’1 QT

with
(1.2) u=¢ on 9,0r.

Here we impose the compatibility condition on the boundary function ¢:

D¢

V14 (D42

In the stationary case Serrin solved first the above Dirichlet problem under
some assumptions on H. In particular the following assumption is important

(1.3) — 0, =NH on 0Q x {r=0}.

N

where A is the boundary mean curvature. Afterward many authors solved the above
Dirichlet problem in the stationary case under weaker assumptions, but (1.4) is essential

2000 Mathematics Subject Classification. Primary 35K55; Secondary 35K?20.
Key Words and Phrases. Dirichlet problem, evolutionary surfaces of prescribed mean curvature,
boundary mean curvature.



1170 K. Havasmba and Y. IKEDA

(see e.g., [4], [6]) and necessary. Here the necessity is in the following sense: If (1.4)
breaks at a point in 0€2, there is at least a boundary function ¢, for which (1.1)—(1.2)
is not solvable (see Corollary 14.13 in [5]). The existence of solutions for the problem
(1.1)—(1.2) was discussed by Lichnewsky and Temam [I1]. In particular, when H =0
and 4 >0 on 02 x (0,7T) and ¢ does not depend on ¢, they showed that the existence
problem is affirmative. Their method is to construct the barrier. And if some non-
linear perturbation terms appear in (1.1), Nakao and Ohara derived L*-gradient
estimates and showed the behavior of solutions at z= oo under some assumptions.
There are many papers treating various gradient estimates of quasilinear parabolic
equations of mean curvature type: [1], [2], [3], etc.

Recently one of the authors and Nakatani [7] tried to remove the assumption (1.4)
for the stationary case without constructing the barrier. When (1.4) breaks on a
portion I” of 0Q, some assumption was imposed for the approximating solutions and
a few examples were given in concerning the existence of weak solutions. But it is
required that H is larger than some positive constant on I°, which is determined from
the shape of I.

Our aim is to extend the result in to the non-stationary case. We shall prove
the existence of weak solutions for the problem (1.1)—(1.2). The assumption (1.4) is not
imposed on a portion I” x (0,7) of the lateral boundary 0Q x (0, 7). But we impose
some assumption for the approximating solution for the problem (1.1)—(1.2). Our
theorem is stated in the next section. And an example satisfying the assumptions in our
theorem is given in Section 3, where we treat the case when 2 is an annular domain in
R3. Then the inside portion I" of 2 does not satisfy (1.4). Our method is to derive a
uniform energy estimate near I” x (0, T) for each solution of the approximate problem
of (1.1)—(1.2) (see Sections 5 and 6). Using the estimate, we show that the required
solution satisfies the boundary condition on I" x (0,7) in a weak sense, where (1.4) is
not satisfied.

We proceed along the line in [7]. But, even in the stationary case, our method in
this article is not the same. In both and this article we suppose a property, called
Property (A4) (see Section 2), for each point on I'. In this article the definition of
Property (A) is different from that in [7] and weaker than it. For further detailes refer
to the note behind the definition of Property (A4), and the Remark 2 in Section 2.

When Q is a ball with radius R > N and H = 1/N particularly, the condition (1.4)
breaks, because 4 = 1/R. In this case Kawohl and Kutev [8] solved the problem (1.1)—
(1.2) in the viscosity sense. Their method is to use the theory of viscosity solutions and
different from ours.

ACKNOWLEDGMENTS. The authors wish to thank the referee for his helpful com-
ments.

2. Theorem.

Let x = (x1,...,xy) be the space variable in R" and ¢ be the time variable in R'.
From now on, let 2 be a bounded domain in R" and 0Q be of class C?>. Let T be any
fixed positive number. Let Qr be the cylindrical domain in the previous section.

The following assertion is well known as Nikodym’s theorem:
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Suppose that u, Due L'(Qr), i=1,...,N. Then u has its trace on 0Q x (0, T)
such that it belongs to L'(0Q x (0,T)).
We consider the initial value problem:

21 D- <L> —ou=g(x,t) in Qr

V1 + |Dul?

u(x,0) = f(x) on Qx {t=0}.
As usually we define the weak solution of as follows. First we put
Cloy(@ % [0, 7)) = {Y(x,1) € C'(Or) [y =0 on {02 x (0, T)}U{Q x {r=T}}.

DerINITION.  Let u and Diue L'(Q7), i=1,...,N. Let f(x) e C(Q) and g(x,1) €
C(Qr). Then we say that u is a weak solution of (2.1), if it holds that for any
Y e Clpy (2% [0,7))

Du - Dy

——————dx
/1 + |Dul?

Naturally u is a weak solution of [2.T}, if it holds in the classical sense. We denote
by Bs(P) the open ball in RY with its center P and with its radius 5. We set the
following

(2.2) JQT ud dxdt — JQT dt + JQ S(x)(x,0)dx = J gy dxdt.

Oor

DEerFINITION.  We say that P € 0Q has Property (A), if the following holds: There
exist a positive number 0 and a one-to-one mapping @

@ : Bs(P)> (x1,...,xx5) — (&1,...,Ey) € RY

satisfying
(I) @ and @' are both of class C? such that
D(&y,---,¢N) :
—<>0 Bs(P).
D(Xl,...,XN>> " >( )

(I) &(P) =0, ®(Bs(P)NQ) < {y >0} and O(Bs(P)NIQ) = {¢y = 0}
(I1) D& - Dyéy =0 on Bs(P)NoQ, if i # N.

For example @ is the case of the polar coordinates transformation. In this article
we put m;; = D, &; - D¢;. In|7] the following stronger assumption was imposed in place
of the above (III):

m; =0 on Bs(P)NoR, if i#j.

Let P € 0Q have Property (4) and &;, i=1,..., N be the functions in its definition.
We put h; = Dy¢; and

D(xl7"'7xN)

J=—l oV
D(&,. . &)
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Then my = hyhj,, det(hy) =J~' >0 and {m;} is symmetric. From our assumption
my; =0 on {y =0} for j#N. For (n,,...,ny) e RY

2
Zmij’?ﬂ?j = Z (Z hip;yl) > 0.
Lj p i

If the left-hand side equals 0, >, hjn; = 0 for any p. Hence ; =--- =#5, =0. This
implies that {my;} is positive definite.

Throughout this article we set the following assumptions: Let /7 and 7> be two
relatively open subsets of Q2 such that 0Q = I7UI> and I7NI5> = . Further we
impose Property (A4) for each point on 77 and set

(2.3) dy = sup d(P),

Peli

where d(P) is the least positive number satisfying

1 1
(23’) Jd(P) = fv \/mNNDfNJ—F—,ﬁ/ZMVDfN(JmNN) on B(;(P) Nog2.

The positive constant dy is the same as in [7], which depends only on the shape of I7.
Let H belong to C'(Qr), and suppose that ¢ belongs to C°(Q7). We take an
approximating sequence {¢,} such that

(2.4) ¢, — ¢ in H**12(Qr) (v — o),

where the space H>™*!*%/2(Qr) is the usual Schauder space (see e.g., [9]). And we take
a positive sequence {¢,} such that &, — 0 (v — o0). Each ¢, needs to satisfy the com-
patibility condition

(2.5) e G, + D <L> o, = NH on 00 x {t=0}.

V1+1[Dg,[?

This is fulfilled if we set, for example

(2.6) ¢, (x, 1) = p(x, 1) + &,t( A ) (x,0).

So it is known that for each v there is a solution u, € H***1*%/2(Q7) (0 <o < 1) of

Du, .
e Ay +D- | —— | —du, = NH in Qr
(2.7) (\/1 + |Duv\2>
u,=¢, on 0,07
(see e.g., [9)).

The space H*'(Qr) also is referred to [9]. It is known that for any compact set
K < Q7 there is a constant C depending on K but not on v such that supg|Du,| < C
(see e.g., [3]). So by the usual argument there are a subsequence {u,} of {u,} and a
function u e H>'(Q7) such that
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0¥D'u, 3 0¥D'u in K (u— o), 2k+|y <2

In Section 4 we see that u is a weak solution of

29) D. (L> —ou=NH in Qr

V1 + |Dul?

u(x,0) = ¢(x,0) on Q x {r=0}.

Under the above assumptions our aim is to prove

THEOREM. Suppose the following assumptions:

a) For each v, u,/dn>0 on I x (0, T), where n is the inward normal vector at 0.
b) H#0 on In x (0,T).

c) There is a positive number & such that

N -1

d) |0.4] <6 on I3 x (0,T), where &' is a positive number determined later from &
and infpzx(07 T) |H|
e) For the positive constant d, in (2.3)

(2.10) H+N'0¢>=dy on It x (0,T).

Then the problem (2.9) has a weak solution ue H>'(Qr)NLY(0,T; Wh1(Q))N
C(QrU (I3 x (0,T)) such that u= ¢ on I5 x (0,T) and the trace of u— ¢ on Iy x (0,T)
equals 0.

In the statement of the above theorem we give additional explanations. From b)
we can take x > 0 such that k¥ < |H| on I> x (0,T). Then the constant ¢’ in d) is given
with 6’ = (2N/3)(x/(2 +6)) (see the proof of [Proposition 7.1). In the next section we
shall give an example satisfying the assumptions a)-e). The solution u in our theorem
is identical with the function in (2.8). By the well-known method of barriers, we see
that u is continuous near I3 x (0,7) (see e.g., [11]). In this was treated when
H =0 and ¢ does not depend on ¢z. But in order to make sure we repeat a similar
argument in Section 7. By the usual argument the function u belongs to H>!'(Q7)N
LY(0, T; wh1(Q)). Thus our main goal is to show that the trace of u equals ¢ on
I x(0,7).

\

REMARK 1. We have constructed the approximating boundary function as in [2.6).
There may be another method to construct it. But the argument below is not changed,
because (2.4) and (2.5) only are essential.

REMARK 2. Let Q be an annular domain in R? with its center O. Let I be the
inside boundary of 2 with its radius R. We calculate the constant dy in (2.3).
We take the polar coordinates transformation:

x= (& + R)sinécoséy,  y=(&+R)singsiné,, z= (& + R)cosd.
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Then m3; =1 and J = (& +R)Zsin§1 >0 for 0 <&, <zn. Thus (2.3') is written as
. 1
d(P)(&; + R)*siné) > §D¢3J on {&; =0}.

This implies that we can take as dy = 2/(3R).

When  is an annular domain in R" with its center O and I3 is the inside boundary
of Q with its radius R, we see that myy = 1 and J = (&y + R)Y ' (sin &)Y 2(sin &)V 2 - -
sinéy_;. Thus dy = (N —1)/(NR).

Since 4 =—1/R on I}, we can write dy = —((N —1)/N)A there. Thus for the
general case we conjecture that the assumption (2.10) may be replaced with

—H-N'0,¢4 < NT_lA on I' x (0,7),

where I" is a portion of Q2 and A is the boundary mean curvature of I with negative
value.

3. Example.

In this section we give an example applicable to our theorem. In our example 7]
and 715 are separate each other. But when they are not so, we can not yet give any
example. The problem is still open.

The approximating boundary function ¢, will be given in another method different
from (2.4). We write as r=|x|. Let N=3 and 0 < R; < R, < 1. Here R; is ar-
bitrarily fixed, but R, is taken as close to R;, if necessary. We consider the annular
domain Q@ ={R; <r< Ry}. Let 1 ={r=R;} and I3 ={r= Ry}, so dQ =1 UI>.
Obviously the boundary mean curvature 4 on I>(/7) equals 1/Ry(—1/Ry), respectively.
From the previous section dy on 77 equals 2/(3R;).

We take a function H(r) € C![Ry, R;] such that H(R;) >2/(3R;) and 0 < H(R;) <
2/(3R3). For ¢ >0 we define the operator Q. such that

0.(u) = e(1 + |Dul*)** Au+ (1 + |Du|*) Au— D - D - D;Dju
— (u+ 3H)(1 + |Dul*)*?,
where D; = D, and D = (D, D,,Ds3). If u=u(r,t) in particular, we see that
Au=u"+2r""w'" and Dju-Dju-Dyu=u"u".
Thus we can write
0:(u) =¢(1 + u’2)3/2(u” +2r ) " + 201+ '
— (u, + 3H)(1 + u")?.

Next we take a function p(r) € C?[Ry, R,] such that p > 0 in (R;, R;) and p(R;) =
p(Ry) =0. Let m be any fixed positive number. And we consider the initial value
problem
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(1+e(1+ WD AW' + 2 ' W (1 + W21 +eV/1 + W2)
(3.1) —(m+3H)(1+W»)>*=p in (R, Ry),
W(R,) = 0.

If Ry — Ry is small, this problem has a solution W (R) € C?[Ry, R,] for each ¢ > 0. We
set g(r) = [ W(s)ds. Then ge C*[Ry,R,] and g(R;) =0. From we see that

g//_|_8(1+g/2)3/2(g//+2r—1g/)+2r—1(1+g/2)g/

(3.2) —(m+3H)(14+¢)**>0 in (R, Ry),
the right-hand side =0 at r= Ry, R».

Finally we define

¢ (r,t) = v.(r, 1) = g(r) + mt
and ¢(r, 1) = ¢,(r, ) by setting e = 0. Then v, € C*(Qr) and ¢,(r, 1) — ¢(r,t) in C*(Or)
as ¢ — 0. From we have
Qc(vc) >0 in Or and Qc(¢s) =0 on [; x {t: 0} (i: 172)'

Since ¢, satisfies the compatibility condition, there is a function u, € H*>'(Qr) such that

Q.(u;) =0 in Qr, u,=¢, on 0,07.

By the comparison theorem we see that u, > v, in Q7. Therefore

608 0¢ / avs aus
on or Y W e . 1> (0,7)
This means that

ou,
— >0 I7 x(0,7).
oy 20 onIix (0,7)
The conditions c)—e) in our theorem are satisfied, if m is sufficiently small. Naturally it

is possible.

4. Preliminaries.

The arguments and the results in this section are usual. Let u, be the solutions
of the approximating problem [2.7]. In this section we denote by ( , ) the L*(Q)-inner
product.

Setting v, = u, — ¢,, we multiply the equation in with v,. Then

r r Du
—&, Ay, v, dl—J D | ————|,v, | dt
Jo ( ) 0 1+ |Du,|?

T

T
—i—J (Osuy, vy) dt = —NJ (H,v,)dt,
0 0

— (Auy,vy) = (Duy, Dv,) = (1, |Du,|?) — (Duy, Dg,)
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and
Duv D“v
-\ D |—],0| = | ——,Dv,
(0 ()] = (oo
B Du, Du, y
1+ [Du, 2’ V1+[Du, 2
Furthermore

T

JT(&’,MV, v,) dt = JT(()’,MV, u,) dt — J (Osuy, p,) dt

0 0 0

1 T T
—5 | audyars | o) di— )l
T

1 1
3L T =5 (LA 0D + | ed) d

- (uv( ’ T)7¢v(' ) T)) + (la ¢v(' 70)2)

(by Cauchy’s inequality)
1 2y, 1 2 r
Z_§<lv¢v('7T) )+§<17¢<70) )+4[0 (uv7at¢v)d[‘

Hence we have

JT<1 D |2)dt+JT P L2 S
&y , |[PUy s T
0 0 V' 1+ |Du,|?

<e JT(DM D¢)dt+JT _ Pl pg i) a
— Gy Vs v 0 W? v

(=]

T T

(uy, 0,9,) dt — NJ (H,v,)dt.
0

1 1
30D =5 (L4,0) - |

0

From now on we take two positive numbers Cy and M such that

sup H| < Co, §j<wmm%mOSM.
Or

lo|+k<3 \" 91

From the inequality |s| —1 < s?/v/1+ 52 (se R), we see that

|DMV‘2

V1 +|Du,?

|Du,| — 1 <
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Therefore it follows that

T T e T
gvj (1,|Duv|2)dt+J (1, 1Duy|) dr < EVJ (1,1Du|) dt
0 0 0

T T

(1, |uy|) dt + COJ (1, |uy
0

+C(1+M2+MJ

)dl+COM>,
0

where C is a positive constant independent of v. In virtue of there is a positive
constant C; independent of v such that

(4.1) sup |u,| < C.
Or

Thus we obtain

T T
(4.2) ng (l,lDuv|2)dt—|—J (1,|Dw|) di < Cs,
0 0

where C; = C(1 + CoM + CiM + M?* + CyCy). This means that

T
(4.3) J J (1Duy| V)2 dxdt < Co.

0 Jo
Throughout this article we denote by the same {u,} any subsequence of {u,}. Let u
be the function in (2.8). Then from the above and (2.8) we obtain

|Duy|'? — |Du|'? weakly in L}(Q7) (u— o).

So Due (L'(Q7))". On the other hand from and (2.8), ue L*(Qr) N H>'(Qr).
Easily for y e C; (2 x [0, 7))

J Duﬂ-Dlﬁ _>J Du - Dy di (,u—>oo)
Or Oor

—————dxdt ————d
V' 1+ |Du,|? V1 + |Dul?

Thus we see that u is a weak solution of [2.9).
From the above we have

PROPOSITION 4.1.  The function u in (2.8) is a weak solution of (2.9). And it holds
that ue L*(Qr)NH*>'(Qr) and Diue L'(Qr), i=1,...,N.

5. Main estimate (I).

Hereafter we suppose the assumptions in our theorem. Let u, be the solution of
(2.7). Let P be any fixed point on I7. Let &= (&j,...,¢y) be the new coordinate and
B;(P) be the ball in Property (4).

In Sections 5 and 6 we write Dy = (Dy,,...,Dy,), Di=D¢,i=1,...,N and D =
(D1,...,Dy). Let § be any test function in C}(Bs;(P)N2). Then from we have

Dxuv : Dxlp

V1 + |Dyuy|?

evJ Dxuv-Dxlpdx—l—J dx—l—J é,uv-lpdx:—NJ Hy dx.
Q Q Q Q
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Let {m;} and J be the quantities in Section 2. If we write Eu = D.u, then |Eu|* =
miDju - Diu.  The above equality becomes

s Diuv Djlp
v=0r 1+ [Euy2

+ J Oty - W dE = —NJ HyJ dé.
{Env=0}

{En=0}

EVJ ml-le-uV : D/lﬁ : de + J de
{&nv=0}

Hence becomes
(5.1) &,D;(Jm;Du,) + D; I p
. vij ijitty j 1—{—‘Euv|2 iy
—Jou, = NHJ in B;(P)NQ.

From now on we put v, =u,—¢, Then v,=0 on 9,07. Let { be a non-
negative function in C°(B;(P)). We denote by ( , )({, ») the inner product of
L>({&y = 0}) (L*({&y = 0})), respectively. Let o be the least eigenvalue of {my}.
We denote by C all constants not depending on v.

We first prove

ProrosITION 5.1. It holds that

¢ JT(JC |DDyv |2)dt+JT Je |DDyu,|? | d
v 0 ) NUy 0 <1+’Euv‘2)3/27 NUy

T T
— J (J@tuv, DN(CDNUv)) dt — NJ (HJ, DN(CDNUV)) dt
0 0

IR

T
< lJ <4 (DNJ -myN + DN(JWINN)), (DNMV)2> dt

2 0 \/ 1+|Euv|2
+ C(1 + C)(1 + M?),

where M and C, are the constants in the previous section.

In this section we shall give the proof of [Proposition 5.1. For simplicity we denote
uy, vy, ¢, and &, as u,v,¢ and &, respectively, for some time. Multiplying with
Dy({Dyv),

(52) & JO <Dj (Jm,'jD,‘u), DN<CDNU)) dt

T .
—|—J DJ LDJJ ,DN(CDNU) dt
0 V' 1+ |Eu|?

T

— JO (J&,u, DN(CDNU)) dt = NJO (HJ, DN(CDNU)) dt.
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First we calculate the first term on the left-hand side of (5.2). By integration by
parts we can write for any fixed (i, )

(Dj(Jm,]-Diu), DN(CDNU» = (DN(JWZ,']‘D,'M), DJ(CDNl))) + P,’j

where
P {_<Dj(Jm,,~D,-u), {Dyvy (j#N)
70 (j=N).
Hence
(5.3) (Dj(JmyDju), Dy ({Dyv)) = (Dn(Jm;Dw), D;({Dnv))

+ (Dn(JmyDig), D;((Dyv)) + > By
ij
511+IZ+ZPU7 say.
i,j
This calculation needs that u is in C?. But it is avoided by the regularized ap-

proximation.
Easily we have

Iy = (J{myDyDjv, D;Dyv) + (Jm;D;{ - DyDiv, Dyv)
+ ({Dn(Jmjj) - Div, DiDyv) + (D;{ - Dy (Jmy;) - Div, Dyv).
Since {m;} is symmetric and positive definite, we have
(JCmyDy Dy, DyDjv) = a(JE, | DDyvl?).
From Cauchy’s inequality for ¢ > 0
|(JmyD;C - DyDiv, Dyv)| < 3(JC, [DDyvl|*) + C©O)(C' DL, | Dof?)

and
|((Dy(Jmy) - Div, DyDjv)| < 8(J¢, | DDyo|*) + C(O)(L, |Du]?).

Hence we have
0! 2 -1 2 2
Iz S(JC|DDyol) = C(E+ DY + £ DL, |Dol?).

We write
b = ((Dn(JmyD;g), D;Dyv) + (D;C - Dy (JmyDig), Dyv).
Easily
(DN (JmyDig), D;Dyv)| < 3(JC, |DDyl*) + C(0) M2,
(D¢ - Dy (JmyDigh), Dyv)| < (IDL], [Dof?) + CM?.
Therefore we obtain

(5.4) I+ > 3 (UG |DDyo) = C(¢+ DL+ DL, [Dof?) — M.

Next we estimate |P;|. From our assumption my; = 0 on {{y =0} for j # N. So
we may assume that i, j < N. We see that
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B j = (1, Dn(D;(JmyD;¢) - LDyv))

= (Dj(Jm;Dig), Dn({Dyv)) + (DyD;j(Jm;Dig),{Dyv).
Hence
|Pj| <3(JC, (Dv)?) + C@O)(M? + (C+|DL], | Du]?)).

Combining (5.3) and [5.4) with this inequality, we have

(Dj(JmijDiu>7DN(CDNU)) > —(J¢, |DDNU|2) —- CM?

IR

— CL+ DY + YD, |Du)?).

Therefore we conclude from (4.2) that

T
(55) 8J (D_,'(JI’I’Z@,‘DZ'M), DN(CDNU)) dt

0

e (T 2 2
> ZJ (JC, |DDwo|?) di — CM? — CCs.
0
Now we estimate the second term on the left-hand side of (5.2). By integration by

parts for any fixed (i, )

(DJ<WD,L¢>,DN((DNU)>

_ (pN ( WD’”) , D,<cDNv>) + 0y,

where
| ——=Dju|,{Dnv #N
0; = <’( Tt |Euf? )CN> U#N)
0 (j=N)

Easily
DN‘EM‘z = 27’}’1,‘]‘1),‘1/{ . DNDle + DNWlij : Diu . Dju.

Hence

Jm;;
5.6 Dy| ——L—Dju
(56) ( LT )

Dy D; D,u- D,
_ Jmlj<w_u DD un>

JIHER At BT
Dyu - Dyu Dy (Jmy)

——— Diu+——=—D;u.
(1+ |Eu?)?? 1+ [Eul?

— iJmijDNmpq .
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We write

Jmi U v

. Jmij ) .
— (DN (—WD,M) , D,(CDNM)>

Jl/l/ll_'j

- (DN (W Di“) >Dj(é’DN¢)> + Z]: Qij
=L+ 1L+ Z Qjj, say.
i,j

We first estimate |I4]. From

,DND,'LI : DNDj¢ — Mpyy

V1 + [Eul? 1+ |Eu|?

i Dyu - D;
_( Jlmy; U uDNDqM'DNDj¢>

,{Dju - DNDj¢>

Jlmy;
(WW,DNMPII : Dpu . un : Dl‘u : DND]¢>

Jm;D;{ My Dpu
+ : ,DyDiju- Dy — ———— DnyD,u-Dju-D
( 1—|—’E ’2 NLj N¢ 1+|Eu|2 NVq i N¢
L PyUmi) pe by D p
1+|Eu|2’ ! l N

Jmy Dy
<W,DJC . Dplzl : un . Dﬂ/l . DN¢ .

Hence we have

(5.8) |I4| <CM

{+ DL
1 _— .
- ( 1+ |Eu?’ |DDNu|>]

From again

/l
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Jlm; D,u- Diu
5.9 I = ——L—,DyDju- DyDju — m,,—2———-DyxD,u- DyDiu
( ) 3 ( 1—|—|Eu|2 N N pq1+|Eu|z NHyq N /)
Dy (Jmy;
MD,-M,DND]U
V' 1+ |Eul?
1 Jél’l’l,j
— 5 WDNMP(] : Dpu : un, D,’M . DNDJM
Jm;;D; D,
+ LJC,DNDiu-DNu—MDNDu Dt - Dyu
V1 + |Eul? 1 + | Eul?
Dy (Jmy;
V1 + |Eul?
L JmyD;C
—5(W,DNH’IPQ'DPU‘DqU'D[H‘DNM>
6
EZ[},[, say.
i=1
Easily
(5.10) |Bs|, [I36| < C(|DE], [Dul).
Now we set ((n,7)) = mynmn; for two real vectors n = (1y,...,ny) and 7=
(71, -»7in)- Then ((7,7)) = ((7,7)) and ((7,7)) = aln|*. We define |ly]| = /((n,7)).

The Schwarz inequality |((7,))| < llll- Il holds.
For any fixed ¢ e RV we set

(i) = (7)) — DD g (10 = ).

L+ el
Then
_ << ((.9)?
() = bl
R B — (2D =
+ el IR

So, the inner product (((,))) is symmetric and positive definite. Hence Schwarz in-
equality holds for such an inner product. These inner products were introduced in [10].
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We see that
Du, DDyu))?
(5.11) L = Jig’ |||DDNU|||2 . (( u, NI;))
[+ |Eu]? [+ |Eul

JCWZZ‘]'
= (T oo o)

We estimate |[34|. This idea is due to [10]. Setting &= (Du), a= (D{) and b=
(DDyu), we have

m;impq

DJC : Dpu : D,’L{ : DNun

_ | () @ é))((é,b))‘

1+ Jlen?

= [(((a,b)))] < [[a]] {[b]]

1/2
Jllall - Dyl ) ((b,9))’
Lyl < my? - .

|\Ba| < OBy + CO) (DL, |Dul), 6> 0.

Hence

This means that

Accordingly
1 B
(5.12) L+ Dz 51 = C(¢ "D¢|?, | Dul).

From (5.9)—(5.12) it follows that

1 JCWZZ
(5.13) L > - |——2.— DiDyu-D;Dyu
2\ (1 + | By '

+ Iy, + I3 — C(|DL| + C71|D€’2= |Dul).

Next we estimate I3, + Iz3. We write

I _ 1 Dy (Jmy)
2\ 1+ |Eu\27

DN<DZ'M . Dﬂzl)) .

By integration by parts
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(5.14) Iy — _% (DN(CDN(Jmij)) D Dju>

{Dy (Jmy)

Y my,Dyu- DyDyu- Diu- Diu
(1+|Eu|2)3/2 Pq4=D q 1 J >

Easily
1], 3] < C(C+ | DL, [Dul).

We can write

J == —Y— m,,Dyu-DyD,ju-Diu-Diu
2((1+|Eu|2)3/2 Pq4=DP q J

+1< (DyJ - my

— Y m, Dyu- DyDyu- D~ Diu |.
2 (1+|Eu|2)3/2 P4=D q [ J )

Hence

1 CDNJ - mj
J2 + 133 = 5 (W s mqupu : DNun : Dl-u . D]u)

1 {DynJ 2
=3 (W, | Eu| mpyDpu - DNun> )

That is,

DyJ
(5.15) Iy + Iy = (g—N m,,qD,,u-DNun>

1+ |Eu?’

_1< (DwJ

— = m, Dyu-DyDu |.
2\ (1 [Eu?)2 )

We write by K; the first term on the right-hand side of [5.15).
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From now on let A4;, i=1,..., be the terms satisfying

4] < C

| DDy u| 12
(4—\/1_?“—5;4_2) + (C+ D¢+ D)7, | Dul)

From (5.15) we can write
Jo+ 5Ly — K = A;.
Easily

1 ¢DyJ
Ki=7 <7N My Dy (Dt - un)>.

1+ [Eu|?’

By integration by parts

Hence we have

(516) J2+133:K1+L+A1.

Further we write

- 1 {Dy({DyJ -
j¢ v ({Dy mpq)’ 3 .un>

4 1+ |Eul|?

CDNJ * Mpy

_SONT My Dot Dy Dyt Dyt - Dyt
4 (1+|EM|2)3/2 IS s p q )

CDNJ-mpq
8 \(1+ |Eu?)*

Dymys - Dyu - Dgu - Dyu - un) .

We denote by K, the second term on the right-hand side. Then we have

(517) Kl =Ky + A4,.
The term K, is written as follows:
1 DyJ
= - C—Nzw7 |Eu|2m,SDru : DNDSM .
4\ (1 + |Eu|?)

Hence we have

1 DyJ 1 DyJ
K, = Z (é—N mysDyu - DNDSI/I> — Z ((C—N mysDu - DNDSM> .

1+ [Eu]? 1 4 | Eul?)*
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This implies

1 -
(518) K2:§<K1—|—L)—|—A3.

From [5.17) and [5.18)

1 - - 1 -~
—K; = — K K, —=K
2K1 (K, 2)+( 2 5 1)
L
:§+A2‘|‘A3—

So
K\ +L=2(L+ Ay + 43).
Hence from
Jo+ Iy = 2L + (A1 + 242 + 243).

Combining this with (5.14), we have

1 CDN(JI’I’Z,']')
I Ly =2L ——( ————2- Du-D, Ag.
32+ 133 2< 1—|—\Eu|2’ u-Dju )+ Ay

Therefore from (5.13) we obtain

1 + |Eu|2)3/2’

1 DyJ

V1 +|Eu?’

2\ /T + [Eul?’

Hence from (5.8) we conclude that

| ;
L= ((& Dy Dju - DNDju>

(5.19) L+I > %(( Jem;

2" p D DyDu
1+|Eu|2)3/2 ! J )

1
— = <7é (DNJ . m,'j + DN(Jmij)), D,'I/l . Dju>

2\\/1+ |Eu|?

—C(1+ M)

1+ [Eul?’

L+ (¢ + D8 + £\ DL |Dul) + (“—’DC' |DDNu|)] .
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Finally we estimate |Q;|. From the assumption on {m;} it is sufficient to assume
that i,j # N. Let us fix i and j. By integration by parts

D;({Dyv) >

5.20 ij = { JmyDitt, ———r ).
(5.20) 0; < P

Since Dju = D;¢ on {&y =0}, we see that

D:D D
Q= <J§mijDi¢;17Nu> + <JDJC : WlijDi¢,#>

V1 + |Eul? V1 + |Eul?
D;({Dn¢)
—{ JmyDju, ZEEND) N\ _ BB, 4+ By, say.
< ij T B 1 2 3 y

Easily, |By|, |Bs] < C(1 + M?).
Let f(s),g(s) and h(s) be any C! function. If g,h >0, we have

/! /
. L1 Vg +hf?)
(5.21) T 7 og(Vhf + g+ hf?)) 2hff+ i
1 Wi +g'

VR g H RV + g )

Here we set s =¢;, f=Dyu, g=1+ ZP7(1<N MpyDpu - Dyu and h = myy. Then

DjDNI/l o 1
V 1+ |Eul2 /MmN

D;(log(v/mny Dyu + /T + |Euf?))

1 DijN . DNM
2myy VmynDyu + /1 + |Eu|2
1 D; iMINN - (DNM)2 + ng

2\/WZNN \/1 |Eu| /M NNDNU+ \/ 1+ |E1/l

Hence

(522) B <JCD¢ \/_ D;(log(y/m NNDNu+\/1+|Eu|2))>

1 JCD¢ DmNN DNM
2 mNN \/M NNDN”+ \/1+|Eu|2

JC ¢ D; iMNN - (DNU)2 + ng
' \/mNN \/l+|Eu| \/ NND]\]U-{- \/1+|EM

= By1 + Bz + B3, say.
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By integration by parts

By = —<D,- (JCDi¢ : J%),log(vaNDN”JF Vit ’E”’2)>'

Since Dyu >0 on {&y =0} from our assumption,

1
0 < log(v/mynDyu+ /1 + |Eu|?) < log2 t5 log(1 + |Eul?).

So we have
|Bii| < CM[1 + < + | D] log(1 + |Eu?))).

Using the inequalities

A+ |DL log(1 + |Eul?)y = —(1, Dy ((¢ + | DL|) log(1 + |Eu|?))),

DD
|Dy log(1 + |Eu?)| < C(l +w>,

1+ |Eul?

we get

|DDNLI|

V1 + |Eul?

‘B]l‘ <CM

1+ <<+ D), >+(!D<\ +DIDLI | /1 + |Eul) .

Clearly, |Bi2| < CM and

[Djg| < C Z (ID;Dpg| |Dgu| + |Dyp| | Dyul).
D,q<N

So, |Bi3s] < CM(1+ M). From the above and (5.22) we obtain

1+M+(g+mm)

V1 + |Eul|?
+ CM(|DL| + |D|DC| [, /1 + [ Eul?).

(5.23) |BI| < CM

Hence it follows that

(5.24) |Q;j| < the right-hand side of [5.23).

Combining (5.2), [5.4), (5.7), (5.19), (5.24) with (5.5), we conclude that
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T T
&u 2 o JC 2
5.25 —J JC. |DDyv dz+—J 7 \DDyul* | dt

T

_ JO (JOu, Dy((Dyv)) dt — N JO (HJ, Dy ({Dyv)) dt

I ¢
< - ———— (DyJ -my + Dy(Jmy;)), Diu - Diu ) dt
2J< s (O it Datmy) >
d DDyul
+C1+C+M2+1+MJ C+DC,|7 dt
P ( >0< |D(| R

T
Lo+ M) JO (¢ +|DL + DD | + ¢ |DLP /T + | Eul?)

By Cauchy’s inequality we have for ¢ > 0

T T 2
_IPDn| _|DDyu”
JO <C+ |D(|, W) di géL (c.z,(l ; yEu|2)3/2> di
T
+ C(9) JO (C+ MDY TINT + [Eul?) dt

(from (4.3))

T 2
|DDNM|
géJ (J,————— | dr+ C(1 + Cy).
0 ( (1 + | Eu|*)*?

And on {&y =0}
(DnJ - myj + Dy(Jmy))Diu - D = (DyJ - myy + Dy (Jmyy))(Dyu)?

+ > (DnJ - mj + Dy(Jmy))Digp - Digp.
i,j#N

So from (5.25) we have completed the proof of |Proposition 5.1 O]

6. Main estimate (II).

Continuing the previous section, we proceed. The assumptions are the same as in
Section 5. We write ||[H[|; ,, = supj, < SUpgy(o,7)|DyH|. Our aim is to prove

ProrosITION 6.1.  Under the assumptions in Proposition 5.1, it holds that

o r JC 2
— ,|DDyu,|” | dt
4J0 (l—HEuv]z)m’ vt

T
< lj <# (DnJ - myy + Dy (Jmyw)), (DNuV)2> dt

2)o \\/1+ |Eu,|?

T
- J (J(NH + 0,4),{Dyu,ydt + C[1 + M* + C2 + C} + (J|H||, ,,)°)-
. ,
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We prove [Proposition 6.1 as follows. Similarly as in the previous section we denote
u,,v, and ¢, with u, v and ¢, respectively. We remember the estimate in [Proposition 5.1.
First we estimate the right-hand side of (5.2). We write

—(HJ, DN(CDNU)) = —(HJ, DN@,DNM)) + (HJ,DN(CDN¢))
By integration by parts
—(HJ,DN(CDNM» = (DN(HJ), CDNM) + <HJ, CDNM>

Using (4.2), we have

T T

(HJ,Dy({Dyv))dt > NJ CHJ,(Dyuydt — C||H||, (M + ).
0

(6.1) —NJ

0

Next we estimate the third term on the left-hand side of (5.2). By integration by
parts

—(JOu, Dy ((Dyv)) = (JDNOu, {Dyv) + (DyJ - 81, {Dyv) + {JO,u, {Dyv).
Since O;u = 0;¢ on {&y =0},
(JOu,{Dyvy = {J 01, (Dyuy — {J0:¢p, (DN ).
Hence we have
(6.2) —(JOu, Dy ((Dy)) = (JDyOu, (Dyv) + (DyJ - 3, {Dyv)
+ (J8,,{Dyud — CM>.

We write

(&J,0,(Dyu)*) — (JDnOwu, (D).

N —

(JDN(?,u, éDNU) =
By integration by parts

T T
JO (JDyOu, (Dyv) dt = % (¢, (Dyu)®)|E, - JO (JDyOu, Dy ) dt

and
—(JDNOwu,{Dn¢) = (JOu,(Dy¢) + (D (JC) - 0, Dn) + {J 01, (Dnh>.

So we have

T

[ Upstu ooz 2@, (0ug)( 0%+ [ Vo DR
0 0

T T
+ JO (Dy(JC) - s, D) it + JO (Joub, LDy d.

This implies that

T T

(JOu, (DX ¢) dt + J (Dy(JC) - u, Dy¢p) dt — CM>.

T
J (JDNOu,{Dyv) dt > J
0

0 0
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Combining this with [6.2], we obtain

T

(6.3) — JOT(Ja,u, Dy((Dyv)) dt > L (JOu, (D3 ¢) dt

T

T
+ J (DN<CJ) . 6tu, DN¢) dt + J (DNJ . 6,u, CDNM> dt
0 0

T

T
— J (DnJ - 0;u, (DN @) dt—l—J (J 0, (Dyud dt — CM?,
0 0

We calculate each term on the right-hand side of [(6.3). We see that

T T
J (Jou, (D2 ) dr:—J (Ju, D30, dt + [(Ju, CDA )],
0 0

T

L (D (JC) - Gy, Dyeh) di = — JO (DN (JC) -, Dydu) di + [(Dy(JC) - u, D)Ly

and
T T
JO (DNJ . 5;1/!, é’DN¢) dt = — JO (Z:DNJ U, DN8,¢) dt + [(Q/DNJ U, DN¢)]IT:0
Hence

T
J (Dx(JC) - 24, D) ],

T
J (JOu, (D3 ¢) dt
0

0

)

T
J (DNJ - 0, CDN¢> dl" < CCiM.
0

Therefore it follows from that

T

T
(64) — JO (J&lu, DN(CDNU» dt > JO (DNJ . (%u, CDNM) dt

T
+ J (Jo,,{Dyu>dt — CM(Cy + M).
0

We estimate the first term on the right-hand side of [6.4). From we have

(6.5)  (DnJ - 0u,{Dyu) = &(J 'DyJ - D;(JmyDu), {Dyu)
-1 Iy
+(J ' DyJ - D | ——=.—=Diu |,{Dyu | — N(DyJ - H,{Dyu).

We write
(J~'DyJ - Dj(JmyDiu), {Dyu)

= (DnJ - myD;Diu, {Dyu) + (J ' DyJ - Dj(Jmy) - Diu,{Dyu).
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If i or j=N, we use

|(DyJ - myD;Diu, (Dyu)| < 6(L, | DDyul?) + C(O) (&, |Dul?), 6> 0.
If i,j # N, we have

(DnJ - miiD;Diju, {Dyu) = —(DyJ - myDiu, {D;Dyu)
— (Dj((DNJ - myy) - Diu, Dyu).

Thus in any case

|(DNJ - myDDyu, {Dyu)| < 8(¢, |DDyul*) + CO)(¢ + | DL, |Dul?).

From the above and (4.2) we obtain

T
(6.6) J \(J7'DnJ - D;(Jmy; - Diut), {Dyu)| dt
0

T
< 5J (&, |DDyul*) + CCre™".
0

Next by integration by parts

Jm..
6.7 J'DyJ - D | ——L—Du |,(Dyu
(6.7) ( N ./< ERYE > 4 N>

min
—( {DyJ ————=Dju- Dyu ).
< NS+ [Eul? N

From the assumption on {my;} the last term on the right-hand side equals

myn 2
—<CDNJ7\/W7 (Dnu) >

Since

mi; 1  Dymy

we have



Prescribed mean curvature 1193

mij;
—| {DyJ - —————Dju, DyDju
< SRV e o E R

| Dym;
= —((DnJ, Dy v/ T+ [Eul) +3 (CDNJ,NimJD,-u - Dju>.

By integration by parts

—({DnJ, Dy 1+ |Eu|?) = (Dn({DNJ), /1 + |Eu|?) + {{DNnJ, /1 + | Eu|?).

This implies

—<CDNJ'WDM DyD; ”) > {{DnJ, /1 + [Eu|?) — C[1 + ({+ | DL, | Dul)).

Hence from we obtain

Jm..
J'DyJ - Di| ——L—Du |,(Dyu
( ' ’(wﬂmz ) )

2
<€DNJ \ 1 + \Eu|2 \/TT(DNL{) >

— C[1 + ({+ D], [Dul)].

Here we note that for &y =0

‘\/1 + |Eul? - (Dyu)*

\/1+|E |2

1

S —
V1 + |Eul?

< C(1+ M).

—+ E m,]Dlu . Dju
i,j#N

Hence from (4.2) again we have

r Jm;;
6.8 J J'DyJ - Di| ——L—Du |,(Dyu | dt > —C(1 + M + G).
( ) O( N ]( 1+|Eu|2 )C N) ( 2)

The last term on the right-hand side of (6.5) becomes

T
(6.9) —NJ (DxJ - H,(Dyu)dt > —CG||H]|,.
0
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Combining [(6.6), (6.8), (6.9) with (6.5), we obtain

T T
J (DNJ . 6,14, CDNL{) dt > —85J (C, |DDNM|2) dt
0 0

—C(1+ M+ C) - CG|H|,.

Therefore it follows from that

T T
—J (J&tu,DN(CDNv))dtz—séj (¢, IDDyul?) dt
0 0

T
—i—J (I8, {Dyuy dt — C(1 + M?* + MCy + Cy + C1||H||,).
0

Here we use the inequality |DDyu|* < 2(|DDyv|* + |[DDy¢|?). Then we obtain

T T
(6.10) - L (Jou, Dy (CDyv)) dt > —2¢0 JO (£, |DDyv|?) dt

T
+j (o, EDxud i — C(1+ C2+ C2 4 M? + (| H]|, ).
0

Combining (6.1) and (6.10) with [Proposition 5.1, we complete the proof of
6.1. O]

We take the positive constant dy in [2.3]. We see that

1

1
V1 + |Eu,|? MyN

because Dyu, >0 on {{y =0}. Hence it holds that

(6.11)

Dyu, on {{y =0},

%<; (DnJ - myy + Dy (Jmyy)), (DNMV)2> —{J(NH + 0,¢),{Dyu,

V' 1+ |Eu,|?

< <\/ﬁ (% (DnJ -myy + DN<JmNN))> ; (DN”v)2>

_ <ﬁ Jiny (NH + 6,4), (DNuv)2>.

Here we use the assumption

NH + 0,¢ > Ndy on I71 x (0,T).

Then from (2.3’) and |[Proposition 6.1 we obtain

ProPOSITION 6.2.  Suppose the assumptions in our theorem. Then it holds that

T J¢ 2
—23/2,|DDNUV| dr < C},
0o \(1+ |Eul|”)

where Cs is a positive constant independent of v.
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On the left-hand side of the estimate in |[Proposition 5.1, we replace |DDNu|2 with
\DD,-u]z, i # N. Then we see more easily that the boundary integral on the calculation
vanishes. Hence we have also

ProrosITION 6.3.  Under the assumptions in our theorem it holds that for 1 <i < N

T
4 2
=~ |DDu,)? | dt < C;.
L <(1 + | Eu|*)¥?

7. Barriers.

Let u be the function in (2.8). In this section we show that wue
C(QrU (I3 x(0,7))) and u = ¢ on I x (0, 7T) under the assumptions in our theorem.
Its proof is analogous to [11], where it was assumed that H = 0 and ¢(x,7) = ¢(x). But
in order to make sure we describe the proof. As stated in Section 2, the method is to
construct the upper and lower barriers. Let ¢, be the function in Section 2 for any
fixed v.

Let x° be any fixed point in /5. Let us take p > 0 as sufficiently small and fix
it. We consider the following in (2N B,(x%)) x (0,T). For a positive number K we
set

$E(x,1) = ¢, (x, 1) £ K|x — "%,
which satisfies
$Ee CADr), $E.0) = (x%1) 0<i<T.
Taking K as sufficiently large, we have
¢7>C and ¢ <-C; on (2N3B,(x°) x (0, T),

where C) is the constant in (4.1).

In Sections 7 and 8 write D,, with D;. For each v we define an operator Q, as
follows;

0.(n) = &x(1 +|Dy|*)*? An + (1 + |Dy|*) An — D - Dy - DiDjyy
— (1+ |Dy)*)**(0m + NH).

When we remove the first term on the right-hand side of the above definition, the new
quantity is denoted by Qo(7).

As well-known a function v,(w,) is called a upper(lower) barrier relative to Q,, H
and ¢, at x" e I, respectively, if v,(w,) satisfies

i) v(wy) e H*1{(QNB,(x%)) x (0,7)},

(i) v, =@ (wy =4¢,) on (02N B,(x%)) x (0,T),

(i) 0, > g7 (0 < ¢,) on ((2N3B,(x") x (0, T) U (RN B, (") x {1 =0}),
(iv) O.(vy) <0 (Qy(wy) = 0) in (2N B,(x?)) x (0,T).

PrROPOSITION 7.1.  There is an upper(lower) barrier v,(w,), respectively, under the
assumptions in our theorem.
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Proor. Let ¢ be a positive number determined later. We define y(s) =
(1/c)log(1+s) for s>0. We see that ' >0 and " <0. We set d(x)=
inf,coo|lx — y| and I, = {xe Q|d(x) < u} for u>0. As well-known d(x) belongs to
C?(I,) and |Dd| =1 in I, Thus DD;d-Dd =0in I, fori=1,...,N. From now on
we often denote D;f by f; simply.

We set v, = ¢ +Y(d) and w, = ¢, —y(d). Then (i)—(iii) is trivial. We prove the
property (iv) only for v,. The case for w, is similar. Thus it is sufficient to prove that

(7.1) Oo(v,) <0 in (2N B,(x%)) x (0, T).

An easy computation shows that
Qo(v) = (L+|Dg; 1) A g7 — (7)) (87)y + (L + [DGT P = (67),(h7)dicty )"
+ ((L+ D! 1Py d — (1) (), — (D) (il 87), + di(47),)
+2(Dgf - DA) AGIW' + (Mg — dy(di(d]); + di(¢)),) + 2(Dg)) - Dd) Ad
— didy(p1) )" + (Ad — dididy)p” + (2D} - Dd) — didy(di(¢)),

(D)WY — (1 + D[+ 4" +2(Dg - Dd)Y') (0,47 + NH).

Since

($1)i(d)),did; < |DY|?,  dididy =0
and

didj(di(¢j)j + d/(‘/ﬁ)z) = 2(D¢j ’ Dd>7
we have

(7.2) Qo) < (1+[DgS D) A = (D)(60), (85 + "
+ (L DG P) Ad = (67),(87) iy = (87) (il 7)), + (7))
+2(DgS - DAY AGIW' + (A p! — dy(di(4)), + di(4)),)
+2(Dgf - D) Ad — didi (7)) + Ad -y
+ (14 D¢ | + ¢ +2(Dg) - DAYy (N|H| + 0, ).

Generally speaking, the following is known: If |G| < ((N —1)/N)A on 7y, then
Ad+ N|G| <0 on y, where y is a portion of 02 (see e.g., [4]). Thus we see that

Ad+N(1+0)|H| <0 on I> x(0,7)

from our assumption. And we can take a positive number x such that x < |H| on
I5 x (0, 7). Then we have

Ad+N(1+§>|H| < —gék on I3 x (0,7).
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If |0,47] < (2N/3)(0rc/(2+9)) on I x (0,T), then (1+ (6/2))|0,4,| < (N/3)dx and
o) n N
Nd + 1—|—§ (N|H|+ [0, ]) < —gék on I3 x (0,7).
Hence
Ad " + (1 + [Dg] 1> + 9™ +2(Dgf - DAY’ (N|H| + |0,47 )
<C+Cy"” - %5@’3 on Is x (0,T).
More precisely, we have used the inequality

(c1 + caa+a*)** < (1 —i—%é)cﬁ + C(0)(1 + a?)

for a>1 and 6 > 0. From (7.2) this means that
Qo(v) < C+ CY” —coy” in (2 x B,(x°)) x (0,7)

for some ¢y > 0. The right-hand side of this inequality is negative if 1 « 1/¢(1 + p).
Thus we have finished the proof of [Proposition 7.1 ]

We set
$F(x, 1) = (x,1) £ K|lx —x°°, v=¢"+y(d) and w=4¢ —y(d).

Then the following proposition is easily seen from the proof of [Proposition 7.1.

ProPOSITION 7.2. It holds that
30 and wy 3w in QNB,(x°) x [0,7T] (v — o0).
Lastly we have

ProrosITION 7.3.  Suppose the assumptions in our theorem. Let u be the solution of
(2.9) satisfying (2.8). Let us set 6' = (2N /3)(0x/(2+0)). Then it holds that u belongs
to C(QrU([3 x(0,T))) and u=¢ on I x (0,T).

Proor. Let (x°,7%) e 15 x (0,T). Let {¢,} be the sequence in (2.8). Let v,(w,)
be the upper(lower) barrier in [Proposition 7.1. Then v,(w,) does not depend on g,
respectively. Let u, be the solution of [2.7]. We see that

Wy Sy < v, on (RN B,(x°) x (0,T))

and
Ou(vy) < Qult) < Qu(wy) in (RN B,(x")) x (0, 7).
Then by the comparison theorem it holds that
wy <u, <v, In (QﬂBp(xO)) x (0,7).
Hence

1 (x, 1) = ¢, (x°, )] < max{[vu(x, 1) =, (x°,10)], Pwu(x, 1) — 4,(x", %)}
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for (x,7) € (RN B,(x")) x (0,T). Letting u — oo, we have

ju— ¢(x°,1%)] < max{fo — ¢(x°, )], |w — g(x, %)}

in (2N B,(x%) x (0,T), from [Proposition 7.2. If we take (x,7) — (x°°), then
u(x,t) — #(x°,¢°). This completes the proof of [Proposition 7.3. O

8. Proof of our theorem.

As stated at the end of Section 2, it is enough to prove that the trace of u — ¢
equals 0 on 77 x (0, T), where u is the function in (2.8). We denote by the same {u}
any subsequence of {v}.

First we prepare the following

PropoSITION 8.1. Let u, be the solution of the approximating problem (2.7).
Then there is a positive sequence {o,} with o, — 0 (@ — o0) such that for 1 <i< N

D,-uﬂ

— s Duin L'(Qx(0,T U — 00).
T e D L@ 0.1) (a0
Proor. We determine {«,} later. By the convergence theorem

D,-u

— S Duin L'(Qx (0,T)) (u— ).
(1 + [Duy )™
So it is enough to prove that

Di(u, — u)

[ S o TN i 1 X o).
(1 + | Duy)*)* 0in L(2x(0,7)) (u )

(8.1)

From (2.8) we can take a sequence {Oy}, subdomains of Q7 such that O, < Qr,
Or 1 Qr (k— o) and for each k

Diuﬂ 3D,l/l in Ok (,u — OO)

Retaking some subsequence of {u,}, we may assume that
|
|Diju, — Diu| < — in O,.
u

Let us take a positive sequence {«,} such that o, — 0 (x# — o) and
(8.2) 107 — O, =0 (u— ).
In fact it is possible, because is equivalent to the following

% log|Qr — Oy — =00 (1 — ).

o Jo (14 |Du,|*)™ 0, Jaexo1)-0,

=1, +J,, say.

We write

g
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Easily I, - 0 (x— o). And

| < J | D' dxdt + J |Diu| dxdt.
QT_O/l QT_O/l

Since Due L'(Qr),
J |Diu| dxdt — 0 (u— o0).
QT70/1
By Holder’s inequality

120,
| Du,,| dxdt) :

Or

J | Diwy| 2 ddr < |01 — Ou|2aﬂ (J
QT_O/l

Hence J, — 0 (4 — o) from (4.3) and (8.2). This means (8.1). Thus we have fin-
ished the proof. ]

Finally we prove our theorem.
Let P be any fixed point on 77 and Bjs(P) be the ball in the definition of Property
(4). Let ¥ be any function in Ci°(Bs(P) x (0,T)). It is sufficient to prove that

T

T
(8.3) J J (u — @)D dxdt = — J D;(u— ¢) - dxdt
B;(P)NQ

0 0 J B;(P)NQ

for any fixed i/ with 1 <i < N.
We take the sequence {o,} in |[Proposition 8.1. We have

D; (( o] > B ( oy — 201, (uy — @) Dty D ity

1+ |Duu|2>% 1+ |D“ﬂ|2)aﬂ (1+ |D”ﬂ|2)aﬂ+1 '

Hence from

D, Uy _¢2 |- Di(u, _f)a < Cu, |DD;uu2| .
(L4 [Du )™ ) (14 | Du| )™ (1 + [Du )2+

And from [Proposition 6.3

T DD;u,|?
(8.4) J J DDl dxdi < C.
0 (pne (1 + |Du,|”)

By Schwarz inequality

T DDju
J J | 2 A(lz|a 2 dxdt
0 JB;P)ne (1 + |Duy,|”)

1/2 [ ¢T \DDu ’2 1/2
< \/1 4+ |Du dedt) J J K dxdt )
(JQT e ( o Japna (1 + |Du,l?)*?

So the left-hand side is uniformly bounded from (4.3) and [8.4).
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From the above we see that

' Uy — ¢
' i\ | Wdxd
(&) JO JB(;(P)QQD ((1+|Duﬂ|2)°‘ﬂ> W dxdt
[ _Dilwy = 9) B B
JO J ( )mQ(l‘i“Duﬂlz)“#ldedt 0 (Iu OO)

On the other hand

T J—
J J D= ).y avds
0 JBy(P)NQ (1 + [Du,|”)™
T _
:J J D[ )y dvar
0 JBs(P)nNQ (1 + |Duy,|™)™
T _
+J J Dl' ¢,u—¢2a 'ldedl‘,
0 JB;(P)NQ (1 4 |Duy,|")™

T e — @,
D[ —2—"1 ).y dxdr
0 JBy(P)NQ (14 |Duy,|")™

T u J—
_ _J J by dvar
0 J;p)ne (1 + [Du,|”)™

and

JO JB&(P)HQ o ((1 - \Duﬂ\z)“") Ve

T ¢,u - ¢
=— ——————— Dy dxdt + K,,.
0 Jrne (14 |Du,|”)™

Hence we have

T Uy — ¢
Di PPN lﬁdxdt
0 JBs(P)NQ (1 + |Du,|")™

T u _¢
o Jrna (14 |Du,|”)™

Here K,,K; — 0 (u#— o0). By (2.8) the right-hand side tends to

- JT ,[BJ(P)ng(u ~ D dxd

0

as u — oo. And from [Proposition 8.1 we have
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T Di(u, — ¢)
————" W dxd
Jo J ( )nQ(1+|Duﬂ|2)°‘”lp it

—>JTJ Di(u—¢) - Ydxdt (u— o0).
0 JBs(P)nQ

Therefore, by using (8.5) we finally conclude (8.3). It complets the proof of our
theorem.
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