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Stable suspension order of universal phantom maps

and some stably indecomposable loop spaces

By Kouyemon Iriye

(Received Jan. 16, 2006)

Abstract. We study a stable suspension order of a universal phantom map out
of a space. We prove that it is infinite if X is a non-trivial finite Postnikov space,
a classifying space of connected Lie group or a loop space on a connected Lie group
with torsion. We also show that the loop spaces on the exceptional Lie groups E6

and E7 are stably indecomposable.

1. Introduction.

Throughout this paper all spaces have basepoints, all maps and homotopies preserve
them. p denotes a fixed prime and X(p) denotes the localization at the prime p of a
nilpotent space X.

A map out of a CW-complex X is called a phantom map if its restriction to each
n-skeleton Xn is null homotopic. The universal phantom map out of X is a based map

Θ : X →
∞∨

n=1

ΣXn

through which all other phantom maps out of X factor. This map is a part of the
extended cofiber sequence

∞∨
n=1

Xn
F→ X

Θ→
∞∨

n=1

ΣXn →
∞∨

n=1

ΣXn → · · · ,

where F :
∨∞

n=1 Xn → X is the folding map, that is, F |Xn
: Xn → X is the inclusion

map. For a map f : X → Y by the stable suspension order of f we mean the order of
the class [f ] in lim

−→
[ΣnX, ΣnY ].

For a CW-complex X by Σ∞X we denote the suspension spectrum. For a map
f : X → Y between CW-complexes by the strong stable suspension order of f we mean
the order of the class Σ∞f : Σ∞X → Σ∞Y in {Σ∞X, Σ∞Y }.

Since the natural map

lim
−→

[ΣnX, ΣnY ] → {Σ∞X, Σ∞Y }
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is not necessarily monomorphic for an infinite dimensional complex X, for a map f :
X → Y it is necessary to distinguish between its stable suspension order and strong
stable suspension order.

First we study the (strong) stable suspension order of the universal phantom maps
out of K(π, n)(p) and BG(p). These spaces satisfy the assumption of the following theo-
rem.

Theorem 1.1. Let X be a connected p-local CW-complex of finite type over the ring
Z(p). If H̃∗(X;Fp) has an element of infinite height, then the strong stable suspension
order of the universal phantom map out of X is infinite.

As a corollary we have the following partial answer to Question 18 of McGibbon
[12]. Needless to say, if the strong stable suspension order of a map is infinite, then so
is its stable suspension order.

Corollary 1.2. Let X be a connected nilpotent finite Postnikov system of finite
type with finite π1(X). Then the strong stable suspension order of the universal phantom
map out of X(p) is infinite unless its mod p homology groups are trivial.

Let G be a connected Lie group. Then the strong stable suspension order of the
universal phantom map out of BG(p) is infinite unless its mod p homology groups are
trivial.

Next we study the (strong) stable suspension order of the universal phantom map
out of a loop space on a simply connected Lie group.

In [7] we proved that for almost all Lie groups G the universal phantom maps out
of ΩG are essential. More precisely we proved the following theorem.

Theorem 1.3. Let G be a simply connected Lie group. The universal phantom
map out of ΩG(p) is trivial if and only if G is p-equivalent to a product of spheres.

By the Mitchell-Richter splitting of ΩSU(n) [1], it is stably homotopy equivalent
to a bouquet of finite complexes. The identity map id : Σ∞ΩSU(n) → Σ∞ΩSU(n),
therefore, factors throught the folding map Σ∞F : ∨Σ∞(ΩSU(n))i → Σ∞ΩSU(n), that
is, the universal phantom map out of ΩSU(n) is stably trivial. Thus the strong stable
suspension order of the universal phantom map out of ΩSU(n) is zero. But we do not
know whether the stable suspension order of the universal phantom map out of ΩSU(n)
is zero.

For a nilpotent CW-complex X of finite type, by Theorem 3.3 of [3], the stable
suspension order of the universal phantom map out of X(p) is zero if and only if ΣnX(p)

is homotopy equivalent to a bouquet of finite dimensional complexes for some n.

Question 1.4. Let n > 2. Is ΣmΩSU(n) homotopy equivalent to a bouquet of
finite complexes for sufficiently large m?

Hopkins [5] proved that ΩSp(2) and ΩSp(3) are stably indecomposable. Later Hub-
buck [6] added ΩG2 and ΩF4 to the list of such spaces. Their results imply that the
stable suspension order of the universal phantom maps out of ΩG are non-zero for
G = Sp(2), Sp(3), G2, F4. We extend this result to loop spaces on Lie groups as
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follows:

Theorem 1.5. Let G be a simply connected, simple Lie group.
If H∗(G;Z) has a p-torsion, then the strong stable suspension order of the universal

phantom map out of ΩG(p) is infinite.
If G = Sp(n) with n > 1, then the strong stable suspension order of the universal

phantom map out of ΩG(2) is non-zero.

Theorem 1.5 and the fact that ΩG2 and ΩF4 are stably indecomposable suggest that
if a simply connected simple Lie group G has a p-torsion, then ΩG is stably indecompos-
able. Partially we can prove this suggestion.

Theorem 1.6. ΩE6 and ΩE7 are stably indecomposable at the prime 2.

As for ΩSp(n), although Sp(n) is torsion free, Hubbuck conjectured that they are
all stably indecomposable at the prime 2 unless n = 1. For n ≤ 10 it is not difficult to
show that his conjecture is true.

For a connected space X of finite type we associate a graph G(X) as follows. The
vertices of G(X) are non-zero elements of H̃∗(X;F2) and a pair of vertices {x, y} is an
edge of G(X) if and only if Sqix = y or Sqiy = x for some i > 0, where Sqi is the
dual Steenrod operation of degree i. If X is stably homotopy equivalent to a wedge of
non-trivial spaces or spectra, then G(X) is not connected. To prove Theorem 1.6 we will
show that the graphs associated with ΩE6 and ΩE7 are connected. Unfortunately, the
graphs associated with loop spaces on other Lie groups are not connected.

This paper is organized as follows: In Section 2 we study a stable suspension
order of a universal phantom map and prove Theorem 1.1, Corollary 1.2 and The-
orem 1.5. In Section 3 we prove that ΩE6 and ΩE7 are stably indecomposable
by assuming technical theorems. In Section 4 and Section 5 we compute the sets
{x ∈ H∗(X;F2)|Sqix = 0 for all i > 0} for X = ΩE6 and ΩE7.

The author would like to thank N. Minami. He kindly told the author that the
natural map lim

−→
[ΣnX, ΣnY ] → {Σ∞X, Σ∞Y } is not necessarily monomorphic for an

infinite dimensional complex X.

2. Stable suspension order of universal phantom map.

In this section we prove Theorem 1.1, Corollary 1.2 and Theorem 1.5.

Proof of Theorem 1.1. In this proof H∗(X) stands for H∗(X;Fp). Since X is
connected, we can assume that each n-skeleton of X is also connected.

By way of a contradiction, we assume that the strong stable suspension order of the
universal phantom map out of X is finite. Since spaces are p-local, the order is pm for
some non-negative integer m. Since in the cofiber sequence

∞∨
n=1

Σ∞Xn
Σ∞F−→ Σ∞X

Σ∞Θ−→
∞∨

n=1

Σ∞ΣXn

pmΣ∞Θ ' ∗, there is a map g : Σ∞X → ∨∞
n=1 Σ∞Xn such that Σ∞F ◦ g ' pmidΣ∞X .

By taking adjoint we have the following (homotopy) commutative diagram:
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X
η //

g′

²²

Q(X)

pm

²²
Q(

∨∞
n=1 Xn)

Q(F ) // Q(X)

where Q(X) = lim−→ ΩkΣkX, η : X → Q(X) is the adjoint map to the identity idΣ∞X :
Σ∞X → Σ∞X, p : Q(X) → Q(X) is the p-th power map, and g′ : X → Q(

∨∞
n=1 Xn) is

the adjoint map to g : Σ∞X → ∨∞
n=1 Σ∞Xn. Now we apply the mod p homology theory

to the diagram above and we will obtain a contradiction.
For a space K of finite type over the ring Z(p) by ξ∗ : Hp∗(K) → H∗(K) we denote

the p-th root map, which is the dual of the p-th power map in H∗(K). If K is an H-space,
then the p-th power map p : K → K induces a map given by p∗(x) = ξ∗(x)p in homology
and ξ∗ : Hp∗(K) → H∗(K) is a homomorphism of algebras.

Thus we have (pm ◦η)∗ = ξm
∗ ( )pm ◦η∗ : H∗(X) → H∗(Q(X)). Let x̄ ∈ H∗(X) be an

element of infinite height and xj ∈ H∗(X) be the dual of x̄pj

for j ≥ 0 and its image in
H∗(Q(X)) will be denoted by the same letter since H∗(X) is a submodule of H∗(Q(X)).
Then ξ∗(xj+1) = xj for j ≥ 0.

We choose a positive integer M such that xm ∈ Im(H∗(XM ) → H∗(X)). Since
XM is finite dimensional, we may assume that g′(XM ) ⊂ Q(

∨N
n=1 Xn) for some N and

that g′ is the composite of g′|XM
: XM → Q(

∨N
n=1 Xn) and the natural inclusion map

Q(
∨N

n=1 Xn) → Q(
∨∞

n=1 Xn). We consider the composite h : X → Q(XN ):

h : X
g′→ Q

( ∞∨
n=1

Xn

)
Q(q)−→ Q

( N∨
n=1

Xn

)
Q(F )−→ Q(XN )

where q :
∨∞

n=1 Xn =
∨N

n=1 Xn∨
∨∞

n=N+1 Xn →
∨N

n=1 Xn is the map which collapses the
second factor to the base point.

Now we recall the following two facts to complete the proof.

(1) Any even dimensional element x in H̃∗(Q(X)) has an infinite height since
H∗(Q(X)) is a free commutative algebra. This is well known, see Section 4 of
[10]. In particular, xpm 6= 0.

(2) There is no infinite sequence {yj ∈ H̃∗(Q(XN ))| ξ∗(yj+1) = yj for all j ≥ 0 and
yj 6= 0 for some j}. This can be proved by using the Nishida relation, see e.g.,
Lemma 3.5 of [13]. In fact, if ξk

∗ = 0 on H̃∗(K) for a connected space K, then so
is on H̃∗(Q(K)).

Put x = x0 and consider an infinite sequence {h∗(xj) ∈ H∗(Q(XN ))}j=0,1,2,.... This
sequence contradicts the fact (2) above as follows. Let iN : XN → X be the inclusion
map. Since

Q(iN ) ◦ h ◦ iM = Q(iN ) ◦Q(F ) ◦Q(q) ◦ g′ ◦ iM

' Q(iN ) ◦Q(F ) ◦ g′|XM
' Q(F ) ◦ g′ ◦ iM

and xm ∈ Im(H∗(XM ) → H∗(X)), we have
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Q(iN )∗ ◦ h∗(xm) = Q(F )∗ ◦ g′∗(xm) = pm
∗ ◦ η∗(xm) = (ξm

∗ (xm))pm

= xpm 6= 0,

that is, h∗(xm) 6= 0. On the other hand we have ξ∗h∗(xj+1) = h∗(ξ∗xj+1) = h∗(xj). ¤

Proof of Corollary 1.2. The fact that H̃∗(X;Fp) has an element of infinite
height is proved by Grodal, [4, Theorem 1.1]. For BG this fact is also known, see e.g.,
p. 385 of [3]. ¤

Similarly to Theorem 3.3 of [3] it is easy to prove the following theorem, which we
need to prove Theorem 1.5.

Theorem 2.1. For a nilpotent CW-complex X the strong suspension order of the
universal phantom map out of X(p) is zero if and only if X(p) is stably homotopy equivalent
to a bouquet of p-localization of finite complexes.

Proof of Theorem 1.5. First we show the second statement.
For n = 2 the statement follows Theorem 2.1 and the fact that ΩSp(2) is stably

indecomposable.
Let n > 2. By Kono and Kozima [8], H∗(ΩSp(n);F2) is isomorphic to

F2[x2, x6, . . . , x4n−2] and the action of the Steenrod algebra on x6 and x10 are given
by Sq2x6 = x2

2, Sq2x10 = x4
2 and Sq4x10 = x6. Since G(ΩSp(n)) has the following path

· · · 7→ x6x
2i+2
2

Sq2

7→ x2i+4
2

Sq27→x10x
2i
2

Sq4

7→ x6x
2i
2

Sq2

7→ x2i+2
2

7→· · · 7→ x2
2,

G(ΩSp(n)) has a connected component which has elements with arbitrary large dimen-
sion. Thus in a stable category ΩSp(n) is not homotopy equivalent to a bouquet of finite
dimensional complexes, which implies the second statement by Theorem 2.1.

To prove the first statement we use complex Z/2-graded K-homology theory. We
know that K0(ΩG) is free Z-module and K1(ΩG) = 0. We give K0(ΩG) the ascending
filtration corresponding to the CW-filtration of ΩG. Since the Atiyah-Hirzebruch spectral
sequence collapses, the natural map K0(ΩG)2n → H2n(ΩG;Z) is epimorphic with kernel
K0(ΩG)2n−2, see [2] and [6].

Let ξ2 ∈ K̃0(ΩG)2 ∼= Z be a generator. Then there is an indecomposable element
ξ2p ∈ K̃0(ΩG)2p such that ξp

2 = pξ2p + ξ2 by [2]. The Spin(n) case is treated similarly.
From now on until the end of this proof we assume that all spaces are localized at

the prime p. If the strong stable suspension order of the universal phantom map out of
ΩG is finite, say pm, then there is a stable map

g : Σ∞ΩG → ∨Σ∞(ΩG)2i

such that pm ' Σ∞F ◦ g : Σ∞ΩG → Σ∞ΩG. We take sufficiently large N so that the
map h : Σ∞ΩG → Σ∞(ΩG)2N defined by

h = Σ∞F ◦ Σ∞q ◦ g : Σ∞ΩG → ∨∞i=1Σ
∞(ΩG)2i → ∨N

i=1Σ
∞(ΩG)2i → Σ∞(ΩG)2N

satisfies the equality h∗ = pm on K0(Σ∞ΩG)2pm ∼= K0(ΩG)2pm , where q : ∨∞i=1(ΩG)2i →



102 K. Iriye

∨N
i=1(ΩG)2i collapses ∨∞i=N+1(ΩG)2i to the base point. We consider the stable Adams op-

eration ψp in K-homology groups, that is, for an element η ∈ K0(Σ∞X) ∼= lim
−→

K0(Σ2nX)

we take a representative ηn ∈ K0(Σ2nX) and define ψp(η) = p−nψp(ηn), where
ψp : K0(Σ2nX) 7→ K0(Σ2nX) is the unstable Adams operation. Since ψp(ξps

2 ) =
(ψpξ2)ps

= pps

ξps

2 in K0(ΩG), we have ψph∗(ξ
ps

2 ) = pps

h∗(ξ
ps

2 ) in K0(Σ∞(ΩG)2N ).
Since eigenvalues of the linear map ψp : K0(Σ∞(ΩG)2N ) ⊗ Q 7→ K0(Σ∞(ΩG)2N ) ⊗ Q

are bounded, there is an s > max{N, m} such that h∗(ξ
ps

2 ) = 0. Here we claim

Lemma 2.2. There are η ∈ K0(ΩG)2pm and η′ ∈ K0(ΩG)2ps such that ξps

2 =
ξ2 + pη + pm+1η′.

We postpone the proof of Lemma 2.2 and continue to prove Theorem 1.5. Applying
h∗ to the equality obtained in Lemma 2.2 we have

0 = h∗
(
ξps

2

)
= h∗(ξ2) + h∗(pη) + pm+1h∗(η′) = pmξ2 + pm+1

(
η + h∗(η′)

)

since h∗ = pm on K0(ΩG)2pm . The equality above implies that ξ2 = −p(η + h∗(η′)) in
K0(ΩG). Clearly this is impossible and completes the proof. ¤

Proof of Lemma 2.2. We have

ξps

2 =
(
ξp
2

)ps−1

= (pξ2p + ξ2)ps−1
=

ps−1∑

i=0

(
ps−1

i

)
piξi

2pξ
ps−1−i
2 .

Since for i = ptj, where 0 < i ≤ ps−1 and (p, j) = 1, we have

(
ps−1

i

)
=

(
ps−1

ptj

)
=

ps−1

ptj

(
ps−1 − 1
ptj − 1

)
,

we obtain

νp

((
ps−1

i

)
pi

)
≥ s− 1− t + ptj ≥ s > m,

where νp(k) denotes the p-exponent of an integer k. We proved that ξps

2 ≡ ξps−1

2

(mod pm+1K0(ΩG)2ps) for s > m. Thus inductively we know that

ξps

2 ≡ ξpm

2 (mod pm+1K0(ΩG)2ps).

Clearly ξpm

2 ≡ ξ2 (mod pK0(ΩG)2pm) and we complete the proof. ¤

3. ΩE6 and ΩE7 are stably indecomposable.

In this section we will prove that ΩE6 and ΩE7 are stably indecomposable assuming
technical theorems. From now on H∗(X) stands for H∗(X;F2).
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First we recall the ring structure of H∗(ΩE6), H∗(ΩE7) and the action of the Steen-
rod algebra on them [9]:

H∗(ΩE6) = Λ(x2)⊗ F2[x4, x8, x10, x14, x16, x22],

H∗(ΩE7) = Λ(x2, x4, x8)⊗ F2[x10, x14, x16, x18, x22, x26, x34],

Sq2x4 = x2, Sq2x8 = x2x4, Sq4x8 = x4, Sq2x10 = x2
4,

Sq4x14 = x10, Sq2x16 = x14 + x2x4x8, Sq4x16 = x4x8, Sq8x16 = x8,

Sq8x18 = x10, Sq2x22 = x2
10, Sq8x22 = x14, Sq4x26 = x22,

Sq8x26 = x18, Sq2x34 = x2
16, Sq16x34 = x18,

and Sq2i

x2j = 0 in all cases not explicitly recorded. Here the degree of x2j is 2j. Since we
are working in homology theory, the Adem relations are given as follows: for 0 < a < 2b

we have

SqbSqa =
∑ (

b− 1− t

a− 2t

)
SqtSqa+b−t.

Thus, for example, we have Sq6x34 = (Sq4Sq2 +Sq1Sq5)x34 = Sq4x2
16 = x2

14, Sq12x26 =
(Sq8Sq4 + Sq1Sq11 + Sq2Sq10)x26 = Sq8x22 = x14, and so on.

We have to calculate the subrings of H∗(ΩE6) and H∗(ΩE7) which consist of those
elements annihilated by Sqi for all i > 0.

Theorem 3.1.

{
x ∈ H∗(ΩE6)|Sqix = 0 for all i > 0

}
= F2

[
x2

4, x20, x̄16

]{
1, x2, x2x4, x2x10 + x3

4

}
,

where

x20 = x3
4x8 + x2

10 + x2

(
x2

4x10 + x4x14 + x8x10

)
,

x̄16 = x5
4x16 + x3

4x10x14 + x2
4x

2
14 + x2

4x8x20 + x2
8x20

+ x2x
2
4

(
x10x16 + x3

4x14 + x4x22

)
.

Theorem 3.2.

{
x ∈ H∗(ΩE7)|Sqix = 0 for all i > 0

}

= Λ(x̄4)⊗ F2

[
x10, x̄18, x74, x

2
56

]
x̄26

+ F2

[
x10, x̄18, x74, x

2
56

]{
1, x2, x2x4, x2x4x8, x2(x4x14 + x8x10),

x̄4, x2x56, x2x4x56, x2x4x8x56, x2(x4x14 + x8x10)x56

}
,

where
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x̄18 = x10x18 + x2
14,

x̄4 = x4x
4
10 + x2

(
x10x

2
16 + x2

10x22 + x3
14

)
,

x56 = x3
10x26 + x2

10x14x22 + x10x
2
14x18 + x4

10x16 + x4
14 + x8x

2
10x

2
14 + x4x

2
10x

2
16

+ x4x8x
3
10x14,

x74 = x6
10x14 + x10x

2
14x

2
18 + x10x

4
16 + x2

10x
3
18 + x3

10x
2
22 + x4

14x18,

x̄26 = x2

(
x4

10x34 + x4x8x
4
10x22 + x4

14x18 + x10x
4
16 + x4x

4
10x14x16 + x8x

5
10x16

)
+ x2

10x56.

Here we remark that Sq2x56 6= 0 but Sqi(x2x56) = 0 for all i > 0.
Theorems 3.1 and 3.2 will be proved in sections 4 and 5, respectively. In this section

by assuming Theorems 3.1 and 3.2 we prove Theorem 1.6.

Proof of Theorem 1.6 for E6. According to the remark after Theorem 1.6 we
will show that the graph G(ΩE6) is connected. To prove this it is sufficient to prove that
for any non-zero element x of H∗(ΩE6) with |x| > 2 there is a path connecting x and a
lower dimensional vertex.

If Sqix 6= 0 for some i > 0, then the claim is clearly true.
We assume, therefore, that Sqix = 0 for all i > 0. By Theorem 3.1 x is in A =

F2[x2
4, x20, x̄16]{1, x2, x2x4, x2x10+x3

4}. As the list below shows, for a given multiplicative
generator u of A there is an element v such that Sq2v = u. For given x, therefore, there
is also an element y such that Sq2y = x.

v u = Sq2v |u|
x4 x2 2
x8 x2x4 6
x10 x2

4 8
x4x10 x2x10 + x3

4 12
x22 + x4x8x10 + x2x4x16 x20 20

x38 x̄16 36

where

x38 = x3
4x10x16 + x10x

2
14 +

(
x2

4x8 + x2
8

)
(x22 + x4x8x10 + x2x4x16) + x2x

5
4x16.

If |x| = 8 or |x| ≥ 12, there is an element z such that |z| = |y|, Sq2z = 0 and
Sqiz 6= 0 for some i > 2 as the following list shows.

|x| |z| z Sqiz

8n + 8 8n + 10 x2x8x
2n
4 Sq4

(
x2x8x

2n
4

)
= x2x

2n+1
4

8n + 18 8n + 20 x2
10x

2n
4 Sq4

(
x2

10x
2n
4

)
= x2n+4

4

8n + 12 8n + 14 x14x
2n
4 Sq4

(
x14x

2n
4

)
= x10x

2n
4

8n + 14 8n + 16 x2
8x

2n
4 Sq8

(
x2

8x
2n
4

)
= x2n+2

4
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Then Sq2y = Sq2(y + z) = x and Sqiy 6= Sqi(y + z) for some i > 2, that is, there is
a path connecting x and a lower dimensional vertex Sqiy or Sqi(y + z).

If |x| < 8 or |x| = 10, then x = x2x4 or x = x2x
2
4. If x = x2x4, x2x4

Sq27→x8
Sq4

7→
x4 is a path connecting x and a lower dimensional vertex. If x = x2x

2
4, x2x

2
4

Sq27→x2x10

Sq67→x2x16
Sq4Sq8

7→ x2x4 is a path connecting x and a lower dimensional vertex. ¤

Proof of Theorem 1.6 for E7. Similarly to the argument for the case E6, we
only have to prove that there is a path connecting x and a lower dimensional vertex for
any non-zero element x of H∗(ΩE7) with degree greater than 2 and Sqix = 0 for all
i > 0. We consider the following lists.

v u = Sq4v |u|
? x2 2

x2x8 x2x4 6
x14 x10 10

x2x16 x2x4x8 14
x2x8x14 x2(x4x14 + x8x10) 20

x14x18 + x2
16 x̄18 28

x2

(
x2

10x26 + x14x
2
16

)
+ x4x

3
10x14 x̄4 44

y60 x56 56
y78 x74 74
y80 x̄26 76
y116 x2

56 112

where

y60 = x2
10x14x26 + x10x

2
16x18 + x3

10x14x16 + x2
14x

2
16 + x8x

2
10x

2
16,

y78 = x10x14x
3
18 + x2

10x14x
2
22 + x14x

4
16 + x2

14x
2
16x18 + x3

14x
2
18,

y80 = x2

(
x2

22x34 + x4x8x
3
22 + x2

14x
2
16x18 + x14x

4
16 + x8x

4
10x14x16

)
+ x2

10y60,

y116 = x2
10x

2
22x

2
26 + x4

10x
2
16x

2
22 + x2

10x
2
14x

2
16x

2
18 + x6

14x
2
16.

|x| |z| z Sq8z

10n + 14 10n + 18 x18x
n
10 Sq8

(
x18x

n
10

)
= xn+1

10

10n + 16 10n + 20 x2x18x
n
10 Sq8

(
x2x18x

n
10

)
= x2x

n+1
10

10n + 18 10n + 22 x22x
n
10 Sq8

(
x22x

n
10

)
= x14x

n
10

10n + 20 10n + 24 x2x22x
n
10 Sq8

(
x2x22x

n
10

)
= x2x14x

n
10

10n + 22 10n + 26 z26x
n
10 Sq8

(
z26x

n
10

)
= x4x14x

n
10

where z26 = x4x22 + x2x10x14.
The first list above shows that there is an element y such that Sq4y = x. The second
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list above shows that, if |x| ≥ 14, there is a path connecting x and a lower dimensional
vertex just as in the proof for E6.

If |x| < 14, then x = x2x4, x10 or x2x10.
If x = x2x4, then Sq2x8 = x and Sq4y = x4 6= 0. If x = x10x

′, where x′ = 1 or x2,
then Sq6(x16x

′) = x and Sq8(x16x
′) = x8x

′ 6= 0.
Thus we complete the proof of Theorem 1.6 for E7. ¤

4. Proof of Theorem 3.1.

In this section we prove Theorem 3.1. We put

A =
{
y ∈ H∗(ΩE6)

[
x−1

4

] | Sqiy = 0 for all i > 0
}
,

B = F2

[
x2

4, x20, x̄16

][
x−1

4

]{
1, x2, x2x4, x

3
4 + x2x10

}
= Λ(x2)⊗ F2[x̄4, x20, x̄16]

[
x−1

4

]
,

where x̄4 = x3
4 + x2x10. To prove the theorem it is sufficient to prove that A = B. Since

we have the following isomorphisms as modules

H∗(ΩE6)
[
x−1

4

] ∼= Λ(x2)⊗ F2[x4, x8, x10, x14, x16, x22]
[
x−1

4

]

∼= Λ(x2)⊗ F2[x4, x8, x10, x14, x̄16, x22]
[
x−1

4

]

∼= Λ(x2)⊗ F2[x̄4, x20, x̄16]
[
x−1

4

]⊗ Λ(x10)⊗ F2[x8, x14, x22],

any element y of H∗(ΩE6)[x−1
4 ] is written uniquely as

y =
∑

a,b,d≥0, c=0,1

xa
22x

b
14x

c
10x

d
8Pa,b,c,d,

where Pa,b,c,d ∈ Λ(x2)⊗ F2[x̄4, x20, x̄16][x−1
4 ]. We define the second degree |y|2 of y by

|y|2 = max
{∣∣xa

22x
b
14x

c
10x

d
8

∣∣ | Pa,b,c,d 6= 0
}
.

By Ai (resp. Bi) we denote the submodule of A (resp. B) which consists of elements with
the second degree i.

It is easy to see that B ⊂ A and A0 = B0 by definition. By induction on the second
degree we prove that A = B.

Let M be a positive integer and assume that A = B up to degree 2M −2. We prove
that the equality holds in degree 2M .

For a positive integer a we put

P 22
a =

∑

b,d≥0, c=0,1

xb
14x

c
10x

d
8Pa,b,c,d,

then we have

Lemma 4.1. P 22
a = 0 unless a is a power of 2. Moreover, P 22

a is an element of B.
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Proof. We prove this lemma by downward induction on a. For sufficiently large
a the assertion is trivially true. Assume that, for a ≥ 2n+1, P 22

a = 0 unless a is a power
of 2 and P 22

a are elements of B. Put Q =
∑

2n≤a<2n+1 xa−2n

22 P 22
a , then

y =
∑

i>n

x2i

22P
22
2i + x2n

22Q +
∑

a<2n

xa
22P

22
a + terms without x22.

Since for any ` > 0 we have

0 = Sq`y =
∑

i>n

Sq`
(
x2i

22

)
P 22

2i +
∑

k>0

Sqk
(
x2n

22

)
Sq`−kQ

+ (Sq`Q)x2n

22 +
∑

a<2n

Sq`
(
xa

22P
22
a

)
+ terms without x22

and Sqk(x2i

22) ∈ F2[x10, x14] for k > 0, the coefficient of x2n

22 , Sq`Q, must be 0. Thus,
by induction, we have Q ∈ A2M−22·2n = B2M−22·2n . This implies that P 22

a = 0 for
2n < a < 2n+1 and that P 22

2n ∈ A2M−22·2n = B2M−22·2n . ¤

By Lemma 4.1 y is written as

y =
∑

a≥0

x2a

22P 22
2a +

∑

b,d≥0, c=0,1

xb
14x

c
10x

d
8P0,b,c,d,

where P 22
2a and P0,b,c,d are elements of B.

As Sqix22, Sqix14, Sqix10 are in F2[x4, x10, x14] for i > 0, if for a positive integer d

we put

P 8
d =

∑

b≥0, c=0,1

xb
14x

c
10P0,b,c,d,

then similarly we have

Lemma 4.2. P 8
d = 0 unless d is a power of 2. Moreover, P 8

d is an element of B.

Thus we proved that y is written as

y =
∑

a≥0

x2a

22P 22
2a +

∑

b≥0, c=0,1

xb
14x

c
10Pb,c +

∑

d≥0

x2d

8 P 8
2d , (4.1)

where P 22
2a , Pb,c = P0,b,c,0, P 8

2d ∈ B.
By applying Sq2 to the equality (4.1) we have

0 = Sq2y = x2
10P

22
1 +

∑

b≥0

xb
14x

2
4Pb,1 + x2x4P

8
1

=
(
x3

4x8 + x20 + x2

(
x2

4x10 + x4x14 + x8x10

))
P 22

1 +
∑

b≥0

xb
14x

2
4Pb,1 + x2x4P

8
1 ,



108 K. Iriye

which implies that

P 22
1 = 0, Pb,1 = 0 for b > 0, x2

4P0,1 = x2x4P
8
1 .

Then y is written as

y =
∑

a≥1

x2a

22P 22
2a +

∑

b≥0

xb
14Pb,0 + x10P0,1 +

∑

d≥0

xd
8P

8
2d . (4.2)

By applying Sq4 to the equality (4.2) we have

0 = Sq4y = x4
10P

22
2 +

∑
x2b

14x10P2b+1,0 + x4P
8
1

=
(
x3

4x8 + x20

)2
P 22

2 +
∑

x2b
14x10P2b+1,0 + x4P

8
1 ,

which implies that

P 22
2 = 0, P2b+1,0 = 0, P 8

1 = 0.

By the last equality we have P0,1 = x2x
−1
4 P 8

1 = 0. Thus y is written as

y =
∑

a≥2

x2a

22P 22
2a +

∑

b≥0

x2b
14P2b,0 +

∑

d≥1

xd
8P

8
2d .

Now it is easy to show, by induction on n, that y is written as

y =
∑

a≥n+1

x2a

22P 22
2a +

∑

b≥0

x2nb
14 P2nb,0 +

∑

d≥n

xd
8P

8
2d .

Therefore y = P0,0 ∈ B as desired. ¤

5. Proof of Theorem 3.2.

As in the proof of Theorem 3.1 we proceed the calculation in the ring H∗(ΩE7)[x−1
10 ].

Since

x4 = x̄4x
−4
10 + x2x

−4
10

(
x10x

2
16 + x2

10x22 + x3
14

)
,

x18 = x−1
10 x̄18 + x−1

10 x2
14,

x26 = x−5
10 x̄26 + x2x

−5
10

(
x4

10x34 + x4x8x
4
10x22 + x4

14x18 + x10x
4
16

+ x4x
4
10x14x16 + x8x

5
10x16

)
+ x−3

10

(
x2

10x14x22 + x10x
2
14x18

+ x4
10x16 + x4

14 + x8x
2
10x

2
14 + x4x

2
10x

2
16 + x4x8x

3
10x14

)
,

x2
22 = x−3

10 x74 + x−2
10 x4

16 + x−4
10 x6

14 + x3
10x14 + x−4

10 x̄3
18,



Stable suspension order of universal phantom maps 109

we have the following isomorphisms of modules:

H∗(ΩE7)
[
x−1

10

] ∼= Λ(x2, x4, x8)⊗ F2[x10, x14, x16, x18, x22, x26, x34]
[
x−1

10

]

∼= Λ(x2, x̄4)⊗ F2[x10, x̄18, x74, x̄26]
[
x−1

10

]

⊗ Λ(x8, x22)⊗ F2[x14, x16, x34].

Therefore, any element y of H∗(ΩE7)[x−1
10 ] is written uniquely as

y =
∑

a,c,d≥0, b,e=0,1

xa
34x

b
22x

c
16x

d
14x

e
8Pa,b,c,d,e,

where Pa,b,c,d,e ∈ Λ(x2, x̄4)⊗F2[x10, x̄18, x74, x̄26][x−1
10 ]. We define the second degree |y|2

of y by

|y|2 = max
{∣∣xa

34x
b
22x

c
16x

d
14x

e
8

∣∣ | Pa,b,c,d,e 6= 0
}
.

We put

A =
{
y ∈ H∗(ΩE7)

[
x−1

10

] | Sqiy = 0 for all i > 0
}
,

B = Λ(x̄4)⊗ F2

[
x10, x̄18, x74, x

2
56

][
x−1

10

]
x̄26

+ F2

[
x10, x̄18, x74, x

2
56

][
x−1

10

]{
1, x2, x2x4, x2x4x8, x2(x4x14 + x8x10),

x̄4, x2x56, x2x4x56, x2x4x8x56, x2x56(x4x14 + x8x10)
}
.

Since x2
56 = x−4

10 x̄2
26, x2x56 = x2x̄26x

−2
10 , x2x4 = x2x̄4x

−4
10 ,

B = Λ(x2, x̄4)⊗ F2[x10, x̄18, x74, x̄26]
[
x−1

10

]{1, x2(x4x14 + x8x10)}.

Then it is easy to see that B ⊂ A and A0 = B0. By induction on the second degree
we will prove that A = B. Let M be a positive integer and assume that A = B up to
degree 2M − 2. We prove that the equality holds in degree 2M .

Let y be an element of A2M . We recall that

Sq2x34 = x2
16, Sq16x34 = x18 = x−1

10

(
x̄18 + x2

14

)
, Sq2x22 = x2

10,

Sq8x22 = x14, Sq2x16 = x14 + x2x4x8, Sq4x16 = x4x8,

Sq8x16 = x8, Sq4x14 = x10, Sq2x8 = x2x4, Sq4x8 = x4,

and Sq2i

x2j = 0 in all cases not explicitly recorded.
Similarly to the case E6 we have the following lemma.

Lemma 5.1. y is written as
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y =
∑

a≥0

x2a

34P 34
2a + x22P

22 + x16P
16
1 +

∑
x2c

16x
d
14x

e
8P2c,d,e,

where P 34
2a , P 22 and P 16

1 are in B and

P2c,d,e ∈ Λ(x2, x̄4)⊗ F2[x10, x̄18, x74, x̄26]
[
x−1

10

]
.

By applying Sq2 to y we have

0 = Sq2y = x2
16P

34
1 + x2

10P
22 + (x14 + x2x4x8)P 16

1 +
∑

x2c
16x

d
14x2x4P2c,d,1.

As P 34
1 , P 22, P 16

1 , P2c,d,1 ∈ B, by comparing the coefficient of x2c
16x

d
14 in the equality

above we have

P 34
1 = x2x4P2,0,1, P 16

1 = x2x4P0,1,1, x2
10P

22 = x2x4P0,0,1. (5.1)

Since

0 = x4Sq2Sq4y

= x4

( ∑
x4c

16x
d+2
14 x2x4P4c+2,d,1 +

∑
x2c

16x
2d
14x10x2x4P2c,2d+1,1 +

∑
x2c

16x
d
14x2P2c,d,1

)

=
∑

x2c
16x

d
14x2x4P2c,d,1

and P2c,d,e ∈ Λ(x2, x̄4) ⊗ F2[x10, x̄18, x74, x̄26][x−1
10 ], we have x2x4P2c,d,1 = 0. Then the

equality 0 = Sq2Sq4y =
∑

x2c
16x

d
14x2P2c,d,1 implies that

x2P2c,d,1 = 0. (5.2)

By the equalities (5.1) and (5.2) we have

P 34
1 = 0, P 22 = 0, P 16

1 = 0.

Then y is written as

y =
∑

a≥1

x2a

34P 34
2a +

∑
x2c

16x
d
14x

e
8P2c,d,e.

If we put

P 14
1 =

∑
x4c

16x
2d
14x

e
8P4c,2d+1,e,

then y is written as
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y =
∑

a≥1

x2a

34P 34
2a + x14P

14
1 +

∑
x2c

16x
2d
14x

e
8P2c,2d,e

and the fact that P 16
1 = 0 implies that P 14

1 ∈ B by the same argument as in the proof of
Lemma 4.1.

By applying Sq4 to the equality above we have

0 = Sq4y = x4
16P

34
2 + x10P

14
1 +

∑
x4c

16x
2d+2
14 xe

8P4c+2,2d,e +
∑

x2c
16x

2d
14x4P2c,2d,1,

which implies that x10P
14 = x4P0,0,1.

Thus y is written as

y =
∑

a≥1

x2a

34P 34
2a +

∑

(c,d) 6=(0,0)

x2c
16x

2d
14x

e
8P2c,2d,e + P0,

where P0 = P0,0,0 + x−1
10 (x4x14 + x8x10)P0,0,1. Since x2P0,0,1 = 0 by (5.2), P0 ∈ B. Now

it is easy to show that, by induction on n, y is written as

y =
∑

a≥n

x2a

34P 34
2a +

∑

(c,d) 6=(0,0)

x2nc
16 x2nd

14 xe
8P2nc,d,2nd,e + P0.

Therefore y = P0 ∈ B as desired. ¤
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