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Abstract. If X is a smooth complex projective 3-fold with ample canonical divisor

K, then the inequality K 3
b ð2=3Þð2pg � 7Þ holds, where pg denotes the geometric genus.

This inequality is nearly sharp. We also give similar, but more complicated, inequalities

for general minimal 3-folds of general type.

Introduction.

Given a minimal surface S of general type, we have two famous inequalities, which

play crucial roles in detailed analysis of surfaces. One is the Bogomolov-Miyaoka-Yau

inequality K 2
Sa 9wðSÞ ([M1], [Y1], [Y2]), while the other is the classical Noether in-

equality K 2
Sb 2pg � 4b 2wðSÞ � 6. The fundamental importance of these inequalities

in mind, M. Reid asked in 1980s.

Question 1. What would be the right analogue of the Noether inequality in di-

mension three?

Let X be a minimal threefold. If KX is Cartier and very ample, then K 3
Xb 2pg � 6

by Cli¤ord’s theorem applied to the intersection curve cut out by two general members

of jKX j. In 1992, Kobayashi [Kob] studied Gorenstein canonical 3-folds and obtained

an e¤ective, but partial, upper bound of K 3
X in terms of pgðX Þ for such varieties. One

of his discoveries is that too naive a generalization of the classical Noether inequality is

in general false; there are a series of smooth projective 3-folds X with ample canonical

divisor such that

K 3
X ¼

2

3
ð2pgðXÞ � 5Þ; ðpgðXÞ ¼ 7; 10; 13; . . .Þ: ð0:1Þ

In what follows, we show that Kobayashi’s examples indeed attain the minima of K 3
X ,

provided X is smooth and KX is ample:

Corollary 2. If X is a smooth complex projective 3-fold with ample canonical

divisor. Then

K 3
Xb

2

3
ð2pgðX Þ � 7Þ:

When X is not necessarily smooth, we have the following
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Theorem 3. Let X be a minimal projective 3-fold of general type (with only Q-

factorial terminal singularities). Assume that nþ 1 ¼ pgðX Þb 2 and let f1 : X ! Pn be

the canonical map. Then we have the following inequalities according to the dimension of

f1ðXÞ:

(1) K 3
Xb 2pgðX Þ � 6 if dim f1ðXÞ ¼ 3.

(2) K 3
Xb pgðXÞ � 2 if dim f1ðXÞ ¼ 2 and pgðX Þb 6. If, in addition, a general

fibre of f1 is a curve of genusb 3, then K 3
Xb 2pgðX Þ � 4.

(3) When f1ðXÞ is a curve, let S be the minimal model of a general irreducible

member of the movable part of jKX j and put a ¼ K 2
S , b ¼ pgðSÞ. Assume

k ¼ ½ðpg � 2Þ=2�b 4, where ½x� stands for the round down of x. Then we have

K 3
Xb

min
6k2

3k2 þ 8k þ 4
� pgðX Þ �

4

3

� �

;
6k

3k þ 4
� pgðX Þ �

5

3

� �� �

; if ða; bÞ ¼ ð1; 1Þ

k2

ðk þ 1Þ2
� a � ðpgðXÞ � 1Þ; if ða; bÞ0 ð1; 1Þ:

8

>

>

>

>

<

>

>

>

>

:

The intersection numbers between Weil divisors on singular surfaces are not neces-

sarily integers, which causes di‰culties to get optimal estimates in case (3).

Remark 4. We make extra assumptions on pgðX Þ in Theorem 3(2), 3(3) simply for

getting better inequalities. Our method works also for the case pgðXÞb 2. Recall that

the geometric genus of a surface of general type with K 2
S ¼ 1 is bounded by 2 from

above. Furthermore, the surface in case (3) of the theorem has positive geometric

genus. Hence Theorem 3 asserts that K 3
Xb 2pgðX Þ � 6 unless X is canonically fibred

by curves of genus two in case (2) or by surfaces with a ¼ K 2
S ¼ 1, b ¼ pgðSÞ ¼ 2 in

case (3).

When X is Gorenstein, we have the following theorem, which improves the results

known so far:

Theorem 5. Let X be a minimal projective Gorenstein 3-fold of general type with

only locally factorial terminal singularities.

(1) Assume that X is neither canonically fibred by surfaces S with c1ðSÞ
2 ¼ 1,

pgðSÞ ¼ 2 nor by curves of genus two. Then K 3
Xb 2pgðXÞ � 6.

(2) Assume that X is smooth and that X is not canonically fibred by surfaces S with

c1ðSÞ
2 ¼ 1, pgðSÞ ¼ 2. Then K 3

Xb ð2=3Þð2pgðXÞ � 5Þ.

(3) Assume that the canonical model of X is factorial. If K 3
X < ð2=21Þ �

ð11pgðXÞ � 16Þ, then X is not smooth and is canonically fibred by curves of genus two.

These inequalities have a certain interesting application which will be presented in

another note.

1. Preliminaries.

1.1. Conventions.

Let X be a normal projective variety of dimension d. We denote by DivðX Þ the

group of Weil divisors on X . An element D A DivðXÞnQ is called a Q-divisor. A Q-
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divisor D is said to be Q-Cartier if mD is a Cartier divisor for some positive integer m.

For a Q-Cartier divisor D and an irreducible curve CHX , we can define the inter-

section number D � C in a natural way. A Q-Cartier divisor D is called nef (or nu-

merically e¤ective) if D � Cb 0 for any e¤ective curve CHX . A nef divisor D is called

big if Dd > 0. We say that X is Q-factorial if every Weil divisor on X is Q-Cartier.

For a Weil divisor D on X , denote by OX ðDÞ the corresponding reflexive sheaf. Denote

by KX a canonical divisor of X , which is a Weil divisor. X is called minimal if KX is a

nef Q-Cartier divisor. X is said to be of general type if kðX Þ ¼ dimðXÞ. We refer to

[R1] for definitions of canonical and terminal singularities.

The symbols @;1 and ¼Q respectively stands for linear, numerical and Q-linear

equivalences.

1.2. Vanishing theorem.

Let D ¼
P

aiDi be a Q-divisor on X , where the Di are distinct prime divisors and

ai A Q. We define

the round-down SDT :¼
X

SaiTDi; where SaiT is the integral part of ai;

the round-up MDN :¼ �S�DT;

the fractional part fDg :¼ D� SDT:

We always use the Kawamata-Viehweg vanishing theorem in the following form.

Vanishing Theorem ([Ka] or [V1]). Let X be a smooth complete variety, D A

DivðXÞnQ. Assume the following two conditions:

(i) D is nef and big;

(ii) the fractional part of D has supports with only normal crossings.

Then H iðX ;OX ðKX þ MDNÞÞ ¼ 0 for all i > 0.

Note that, when S is a surface, the above theorem is true without the condition (ii)

according to Sakai ([S]) or Miyaoka ([M3, Proposition 2.3]) (also cited in [E-L, (1.2)]).

1.3. Set up for canonical maps.

Let X be a projective minimal 3-fold with only Q-factorial terminal singularities.

Suppose pgðX Þb 2. We study the canonical map f1 which is usually a rational map.

Take the birational modification p : X 0 ! X , following Hironaka, such that

(1) X 0 is smooth;

(2) the movable part of jKX 0 j is base point free;

(3) p�ðKX Þ is linearly equivalent to a divisor supported by a divisor of normal

crossings.

Denote by g the composition f1 � p. So g : X 0 ! W 0
JPpgðX Þ�1 is a morphism.

Let g : X 0 !
f
W !

s
W 0 be the Stein factorization of g. We can write

KX 0 ¼Q p�ðKX Þ þ E ¼Q S1 þ Z1;

where S1 is the movable part of jKX 0 j, Z1 the fixed part and E is an e¤ective Q-divisor

which is a Q-linear combination of distinct exceptional divisors. We can also write

p�ðKX Þ ¼Q S1 þ E 0
;
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where E 0 ¼ Z1 � E is actually an e¤ective Q-divisor and so Mp�ðKX ÞN means MS1 þ E 0
N.

We note that 1a dimðWÞa 3.

If dim f1ðX Þ ¼ 2, we see that a general fiber of f is a smooth projective curve of

genus gb 2. We say that X is canonically fibred by curves of genus g.

If dim f1ðXÞ ¼ 1, we see that a general fiber F of f is a smooth projective surface

of general type. We say that X is canonically fibred by surfaces with invariants

ðc21 ; pgÞ :¼ ðK 2
F0
; pgðF ÞÞ, where F0 is the minimal model of F .

2. Several simple lemmas.

The following result is a direct application of an inequality on curves proved by

Castelnuovo ([Cas]) and Beauville ([Be]).

Lemma 2.1 ([Ch1, Proposition 2.1]). Let S be a smooth projective algebraic surface

and L an e¤ective, nef and prime divisor on S. Suppose ðKS � LÞ � Lb 0 and jLj defines

a birational rational map onto its image. Then

L2
b 3h0ðS;OSðLÞÞ � 7:

Lemma 2.2. Let S be a smooth projective surface of general type and L a nef divisor

on S. The following holds.

(i) Suppose that jLj gives a non-birational, generically finite map onto its image.

Then L2
b 2h0ðS;OSðLÞÞ � 4.

(ii) Suppose that there exists a linear subsystem LH jLj such that L defines a

generically finite map of degree d onto its image. Then L2
b d½dimC L� 1� where

dimC L denotes the projective dimension of L.

Proof. (i) is a special case of (ii).

In order to prove (ii), we take blow-ups p : S 0 ! S such that Fp �L gives a

morphism. Let M be the movable part of p�L. Then h0ðS 0;MÞ ¼ dimC Lþ 1 and

M 2
b dðh0ðS 0

;MÞ � 2Þ:

Since Ma p�ðLÞ, we get the inequality L2
bM 2

b dðdimC L� 1Þ. r

Lemma 2.3. Let C be a complete smooth algebraic curve. Suppose D is a divisor on

C such that h0ðC;OCðDÞÞb gðCÞ þ 1. Then degðDÞb 2gðCÞ.

Proof. This is a direct result by virtue of R-R and Cli¤ord’s theorem. r

Lemma 2.4. Let S be a smooth minimal projective surface of general type. The

following holds:

(i) jmKSj is base point free for all mb 4;

(ii) j3KSj is base point free provided K 2
Sb 2;

(iii) j3KSj is base point free provided pgðSÞ > 0 and pgðSÞ0 2;

(iv) j2KSj is base point free provided pgðSÞ > 0 or K 2
Sb 5.

Proof. Both (i) and (ii) can be derived from results of Bombieri ([Bo]) and Reider

([Rr]).

If pgðSÞb 3, then K 2
Sb 2 by Noether inequality. The base point freeness of j3KSj
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follows from (ii). If K 2
S ¼ 1 and pgðSÞ ¼ 1, j3KSj is base point free by [Cat]. If

K 2
S ¼ 1 and pgðSÞ ¼ 2, j3KSj definitely has base points. So (iii) is true.

(iv) follows from [Ci, Theorem 3.1] and Reider’s theorem. r

Lemma 2.5. Let S be a smooth projective surface of general type. Let s : S ! S0

be the contraction onto the minimal model. Suppose that there is an e¤ective irreducible

curve C on S such that Ca s�ð2KS0
Þ and h0ðS;CÞ ¼ 2. If K 2

S0
¼ pgðSÞ ¼ 1, then

C � s�ðKS0
Þb 2.

Proof. We may assume that jCj is a free pencil. Otherwise, we blow-up S at base

points of jCj. Denote C1 :¼ sðCÞ. Then h0ðS0;C1Þb 2. Suppose C � s�ðKS0
Þ ¼ 1.

Then C1 � KS0
¼ 1. Because paðC1Þb 2, we see that C2

1 > 0. From KS0
ðKS0

� C1Þ ¼ 0,

we get ðKS0
� C1Þ

2
a 0, i.e. C2

1 a 1. Thus C2
1 ¼ 1 and KS0

1C1. This means KS0
@C1

by virtue of [Cat], which is impossible because pgðSÞ ¼ 1. So C � s�ðKS0
Þb 2. r

Lemma 2.6 ([Ch4, Lemma 2.7]). Let X be a smooth projective variety of dimension

b 2. Let D be a divisor on X such that h0ðX ;OX ðDÞÞb 2. Let S be a smooth prime

divisor on X and assume that S is not contained in the fixed part of jDj. Denote by M

the movable part of jDj and by N the movable part of jDjSj on S. If the natural

restriction map

H 0ðX ;OX ðDÞÞ !
y
H 0ðS;OSðDjSÞÞ

is surjective, then MjSbN and, in particular,

h0ðS;OSðMjSÞÞ ¼ h0ðS;OSðNÞÞ ¼ h0ðS;OSðDjSÞÞ:

3. Proof of Theorem 3.

We give estimates of K 3
X according to the dimension of the canonical image f1ðXÞ.

Let the notation be as in (1.3) throughout this section. Thus S1 is a general member of

the movable part of jp�ðKX Þj on a resolution of the indeterminacy of f1.

The first case is dim f1ðXÞ ¼ 3. Kobayashi ([Kob]) proved

Proposition 3.1. Let X be a projective minimal algebraic 3-fold of general type with

only Q-factorial terminal singularities. Suppose dim f1ðXÞ ¼ 3. Then

K 3
Xb 2pgðXÞ � 6:

Proof. We give a very simple proof of this result in order to keep this note self-

contained.

In this situation, a general member S1 A jS1j is a smooth irreducible projective

surface of general type. Because KX is nef and big, we have K 3
X ¼ p�ðKX Þ

3
bS3

1 .

Denote L :¼ S1jS1
. Then L is a nef and big divisor on S1 and jLj defines a generically

finite map onto its image. It is obvious that

h0ðS1;LÞb h0ðX 0
;S1Þ � 1 ¼ pgðXÞ � 1:

Note also that pgðX Þb 4 under the assumption of this proposition.

If jLj gives a birational map, then, by Lemma 2.1,

L2
b 3h0ðS1;LÞ � 7b 3pgðXÞ � 10b 2pgðX Þ � 6:
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If jLj gives a non-birational rational map, then, by Lemma 2.2,

L2
b 2h0ðS1;LÞ � 4b 2pgðXÞ � 6:

Therefore K 3
XbS3

1 ¼ L2
b 2pgðXÞ � 6. The proof is complete. r

The second case is dim f1ðXÞ ¼ 2. The general member S1 is an irreducible smooth

surface of general type. The canonical map gives a fibration f : X 0 ! W , and we let C

denote its general fiber, which is a smooth curve of genusb 2.

Proposition 3.2. Let X be a projective minimal algebraic 3-fold of general type

with only Q-factorial terminal singularities. Suppose dim f1ðX Þ ¼ 2 and pgðXÞb 6.

Then either gðCÞb 3 and K 3
Xb ð2=3ÞgðCÞðpgðX Þ � 2Þ or C is a curve of genus 2 and

K 3
Xb pgðXÞ � 2.

Proof. We prove the proposition through several steps.

Step 1 (bounding K 3
X in terms of ðL1;CÞ). Recall that we have p�ðKX Þ ¼Q

S1 þ E 0, where E 0 is an e¤ective Q-divisor. Put L1 :¼ p�ðKX ÞjS1
and L :¼ S1jS1

. Then

L1 is a nef and big Q-divisor on the surface S1 and jLj is composed of a free pencil of

curves on S1. It is obvious that L2
1bL1 � L. We can write

L ¼ S1jS1
@

X

a

i¼1

Ci 1 aC;

where ab h0ðS1;LÞ � 1b pgðXÞ � 2 and the C 0
i s are fibers of f contained in the surface

S1. Thus we see that

K 3
X ¼ p�ðKX Þ

3
bL2

1bL1 � Lb ðL1 � CÞ � ðpgðXÞ � 2Þ;

and we get a lower bound of K 3
X by giving an estimate of ðL1 � CÞ from below.

Step 2 (the generic finiteness of the tricanonical map f3). Look at the sublinear

system

jKX 0 þ Mp�ðKX ÞNþ S1jH j3KX 0 j:

We claim that f3 is generically finite whenever pgðXÞb 4. We only have to prove that

f3jS1
is generically finite for a general member S1. By the vanishing theorem, we have

jKX 0 þ Mp�ðKX ÞNþ S1j jS1
¼ jKS1

þ Mp�ðKX ÞNjS1
j

I jKS1
þ Mp�ðKX ÞjS1

Nj:

We want to prove that FjKS1
þMp �ðKX ÞjS1

Nj is generically finite. Because KS1
þ Mp�ðKX ÞjS1

N

bL, we see that jKS1
þ Mp�ðKX ÞjS1

Nj separates di¤erent fibers of FjLj. So we only have

to verify that FjKS1
þMp �ðKX ÞjS1

NjjC is finite for an arbitrary smooth fiber C of f contained

in S1. We have

L1 1Lþ EQ 1 aC þ EQ;

where ab pgðXÞ � 2b 2 and EQ :¼ E 0jS1
is an e¤ective Q-divisor on S1. Thus

L1 � C �
1

a
EQ 1 1�

1

a

� �

L1
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is a nef and big Q-divisor. Using the vanishing theorem again, we get

H 1 S1;KS1
þ ML1 �

1

a
EQN� C

� �

¼ 0:

This means that jKS1
þ ML1 � ð1=aÞEQNj jC ¼ jKC þDj, where D :¼ ML1 � ð1=aÞEQNjC is

a divisor on C with positive degree. Because gðCÞb 2, the linear system jKC þDj gives

a finite map, implying the generic finiteness of f3.

Step 3 (Estimation of ðL1 � CÞ). Since j3KX 0 j gives a generically finite map, so does

jM3jS1
j on the surface S1, where M3 is the movable part of j3KX 0 j. Thus FjM3jS1

j maps

general C of genusb 2 to a curve and hence M3jS1
� Cb 2. Noting that 3p�ðKX Þ ¼Q

M3 þ E3 where E3 is an e¤ective Q-divisor, we see that

3p�ðKX ÞjS1
� CbM3jS1

� Cb 2;

i.e., L1 � Cb 2=3. From this crude initial estimate, we derive a better one. To do this,

we run a recursive program (the a-program) below.

Pick up a positive integer a. We have

jKX 0 þ Map�ðKX ÞNþ S1jH jðaþ 2ÞKX 0 j:

The vanishing theorem gives

jKX 0 þ Map�ðKX ÞNþ S1j jS1
¼ jKS1

þ Map�ðKX ÞNjS1
j

I jKS1
þ MaL1Nj:

We see that aL1 � C � ð1=aÞEQ 1 ða� 1=aÞL1 is a nef and big Q-divisor. Using the

vanishing theorem on S1 again, we get

KS1
þ MaL1 �

1

a
EQN

�

�

�

�

�

�

�

�

jC ¼ jKC þDaj; ð3:1Þ

where Da :¼ MaL1 � ð1=aÞEQNjC with degðDaÞb Mða� 1=aÞL1 � CN. We have to use

several symbols in order to obtain our result. Let Maþ2 be the movable part of

jðaþ 2ÞKX 0 j. Let M 0
aþ2 be the movable part of

jKX 0 þ Map�ðKX ÞNþ S1j:

Clearly we have M 0
aþ2aMaþ2. Let Na be the movable part of jKS1

þ MaL1Nj. Then it

is easy to see M 0
aþ2jS1

bNa by Lemma 2.6. So

ðaþ 2ÞL1bQ Maþ2jS1
bM 0

aþ2jS1
bNa:

Let N 0
a be the movable part of jKS1

þ MaL1 � ð1=aÞEQNj. Then obviously NabN 0
a.

From (3.1) and Lemma 2.6, we have h0ðC;N 0
ajCÞ ¼ h0ðC;KC þDaÞ. Thus we see that

h0ðC;NajCÞb h0ðC;N 0
ajCÞ ¼ h0ðC;KC þDaÞ:

Now take a ¼ 2 and run the a-program. We get 4L1 � CbN2 � C. Because

a > 3 under the assumption, we see that degðD2Þb Mð2� 1=aÞð2=3ÞN ¼ 2. Thus

h0ðC;N2jCÞb gðCÞ þ 1. By Lemma 2.3, we have N2 � Cb 2gðCÞ. If gðCÞ ¼ 2, we get
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L1 � Cb 1 and thus the inequality K 3
Xb pgðX Þ � 2. If gðCÞb 3, we get L1 � Cb 3=2.

This is a better bound than the initial one. However this is not enough to derive our

statement. We have to optimize our estimation.

Step 4 (Optimization). As has been seen in the previous step, we have L1 � Cb 3=2

when gb 3. We take a ¼ 1 now and run the a-program. Since pgðXÞb 6, we have

ab 4. Thus

degðD1Þb M 1�
1

a

� �

3

2
N ¼ 2:

So h0ðC;N1jCÞb gðCÞ þ 1. Therefore we get, by Lemma 2.3, that

3L1 � CbN1 � Cb 2gðCÞb 6 whenever gðCÞb 3:

This means L1 � Cb 2, which is what we want. So we have the inequality

K 3
Xb

2

3
� gðCÞ � ðpgðXÞ � 2Þ ð3:2Þ

whenever gðCÞb 3. The proof is complete. r

The last case is dim f1ðXÞ ¼ 1. The canonical map gives a fibration f : X 0 ! W

where W is a smooth projective curve. Denote b :¼ gðWÞ. We see that a general fiber

F of f is a smooth projective surface of general type. Let s : F ! F0 be the contrac-

tion onto the minimal model. Note that we always have pgðFÞ > 0 in this situation.

We also have S1 @
Pb1

i¼1 Fi 1 b1F , where the F 0
i s are fibers of f and b1b pgðXÞ � 1.

Proposition 3.3. Let X be a projective minimal algebraic 3-fold of general type with

only Q-factorial terminal singularities. Suppose dim f1ðX Þ ¼ 1. Let kb 4 be an integer

and assume that pgðXÞb 2k þ 2. Then K 3
Xb ðk2=ðk þ 1Þ2Þ � K 2

F0
� ðpgðX Þ � 1Þ.

Proof. The proof proceeds through two steps.

Step 1 (bounding K 3
X in terms of L2). On the surface F , we denote L :¼ p�ðKX ÞjF .

Then L is an e¤ective nef and big Q-divisor. Because p�ðKX Þ1 b1F þ E 0 with E 0

e¤ective, we get

K 3
X ¼ p�ðKX Þ

3
b ðp�ðKX Þ

2 � F Þ � ðpgðX Þ � 1Þ ¼ L2 � ðpgðXÞ � 1Þ:

So the main point is to estimate L2 from below in order to prove the proposition.

Step 2 (bounding L2 from below by studying the ðk þ 1Þ-canonical map fkþ1). Let

Mkþ1 be the movable part of jðk þ 1ÞKX 0 j. Then we may write

ðk þ 1Þp�ðKX Þ ¼Q Mkþ1 þ Ekþ1

where Ekþ1 is an e¤ective Q-divisor. Therefore we see that ðk þ 1ÞLbnum Mkþ1jF .

Let Nk be the movable part of jkKF j. According to Lemma 2.4, jkKF0
j is base point

free. Thus Nk ¼ s�ðkKF0
Þ. We claim that Mkþ1jFbNk. Then ðk þ 1ÞLbNk and

we get

L2
b

1

ðk þ 1Þ2
N 2

k ¼
k2

ðk þ 1Þ2
K 2

F0
:
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So we have the inequality

K 3
Xb

k2

ðk þ 1Þ2
� K 2

F0
� ðpgðXÞ � 1Þ: ð3:3Þ

Now we prove the claim. In fact, f1 is a morphism if b > 0. In this case, we do

not need any modification and f : X 0 ¼ X ! W is a fibration. A general fiber F is a

smooth projective surface of general type, because the singularities on X are isolated.

Furthermore F is minimal because KX is nef. By Kawamata’s vanishing theorem for

Q-Cartier Weil divisor ([KMM]), we have H 1ðX ; kKX Þ ¼ 0. This means jkKX þ F j jF ¼

jkKF j. Noting that FaKX and using Lemma 2.6, we see that the claim is true in this

case.

We then consider the case with b ¼ 0. We use the approach in [Kol, Corollary

4.8] to prove it. The canonical map gives a fibration f : X 0 ! P1. Because pgðX Þb

2k þ 2, we see that Oð2k þ 1Þ ,! f�oX 0 . Thus we have

E :¼ Oð1Þn f�o
k
X 0=P1 ¼ Oð2k þ 1Þn f�o

k
X 0 ,! f�o

kþ1
X 0 :

Note that H 0ðP1; f�o
kþ1
X 0 ÞGH 0ðX 0;okþ1

X 0 Þ. It is well known that E is generated by

global sections and that f�o
k
X 0=P1 is a sum of line bundles with non-negative degree (cf.

[F], [V2], [V3]). Thus the global sections of E separates di¤erent fibers of f . On the

other hand, the local sections of f�o
k
X 0 give the k-canonical map of F and these local

sections can be extended to global sections of E. This essentially means Mkþ1jFbNk.

r

Proposition 3.4. Let X be a projective minimal algebraic 3-fold of general type with

only Q-factorial terminal singularities. Suppose that dim f1ðXÞ ¼ 1. Let kb 3 be an

integer and assume pgðXÞb 2k þ 2. If ðK 2
F0
; pgðFÞÞ ¼ ð1; 1Þ, then

K 3
Xbmin

6k2

3k2 þ 8k þ 4
� pgðXÞ �

4

3

� �

;
6k

3k þ 4
� pgðXÞ �

5

3

� �� �

:

Proof. From Step 2 in the proof of Proposition 3.3, we have shown that

ðk þ 1Þp�ðKX ÞjFbMkþ1jFb ks�ðKF0
Þ:

(Although we suppose kb 4 in Proposition 3.3, the case with k ¼ 3 can be parallelly

treated since j3KF0
j is base point free for a surface with ðK 2

F0
; pgðFÞÞ ¼ ð1; 1Þ.)

The canonical map derives a fibration f : X 0 ! W . Because qðF Þ ¼ 0, we have

qðXÞ ¼ h1ðOX 0Þ ¼ bþ h1ðW ;R1 f�oX 0Þ ¼ b;

h2ðOX Þ ¼ h1ðW ; f�oX 0Þ þ h0ðW ;R1f�oX 0Þ

¼ h1ðW ; f�oX 0Þa 1:

It is obvious that h2ðOX Þ ¼ 0 when b ¼ 0, since f�oX 0 is a line bundle of positive

degree. Anyway, we have qðXÞ � h2ðOX Þb 0. Thus we get

wðoX Þ ¼ pgðX Þ þ qðX Þ � h2ðOX Þ � 1b pgðX Þ � 1:
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By the plurigenus formula of Reid ([R1]), we have

P2ðXÞb
1

2
K 3

X � 3wðOX Þb
1

2
K 3

X þ 3½ pgðX Þ � 1�: ð3:4Þ

Let M2 be the movable part of j2KX 0 j. We consider the natural restriction map g:

H 0ðX 0
;M2Þ !

g
V2 HH 0ðF ;M2jF ÞHH 0ðF ; 2KF Þ;

where V2 is the image of g as a C-subspace of H 0ðF ;M2jF Þ. Because h0ð2KF Þ ¼ 3, we

see that 1a dimC V2a 3. Denote by L2 the linear system corresponding to V2. We

have dimL2 ¼ dimC V2 � 1.

Case 1. dimC V2 ¼ 3.

Since L2 is a sub-system of j2KF j, we see that the restriction of f2;X 0 to F is exactly

the bicanonical map of F . Because f2;F is a generically finite morphism of degree 4,

f2;X 0 is also a generically finite map of degree 4. Let S2 A jM2j be a general member.

We can further modify p such that jM2j is base point free. Then S2 is a smooth

projective irreducible surface of general type. On the surface S2, denote L2 :¼ S2jS2
.

L2 is a nef and big divisor. We have

2p�ðKX ÞjS2
bS2jS2

¼ L2:

We consider the natural map

H 0ðX 0
;S2Þ !

g 0

V2 HH 0ðS2;L2Þ;

where V2 is the image of g 0. Denote by L2 the linear system corresponding to V2.

Because f2 is generically finite map of degree 4, we see that jL2j has a sub-system

L2 which gives a generically finite map of degree 4. By Lemma 2.2(ii), we get L2
2b

4ðdimC L2 � 1Þb 4ðP2ðXÞ � 3Þ. Therefore we have

K 3
Xb

1

8
L2

2b
1

2
ðP2ðXÞ � 3Þb

1

2

1

2
K 3

X þ 3pgðXÞ � 6

� �

:

Therefore

K 3
Xb 2pgðXÞ � 4: ð3:5Þ

Case 2. dimC V2 ¼ 2.

In this case, dim f2ðFÞ ¼ 1 and dim f2ðXÞ ¼ 2. We may further modify p such

that jM2j is base point free. Taking the Stein factorization of f2, we get a derived

fibration f2 : X
0 ! W2 where W2 is a surface. Let C be a general fiber of f2. we see

that F is naturally fibred by curves with the same numerical type as C. On the surface

F , we have a free pencil L2 H j2KF j. Let jC0j be the movable part of L2. Then

h0ðF ;C0Þ ¼ 2. Because qðFÞ ¼ 0, we see that jC0j is a pencil over the rational curve.

So a general member of jC0j is an irreducible curve. According to Lemma 2.5, we have

ðC0 � s
�ðKF0

ÞÞFb 2 whence

ðp�ðKX Þ � CÞX 0 ¼ ðp�ðKX ÞjF � C0ÞFb
k

k þ 1
ðs�ðKF0

Þ � C0ÞFb
2k

k þ 1
:

Now we study on the surface S2. We may write
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S2jS2
@

X

a2

i¼1

Ci 1 a2C;

where the C 0
i s are fibers of f2 and a2bP2ðXÞ � 2. Noting that

ðp�ðKX ÞjS2
� CÞS2

¼ ðp�ðKX Þ � CÞX 0b
2k

k þ 1

and 2p�ðKX ÞjS2
bS2jS2

, we get

4K 3
Xb 2p�ðKX Þ

2 � S2 ¼ 2ðp�ðKX ÞjS2
Þ2S2

b a2ðp
�ðKX ÞjS2

� CÞS2
b

2k

k þ 1
ðP2ðXÞ � 2Þ

b
2k

k þ 1

1

2
K 3

X þ 3pgðX Þ � 5

� �

:

Equivalently

K 3
Xb

6k

3k þ 4
pgðX Þ �

10k

3k þ 4
: ð3:6Þ

Case 3. dimC V2 ¼ 1.

In this case, dim f2ðXÞ ¼ 1. Because pgðXÞ > 0, we see that both f2 and f1 give

the same fibration f : X 0 ! W after taking the Stein factorization of them. So we may

write

2p�ðKX Þ@
X

a 0
2

i¼1

Fi þ E 0
2 1 a 0

2F þ E 0
2;

where the F 0
i s are fibers of f , E 0

2 is an e¤ective Q-divisor, a 0
2bP2ðXÞ � 1 and F is a

surface with ðK 2
F0
; pgðFÞÞ ¼ ð1; 1Þ. So we get

2K 3
Xb a 0

2ðp
�ðKX ÞjF Þ

2
Fb

k2

ðk þ 1Þ2
ðP2ðX Þ � 1Þ

b
k2

ðk þ 1Þ2
1

2
K 3

X þ 3pgðXÞ � 4

� �

:

Equivalently

K 3
Xb

6k2

3k2 þ 8k þ 4
pgðX Þ �

8k2

3k2 þ 8k þ 4
: ð3:7Þ

Comparing (3.5), (3.6) and (3.7), we get the inequality. r

Propositions 3.1, 3.2, 3.3 and 3.4 imply Theorem 3.

4. Inequalities for minimal Gorenstein 3-folds.

This section is devoted to study lower bounds for K 3
X of Gorenstein 3-folds. Let X

be a projective minimal Gorenstein 3-fold of general type with only locally factorial
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terminal singularities. It is well known that K 3
X is a positive even integer and

wðOX Þ < 0. We also have the Miyaoka-Yau inequality ([M2]): K 3
Xa�72wðOX Þ.

Besides, after taking a special birational modification to X according to Reid ([R2])

while using a result of Miyaoka ([M2]), we get the plurigenus formula as follows.

PmðXÞ ¼ ð2m� 1Þ
mðm� 1Þ

12
K 3

X � wðOX Þ

� �

: ð4:1Þ

The following theorem improves [Kob, Main Theorem], where we use the same

notations as in previous sections.

Theorem 4.1. Let X be a projective minimal Gorenstein 3-fold of general type with

only locally factorial terminal singularities. Then we have

(i) If dim f1ðXÞ ¼ 3, then K 3
Xb 2pgðXÞ � 6.

(ii) If dim f1ðXÞ ¼ 2, i.e., X is canonically fibered by curves of genus g, then

K 3
Xb M

2

3
ðg� 1ÞNðpgðXÞ � 2Þ:

(iii) If dim f1ðX Þ ¼ 1, then either K 3
Xb 2pgðXÞ � 4 or ðK 2

F0
; pgðFÞÞ ¼ ð1; 2Þ.

Proof. By Proposition 3.1, it is su‰cient to study the cases dim f1ðX Þ < 3.

Case 1. dim f1ðXÞ ¼ 2.

The canonical map gives a fibration f : X 0 ! W , where a general fiber C is a

smooth curve of genus g. If g ¼ 2, our inequality is K 3
Xb pgðXÞ � 2, which is trivially

true. Now we assume gb 3. Denote L :¼ p�ðKX ÞjS1
, which is a nef and big Cartier

divisor. Let S1 A jM1j be a general member. Then S1 is a smooth projective surface of

general type. Noting that jS1jS1
j is composed of a free pencil of curves with the same

numerical type as C, we have

p�ðKX ÞjS1
1 aC þ E2;

where E2 is e¤ective and ab pgðXÞ � 2, and we immediately see

K 3
Xb ðL � CÞðpgðXÞ � 2Þ:

Thus it is su‰cient to bound ðL � CÞ from below.

We run once more a recursive program (the b-program) which is essentially similar

to the a-program. There is, however, a minor di¤erence between them. Pick up a

positive integer b. Obviously, we have

jKX 0 þ bp�ðKX Þ þ S1jH jðb þ 2ÞKX 0 j:

The vanishing theorem gives

jKX 0 þ bp�ðKX Þ þ S1j jS1
¼ jKS1

þ bLj:

We have LbC. If b > 1, then we have

jKS1
þ ðb � 1ÞLþ Cj jC ¼ jKC þDbj;

where Db :¼ ðb � 1ÞLjC . Let Mbþ2 be the movable part of jðb þ 2ÞKX 0 j and M 0
bþ2
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be the movable part of jKX 0 þ bp�ðKX Þ þ S1j. Then Mbþ2bM 0
bþ2. Let Nb be the

movable part of jKS1
þ ðb � 1ÞLþ Cj. Then, by Lemma 2.6, we have

ðb þ 2ÞLbMbþ2jS1
bM 0

bþ2jS1
bNb:

Also by Lemma 2.6, we have h0ðC;NbjCÞ ¼ h0ðKC þDbÞ. If degðDbÞ ¼ ðb � 1Þ �

ðL � CÞb 2, then

h0ðC;NbjCÞ ¼ g� 1þ ðb � 1ÞðL � CÞ:

Using R-R again and Cli¤ord’s theorem, we see that h1ðC;NbjCÞ ¼ 0 and

ðb þ 2ÞðL � CÞbNb � C ¼ 2g� 2þ ðb � 1ÞðL � CÞ:

We get the inequality

L � Cb
2g� 2þ ðb � 1ÞðL � CÞ

b þ 2
: ð4:2Þ

Now take b ¼ 3. Then degðD3Þb 2. According to (4.2), we see L � C > 1, i.e.

L � Cb 2. From now on, we can constantly take b ¼ 2. We see that degðD2Þb2. So

(4.2) becomes L � Cb ð2g� 2Þ=3. This means L � Cb Mð2=3Þðg� 1ÞN.

Case 2. dim f1ðXÞ ¼ 1.

In this case, the canonical map derives a fibration f : X 0 ! W onto a smooth curve

W where a general fiber F of f is a smooth irreducible surface of general type. We

have p�ðKX Þ ¼ S1 þ E 0 and S1 1 b1F , where b1b pgðX Þ � 1. Denote S ¼ pðS1Þ and

F ¼ pðF Þ. Then S1 b1F . Because F 2 is pseudo-e¤ective, KX � F 2
b 0. Note that

KX � F 2 is an even integer.

If KX � F 2 > 0, then we have K 2
X � Fb 2ðpgðXÞ � 1Þ and thus K 3

Xb 2ðpgðXÞ � 1Þ2.

If KX � F 2 ¼ 0, then OF ðp
�ðKX ÞjF ÞGOF ðs

�ðKF0
ÞÞ by a trivial generalization of [Ch3,

Lemma 2.3]. Thus we always have

K 3
X ¼ p�ðKX Þ

3
b ðp�ðKX Þ

2 � FÞðpgðXÞ � 1Þ

¼ s�ðKF0
Þ2ðpgðXÞ � 1Þb 2ðpgðX Þ � 1Þ

whenever K 2
F0
b 2.

When K 2
F0

¼ 1, the only possibility is 1a pgðF Þa 2. We can prove that K 3
Xb

2pgðXÞ � 4 if ðK 2
F0
; pgðF ÞÞ ¼ ð1; 1Þ. In fact, this is the special case of Proposition 3.4

and the estimation here is more exact since X is Gorenstein. The main point is that we

have p�ðKX ÞjF @ s�ðKF0
Þ. We see from the proof of Proposition 3.4 that (3.5) is still as

K 3
Xb 2pgðX Þ � 4, that (3.6) corresponds to K 3

Xb 2pgðX Þ � 3ð1=3Þ and that (3.7) will be

replaced by K 3
Xb 2pgðXÞ � 2ð2=3Þ. r

From Theorem 4.1, one sees that bad cases possibly occur when X is canonically

fibered by curves of genus 2 or by surfaces with invariants ðc21 ; pgÞ ¼ ð1; 2Þ. For

technical reasons, we are only able to treat a nonsingular 3-fold. One needs a new

method to cover singular 3-folds.

Now suppose that X is a smooth projective 3-fold. Let M be a divisor on X such

that h0ðX ;MÞb 2 and that jMj has base points but no fixed part. By Hironaka’s

theorem ([Hi]), we may take successive blow-ups
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p : X 0 ¼ Xn !
pn

Xn�1 ! � � � ! Xi !
pi

Xi�1 ! � � � ! X1 !
p1

X0 ¼ X

such that

(i) pi is a single blow-up along smooth center Wi on Xi�1 for all i;

(ii) Wi is contained in the base locus of the movable part of

jðp1 � p2 � � � � � pi�1Þ
�ðMÞj

and thus Wi is a reduced closed point or a smooth projective curve on Xi�1;

(iii) the movable part of jp�ðMÞj has no base points.

It is clear that the resulting 3-fold X 0 is still smooth. Let Ei be the exceptional

divisor on X 0 corresponding to Wi. Then we may write

KX 0 ¼ p
�ðKX Þ þ

Xn

i¼1

aiEi; p
�ðMÞ ¼ M þ

Xn

i¼1

eiEi;

where ai; ei A Z, aib 0 and M is the movable part of jp�ðMÞj. From the definition of

p, we see ei > 0 for all i.

Lemma 4.2. aia 2ei for all i.

Proof. We prove the simple lemma by induction. Denote by Mi the strict

transform of M in Xi for all i. Let E
ðiÞ
i be the exceptional divisor on Xi corresponding

to Wi. Let E
ð jÞ
i be the strict transform of E

ðiÞ
i in Xj for j > i.

For i ¼ 1, we have

KX1
¼ p

�
1 ðKX Þ þ a

ð1Þ
1 E

ð1Þ
1 and p

�
1 ðMÞ ¼ M1 þ e

ð1Þ
1 E

ð1Þ
1 :

From the definition of p1, we know that e
ð1Þ
1 b 1. Note that a

ð1Þ
1 is computable. In

fact, a
ð1Þ
1 ¼ 2 if W1 is a reduced smooth point of X ; a

ð1Þ
1 ¼ 1 if W1 is a smooth curve on

X . Clearly, we have a
ð1Þ
1 a 2e

ð1Þ
1 .

For i ¼ n� 1, we have

KXn�1
¼ ðp1 � � � � � pn�1Þ

�ðKX Þ þ
Xn�1

i¼1

a
ðn�1Þ
i E

ðn�1Þ
i

ðp1 � � � � � pn�1Þ
�ðMÞ ¼ Mn�1 þ

Xn�1

i¼1

e
ðn�1Þ
i E

ðn�1Þ
i :

Suppose we have already had a
ðn�1Þ
i a 2e

ðn�1Þ
i . Then we get

KXn
¼ p

�
n ðKXn�1

Þ þ aðnÞn EðnÞ
n

¼ p
�ðKX Þ þ p

�
n

Xn�1

i¼1

a
ðn�1Þ
i E

ðn�1Þ
i þ aðnÞn EðnÞ

n :

p
�ðMÞ ¼ p

�
n ðMn�1Þ þ p

�
n

Xn�1

i¼1

e
ðn�1Þ
i E

ðn�1Þ
i

¼ M þ p
�
n

Xn�1

i¼1

e
ðn�1Þ
i E

ðn�1Þ
i þ eðnÞn EðnÞ

n :
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Because pn is also a single blow-up, we see similarly that a
ðnÞ
n a 2e

ðnÞ
n . Note that

E
ðnÞ
n ¼ En and

Xn

i¼1

aiEi ¼ p�
n

Xn�1

i¼1

a
ðn�1Þ
i E

ðn�1Þ
i þ aðnÞn En;

Xn

i¼1

eiEi ¼ p�
n

Xn�1

i¼1

e
ðn�1Þ
i E

ðn�1Þ
i þ eðnÞn En:

We see that aia 2ei. The proof is complete. r

Theorem 4.3. Let X be a projective minimal smooth 3-fold of general type. Sup-

pose dim f1ðXÞ ¼ 2 and X is canonically fibred by curves of genus 2. Then

K 3
Xb

1

3
ð4pgðX Þ � 10Þ:

The inequality is sharp.

Proof. We keep the same notations as in 1.3 and in Case 1 of the proof of

Theorem 4.1. Set KX @M þ Z, where M is the movable part of jKX j and Z is the

fixed part. We may take the same successive blow-ups

p : X 0 ¼ Xn !
pn

Xn�1 ! � � � ! Xi !
pi

Xi�1 ! � � � ! X1 !
p1

X0 ¼ X

as in the set up for Lemma 4.2.

Let g ¼ f1 � p. Taking the Stein-factorization of g, we get the induced fibration

f : X 0 ! W . A general fiber of f is a smooth curve of genus 2 by assumption of the

theorem. Let S1 be the movable part of jp�ðMÞj. Then we have

KX 0 ¼ p�ðKX Þ þ E ¼ p�ðKX Þ þ
Xp

i¼0

aiEi

and p�ðMÞ@S1 þ
Pp

i¼0 eiEi. We know that aib 0, ei > 0 and both ai and ei are

integers for all i. We also have

p�ðKX Þ ¼ p�ðMÞ þ p�ðZÞ ¼ S1 þ
Xp

i¼0

eiEi þ p�ðZÞ

@S1 þ
Xp

i¼0

e 0iEi þ
Xq

j¼1

djLj ¼ S1 þ E 0
;

where e 0ib ei, dj > 0, Ei 0Lj and Lj1 0Lj2 provided j1 0 j2. On the surface S1, set

L :¼ p�ðKX ÞjS1
. We also have S1jS1

1 aC where ab pgðXÞ � 2 and C is a general fiber

of the restricted fibration f jS1
: S1 ! f ðS1Þ. Note that the above C lies in the same

numerical class as that of a general fiber of f . If L � Cb 2, we have already seen in the

proof of Theorem 4.1 that K 3
Xb 2pgðXÞ � 4. From now on, we suppose L � C ¼ 1.

Note that, in this situation, jMj definitely has base points. (Otherwise, p ¼ identity and

L � C ¼ KX jS1
� C ¼ ðKX þ S1ÞjS1

� C ¼ KS1
� C ¼ 2

which contradicts to the assumption L � C ¼ 1.)
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Denote E 0jS1
:¼ E 0

V þ E 0
H , where E 0

V is the vertical part, i.e., dim f jS1
ðE 0

V Þ ¼ 0, and

E 0
H is the horizontal part, i.e., E 0

H � C > 0. Because E 0jS1
� C ¼ L � C ¼ 1, we see that

E 0
H � C ¼ 1. This means that E 0

H is an irreducible curve and is a section of the restricted

fibration f jS1
. Denote EjS1

:¼ EV þ EH , where EV is the vertical part and EH is

the horizontal part. From KS1
� C ¼ 2, one sees that EH � C ¼ EjS1

� C ¼ 1. This also

means that EH is an irreducible curve and EH comes from some exceptional divisor Ei

with ai ¼ 1. We may suppose that EH comes from E0. Then a0 ¼ 1. Because e 00 > 0

and p
�ðKX Þ � C ¼ 1, we see that e 00 ¼ 1 and thus E 0

H also comes from E0. Since E0jS1

has only one horizontal part, EH and E 0
H coincide with a curve G. Now it is quite clear

that

EV ¼
X

p

i¼1

aiðEijS1
Þ þ ðE0jS1

� GÞ;

E 0
V ¼

X

p

i¼1

e 0i ðEijS1
Þ þ

X

q

j¼1

djðLj jS1
Þ þ ðE0jS1

� GÞ:

We have the following

Claim. EVa 2E 0
V .

This is apparently a direct consequence of Lemma 4.2. In fact, we have aia

2eia 2e 0i by Lemma 4.2 for all i > 0. Thus

X

p

i¼1

aiðEijS1
Þa 2

X

p

i¼1

e 0i ðEijS1
Þa 2

X

p

i¼1

e 0i ðEijS1
Þ þ

X

q

j¼1

djðLjjS1
Þ

 !

:

On the other hand, it is obvious that E0jS1
� Ga 2ðE0jS1

� GÞ. Therefore we get

EV ¼ ðE0jS1
� GÞ þ

X

p

i¼1

aiðEijS1
Þ

a 2ðE0jS1
� GÞ þ 2

X

p

i¼1

e 0i ðEijS1
Þ þ

X

q

j¼1

djðLjjS1
Þ

 !

¼ 2E 0
V

and the claim is proved.

Since that 2E 0
V � EV is e¤ective and vertical, we see that EV � Ga 2E 0

V � G. On the

surface S1, we have

ðKS1
þ 2C þ GÞG ¼ 2paðGÞ � 2þ 2G � C ¼ 2paðGÞb 0:

On the other hand, we have

ðKS1
þ 2C þ GÞG

¼ ððp�ðKX ÞjS1
þ EV þ G þ S1jS1

Þ þ 2C þ GÞG

a ðp�ðKX ÞjS1
þ S1jS1

þ GÞ � G þ 2E 0
V � G þ 2þ G2

¼ 2p�ðKX ÞjS1
� G þ E 0

V � G þ G2 þ 2:
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So we have

2p�ðKX ÞjS1
� G þ E 0

V � G þ G2 þ 2b 0: ð4:3Þ

We also have

p�ðKX ÞjS1
� G ¼ S1jS1

� G þ E 0
V � G þ G2: ð4:4Þ

Combining (4.3) and (4.4), we get

3p�ðKX ÞjS1
� GbS1jS1

� G � 2b pgðXÞ � 4:

p�ðKX Þ � S1 � E
0
b p�ðKX ÞjS1

� Gb
1

3
ðpgðXÞ � 4Þ:

Finally, we have

K 3
X ¼ p�ðKX Þ

3
b p�ðKX Þ

2 � S1

¼ p�ðKX ÞjS1
� S1jS1

þ p�ðKX ÞjS1
� E 0jS1

b ðpgðXÞ � 2Þ þ
1

3
ðpgðXÞ � 4Þ ¼

2

3
ð2pgðXÞ � 5Þ:

The inequality is sharp by virtue of (0.1). The proof is complete. r

Remark 4.4. As was pointed out by M. Reid ([R3, Remark (0.4)(v)]), the blow-up

of a canonical singularity need not be normal and thus it need not be canonical, even if

the original canonical point is a hypersurface singularity of multiplicity 2. Because of

this reason, we would rather treat a smooth 3-fold in Theorem 4.3, although the method

might be all right for Gorenstein 3-folds.

Lemma 4.5. Let X be a smooth projective 3-fold of general type. Suppose

pgðX Þb 3, dim f1ðX Þ ¼ 1. Keep the same notations as in subsection 1.3. If

ðK 2
F0
; pgðF ÞÞ ¼ ð1; 2Þ, then one of the following holds:

(i) b ¼ 1, qðX Þ ¼ 1 and h2ðOX Þ ¼ 0;

(ii) b ¼ 0, qðXÞ ¼ 0 and h2ðOX Þa 1.

Proof. Replacing X by a birational model, if necessary, we may suppose that f1 is

a morphism. Note that we do not need here the minimality of X . Taking the Stein-

factorization of f1, we get a derived fibration f : X ! W . Let F be a general fiber of

f . By assumption, ðK 2
F0
; pgðF ÞÞ ¼ ð1; 2Þ where F0 is the minimal model of F . Ac-

cording to [Ch2, Theorem 1], we see that b ¼ gðWÞa 1 whenever pgðXÞb 3. Because

qðF Þ ¼ 0, we can easily see that qðXÞ ¼ b and h2ðOX Þ ¼ h1ðW ; f�oX Þ. In order to

prove the lemma, it is su‰cient to study h1ðW ; f�oX Þ. Since we are in a very special

situation, we should be able to obtain much more explicit information.

Let L0 be the saturated sub-bundle of f�oX which is generated by H 0ðW ; f�oX Þ.

Because jKX j is composed of a pencil of surfaces and f1 factors through f , we see that

L0 is a line bundle on W . Denote L1 :¼ f�oX=L0. Then we have the exact sequence:

0 ! L0 ! f�oX ! L1 ! 0:

Noting that rkð f�oX Þ ¼ 2, we see that L1 is also a line bundle. Noting that

H 0ðW ;L0ÞGH 0ðW ; f�oX Þ, we have h1ðW ;L0Þb h0ðW ;L1Þ. When b ¼ 1,
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degðL0Þ ¼ pgðX Þb 3. When b ¼ 0, degðL0Þ ¼ pgðX Þ � 1b 2. Anyway, we have

h1ðW ;L0Þ ¼ 0. So h0ðW ;L1Þ ¼ 0. On the other hand, it is well-known that f�oX=W

is semi-positive. Thus degðL1 no�1
W Þb 0. This means degðL1Þb 2ðb� 1Þ. Using

the R-R, we may easily deduce that h1ðL1Þa 1� b. So

h1ðW ; f�oX Þa h1ðW ;L0Þ þ h1ðW ;L1Þa 1� b:

So h2ðOX Þa 1� b. The proof is complete. r

Lemma 4.6. Let X be a smooth projective 3-fold of general type. Suppose

pgðX Þb 3, dim f1ðX Þ ¼ 1 and ðK 2
F0
; pgðFÞÞ ¼ ð1; 2Þ. Let f : X ! W be a derived fibra-

tion of f1. Suppose F1 and F2 are two fixed smooth fibres of f such that f1ðF1Þ0 f1ðF2Þ.

Then dimFjKXþF1þF2jðXÞ ¼ 2 and FjKXþF1þF2jjF ¼ FjKF j for a general fiber F.

Proof (i) If b ¼ 1, we have h2ðOX Þ ¼ 0 by Lemma 4.5. From the exact

sequence

H 0ðX ;KX þ F1 þ F2Þ ! H 0ðF1;KF1
ÞlH 0ðF2;KF2

Þ ! 0;

one may easily see that dimFjKXþF1þF2jðXÞ ¼ 2. Thus, for a general fiber F ,

dimFjKXþF1þF2jðF Þ ¼ 1. Since pgðFÞ ¼ 2, one sees that FjKXþF1þF2jjF ¼ FjKF j.

(ii) If b ¼ 0, we only have to study jKX þ 2F1j jF for a general fiber F . From the

short exact sequence:

0 ! OX ðKX þ F1 � FÞ ! OX ðKX þ F1Þ ! OF ðKF Þ ! 0;

we have the long exact sequence

� � � ! H 0ðX ;KX þ F1Þ !
a1

H 0ðF ;KF Þ !
b1

H 1ðX ;KX Þ

! H 1ðX ;KX þ F1Þ ! H 1ðF ;KF Þ ¼ 0;

If a1 is surjective for general F , then we see that

dimFjKXþF1jðFÞ ¼ dimFjKF jðFÞ ¼ 1 and dimFjKXþF1jðX Þ ¼ 2:

So dimFjKXþ2F1jðXÞ ¼ 2. We are done. Otherwise, a1 is not surjective. Because

a1 0 0, we see that h2ðOX Þ ¼ h1ðX ;KX Þb 1. Because h2ðOX Þa 1, h2ðOX Þ ¼ 1 and b1 is

surjective. Therefore H 1ðX ;KX þ F1Þ ¼ 0. This also means that H 1ðX ;KX þ F 0Þ ¼ 0

for any smooth fiber F 0 since F 0
@F1. So we have H 1ðX ;KX þ 2F1 � FÞ ¼ 0, which

means jKX þ 2F1j jF ¼ jKF j. So dimFjKXþ2F1jðX Þ ¼ 2. The proof is complete. r

Theorem 4.7. Let X be a smooth projective 3-fold with ample canonical divisor.

Suppose dim f1ðXÞ ¼ 1 and X is canonically fibered by surfaces with invariants ðc21 ; pgÞ ¼

ð1; 2Þ. Then K 3
Xb ð2=3Þð2pgðXÞ � 7Þ.

Proof. The proof is slightly longer, however with the same flavour as that of

Theorem 4.3.

Denote by F a generic irreducible element of jKX j. We see that F 2 is a 1-cycle on

X . If the movable part of jKX j has base points, then F 2 is a non-trivial e¤ective 1-

cycle. So KX � F 2
b 2. Thus K 3

Xb 2pgðX Þ � 2. Therefore we only have to treat the

case when f1 is a morphism.
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We suppose pgðXÞb 3. We still assume that f : X ! W is a derived fibration of

f1. Note that b ¼ gðWÞa 1. Let M be the movable part of jKX þ F1 þ F2j. Also

note that F is minimal in this situation and ðK 2
F ; pgðFÞÞ ¼ ð1; 2Þ. It is well-known that

jKF j has exactly one base point, but no fixed part, and that a general member of jKF j is

a smooth irreducible curve of genus 2. Since jKX þ F1 þ F2j jF ¼ jKF j and according to

Lemma 2.6, we see that MjF ¼ KF . This means that jMj definitely has base points.

According to Hironaka, we can take successive blow-ups

p : X 0 ¼ Xn !
pn

Xn�1 ! � � � ! Xi !
pi

Xi�1 ! � � � ! X1 !
p1

X0 ¼ X

such that

(i) pi is a single blow-up along smooth center Wi on Xi�1 for all i;

(ii) Wi is contained in the base locus of the movable part of

jðp1 � p2 � � � � � pi�1Þ
�ðMÞj

and thus Wi is a reduced closed point or a smooth projective curve on Xi�1;

(iii) the movable part of jp�ðMÞj has no base points.

Denote by Ei the exceptional divisor on X 0 corresponding to Wi for all i. Note

that the resulting 3-fold X 0 is still smooth. Let M be the movable part of jp�ðMÞj and

S A jMj be a general member. Then S is a smooth irreducible projective surface of

general type. Denote f 0
:¼ f � p. Then f 0

: X 0 ! W is still a fibration. Let F 0 be a

general fiber of f 0. Note that F 0 has the minimal model F . We may write

KX 0 @ p�ðKX Þ þ
Xp

i¼0

aiEi ¼ p�ðKX Þ þ E

and p�ðMÞ ¼ M þ
Pp

i¼0 eiEi. According to Lemma 4.2, we have 0 < aia 2ei for all i.

Recall that we have KX @S1 þ Z ¼
Pb1

i¼1 Fi þ Z; where b1b pgðXÞ � 1, the F 0
i s are

fibers of f , S1 is the movable part of jKX j and Z the fixed part of jKX j. Note that

there is an e¤ective divisor Z0aZ such that M@S1 þ F1 þ F2 þ Z0. We write

p�ðKX þ F1 þ F2Þ@ p�ðM þ Z � Z0Þ ¼ M þ
Xp

i¼0

eiEi þ p�ðZ � Z0Þ

¼ M þ
Xp

i¼0

e 0iEi þ
Xq

j¼1

djLj ¼: M þ E 0
;

where Ei 0Lj, dj > 0, e 0ib ei for all i and Lj1 0Lj2 whenever j1 0 j2. Note that

p�ðMÞb p�ðS1 þ F1 þ F2Þ and that the strict transform of S1 is a union of b1 fibers of

f 0, we see that

MjSb
Xb1þm

j¼1

F 0
j jS 1 ðb1 þmÞF 0jS

where the F 0
j s are fibers of f 0 and m ¼ 2. Because dimFjMjðX

0Þ ¼ 2, we see

dimFjMjðSÞ ¼ 1 for a general member S. So, on S, the system jMjSj should be

composed of a free pencil of curves since ðMjSÞ
2 ¼ M 3 ¼ 0. On the other hand, we
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obviously have H 0ðX 0;KX 0 � SÞ ¼ 0. This instantly gives the inclusion H 0ðX 0;KX 0Þ ,!

H 0ðS;KX 0 jSÞ. So dimFjKX 0 jðSÞb 1. Because dim f1ðXÞ ¼ 1, we see that dimFjKX 0 jðSÞ

¼ 1. Thus it is clear f 0ðSÞ ¼ W . So we have a surjective morphism f 0jS : S ! W .

The fiber of f 0jS is exactly F 0
VS or the divisor F 0jS. Since jMjSj is composed of a

pencil of curves, MjSb
Pb1þm

j¼1 F 0
j jS and j

Pb1þm
j¼1 F 0

j jSj is vertical, we see that jMjSj is

also vertical, i.e. dim f 0jSðMjSÞ ¼ 0. This means that the divisor MjS is vertical with

respect to the morphism f 0jS. By taking the Stein-factorization of f 0jS, one can see

that F 0jS is linearly equivalent to a disjoint union of irreducible curves of the same

numerical type and F 0jS 1 xC where C is certain irreducible curve and x is a positive

integer.

Recall that E 0
:¼

Pp
i¼0 e

0
iEi þ

Pq
j¼1 djLj. We may write E 0jS :¼ E 0

V þ E 0
H where E 0

V

is the vertical part and E 0
H is the horizontal part with E 0

H � F 0jS > 0. Noting that

p�ðKX þ F1 þ F2ÞjS is nef and big and that MjS is vertical, we see that E 0
H is non-

trivial. So we have

p�ðKX þ F1 þ F2ÞjS ¼ MjS þ E 0jS ¼ MjS þ E 0
V þ E 0

H :

Also recall that E :¼
Pp

i¼0 aiEi. Denote EjS :¼ EV þ EH where EV is the vertical part

and EH is the horizontal part. We have

0 < F 0jS � E 0
H ¼ F 0jS � E 0jS ¼ F 0jS � p�ðKX þ F1 þ F2ÞjS

¼ F 0 � p�ðKX þ F1 þ F2Þ � S

aF 0 � p�ðKX þ F1 þ F2Þ � p
�ðKX þ F1 þ F2Þ ¼ K 2

X � F ¼ 1:

This means

F 0jS � E 0
H ¼ F 0jS � p�ðKX ÞjS ¼ 1; ð4:5Þ

p�ðF1ÞjS � F 0jS ¼ 0: ð4:6Þ

Thus we see that x ¼ 1 and thus f 0jS : S ! W is a fibration. This also means that E 0
H

is irreducible and that it comes from certain irreducible component of E 0. For generic

S and F 0, because SjF 0 is the movable part of jKF 0 j, we see that SjF 0 is an irreducible

curve of genus two. This means C ¼ S VF 0 is a smooth curve of genus 2 on S and

C 2 ¼ ðF 0jSÞ
2 ¼ 0. Thus KS � C ¼ 2, i.e.

ðEV þ EH þ p�ðKX ÞjS þ SjSÞ � C ¼ 2:

Noting that, from (4.5), SjS � C ¼ MjS � F 0jS ¼ 0 and p�ðKX Þ � C ¼ 1, we have

EH � C ¼ 1. This also says that EH comes from certain irreducible component Ei in E

with ai ¼ 1. For simplicity we may suppose that this component is just E0. So a0 ¼ 1.

Now it is quite clear about the structure of E 0jS and EjS:

EH ¼ E 0
HaE0jS;

Xp

i¼1

aiðEijSÞ þ ðE0jS � EHÞ ¼ EV ;

Xp

i¼1

e 0i ðEijSÞ þ
Xq

j¼1

djðLjjSÞ þ ðE0jS � E 0
HÞ ¼ E 0

V :
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Noting that E0jS can have only one horizontal component, we denote it by G :¼ EH ¼

E 0
H . Similar to the Claim in the proof of Theorem 4.3, It is easy to see that EVa 2E 0

V .

Now we may perform the computation on the surface S. We have

ðKS þ G þ 2ð1� bÞF 0jSÞ � G ¼ 2paðGÞ � 2þ 2ð1� bÞb 0:

(One notes that paðGÞb 1 if b ¼ 1 and paðGÞb 0 if b ¼ 0.)

KS � G ¼ ðEjS þ p
�ðKX ÞjS þ SjSÞ � G ¼ EV � G þ G2 þ p

�ðKX ÞjS � G þ SjS � G

a 2E 0
V � G þ G2 þ SjS � G þ p

�ðKX ÞjS � G

¼ E 0
V � G þ p

�ðKX þ F1 þ F2ÞjS � G þ p
�ðKX ÞjS � G:

So we get

E 0
V � G þ p

�ð2KX þ F1 þ F2ÞjS � G þ G2 þ 2ð1� bÞb 0: ð4:7Þ

On the other hand, we have

p
�ðKX þ F1 þ F2ÞjS � G ¼ SjS � G þ E 0

V � G þ G2

b ðb1 þmÞF 0jS � G þ E 0
V � G þ G2; ð4:8Þ

where we note that SjS is vertical and, numerically, SjSbnum ðb1 þmÞF 0jS and

F 0jS � G ¼ 1 by (4.5). Combining (4.7) and (4.8), we get

p
�ð3KX þ 2F1 þ 2F2ÞjS � Gb ðb1 þmÞ þ 2ðb� 1Þ:

We have

p
�ð3KX þ 2F1 þ 2F2ÞjS � Ga p

�ð3KX þ 2F1 þ 2F2ÞjS � E 0jS

¼ p
�ð3KX þ 2F1 þ 2F2ÞjS � ðp�ðKX þ F1 þ F2ÞjS � SjSÞ

¼ p
�ð3KX þ 2F1 þ 2F2ÞjS � p�ðKX þ F1 þ F2ÞjS � p

�ð3KX þ 2F1 þ 2F2ÞjS � SjS

a ð3KX þ 2F1 þ 2F2ÞðKX þ F1 þ F2Þ
2 � p

�ð3KX þ 2F1 þ 2F2ÞjS � SjS

¼ 3K 3
X þ 8m� p

�ð3KX þ 2F1 þ 2F2ÞjS � SjS:

Thus 3K 3
Xb b1 � 7mþ 2ðb� 1Þ þ p

�ð3KX þ 2F1 þ 2F2ÞjS � SjS. By (4.5) and (4.6), we

get

p
�ð3KX þ 2F1 þ 2F2ÞjS � SjSb p

�ð3KX þ 2F1 þ 2F2ÞjS � ðb1 þmÞF 0jS ¼ 3ðb1 þmÞ:

So 3K 3
Xb 4b1 � 4mþ 2ðb� 1Þ. We obtain

K 3
Xb

4

3
b1 �

4

3
mþ

2

3
ðb� 1Þb

4

3
pgðXÞ �

8

3
; if b ¼ 1

4

3
pgðXÞ �

14

3
; if b ¼ 0:

8

>

>

<

>

>

:

Finally, we discuss what happens when K 3
X > ð4=3ÞpgðXÞ � ð10=3Þ. Definitely,
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b ¼ 0 and 3K 3
X ¼ 4pgðX Þ � 11, 4pgðXÞ � 12, 4pgðXÞ � 13, or 4pgðXÞ � 14. Noting that

K 3
X is an even number, one excludes possibilities 4pgðX Þ � 11 and 4pgðXÞ � 13. The

proof is complete. r

Corollary 4.8. Let X be a smooth projective 3-fold with ample canonical divisor.

Then we have the following Noether inequality

K 3
Xb

2

3
ð2pgðX Þ � 7Þ:

Proof. This is a direct result of Theorem 4.1, Theorem 4.3 and Theorem 4.7.

r

Corollary 4.8 implies Corollary 2. Theorem 4.1, Theorem 4.3 and Theorem 4.7

imply Theorem 5(1) and Theorem 5(2).

5. An appendix.

We go on proving Theorem 5 in this section.

Proposition 5.1. Let X be a projective minimal Gorenstein 3-fold of general type

with only locally factorial terminal singularities. Suppose X has a locally factorial

canonical model. If dim f1ðXÞ ¼ 1 and ðK 2
F0
; pgðF ÞÞ ¼ ð1; 2Þ, then

K 3
Xb

2

21
ð11pgðX Þ � 16Þ:

Proof. If the movable part of jKX j has base points, then we have K 3
Xb

2pgðXÞ � 2 according to [Kob, Case 1, Theorem (4.1)] because X is assumed to have a

locally factorial canonical model. So we may suppose FjKX j is a morphism.

Taking the Stein-factorization of FjKX j, we get the derived fibration f : X ! W .

Let M1 be the movable part of jKX j and S1 A jM1j a general member. We may write

S1 @
Pb1

i¼1 Fi 1 b1F , where the F 0
i s are fibers of f , F is a general fiber of f and

b1b pgðX Þ � 1. Because X is minimal, F is a minimal surface. Since X has isolated

singularities, F is smooth. Note that we have K 2
F ¼ 1 and pgðFÞ ¼ 2 under the as-

sumption of the proposition. We may also write KX 1 b1F þ Z, where Z is the fixed

part of jKX j. According to [Ch2, Theorem 1], we have b :¼ gðWÞa 1 provided

pgðX Þb 3. From [L], we know that j4KX j is base point free. Let S4 A j4KX j be a

general member. Since X has isolated singularities, S4 is a smooth projective irre-

ducible surface of general type. We see that f ðS4Þ ¼ W . Denote f0 :¼ f jS4
. Then

f0 : S4 ! W is a proper surjective morphism onto W ( f0 need not be a fibration).

Because f ðFÞ is a point, F jS4
is vertical with respect to f0, i.e., dim f0ðF jS4

Þ ¼ 0. Now

we have KX jS4
1 b1F jS4

þ ZjS4
. Denote ZjS4

:¼ ZV þ ZH , where ZV is the vertical part

and ZH is the horizontal part. We may write ZH :¼
P

miGi, where mi > 0 and the G 0
i s

are distinct irreducible curves on S4. We have

ðF jS4
� ZHÞS4

¼ ðF jS4
� ZjS4

ÞS4
¼ ðF � S4 � ZÞX

¼ ðS4jF � ZjF ÞF ¼ 4ðKX jF � KX jF ÞF ¼ 4K 2
F ¼ 4:
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Thus mia 4 for all i. Denote

D :¼ 4KS4
� 8ðb� 1ÞF jS4

þ ZV þ ZH :

We claim that D � Gib 0 for all i. In fact, since ZV � Gib 0 and Gi � Gjb 0 for i0 j,

we have

D � Gib 4KS4
� Gi � 8ðb� 1ÞF jS4

� Gi þmiG
2
i

¼ ð4�miÞKS4
� Gi þmiðKS4

� Gi þ G2
i Þ � 8ðb� 1ÞF jS4

� Gi

¼ ð4�miÞKS4
� Gi þmið2paðGiÞ � 2Þ � 8ðb� 1ÞF jS4

� Gi:

Note that both KS4
and F jS4

are nef. When b ¼ 1, we have paðGiÞb b ¼ 1. Thus

D � Gib ð4�miÞKS4
� Gib 0. When b ¼ 0,

D � Gib ð4�miÞKS4
� Gi þ ð8� 2miÞF jS4

� Gi þmi½2paðGiÞ � 2þ 2F jS4
� Gi�b 0:

Therefore we get D � ZHb 0. This means

4KS4
� ZH � 8ðb� 1ÞF jS4

� ZH þ ðZV þ ZHÞZHb 0: ð5:1Þ

On the other hand, we have

KX jS4
� ZH ¼ b1F jS4

� ZH þ ðZV þ ZHÞZH : ð5:2Þ

Combining (5.1) and (5.2), we get

4KS4
� ZH þ KX jS4

� ZHb ðb1 þ 8ðb� 1ÞÞF jS4
� ZH

b 4ðpgðXÞ þ 10b� 11Þ:

We also have

4KS4
� ZH þ KX jS4

� ZH ¼ 5KX jS4
� ZH þ 4S4jS4

� ZH

a 5KX jS4
� ZjS4

þ 4S4jS4
� ZjS4

¼ 84K 2
X � Z:

Thus we obtain

K 2
X � Zb

1

21
ðpgðXÞ þ 10b� 11Þ ¼

1

21
ðpgðXÞ � 11Þ; if b ¼ 0;

1

21
ðpgðXÞ � 1Þ; if b ¼ 1:

8

>

>

<

>

>

:

Finally we get

K 3
Xb b1K

2
X � F þ K 2

X � Zb

2

21
ð11pgðX Þ � 16Þ; if b ¼ 0;

22

21
ðpgðXÞ � 1Þ; if b ¼ 1:

8

>

>

<

>

>

:

The proof is complete. r

Section 4 and Proposition 5.1 imply Theorem 5(3).
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