J. Math. Soc. Japan
Vol. 56, No. 4, 2004

On the action of the mapping class group for Riemann surfaces of

infinite type

Dedicated to Professor Hiroki Sato on his 60th birthday

By Ege Fuiikawa, Hiroshige SHIGA and Masahiko TANIGUCHI

(Received Aug. 20, 2001)
(Revised May 21, 2003)

Abstract. We consider Riemann surfaces of infinite type and their reduced
Teichmiiller spaces. The reduced Teichmiiller space admits the action of the reduced
mapping class group. Generally, the action is not discrete while it is faithful. We give
sufficient conditions for the discreteness of the action in terms of the geometry of Riemann
surfaces.

1. Introduction.

The mapping class group (or the Teichmiiller modular group) Mod(R) for a Riemann
surface R is the set of equivalence classes of quasiconformal automorphisms of R (see
[10]). Two quasiconformal automorphisms /; and /A, of R are equivalent if /5 Lohy is
homotopic to the identity by a homotopy that keeps every point of ideal boundary J0R
fixed throughout. In the theory of Teichmiiller spaces of Riemann surfaces of ana-
lytically finite type, the mapping class group plays an important role in various fields.
This is a group of the biholomorphic automorphisms of the Teichmiiller space and it
acts faithfully and properly discontinuously. On the other hand, it seems that there
are few studies on Mod(R) for a Riemann surface R of infinite type. Recently, Earle-
Gardiner-Lakic showed in [3] that it acts faithfully on the Teichmiiller space 7(R). In
this paper, we consider the discreteness of the action of the mapping class group. We
say that a subgroup G of Mod(R) is discrete if the orbit of any point of 7(R) under the
G action is discrete.

For a Riemann surface of analytically finite type, Mod(R) is discrete, while in the
case of infinite type, Mod(R) is not necessarily discrete. In particular, if R has a
boundary curve (border), Mod(R) is not discrete since a slight change of the boundary
value of a quasiconformal map produces a different mapping class in Mod(R). Thus,
it is natural that we consider another group, the reduced mapping class group. The
reduced mapping class group Mod®(R) is the set of homotopy classes of quasiconformal
automorphisms of R whose homotopy maps do not necessarily keep points of JOR
fixed. The reduced mapping class group is also important because it naturally acts on
the reduced Teichmiiller space.

We explore the problem of discreteness of the reduced mapping class group for
Riemann surfaces of infinite type. Actually, if R is a Riemann surface of topologically
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finite type, then Mod”(R) is discrete. However, Mod”(R) is not discrete in general.
For example, if R has a sequence of disjoint simple closed geodesics which are not freely
homotopic to a boundary component and whose lengths tend to 0, then we see that
Mod#(R) is not discrete (See §3 and §6). The purpose of this paper is to give a suf-
ficient condition for discreteness.

The authors thank Katsuhiko Matsuzaki for his valuable suggestions. The authors
also thank the referee for his/her valuable suggestions and comments.

2. The mapping class group for the reduced Teichmiiller space.

Throughout this paper, we assume that a Riemann surface R is hyperbolic, that is,
it is represented by H/I" for some Fuchsian group 7" acting on the upper half-plane H
with the hyperbolic metric |dz|/y (z = x+ yv/—1). We also assume that the Fuchsian
group I is always non-elementary. In other words, we assume that the group I is non-
abelian. A Riemann surface is called of analytically finite type if the hyperbolic area is
finite, and is called of analytically infinite type if the area is not finite.

For an open Riemann surface R, a relatively non-compact connected component
of the complement of a compact subset of R is called an end. An end V' of R is called
a hole if it is doubly connected and the hyperbolic area of V' is infinite. A doubly
connected end of R is called a cusp if the hyperbolic area of V is finite. A cusp V with
smooth relative boundary is conformally equivalent to the punctured disk {0 < |z] < 1}.
An ideal boundary of R corresponding to the origin z =0 is called a puncture.

NoTATION. The hyperbolic distance on H and on a Riemann surface R is denoted
by dy(-,-) and dg(-,-) respectively. Further the hyperbolic length of a curve ¢ in H or
in R is denoted by /(c).

We review the theory of Teichmiiller spaces and mapping class groups. See [4], [6]
and for the details.

DerFINITION 1. Fix a Riemann surface R. For pairs (S, f;) of Riemann surfaces
S; and quasiconformal maps f; of R onto S; (j = 1,2), we say that (Sy, f1) and (S>, f2)
are RT (reduced Teichmiiller) equivalent if there exists a conformal map 4 of S; onto S,
such that /5! o ho f; is homotopic to the identity on R. The reduced Teichmiiller space
T#(R) with the base Riemann surface R is the set of all the RT equivalence classes
[S, f] of such pairs (S, f) as above.

DerFinITION 2. We say that two quasiconformal automorphisms /; and /; of R are
RT equivalent if hy! o hy is homotopic to the identity on R. The reduced mapping class
group Mod®(R) is the set of all the RT equivalence classes [i] of quasiconformal
automorphisms /4 of R. Furthermore, for a simple closed geodesic ¢ on R, we set

Mod?(R) = {[h] e Mod™(R) | h(c) is freely homotopic to c}.
Every quasiconformal map of R= H/I' induces an isomorphism of I into

PSL(2,R). We see that if two automorphisms /; and /, are RT equivalent then they
induce the same isomorphism modulo PSL(2,R) conjugacy.
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If R is a compact Riemann surface, then the reduced Teichmiiller space T#(R) is
nothing but the ordinary Teichmiiller space T(R) of R and the reduced mapping class
group Mod®(R) is the ordinary mapping class group Mod(R).

Similar to the case of T(R), the reduced Teichmiiller space T#(R) is equipped with
the reduced Teichmiiller distance dr(-,-) defined by

. .
dr([S1; /i, [S2 f2]) = 5 inf log K(g1 0 g h,

where K(-) is the maximal dilatation of a quasiconformal map and the infimum is taken
over all quasiconformal maps g; and g, determining [S}, fi] and [S», f2], respectively. It
is known that T#(R) is a complete metric space with respect to this d7. An element
w = [h] € Mod”(R) induces an automorphism of T#(R) by

(S, f1=[S. fon™"].

This is an isometric automorphism with respect to dr and denoted by w.. Namely, we
have a homomorphism Mod”(R) — Aut(T#(R)).

ReMARK 1. In [3], it is proved that for any Riemann surface R of analytically
infinite type (and if 2g+n >4 when R is of finite (g,n)-type), the homomorphism
Mod®(R) — Aut(T#(R)) as above is faithful. Therefore we can identify w, with « and
omit the asterisk hereafter.

DEFINITION 3. We say that a subgroup G of Mod”(R) is discrete if every sequence
{w,} = G satisfying lim, .., w,(p) = q for some pair of points p,q in T#(R) is
eventually a constant sequence, that is, there exists an N € N such that w, = wy for
every n > N.

3. Examples.

As we noted in the introduction, if R is a compact Riemann surface, then the
action of Mod(R) on T(R) is discrete. Contrary to this case, there are various kinds of
examples which show non-discreteness of Mod”(R) for a Riemann surface R of infinite

type.

ExampLE 1. Suppose that R has a sequence {c,} of distinct simple closed geodesics
that are not freely homotopic to a boundary component and that these hyperbolic
lengths tend to 0. Then the Dehn twist along each ¢, gives an element w, of Mod*(R)
such that the sequence {w,(po)} converges to py as n — oo, where py = [R,id] is the
base point of T#(R). Hence Mod”(R) is not discrete.

There exists a Riemann surface R such that it has no short geodesics but that
Mod®(R) is not discrete.

ExampLE 2. We construct a Riemann surface R such that it has no short geodesics
and but contains a point with arbitrarily large injectivity radius with respect to the
hyperbolic metric (in fact, R does not satisfy the second condition in Theorem 1, which
is stated in Section 4), and that Mod”(R) is not discrete.
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Set

R=C- UU{ + 20+ 1)V=T}.

n=1meZ

To show that Mod”(R) is not discrete, set

x—(y=2n=-2)/n+yv—-1 (2n+1<y<2n+2)
(@)= x+ (y—2n)/n+ yv/—1 2n<y<2n+1)
x+yv—1 elsewhere.

Then f, are quasiconformal automorphisms of R and the maximal dilatations of {f,}
tend to 1. Thus Mod”(R) is not discrete.

Now, we see that R does not satisfy the second condition in [Theorem 1. We put
A, =RN{z|Imz=2n+1} and a,,=m/n+ (2n+1)vV—1 (ne N,me Z). Then we
shall prove that

(1) dr(Ay, Api1) — 0 (n— o0).

To prove this, we show that the injectivity radii at b, = 2nv/—1 tend to oo as n — oo.
The length of any non-trivial closed curve passing through b, is greater than d, =
inf,, dr(by, Ly, U Ly ni1), where I, , is the segment connecting a, , and a1 ,. Set

(ﬂmm(z) = I’l(Z - am-,”)'

Then, ¢,, , is a conformal mapping from C — {@u,n, dm+1,,} onto the Riemann surface
S =C\{0,1}. From the decreasing property of the hyperbolic distance, we have

dr(buy In,n) = dS((Pnz,n(bn>7(r’)m,n([mn))
= dg(—m — nV/—1,(0,1)).

Obviously, ds(—m — nv/—1,(0,1)) — o as |m| + |n| — co. Therefore, lim,_.., d, =
oo and the injectivity radii at b, tend to oo as n — oo. Hence we see that, for any
M > 0, there exists n € Z such that 4, and A4, belong to distinct components of R,
each other. This implies that R does not satisfy the second condition in [Theorem 1.

Next, we show that R has no short geodesics. Suppose that there exists a sequence
{ck} of simple closed geodesics on R such that limy_, Z(cx) =0. From (1) we may
assume that ¢, contains two distinct points a,, , and a,, ,. By translation, we may also
assume that ¢, contains ag ,,da, , but does not contain a_, ,. From the decreasing
property of the hyperbolic metric as above, we see that the hyperbolic length of ¢; in R is
greater than the length in R’, where R’ = (:‘\{ 00, d_m, n, d0.n, dm,n} Which is conformally
equivalent to Ry = C\{oo,—1,0,1}. It is well known that the length of any closed
geodesic in Ry is greater than some positive constant L. Thus, we have /(c¢x) > L >0
and it is a contradiction.

We exhibit an example of a planar Riemann surface R without cusps but containing
a point with arbitrarily large injectivity radius with respect to the hyperbolic metric such
that Mod”(R) is not discrete.
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ExampLE 3. We construct a Riemann surface R without cusps such that it satisfies
the first condition in but does not satisfy the second condition and that
Mod®(R) is not discrete.

For each n > 2, we set

o0
L =[-1,11U U L,
k=1

where
L= {x+(1-1/m)V=1|-1<x<1}

U{x+ 1+ (k—1)/n)V-1|-1<x<1}.

We take infinitely many copies {R,} of C —{yv/—1]|y < —1} and set R, = R, — I,
for each n > 2. We make a Riemann surface R by gluing the right hand side of
{y3W—=1|y<—1} on R/ with the left hand side of {yv~1|y< -1} on R/,
(n=3,4,...) along the imaginary axis. By using the same argument as that of Ex-
ample 2, we can show that the Riemann surface R satisfies the first condition in

Mheorem 1 but does not satisfy the second condition in [Theorem 1.

Consider a quasiconformal map f, of R, defined by

x+(1=1/m)yv/—1 (0<y<]l)
h(@)={x+-1/nv=1 (y>1)
X+ yv—1 elsewhere.

It is easily seen that the maximal dilatations of f,, converge to 1 as n — co. Obviously,
fn 1s extended to a quasiconformal automorphism of R by setting it the identity on
R —R) and we will write it by the same letter f,. Thus the quasiconformal map f,
gives an element [ f,] of Mod®(R) such that {[ f,](po)} converges to py as n — oo, where
po = [R,id] is the base point of T#(R). Hence we conclude that Mod”(R) is not
discrete.

Even if a Riemann surface R has no short geodesics and no points with arbitrarily
large injectivity radius, Mod”(R) may not be discrete.

ExamMpPLE 4. We construct a Riemann surface R such that it has no short geodesics
and no points with arbitrarily large injectivity radius but that Mod™(R) is not discrete.
Consider a torus S with two geodesic borders with the same length one another. We
take infinity many copies {S,},~ . of S. We denote the two geodesic borders of S, by
Zy,1 and ¢, 5. Construct a Riemann surface R by gluing the /,_1 > with 7, 1 and gluing
{n2 with Z,41 1 for each n. Let f be a conformal automorphism of R which sends S,
to S,.1, and we set f, := f”. Then we see that [f,] #id as an element of Mod®(R).
However, [f,](po) = po for all n, where py = [R,id] € T#(R) because f,: R — R is a
conformal mapping. Hence, Mod”(R) is not discrete.

4. Main Results.

As Example 1 shows, for the discreteness of the mapping class group, it is necessary
that there exist no sequences of geodesics on the Riemann surface whose lengths
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converge to zero. Examples 2, 3 show that some conditions for the injectivity radius
are required for the discreteness.

DerINITION 4. For a given M > 0, we define R, to be the subset of points p € R
such that there exists a non-trivial simple closed curve passing through p whose
hyperbolic length is less than M. The set R, is called the e-thin part of R if ¢ > 0 is
smaller than the Margulis constant. Further, a connected component of the e-thin part
that corresponds to a puncture is called the cusp neighborhood.

Now, we exhibit our main results.

THEOREM 1. Let R be a Riemann surface with the non-abelian fundamental group.
Suppose that R satisfies the following two conditions:
(1) There exists a constant ¢ > 0 such that the e-thin part of R consists only of cusp
neighborhoods.
(2) There exist a constant M > 0 and a connected component R, of Ry such that
the homomorphism of mi(R},) to mi(R) which is induced by the inclusion map of
R}, to R is surjective.
Then Modf(R) is discrete for any simple closed geodesic ¢ on R.

REMARK 2. Example 1 shows that the first condition in is necessary for
the discreteness. On the other hand, the Riemann surfaces in Examples 2 and 3 satisfy
the first condition but do not satisfy the second condition. Example 4 shows that there
exists a Riemann surface such that it satisfies both the conditions but Mod*(R) is not
discrete.

ReEMARK 3. If R satisfies the second condition in for a constant M,
then it satisfies the condition for all M’ > M.

REMARK 4. The region R, is not necessarily connected for large M even if
the homomorphism: 7;(Ry) — 71 (R) is surjective. Moreover, in Example 7 of §6, we
give a Riemann surface R and divergent sequences {M,},{M } such that

C M, <M, <M,y <M, n=1.2,..);

* Ry, is connected for all n and the homomorphism: 7u;(Ry,) — 7 (R) 1is

surjective;

* Ry is not connected for all n but the homomorphism: 7(R},) — 71(R) is

surjective for some component Ry, of Ry ’

For a hyperbolic Riemann surface R = H/I', we consider the convex core C(I") of
the limit set of I, that is, the hyperbolic convex envelope of A(I') « RU{o0} in H.
Since the convex core C(I) is [-invariant, it determines a region C(R) in R and we call
the region the convex core of R.

DEerINITION 5. We say that a Riemann surface R has e-uniform geometry if the
following two conditions are satisfied for some & > O:

(1) The e-thin part of R consists of cusp neighborhoods.

(2) The injectivity radius on the convex core C(R) of R is less than ¢!

Since C(R) is connected and it contains any closed geodesic on R, from
we have the following immediately.
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COROLLARY 1. Let R be a Riemann surface with e-uniform geometry for some
e>0. Then Modf(R) is discrete for any simple closed geodesic ¢ on R.

REMARK 5. The conditions in do not imply the uniform geometry.
For example, set R=C — Z. Then R has a Fuchsian model of the first kind, and
hence the convex core C(R) coincides with R. By considering a sequence {z,} in R
with [Imz,| — o0 as n — oo, we see that R has points with arbitrarily large injectivity

radius. Hence, R does not have ¢-uniform geometry for any ¢ > 0. On the other hand,
it is easily seen that R satisfies the conditions in [Theorem 1.

REMARK 6. The conditions having uniform geometry were first stated as no
short geodesics and no large disk condition. Nakanishi and Yamamoto shows that
under these conditions the outradius of the Teichmiiller space is strictly less than 6.
Ohtake uses these conditions to show that the norm of the Poincaré series is strictly
less than one which generalizes a result in McMullen [9].

It is important to give conditions for the mapping class group to be discrete. By
using the above results, we have the following.

THEOREM 2. Let R be a Riemann surface satisfying the conditions in Theorem 1 or
Corollary 1.  Suppose that either the genus, the number of cusps or the number of holes of
R is positive finite. Then Mod®(R) is discrete.

5. Proofs of main results.
First of all, we note the geometry of a component of Ry,.

ProprosITION 1. For M >0, let Ry, be a connected component of Ry defined in
Definition 4 and R, the e-thin part of R for some small ¢ < M. We assume that R}, — R,
is not of type (0,3). Then there exists a constant My > 0 depending only on M and ¢
such that for any point p € Ry, — R, there exists a simple closed curve c, passing through
p with £(c,) < My which does not surround a puncture of R.

Proor. Let I' be a Fuchsian group representing R. Take an arbitrary point p in
R, — R;. From the definition, we may find a simple closed curve ¢, > p whose length
is less than M. 1If ¢, is not homotopic to a simple closed curve which surrounds a
puncture of R, then there is nothing to prove.

Thus, we suppose that ¢, surrounds a puncture of R. Then, a parabolic trans-
formation y € I" represents c¢,. We may assume that y(z) =z+ 1. For r > 0, we take
o(r) so that

dy(o(r)V-1,0(r)Vv—-1+1)=r,
It is easily seen that &(r) = (2sinh (r/2))”" for r>0. We put
S(M,e) ={zeH|o(M) <Imz <d(e), 0 <Rez<1}.

Since /(c,) < M and p ¢ R,, a lift C, of ¢, contains a point in S(M,e¢).
Let L. (z € H) denote the geodesic arc from z to z+ 1. Suppose that there exists
a point z € S(M,¢) such that the projection /. in R of L. via the canonical projection
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n:H — R=H/I is not simple. Then /. contains a non-trivial simple closed curve ¢,
with /(cl) < /() < M.

If ¢! does not surround a puncture of R, then connect p and ¢! by a simple arc on
R. Then, we see that there exists a simple closed curve passing through p with length
less than M; = 2(M + dy(6(e)vV/—1,6(M)v/—1)) which does not surround a puncture
of R.

Next, suppose that ¢, surrounds a puncture of R. Noting that /. is the projection
of the geodesic arc L., we verify that ¢, is not homotopic to ¢,. In other words, the
curve ¢, surrounds another puncture of R. Connecting ¢, and c,, we have a simple
closed curve passing through p with length less than M;. Since R}, — R, is not of type
(0,3), the curve does not surround a puncture of R.

Finally, we suppose that /. is simple for any ze S(M,¢). Let us consider a
geodesic L. for ze ﬁ\’;‘;ﬁ {zeH|Imz=06(M)}, where ﬁ\*]; is a lift of Rj, with
Ej; NS(M,e) # . From the definition, /(L,) = M. Therefore, there exists a simple
closed curve c. in R}, passing through 7(z) with /(c.) < M = /(L.) = /(l.). Obviously,
the curve c. is not homotopic to /. = n(L.) because /. is the shortest simple closed curve
which passes through 7(z) and surrounds the puncture. Therefore, by using the same
argument as above, we have a non-trivial simple closed curve passing through p with
length less than AM; which does not surround a puncture of R. ]

To prove the main results, the following proposition on the hyperbolic geometry is
crucial.

PrOPOSITION 2. Let I' be a Fuchsian model on the upper half-plane H of a Riemann
surface R. Assume that I is non-elementary. Let M and D be positive constants.
Then there is a constant A > 1 depending only on M and D that satisfies the following
property: for a quasiconformal automorphism f of H such that f oI o f~! =T, suppose
that there exist distinct hyperbolic elements gi,9> and g3 in I' such that

(1) translation lengths of g; (j =1,2,3) are less than M,

(2) the projections of the axes ¢; of g; to R are simple closed geodesics,
(3) the distances between a point z; on ¢ and ¢; (j =2,3) are less than D, and
(4) an isomorphism y of I' induced by f satisfies

191) =a1, x(92) =92, x(g3) # g5
Then, K(f) = A.

To prove this proposition, we prepare some known results.
LemMmA 1 ([7], Theorem 1). Let f be a quasiconformal automorphism of C fixing 0
and 1, and suppose that there is a point zy in C —{0,1} such that
log M = di(zo, f(z0)) > 0.
Then K(f) > M?, where d\(,) is the hyperbolic distance on C — {0,1}.
Lemma 2 ([13], Lemma 3.1). Let f be a quasiconformal mapping of a Riemann
surface R onto another Riemann surface S, and ¢ be a simple closed geodesic on R with

hyperbolic length L. Then the hyperbolic length of a closed geodesic on S homotopic to
f(c) is not greater than K(f)L.
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LemMA 3 ([5]). For a given M > 0, let g and g’ be arbitrary two distinct hyperbolic
elements of I" with translation lengths less than M. Suppose that the projections of the
axes of g and g' to R are simple closed geodesics which are coincident or disjoint. Then
the axes have a distance greater than C >0 depending only on M.

We also need a variant of the above lemma.

LEmMMA 4. For a given M > 0, let g and g' be arbitrary two hyperbolic elements of
I with translation lengths less than M. Suppose that the projections of the axes of g and
g’ to R are simple closed geodesics which intersect one another. Then the axes make an
angle greater than C > 0 depending only on M.

PrOOF. Assume that the translation length of ¢’ is not less than that of g. Then,
on R, the closed geodesic 7 induced by g can not round more than once in the collar of
the geodesic /' induced by ¢g’. Hence we have a desired lower bound for the inter-
section angle of / and /. ]

PrOOF OF PrROPOSITION 2. We may assume that the fixed points of g; are 0 and oo,
and that z; = v/—1 € H, hence dH(\/—_l,Z}-) < D for j =2,3. We may also assume that
the maximal dilatation of f is less than 2. Then at least one of the fixed points
of g (j=2,3) isnotin U={xeR||x|] <J or |x| >1/0} for sufficiently small J > 0
which depends only on M and D. Indeed, if both fixed points of g; are in U; =
{xeR||x| <6} for small § >0, then it contradicts dy(v/—1,/;) < D. The same ar-
gument works when both fixed points are in U, = {x € R||x| > 1/6}. If one fixed point
of g; is in U; and the other is in U,, then it contradicts if 41N/ = and it
contradicts Cemma 4 if /, N4 # & (j =2,3). Therefore, we verify that at least one of
the fixed points of g; (j =2,3) is not in U. By using the same argument, we see that
there exists a constant 6" > 0 depending only on M and D such that all fixed points of
g» and g3 are in {xe R|&' < |x| < 1/5'}.

Then, since dy(v/—1,/3) < D, the Euclidean diameter diam(/3) of /3 is greater than
some 7= r(M,D) >0 which depends only on M and D. Set g4 = fogsof~'. By
the assumption we have g4 # g3. Then, we see that there exists a constant C =
C(M,D) > 0 depending only on M and D such that an inequality

(2) b= 1) >C

holds for at least one fixed point b of g3. Indeed, since K(f) < 2, the translation length
of g4 is less than 2M by [Lemma 2. Noting that diam(/3;) >r, we see that if
/3Ny # &, then we have the assertion from [Cemma 4, and that yields the
assertion if /3N7/y = .

Take a fixed point a of g, with

(3) d < la| < 1/6.

Let ¢ be a Mobius transformation with ¢(0) =0, ¢(a) =1 and ¢(0) = 0. As we
noted, ¢’ < |b| < 1/6’. Hence, (2) and (3) imply that

da(b, f(b)) > logL
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holds for some constant L > 1 depending only on M and D, where d,(,) is the hy-
perbolic distance on C — {0,a}. Considering {0, a,b} instead of {0, 1,z¢} for zo = ¢(b)
in [Cemma 1, we verify that the assertion follows for 4 = L2, ]

Next, we show a fundamental property of Modf(R).

ProrosITION 3. Let R be a Riemann surface. For an arbitrary simple closed
geodesic ¢ on R, let {[f,]} be a sequence of transformations of Modf(R) that satisfies
lim, ... K(fy) =1. Then there exists a subsequence {[fy]} of {[ful} such that {f,}
locally uniformly converges to a conformal automorphism f of R which determines a
transformation [ f] e Mod? (R).

Proor. First we suppose that ¢ is not homotopic to a boundary component of
R. Then there exists a simple closed geodesic ¢’ on R with ¢N¢’ # . Hence
5 (with C =c¢ and K = ¢’) below shows the desired result.

Next suppose that ¢ is homotopic to a boundary component of R. We may
assume that the Riemann surface R is not topologically finite. Consider the double R
of R. Then, R is still hyperbolic and the curve ¢ is not homotopic to a boundary
component of R. And it is easily seen that quas1conformal mappmgs fn:R— R
(n=1,2,...) are extended to quasiconformal mappings fn R — R with the same
maximal dilatations. Therefore, by the same argument as above, we have the desired
result. ]

LemMmA 5. Let {f,} be a sequence of quasiconformal automorphisms of a hyperbolic
Riemann surface R that satisfies lim, ., K(f,) = 1. Suppose that there exist compact
subsets C and K of R such that f,(C)NK # & for all n. Then there exist a subsequence
{fn,} of {fu} and a conformal automorphism f of R such that { f,,} converges to f locally
uniformly on R.

Proor. From the assumption, there exists a sequence {p,} on C such that
Jfu(pn) € K. Since C and K are compact, there exist p € C and ¢ € K such that p, — p
and f,(p,) — q as n — co. Take lifts of p,, p and ¢ in H, say p,, p and g, respectively,
so that p, — p as n — co. We can take lifts f; :H — H of f, satisfying f;(ﬁn) — q.
Since {f,} is a normal family, a subsequence { f;j} of f, converges locally uniformly,
and the limit function f is either a quasiconformal automorphism of H or a constant
in RU {0} (see [8], Theorem 5.3). Since f(p) =g is in H, f is not a constant. Thus,
it follows from lim, ., K(f,) =1 that f is a conformal automorphism of H. Hence,
{/fu} converges locally uniformly to a conformal automorphism f of R which is the
projection of f. O

Before proving our main theorems, we shall give a sufficient condition for dis-
creteness of a sequence of Mod”(R) under the conditions in Theorem 1.

PrOPOSITION 4. Let R be a Riemann surface satisfying two conditions in Theorem 1,
and {f,} be a sequence of quasiconformal automorphisms of R satisfying the following
conditions:
{(fn),} converges to the identity, where (f,), : m1(R) — m(R) is an isomorphism
induced by f,.
lim, ., K(f,) =1.

Then, f, are homotopic to the identity for sufficiently large n.
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Proor. Let I' be a Fuchsian model of R, and f; a lift of f, for each n. We may
take f; so that the isomorphisms y, : I" — I" induced by ji converge to the identity.
Suppose that y, are not eventually the identity. Then the following lemma gives us
three hyperbolic elements g ,, g2, and g3 , in I" for each n which satisfy the conditions

in for some constants M’ and D. Hence, we have
K(f)) = A=AM'D)>1.

Since constants M’ and D are independent of n, this contradicts lim,_ . K(f,) = 1.
Hence we have proved this proposition. O

LEMMA 6. Let R be a Riemann surface satisfying the two conditions in Theorem 1,
and y, are isomorphisms of the Fuchsian model I" of R such that y, — id and that they
are not eventually the identity. Then, for each n, there exist hyperbolic elements g; ,
(j=1,2,3) of I" with axes /;, such that they satisfy the following four conditions:

(1) the projections L;, of ¢, to R are simple closed geodesics,

(2) there is a constant M’ independent of n such that the lengths of L; , are less than

M,

(3) there is a constant D independent of n such that the distances between a point on

lin and ¢, (j=2,3) are less than D, and

4) x.(gjn) = gjn for j=1,2, and yx,(g3.2) # 93.n-

Proor. First, we observe a fundamental property of R,,. For an arbitrary
point py in R}, — R, there exists a non-trivial simple closed curve C, passing through
po such that it is not homotopic to a puncture and /(C,,) < M, where M| = M(M &)
is a constant in depending only on M and &. Then there exists a simple
closed geodesic L,, which is homotopic to C,,. The length of L, is greater than ¢ and
we have

0 < o/ My < /(Ly)/4(Cy).

Hence there exists a constant B = B(M,¢) depending only on & and M such that the
hyperbolic distance between py and L,, on R is less than B (Figure 1). This implies

Figure 1. L: a lift of L,, C: a lift of C,,.

that for every point zy in a lift of R}, say E}(;, if it is not projected to R,, then there is
an axis /y of a hyperbolic element of I” such that dy(zy,7p) < B and that the projection
to R is a simple closed geodesic with length less than M.
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By Remark 3, the homomorphism 7;(R},,) — 7;(R) is surjective for all M" > M.
Thus, we take a constant M sufficiently large so that there exist two disjoint simple
closed geodesics LY and LY on Rj, whose lengths are less than M. Let 7 (j=1,2) be
hyperbolic elements of I which represent L]Q. Since y, — id (n — ), x,(y;) =y, and
Zn(v2) = p, for sufficiently large n. Since y, is not eventually the identity, we may find
a y, el so that x,(y,) #7, The following lemma shows more, that is, we may take
better one as y,,.

Lemma 7. Let y,,y, and x, be the same ones as above. For sufficiently large n,
there exists a hyperbolic element y, of I that satisfies the following two conditions:
(D) 2a(n) # s
(2) the projection of the axis of y, on R is a simple closed geodesic with length less
than M,

Proor. Since y, # id, there exists an element o, of I" such that y,(o,) # o,. We
will show that either o, 0y, oo, ! or o, 07,00, ! is a desired element. It is obvious that
both of them satisfy the second condition of the lemma. Hence, it suffices to show that
one of them satisfies the first condition.

Suppose that y, fixes o, 07,0 o' (j=1,2). Then B, °7; OﬂJI =y (j=1,2),
where 8, = oo y,(a,). Thus, B, fixes all fixed points of y, and y,. Since y; and y,
are non-commutative, the Mobius transformation f, fixes four points and it must be the
identity map. This contradicts y,, (o) # o O

Let y, be an element in [Lemma 7. By the proof of Lemma 7, we may assume that
Y, = 0y O Y O ocn‘l for some o, € I'.  We denote by /10,/20 and 7, the axes of y;,7, and y,,,
respectively. The projection of 7, to R is the same as that of /10.

Fix a point z; on /10. There exists the nearest point z, on ¢, from z;. Since z;
and z, belong to R\j{; and since R}, is connected by the second condition in [Theorem 1,
there exists an oriented smooth curve C, in ﬁj{; from z, to z;. Furthermore, we can
take the curve C, so that the projection of C, is in R}, — R,.

Now, we shall show the statement for M' = M, and D = max(4(B+ M, + 1),
dy(z1,43)); we consider the following two cases for dp(z1,4,).

1: dH(Zl,/n) < 4(B—|— M1 + 1)

In this case, we set g1, =)y, g2.» = ¥, and g3, = 7,. Then the third condition of the
lemma holds for D. Other three conditions are trivial from the choice of these
transformations.

2: dH(Zh/n) > 4(B—|— M, + 1)

In this case, there are points z; and w, on C, such that z,,z, and w; are located in this
order with respect to the orientation of C, and they satisfy
dH(Zn,Zz> = dH(Zz, Wz) = 2(B+ M, + 1)

Since z, and w, are points on E;{; which are not projected to R,, it follows from the
above observation that there exists an axis 7, (resp. Z5) such that dy(z2,45) < B (resp.
du(wa,45) < B) and that the projections of /5 and 7, to R are simple closed geodesics
whose lengths are less than M. Since dy(z2,w2) > 2(B+ M), we see that 7/, and /5
are distinct. Let p; and p} be hyperbolic elements of I" whose axes are 7, and /5
respectively. Take a point {, € /5 so that dy(z2,(,) < B (Figure 2).
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e
4

Figure 2.

If x,(y3) =75 and x,(yy) =75, set gi.n =3, g2, = 73 and g3, =y,. Noting that

du((5,05) <2(B+ M; + 1)+ 2B
and

we see that the third condition of the lemma holds for D > 4B+ 2(M; + 1). Thus, we
obtain desired elements.

We consider the case where y,(y;) # y; or x,(yy) # 5. We may assume that
2n(75) # y5 because the argument below works for the case where y,(y5) # »5.

If y,(y5) # 5 and du(z1,45) <4(B+ M, + 1), then we see that g1, =y, g2.n = V>
and g3, =y, are desired ones as in the first case.

If y,(y3) # 75 and du(z1,/5) >4(B+ M, + 1), then we use the argument in the
second case and we have z3,ws; on C, such that z,,z3 and w; are located in this order
with respect to the orientation of C, and dy(z3,z3) = dp(z3,w3) =2(B+ M; +1).
Also, we have axes /3,73 and 7,7} € I' as above. Repeating this argument, we get
desired elements since dpy(z1,/;) <4(B+ M, + 1) < D for some k € N. O

Proor oF THEOREM 1. Let py = [R,id] be the base point of T#(R). We first
suppose that there exists a sequence {g,} of quasiconformal automorphisms of R which
determine distinct elements of Mod”(R) such that lim, ., g,(po) = p for some p in
T#(R). Consider the sequence {f, =g, ! 0g,}. Then we see that f/(py) converges
to po. Thus there exist quasiconformal mappings f, : R — R (n=1,2,...) such that f,
is RT-equivalent to f’ and that lim,_., K(f,) = 1. From [Proposition 3, there exists
a conformal automorphism f of R such that [f, 0 f] e Modf(R) and f, o f converge
to the identity on R locally uniformly. Since lim,_ o, K(f, o f) =1lim,_, K(f,) =1, it
follows from that [f, o f] = [id] for sufficiently large n. Hence [f,] =
[/~1] for sufficiently large n. This contradicts the assumption that all f, are distinct.

Finally, we see that the same argument as above is valid for an arbitrary point
g=1[S,f] in T#(R). To see this, it suffices to show that the conditions of Theorem
1 are invariant under the quasiconformal deformation. Namely, the following lemma
concludes the theorem. ]

LemMma 8. Let R and S be Riemann surfaces, and f : R — S be a K-quasiconformal
map. If R satisfies the conditions in Theorem 1, then S also satisfies them.

ProorF. Let f:H — H be a lift of K-quasiconformal map f. The quasicon-
formal map f can be extended to H U R with f(o0) = co and the restriction f|R of f to
R is a quasisymmetric function. The Douady-Earle extension &( i ) of b IR to H is a
quasiconformal and bilipschitz map, and the bilipschitz constant K’ depends only on K
(cf. [2]). The projection ¢, : R — S of &( f) satisfies
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(1/K")/(c) < ¢(d(c)) < K'¢(c)

for an arbitrary curve ¢ on R, and [S, f] = [S,¢,] in T#(R). Then for an arbitrary
point a in ¢,(R},), there exists a non-trivial simple closed curve ¢y containing a such
that /(co) < K'M. Thus, ¢,(R},;) = Sk'ar. Therefore, we see that the Riemann surface
S satisfies the second condition in [Theorem 1 for a connected component of Sy,
containing ¢,(R},).

The same argument also shows that S satisfies the first condition. ]

PrOOF OF THEOREM 2. We may assume that R is a Riemann surface of infinite
type. Suppose that R is a Riemann surface of positive finite genus g and satisfies the
conditions in [Theorem 1. Further suppose that Mod*(R) is not discrete. Then there
exists a sequence {f,} of quasiconformal automorphisms of R which determine distinct
elements of Mod#(R) such that lim,_, K(f,) =1. Let / be a dividing simple closed
curve such that one of components of R —/ is a Riemann surface S of genus g with only
one boundary component. Take a non-dividing simple closed geodesic ¢ on S. Then
fu(e)NS # & for all n. Indeed, if f,(c)NS = &, then f,(c) should be a dividing
curve. Since c¢ is a non-dividing curve and f, is a homeomorphism, it can not occur.
Then from [Lemma 5, there exists a subsequence of { f,} which converges to a conformal
automorphism f of R locally uniformly on R. Hence we can apply [Proposition 4, and
we conclude a contradiction.

Next suppose that R has finite positive number of cusps and satisfies the conditions
in Mheorem 1. If Mod*(R) is not discrete, then there exists a sequence {f,} as above.
Let V' be a cusp neighborhood of a puncture of R. Since R has only finitely many
cusps, we may assume that f,(V)NV # ¢ for all n by taking a subsequence of {f,}.
Let S be a pair of pants in R such that it contains ' and the boundary of S consists of
the puncture and two dividing simple closed geodesics, say c¢; and ¢;. We may assume
that two geodesics ¢; and ¢, are not homotopic to a boundary component of R. If
fu(c1) 1is homotopic to ¢; for infinity many n, then they determine elements
of Mod? (R). Hence, they must be discrete from Theorem 1. Assume that f,(c;) is
not homotopic to ¢; for all n. Since f,(V)NV # & and f,(S) is still a pair of pants
for each n, we see that f,(c1)N(S\V) # & or fu(c2) N(S\V) # &. We may assume
that f,(c;)N(S\V) # &. Then from and [Proposition 4, we conclude a
contradiction.

Finally, suppose that R has finite positive number of borders and satisfies the
conditions in Theorem 1. If Mod*(R) is not discrete, then there exists a sequence {f;}
as before. Let B be a one of borders of R. Since R has only finite number of borders,
we may assume that f,(B) = B for all n. Let ¢ be a simple closed geodesic which
is homotopic to B. Then f,(c) is homotopic to ¢. Thus f, e Mod?(R), and {f;}
is discrete by [Mheorem 1. This contradicts lim,_., K(f,) =1. Hence Mod”(R) is
discrete. [

6. Further examples.

In Example 4, we showed that there exists a Riemann surface R that satisfies the
two conditions in [Theorem 1, but that Mod”(R) is not discrete. In this case, there
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exists a sequence {w,} of distinct elements of Mod”(R) such that w,(py) = po for any
n, where po = [R,id] € T#(R). By modifying this example, we exhibit another kind of
examples of Riemann surfaces R which also show that Mod”*(R) are not discrete.

ExampLE 5. We construct a Riemann surface R such that there exists a sequence
{w,} of distinct elements of Mod”(R) such that lim, .. dr(w,(p),p) =0 for some
peT#(R) and w,(p) # p for any n.

First, we consider a torus 4, with two geodesic borders of the same length. Let B
be another torus obtained via the (1 + &) quasiconformal deformation of A4, for some
g > 0. Attach two copies of By to Ay along the borders suitably, and we obtain a
Riemann surface 4;. Hence, it is a Riemann surface of genus 3 with two geodesic
borders.

Next we take a Riemann surface B; which is the (1 +¢;) quasiconformal defor-
mation of A4; for some ¢ > 0. Attach two copies of B; to A; along the borders
suitably, and we obtain a Riemann surface A, which is a Riemann surface of genus 9
with two geodesic borders. Repeating this process for some sequence {¢,} of positive
numbers, we have a sequence of Riemann surfaces {4,}. More precisely, A, is a
Riemann surface consisting of 4, and two copies of B, which is (1 + ¢,) quasiconformal
deformation of A4,. Thus, 4, is obtained by gluing 3" surfaces homeomorphic to Ay,
say S—oc(n)7 S—ac(n)—i—la ey 821,80, 851, ... 7Soc(n)—17 Sa(,,) for O((I/l) = (3" — 1)/2 We construct
a Riemann surface R as the inductive limit of these A4,. Namely, R is a Riemann
surface obtained by gluing Sy and Sk (kK =0, +1, £2,...). If the sequence {¢,} is
bounded, then we see that R satisfies the above conditions on the injectivity radius.

S-(x(rz) SO S(x(u)
<o LYY} <o sees PN
/\/ T~ T~
Figure 3.

Let g, be a quasiconformal automorphism of R which sends a part corresponding
to Sk to a part corresponding to Sy 3» (k=0,+1,+2,...). We shall show that there
exists a quasiconformal automorphism f, homotopic to g, such that the maximal
dilatations of f, (n=1,2,...) converge to one as n — 0.

We construct such maps inductively. 1If 0 < |k| < a(n), then we set fug, = /y,
where h, : A, — B, is the (1 + ¢g,)-quasiconformal mapping as above. If a(n) < |k| <
oa(n+1), then we may set f|s = /pp10h,0h, ), and the maximal dilatation of f,|g,
is less than (1+&,)(1+¢.q)>. Similarly, if a(m—1) < |k| <a(m) for m(>n)
and h,'(Sy) =S, for some / with |/| <o(p), then we may take f,|g = hmohs ol
on Sj. Therefore, we see that the maximal dilatation of f, 1is less than
(1+en) [Ty (1 + 8k)2-

If we take a sequence {e,} converges to zero rapidly so that >, ¢, < oo, then
we verify that the maximal dilatations of f, converge to 1 as n — oco. Thus, the
quasiconformal automorphism f, induces an element of Mod”(R) whose orbits of
Po = [R,id] converge to po in T#(R).
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The following example shows that does not necessarily hold for a planar
Riemann surface.

ExamMPLE 6. Set R= C — Z, which is a planar Riemann surface satisfying the
conditions in [Theorem 1, and set f,(z)=z+n (n=1,2,3,...). Since f,(z) is a
conformal automorphism of R, we see that [f,|(po) = po for all n, where py=
[R,id] € T#(R). Hence Mod"(R) is not discrete (cf. Example 4).

Further we see that there exists a point p in T#(R) such that the set of the orbit
of p under the action of Mod®(R) is not discrete. To show this, consider a following
Riemann surface S: Set

/1
R L ES R

0 (n=0),

where j(n) is the power of the factor 2 when we decompose |n| to the product of primes,
and set S=C— )" _{z}. Since there exists a quasiconformal automorphism / of
C such that h(n) =z, (ne Z), S is a quasiconformal deformation of R.

For every positive m, we take a locally affine quasiconformal automorphism g,, of S
such that Reg,,(z) = Rez + 2" (and hence g,,(z,) = z(y42m)). Then, since j(n+2") =
j(n) for j(n) <m and j(n+2") =m for j(n) > m, we may take the locally affine maps
gm so that the maximal dilatations of ¢,, tend to 1. Hence we see that the set of the
orbit of p =[S, h] € T#(R) under the action of Mod®(R) is not discrete.

We shall construct a Riemann surface R and sequences {M,},{M } having the
properties referred in Remark 3 in §4.

ExampLE 7. We consider right-angled hexagons H, (n=1,2,...) in the hyperbolic
plain H. The sides of the hexagon H, are labelled a;, (j=1,2,...,6) counter-
clockwise. We construct the hexagon so that /(az ,) = /(as ), /(as.,) = ¢(as ,) =1 and
l(ar,) = (2n)~'. Then {H,} converges to a pentagon with one cusp as n — co. Thus,
we see that

(4) dH(Pn,aln) = dH(Pn,a@n) <M<

holds for some M independent of n, where P, is the midpoint of a4, Take the
perpendicular line L; , (j =2,6) from P, to a;,. Since dy(P,,ai,) — o0 as n — o0, it
follows from (4) that dg(ai n, L2,) = du(ai n, Len) — oo (Figure 4).

Figure 4. A hexagon close to a pentagon with one cusp.



On the action of the mapping class group 1085

Now, we take k(n) copies of H,, say H,},...,Hf("), so that
1 1 1
(5) gdH(aLn,Lz?n) < 2k(n)/(a17n) = ﬁk(l’l) < EdH<a1,'l?L27ﬂ>'

Obviously, k(n)/n— o as n— . Let a, (i=1,2,...k(n);j=1,2,...,6) denote
the sides of H, corresponding to a;,. Glue H; and H' along a} , and aj’]. Then,
we have a right-angled (2k(n) +4)-gon D, in H. Label the side of D, formed by
all‘nU---Uaf(Z) as by, and the rest of sides as by y,...,by(n)4+4,, counterclockwise.
 We take a copy of Dy of D, with sides b/, (j=1,2,...,2k(n) +4) corresponding
to b;, of D,. We glue D, and D) along b; , and bék(n)%_jm for j=2,4,...,2k(n) +2
and 2k(n) +4. Then we have a hyperbolic bordered surface S, of type (0,k(n)+ 1)
The boundary 05, consists of one long curve c;, and k(n) short curves ¢z ,, ..., Ckn),n

It follows from the construction that

fern) =50,

£(ca,n) = L (Chimy,n) = 2,
and

/(CS,n> == /(Ck(n)fl,n) =4.

From (4), we verify that (S,),,, is connected and the natural map of 7;((S,),,,) to
m(Sy) is surjective. On the other hand, it follows from (5) that (S,)y,, is not
connected while both (Sy) ()2, and (Su)ok(n)jnsan are connected.

We take a sequence {j,} so that

4M < k(_j”) < Klns) (n=1,2,..)

Jn 1Ojn+l

We glue §;, and Sj,,, along ¢,  of dS; and ¢y, of 4S;,,. Then we have a

bordered Riemann surface S, and a Riemann surface R whose convex core is S. From
the construction we verify that Ry, is connected for M, = k(j,)/2j, but Ry is not
connected for M, = k(j,)/j,. Since M,, M, > 4M, the natural maps of n;(Rys;,) and
nl(RL’:) to m;(R) are surjective, where R}, is the “core component” of Ry. Thus,

n

R,{M,} and {M,} are our desired ones.
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