Stable suspension order of universal phantom maps and some stably indecomposable loop spaces

By Kouyemon Iriye

(Received Jan. 16, 2006)

Abstract

We study a stable suspension order of a universal phantom map out of a space. We prove that it is infinite if X is a non-trivial finite Postnikov space, a classifying space of connected Lie group or a loop space on a connected Lie group with torsion. We also show that the loop spaces on the exceptional Lie groups E_{6} and E_{7} are stably indecomposable.

1. Introduction.

Throughout this paper all spaces have basepoints, all maps and homotopies preserve them. p denotes a fixed prime and $X_{(p)}$ denotes the localization at the prime p of a nilpotent space X.

A map out of a CW-complex X is called a phantom map if its restriction to each n-skeleton X_{n} is null homotopic. The universal phantom map out of X is a based map

$$
\Theta: X \rightarrow \bigvee_{n=1}^{\infty} \Sigma X_{n}
$$

through which all other phantom maps out of X factor. This map is a part of the extended cofiber sequence

$$
\bigvee_{n=1}^{\infty} X_{n} \xrightarrow{F} X \xrightarrow{\Theta} \bigvee_{n=1}^{\infty} \Sigma X_{n} \rightarrow \bigvee_{n=1}^{\infty} \Sigma X_{n} \rightarrow \cdots,
$$

where $F: \bigvee_{n=1}^{\infty} X_{n} \rightarrow X$ is the folding map, that is, $\left.F\right|_{X_{n}}: X_{n} \rightarrow X$ is the inclusion map. For a map $f: X \rightarrow Y$ by the stable suspension order of f we mean the order of the class $[f]$ in $\lim \left[\Sigma^{n} X, \Sigma^{n} Y\right]$.

For a CW-complex X by $\Sigma^{\infty} X$ we denote the suspension spectrum. For a map $f: X \rightarrow Y$ between CW-complexes by the strong stable suspension order of f we mean the order of the class $\Sigma^{\infty} f: \Sigma^{\infty} X \rightarrow \Sigma^{\infty} Y$ in $\left\{\Sigma^{\infty} X, \Sigma^{\infty} Y\right\}$.

Since the natural map

$$
\underset{\longrightarrow}{\lim }\left[\Sigma^{n} X, \Sigma^{n} Y\right] \rightarrow\left\{\Sigma^{\infty} X, \Sigma^{\infty} Y\right\}
$$

[^0]is not necessarily monomorphic for an infinite dimensional complex X, for a map f : $X \rightarrow Y$ it is necessary to distinguish between its stable suspension order and strong stable suspension order.

First we study the (strong) stable suspension order of the universal phantom maps out of $K(\pi, n)_{(p)}$ and $B G_{(p)}$. These spaces satisfy the assumption of the following theorem.

Theorem 1.1. Let X be a connected p-local $C W$-complex of finite type over the ring $\boldsymbol{Z}_{(p)}$. If $\tilde{H}^{*}\left(X ; \boldsymbol{F}_{p}\right)$ has an element of infinite height, then the strong stable suspension order of the universal phantom map out of X is infinite.

As a corollary we have the following partial answer to Question 18 of McGibbon [12]. Needless to say, if the strong stable suspension order of a map is infinite, then so is its stable suspension order.

Corollary 1.2. Let X be a connected nilpotent finite Postnikov system of finite type with finite $\pi_{1}(X)$. Then the strong stable suspension order of the universal phantom map out of $X_{(p)}$ is infinite unless its mod p homology groups are trivial.

Let G be a connected Lie group. Then the strong stable suspension order of the universal phantom map out of $B G_{(p)}$ is infinite unless its mod p homology groups are trivial.

Next we study the (strong) stable suspension order of the universal phantom map out of a loop space on a simply connected Lie group.

In $[\mathbf{7}]$ we proved that for almost all Lie groups G the universal phantom maps out of ΩG are essential. More precisely we proved the following theorem.

Theorem 1.3. Let G be a simply connected Lie group. The universal phantom map out of $\Omega G_{(p)}$ is trivial if and only if G is p-equivalent to a product of spheres.

By the Mitchell-Richter splitting of $\Omega S U(n)$ [$\mathbf{1}]$, it is stably homotopy equivalent to a bouquet of finite complexes. The identity map id : $\Sigma^{\infty} \Omega S U(n) \rightarrow \Sigma^{\infty} \Omega S U(n)$, therefore, factors throught the folding map $\Sigma^{\infty} F: \vee \Sigma^{\infty}(\Omega S U(n))_{i} \rightarrow \Sigma^{\infty} \Omega S U(n)$, that is, the universal phantom map out of $\Omega S U(n)$ is stably trivial. Thus the strong stable suspension order of the universal phantom map out of $\Omega S U(n)$ is zero. But we do not know whether the stable suspension order of the universal phantom map out of $\Omega S U(n)$ is zero.

For a nilpotent CW-complex X of finite type, by Theorem 3.3 of [3], the stable suspension order of the universal phantom map out of $X_{(p)}$ is zero if and only if $\Sigma^{n} X_{(p)}$ is homotopy equivalent to a bouquet of finite dimensional complexes for some n.

QUESTION 1.4. Let $n>2$. Is $\Sigma^{m} \Omega S U(n)$ homotopy equivalent to a bouquet of finite complexes for sufficiently large m ?

Hopkins [5] proved that $\Omega S p(2)$ and $\Omega S p(3)$ are stably indecomposable. Later Hubbuck [6] added ΩG_{2} and ΩF_{4} to the list of such spaces. Their results imply that the stable suspension order of the universal phantom maps out of ΩG are non-zero for $G=S p(2), S p(3), G_{2}, F_{4}$. We extend this result to loop spaces on Lie groups as
follows:
Theorem 1.5. Let G be a simply connected, simple Lie group.
If $H_{*}(G ; \boldsymbol{Z})$ has a p-torsion, then the strong stable suspension order of the universal phantom map out of $\Omega G_{(p)}$ is infinite.

If $G=\operatorname{Sp}(n)$ with $n>1$, then the strong stable suspension order of the universal phantom map out of $\Omega G_{(2)}$ is non-zero.

Theorem 1.5 and the fact that ΩG_{2} and ΩF_{4} are stably indecomposable suggest that if a simply connected simple Lie group G has a p-torsion, then ΩG is stably indecomposable. Partially we can prove this suggestion.

Theorem 1.6. ΩE_{6} and ΩE_{7} are stably indecomposable at the prime 2.
As for $\Omega S p(n)$, although $S p(n)$ is torsion free, Hubbuck conjectured that they are all stably indecomposable at the prime 2 unless $n=1$. For $n \leq 10$ it is not difficult to show that his conjecture is true.

For a connected space X of finite type we associate a graph $G(X)$ as follows. The vertices of $G(X)$ are non-zero elements of $\tilde{H}_{*}\left(X ; \boldsymbol{F}_{2}\right)$ and a pair of vertices $\{x, y\}$ is an edge of $G(X)$ if and only if $S q^{i} x=y$ or $S q^{i} y=x$ for some $i>0$, where $S q^{i}$ is the dual Steenrod operation of degree i. If X is stably homotopy equivalent to a wedge of non-trivial spaces or spectra, then $G(X)$ is not connected. To prove Theorem 1.6 we will show that the graphs associated with ΩE_{6} and ΩE_{7} are connected. Unfortunately, the graphs associated with loop spaces on other Lie groups are not connected.

This paper is organized as follows: In Section 2 we study a stable suspension order of a universal phantom map and prove Theorem 1.1, Corollary 1.2 and Theorem 1.5. In Section 3 we prove that ΩE_{6} and ΩE_{7} are stably indecomposable by assuming technical theorems. In Section 4 and Section 5 we compute the sets $\left\{x \in H_{*}\left(X ; \boldsymbol{F}_{2}\right) \mid S q^{i} x=0\right.$ for all $\left.i>0\right\}$ for $X=\Omega E_{6}$ and ΩE_{7}.

The author would like to thank N. Minami. He kindly told the author that the natural map $\lim \left[\Sigma^{n} X, \Sigma^{n} Y\right] \rightarrow\left\{\Sigma^{\infty} X, \Sigma^{\infty} Y\right\}$ is not necessarily monomorphic for an infinite dimensional complex X.

2. Stable suspension order of universal phantom map.

In this section we prove Theorem 1.1, Corollary 1.2 and Theorem 1.5.
Proof of Theorem 1.1. In this proof $H_{*}(X)$ stands for $H_{*}\left(X ; \boldsymbol{F}_{p}\right)$. Since X is connected, we can assume that each n-skeleton of X is also connected.

By way of a contradiction, we assume that the strong stable suspension order of the universal phantom map out of X is finite. Since spaces are p-local, the order is p^{m} for some non-negative integer m. Since in the cofiber sequence

$$
\bigvee_{n=1}^{\infty} \Sigma^{\infty} X_{n} \xrightarrow{\Sigma^{\infty} F} \Sigma^{\infty} X \xrightarrow{\Sigma^{\infty} \Theta} \bigvee_{n=1}^{\infty} \Sigma^{\infty} \Sigma X_{n}
$$

$p^{m} \Sigma^{\infty} \Theta \simeq *$, there is a map $g: \Sigma^{\infty} X \rightarrow \bigvee_{n=1}^{\infty} \Sigma^{\infty} X_{n}$ such that $\Sigma^{\infty} F \circ g \simeq p^{m} i d_{\Sigma^{\infty} X}$. By taking adjoint we have the following (homotopy) commutative diagram:

where $Q(X)=\underline{\longrightarrow} \Omega^{k} \Sigma^{k} X, \eta: X \rightarrow Q(X)$ is the adjoint map to the identity $i d_{\Sigma^{\infty} X}$: $\Sigma^{\infty} X \rightarrow \Sigma^{\infty} X, \vec{p}: Q(X) \rightarrow Q(X)$ is the p-th power map, and $g^{\prime}: X \rightarrow Q\left(\bigvee_{n=1}^{\infty} X_{n}\right)$ is the adjoint map to $g: \Sigma^{\infty} X \rightarrow \bigvee_{n=1}^{\infty} \Sigma^{\infty} X_{n}$. Now we apply the $\bmod p$ homology theory to the diagram above and we will obtain a contradiction.

For a space K of finite type over the ring $\boldsymbol{Z}_{(p)}$ by $\xi_{*}: H_{p *}(K) \rightarrow H_{*}(K)$ we denote the p-th root map, which is the dual of the p-th power map in $H^{*}(K)$. If K is an H -space, then the p-th power map $p: K \rightarrow K$ induces a map given by $p_{*}(x)=\xi_{*}(x)^{p}$ in homology and $\xi_{*}: H_{p *}(K) \rightarrow H_{*}(K)$ is a homomorphism of algebras.

Thus we have $\left(p^{m} \circ \eta\right)_{*}=\xi_{*}^{m}()^{p^{m}} \circ \eta_{*}: H_{*}(X) \rightarrow H_{*}(Q(X))$. Let $\bar{x} \in H^{*}(X)$ be an element of infinite height and $x_{j} \in H_{*}(X)$ be the dual of $\bar{x}^{p^{j}}$ for $j \geq 0$ and its image in $H_{*}(Q(X))$ will be denoted by the same letter since $H_{*}(X)$ is a submodule of $H_{*}(Q(X))$. Then $\xi_{*}\left(x_{j+1}\right)=x_{j}$ for $j \geq 0$.

We choose a positive integer M such that $x_{m} \in \operatorname{Im}\left(H_{*}\left(X_{M}\right) \rightarrow H_{*}(X)\right)$. Since X_{M} is finite dimensional, we may assume that $g^{\prime}\left(X_{M}\right) \subset Q\left(\bigvee_{n=1}^{N} X_{n}\right)$ for some N and that g^{\prime} is the composite of $\left.g^{\prime}\right|_{X_{M}}: X_{M} \rightarrow Q\left(\bigvee_{n=1}^{N} X_{n}\right)$ and the natural inclusion map $Q\left(\bigvee_{n=1}^{N} X_{n}\right) \rightarrow Q\left(\bigvee_{n=1}^{\infty} X_{n}\right)$. We consider the composite $h: X \rightarrow Q\left(X_{N}\right):$

$$
h: X \xrightarrow{g^{\prime}} Q\left(\bigvee_{n=1}^{\infty} X_{n}\right) \xrightarrow{Q(q)} Q\left(\bigvee_{n=1}^{N} X_{n}\right) \xrightarrow{Q(F)} Q\left(X_{N}\right)
$$

where $q: \bigvee_{n=1}^{\infty} X_{n}=\bigvee_{n=1}^{N} X_{n} \vee \bigvee_{n=N+1}^{\infty} X_{n} \rightarrow \bigvee_{n=1}^{N} X_{n}$ is the map which collapses the second factor to the base point.

Now we recall the following two facts to complete the proof.
(1) Any even dimensional element x in $\tilde{H}_{*}(Q(X))$ has an infinite height since $H_{*}(Q(X))$ is a free commutative algebra. This is well known, see Section 4 of [10]. In particular, $x^{p^{m}} \neq 0$.
(2) There is no infinite sequence $\left\{y_{j} \in \widetilde{H}_{*}\left(Q\left(X_{N}\right)\right) \mid \xi_{*}\left(y_{j+1}\right)=y_{j}\right.$ for all $j \geq 0$ and $y_{j} \neq 0$ for some $\left.j\right\}$. This can be proved by using the Nishida relation, see e.g., Lemma 3.5 of [13]. In fact, if $\xi_{*}^{k}=0$ on $\widetilde{H}_{*}(K)$ for a connected space K, then so is on $\widetilde{H}_{*}(Q(K))$.

Put $x=x_{0}$ and consider an infinite sequence $\left\{h_{*}\left(x_{j}\right) \in H_{*}\left(Q\left(X_{N}\right)\right)\right\}_{j=0,1,2, \ldots}$. This sequence contradicts the fact (2) above as follows. Let $i_{N}: X_{N} \rightarrow X$ be the inclusion map. Since

$$
\begin{aligned}
Q\left(i_{N}\right) \circ h \circ i_{M} & =Q\left(i_{N}\right) \circ Q(F) \circ Q(q) \circ g^{\prime} \circ i_{M} \\
& \left.\simeq Q\left(i_{N}\right) \circ Q(F) \circ g^{\prime}\right|_{X_{M}} \simeq Q(F) \circ g^{\prime} \circ i_{M}
\end{aligned}
$$

and $x_{m} \in \operatorname{Im}\left(H_{*}\left(X_{M}\right) \rightarrow H_{*}(X)\right)$, we have

$$
Q\left(i_{N}\right)_{*} \circ h_{*}\left(x_{m}\right)=Q(F)_{*} \circ g_{*}^{\prime}\left(x_{m}\right)=p_{*}^{m} \circ \eta_{*}\left(x_{m}\right)=\left(\xi_{*}^{m}\left(x_{m}\right)\right)^{p^{m}}=x^{p^{m}} \neq 0,
$$

that is, $h_{*}\left(x_{m}\right) \neq 0$. On the other hand we have $\xi_{*} h_{*}\left(x_{j+1}\right)=h_{*}\left(\xi_{*} x_{j+1}\right)=h_{*}\left(x_{j}\right)$.
Proof of Corollary 1.2. The fact that $\tilde{H}^{*}\left(X ; \boldsymbol{F}_{p}\right)$ has an element of infinite height is proved by Grodal, [4, Theorem 1.1]. For $B G$ this fact is also known, see e.g., p. 385 of [3].

Similarly to Theorem 3.3 of [3] it is easy to prove the following theorem, which we need to prove Theorem 1.5.

Theorem 2.1. For a nilpotent $C W$-complex X the strong suspension order of the universal phantom map out of $X_{(p)}$ is zero if and only if $X_{(p)}$ is stably homotopy equivalent to a bouquet of p-localization of finite complexes.

Proof of Theorem 1.5. First we show the second statement.
For $n=2$ the statement follows Theorem 2.1 and the fact that $\Omega S p(2)$ is stably indecomposable.

Let $n>2$. By Kono and Kozima [8], $H_{*}\left(\Omega S p(n) ; \boldsymbol{F}_{2}\right)$ is isomorphic to $\boldsymbol{F}_{2}\left[x_{2}, x_{6}, \ldots, x_{4 n-2}\right]$ and the action of the Steenrod algebra on x_{6} and x_{10} are given by $S q^{2} x_{6}=x_{2}^{2}, S q^{2} x_{10}=x_{2}^{4}$ and $S q^{4} x_{10}=x_{6}$. Since $G(\Omega S p(n))$ has the following path

$$
\cdots \mapsto x_{6} x_{2}^{2 i+2} \stackrel{S q^{2}}{\mapsto} x_{2}^{2 i+4} \stackrel{S q^{2}}{\longmapsto} x_{10} x_{2}^{2 i} \stackrel{S q^{4}}{\mapsto} x_{6} x_{2}^{2 i} \stackrel{S q^{2}}{\mapsto} x_{2}^{2 i+2} \longmapsto \cdots \mapsto x_{2}^{2},
$$

$G(\Omega S p(n))$ has a connected component which has elements with arbitrary large dimension. Thus in a stable category $\Omega S p(n)$ is not homotopy equivalent to a bouquet of finite dimensional complexes, which implies the second statement by Theorem 2.1.

To prove the first statement we use complex $\boldsymbol{Z} / 2$-graded K-homology theory. We know that $K_{0}(\Omega G)$ is free \boldsymbol{Z}-module and $K_{1}(\Omega G)=0$. We give $K_{0}(\Omega G)$ the ascending filtration corresponding to the CW-filtration of ΩG. Since the Atiyah-Hirzebruch spectral sequence collapses, the natural map $K_{0}(\Omega G)_{2 n} \rightarrow H_{2 n}(\Omega G ; \boldsymbol{Z})$ is epimorphic with kernel $K_{0}(\Omega G)_{2 n-2}$, see [2] and [6].

Let $\xi_{2} \in \tilde{K}_{0}(\Omega G)_{2} \cong \boldsymbol{Z}$ be a generator. Then there is an indecomposable element $\xi_{2 p} \in \tilde{K}_{0}(\Omega G)_{2 p}$ such that $\xi_{2}^{p}=p \xi_{2 p}+\xi_{2}$ by [2]. The $\operatorname{Spin}(n)$ case is treated similarly.

From now on until the end of this proof we assume that all spaces are localized at the prime p. If the strong stable suspension order of the universal phantom map out of ΩG is finite, say p^{m}, then there is a stable map

$$
g: \Sigma^{\infty} \Omega G \rightarrow \vee \Sigma^{\infty}(\Omega G)_{2 i}
$$

such that $p^{m} \simeq \Sigma^{\infty} F \circ g: \Sigma^{\infty} \Omega G \rightarrow \Sigma^{\infty} \Omega G$. We take sufficiently large N so that the map $h: \Sigma^{\infty} \Omega G \rightarrow \Sigma^{\infty}(\Omega G)_{2 N}$ defined by

$$
h=\Sigma^{\infty} F \circ \Sigma^{\infty} q \circ g: \Sigma^{\infty} \Omega G \rightarrow \vee_{i=1}^{\infty} \Sigma^{\infty}(\Omega G)_{2 i} \rightarrow \vee_{i=1}^{N} \Sigma^{\infty}(\Omega G)_{2 i} \rightarrow \Sigma^{\infty}(\Omega G)_{2 N}
$$

satisfies the equality $h_{*}=p^{m}$ on $K_{0}\left(\Sigma^{\infty} \Omega G\right)_{2 p^{m}} \cong K_{0}(\Omega G)_{2 p^{m}}$, where $q: \vee_{i=1}^{\infty}(\Omega G)_{2 i} \rightarrow$
$\vee_{i=1}^{N}(\Omega G)_{2 i}$ collapses $\vee_{i=N+1}^{\infty}(\Omega G)_{2 i}$ to the base point. We consider the stable Adams operation ψ_{p} in K-homology groups, that is, for an element $\eta \in K_{0}\left(\Sigma^{\infty} X\right) \cong \lim K_{0}\left(\Sigma^{2 n} X\right)$ we take a representative $\eta_{n} \in K_{0}\left(\Sigma^{2 n} X\right)$ and define $\psi_{p}(\eta)=p^{-n} \overrightarrow{\psi^{p}}\left(\eta_{n}\right)$, where $\psi^{p}: K_{0}\left(\Sigma^{2 n} X\right) \mapsto K_{0}\left(\Sigma^{2 n} X\right)$ is the unstable Adams operation. Since $\psi^{p}\left(\xi_{2}^{p^{s}}\right)=$ $\left(\psi^{p} \xi_{2}\right)^{p^{s}}=p^{p^{s}} \xi_{2}^{p^{s}}$ in $K_{0}(\Omega G)$, we have $\psi_{p} h_{*}\left(\xi_{2}^{p^{s}}\right)=p^{p^{s}} h_{*}\left(\xi_{2}^{p^{s}}\right)$ in $K_{0}\left(\Sigma^{\infty}(\Omega G)_{2 N}\right)$. Since eigenvalues of the linear map $\psi_{p}: K_{0}\left(\Sigma^{\infty}(\Omega G)_{2 N}\right) \otimes \boldsymbol{Q} \mapsto K_{0}\left(\Sigma^{\infty}(\Omega G)_{2 N}\right) \otimes \boldsymbol{Q}$ are bounded, there is an $s>\max \{N, m\}$ such that $h_{*}\left(\xi_{2}^{p^{s}}\right)=0$. Here we claim

LEMMA 2.2. There are $\eta \in K_{0}(\Omega G)_{2 p^{m}}$ and $\eta^{\prime} \in K_{0}(\Omega G)_{2 p^{s}}$ such that $\xi_{2}^{p^{s}}=$ $\xi_{2}+p \eta+p^{m+1} \eta^{\prime}$.

We postpone the proof of Lemma 2.2 and continue to prove Theorem 1.5. Applying h_{*} to the equality obtained in Lemma 2.2 we have

$$
0=h_{*}\left(\xi_{2}^{p^{s}}\right)=h_{*}\left(\xi_{2}\right)+h_{*}(p \eta)+p^{m+1} h_{*}\left(\eta^{\prime}\right)=p^{m} \xi_{2}+p^{m+1}\left(\eta+h_{*}\left(\eta^{\prime}\right)\right)
$$

since $h_{*}=p^{m}$ on $K_{0}(\Omega G)_{2 p^{m}}$. The equality above implies that $\xi_{2}=-p\left(\eta+h_{*}\left(\eta^{\prime}\right)\right)$ in $K_{0}(\Omega G)$. Clearly this is impossible and completes the proof.

Proof of Lemma 2.2. We have

$$
\xi_{2}^{p^{s}}=\left(\xi_{2}^{p}\right)^{p^{s-1}}=\left(p \xi_{2 p}+\xi_{2}\right)^{p^{s-1}}=\sum_{i=0}^{p^{s-1}}\binom{p^{s-1}}{i} p^{i} \xi_{2 p}^{i} \xi_{2}^{p^{s-1}-i}
$$

Since for $i=p^{t} j$, where $0<i \leq p^{s-1}$ and $(p, j)=1$, we have

$$
\binom{p^{s-1}}{i}=\binom{p^{s-1}}{p^{t} j}=\frac{p^{s-1}}{p^{t} j}\binom{p^{s-1}-1}{p^{t} j-1}
$$

we obtain

$$
\nu_{p}\left(\binom{p^{s-1}}{i} p^{i}\right) \geq s-1-t+p^{t} j \geq s>m
$$

where $\nu_{p}(k)$ denotes the p-exponent of an integer k. We proved that $\xi_{2}^{p^{s}} \equiv \xi_{2}^{p^{s-1}}$ $\left(\bmod p^{m+1} K_{0}(\Omega G)_{2 p^{s}}\right)$ for $s>m$. Thus inductively we know that

$$
\xi_{2}^{p^{s}} \equiv \xi_{2}^{p^{m}} \quad\left(\bmod p^{m+1} K_{0}(\Omega G)_{2 p^{s}}\right)
$$

Clearly $\xi_{2}^{p^{m}} \equiv \xi_{2}\left(\bmod p K_{0}(\Omega G)_{2 p^{m}}\right)$ and we complete the proof.

3. ΩE_{6} and ΩE_{7} are stably indecomposable.

In this section we will prove that ΩE_{6} and ΩE_{7} are stably indecomposable assuming technical theorems. From now on $H_{*}(X)$ stands for $H_{*}\left(X ; \boldsymbol{F}_{2}\right)$.

First we recall the ring structure of $H_{*}\left(\Omega E_{6}\right), H_{*}\left(\Omega E_{7}\right)$ and the action of the Steenrod algebra on them [9]:

$$
\begin{aligned}
& H_{*}\left(\Omega E_{6}\right)=\Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[x_{4}, x_{8}, x_{10}, x_{14}, x_{16}, x_{22}\right], \\
& H_{*}\left(\Omega E_{7}\right)=\Lambda\left(x_{2}, x_{4}, x_{8}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, x_{14}, x_{16}, x_{18}, x_{22}, x_{26}, x_{34}\right], \\
& S q^{2} x_{4}=x_{2}, \quad S q^{2} x_{8}=x_{2} x_{4}, \quad S q^{4} x_{8}=x_{4}, \quad S q^{2} x_{10}=x_{4}^{2}, \\
& S q^{4} x_{14}=x_{10}, \quad S q^{2} x_{16}=x_{14}+x_{2} x_{4} x_{8}, \quad S q^{4} x_{16}=x_{4} x_{8}, \quad S q^{8} x_{16}=x_{8}, \\
& S q^{8} x_{18}=x_{10}, \quad S q^{2} x_{22}=x_{10}^{2}, \quad S q^{8} x_{22}=x_{14}, \quad S q^{4} x_{26}=x_{22}, \\
& S q^{8} x_{26}=x_{18}, \quad S q^{2} x_{34}=x_{16}^{2}, \quad S q^{16} x_{34}=x_{18},
\end{aligned}
$$

and $S q^{2^{i}} x_{2 j}=0$ in all cases not explicitly recorded. Here the degree of $x_{2 j}$ is $2 j$. Since we are working in homology theory, the Adem relations are given as follows: for $0<a<2 b$ we have

$$
S q^{b} S q^{a}=\sum\binom{b-1-t}{a-2 t} S q^{t} S q^{a+b-t}
$$

Thus, for example, we have $S q^{6} x_{34}=\left(S q^{4} S q^{2}+S q^{1} S q^{5}\right) x_{34}=S q^{4} x_{16}^{2}=x_{14}^{2}, S q^{12} x_{26}=$ $\left(S q^{8} S q^{4}+S q^{1} S q^{11}+S q^{2} S q^{10}\right) x_{26}=S q^{8} x_{22}=x_{14}$, and so on.

We have to calculate the subrings of $H_{*}\left(\Omega E_{6}\right)$ and $H_{*}\left(\Omega E_{7}\right)$ which consist of those elements annihilated by $S q^{i}$ for all $i>0$.

Theorem 3.1.

$$
\left\{x \in H_{*}\left(\Omega E_{6}\right) \mid S q^{i} x=0 \text { for all } i>0\right\}=\boldsymbol{F}_{2}\left[x_{4}^{2}, x_{20}, \bar{x}_{16}\right]\left\{1, x_{2}, x_{2} x_{4}, x_{2} x_{10}+x_{4}^{3}\right\},
$$

where

$$
\begin{aligned}
x_{20}= & x_{4}^{3} x_{8}+x_{10}^{2}+x_{2}\left(x_{4}^{2} x_{10}+x_{4} x_{14}+x_{8} x_{10}\right) \\
\bar{x}_{16}= & x_{4}^{5} x_{16}+x_{4}^{3} x_{10} x_{14}+x_{4}^{2} x_{14}^{2}+x_{4}^{2} x_{8} x_{20}+x_{8}^{2} x_{20} \\
& +x_{2} x_{4}^{2}\left(x_{10} x_{16}+x_{4}^{3} x_{14}+x_{4} x_{22}\right)
\end{aligned}
$$

Theorem 3.2.

$$
\begin{aligned}
&\{x \in\left.H_{*}\left(\Omega E_{7}\right) \mid S q^{i} x=0 \text { for all } i>0\right\} \\
&=\Lambda\left(\bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, x_{56}^{2}\right] \bar{x}_{26} \\
&+\boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, x_{56}^{2}\right]\left\{1, x_{2}, x_{2} x_{4}, x_{2} x_{4} x_{8}, x_{2}\left(x_{4} x_{14}+x_{8} x_{10}\right)\right. \\
&\left.\quad \bar{x}_{4}, x_{2} x_{56}, x_{2} x_{4} x_{56}, x_{2} x_{4} x_{8} x_{56}, x_{2}\left(x_{4} x_{14}+x_{8} x_{10}\right) x_{56}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{x}_{18}= & x_{10} x_{18}+x_{14}^{2}, \\
\bar{x}_{4}= & x_{4} x_{10}^{4}+x_{2}\left(x_{10} x_{16}^{2}+x_{10}^{2} x_{22}+x_{14}^{3}\right), \\
x_{56}= & x_{10}^{3} x_{26}+x_{10}^{2} x_{14} x_{22}+x_{10} x_{14}^{2} x_{18}+x_{10}^{4} x_{16}+x_{14}^{4}+x_{8} x_{10}^{2} x_{14}^{2}+x_{4} x_{10}^{2} x_{16}^{2} \\
& +x_{4} x_{8} x_{10}^{3} x_{14}, \\
x_{74}= & x_{10}^{6} x_{14}+x_{10} x_{14}^{2} x_{18}^{2}+x_{10} x_{16}^{4}+x_{10}^{2} x_{18}^{3}+x_{10}^{3} x_{22}^{2}+x_{14}^{4} x_{18}, \\
\bar{x}_{26}= & x_{2}\left(x_{10}^{4} x_{34}+x_{4} x_{8} x_{10}^{4} x_{22}+x_{14}^{4} x_{18}+x_{10} x_{16}^{4}+x_{4} x_{10}^{4} x_{14} x_{16}+x_{8} x_{10}^{5} x_{16}\right)+x_{10}^{2} x_{56} .
\end{aligned}
$$

Here we remark that $S q^{2} x_{56} \neq 0$ but $S q^{i}\left(x_{2} x_{56}\right)=0$ for all $i>0$.
Theorems 3.1 and 3.2 will be proved in sections 4 and 5 , respectively. In this section by assuming Theorems 3.1 and 3.2 we prove Theorem 1.6.

Proof of Theorem 1.6 for E_{6}. According to the remark after Theorem 1.6 we will show that the graph $G\left(\Omega E_{6}\right)$ is connected. To prove this it is sufficient to prove that for any non-zero element x of $H_{*}\left(\Omega E_{6}\right)$ with $|x|>2$ there is a path connecting x and a lower dimensional vertex.

If $S q^{i} x \neq 0$ for some $i>0$, then the claim is clearly true.
We assume, therefore, that $S q^{i} x=0$ for all $i>0$. By Theorem $3.1 x$ is in $\mathscr{A}=$ $\boldsymbol{F}_{2}\left[x_{4}^{2}, x_{20}, \bar{x}_{16}\right]\left\{1, x_{2}, x_{2} x_{4}, x_{2} x_{10}+x_{4}^{3}\right\}$. As the list below shows, for a given multiplicative generator u of \mathscr{A} there is an element v such that $S q^{2} v=u$. For given x, therefore, there is also an element y such that $S q^{2} y=x$.

v	$u=S q^{2} v$	$\|u\|$
x_{4}	x_{2}	2
x_{8}	$x_{2} x_{4}$	6
x_{10}	x_{4}^{2}	8
$x_{4} x_{10}$	$x_{2} x_{10}+x_{4}^{3}$	12
$x_{22}+x_{4} x_{8} x_{10}+x_{2} x_{4} x_{16}$	x_{20}	20
x_{38}	\bar{x}_{16}	36

where

$$
x_{38}=x_{4}^{3} x_{10} x_{16}+x_{10} x_{14}^{2}+\left(x_{4}^{2} x_{8}+x_{8}^{2}\right)\left(x_{22}+x_{4} x_{8} x_{10}+x_{2} x_{4} x_{16}\right)+x_{2} x_{4}^{5} x_{16} .
$$

If $|x|=8$ or $|x| \geq 12$, there is an element z such that $|z|=|y|, S q^{2} z=0$ and $S q^{i} z \neq 0$ for some $i>2$ as the following list shows.

$\|x\|$	$\|z\|$	z	$S q^{i} z$
$8 n+8$	$8 n+10$	$x_{2} x_{8} x_{4}^{2 n}$	$S q^{4}\left(x_{2} x_{8} x_{4}^{2 n}\right)=x_{2} x_{4}^{2 n+1}$
$8 n+18$	$8 n+20$	$x_{10}^{2} x_{4}^{2 n}$	$S q^{4}\left(x_{10}^{2} x_{4}^{2 n}\right)=x_{4}^{2 n+4}$
$8 n+12$	$8 n+14$	$x_{14} x_{4}^{2 n}$	$S q^{4}\left(x_{14} x_{4}^{2 n}\right)=x_{10} x_{4}^{2 n}$
$8 n+14$	$8 n+16$	$x_{8}^{2} x_{4}^{2 n}$	$S q^{8}\left(x_{8}^{2} x_{4}^{2 n}\right)=x_{4}^{2 n+2}$

Then $S q^{2} y=S q^{2}(y+z)=x$ and $S q^{i} y \neq S q^{i}(y+z)$ for some $i>2$, that is, there is a path connecting x and a lower dimensional vertex $S q^{i} y$ or $S q^{i}(y+z)$.

If $|x|<8$ or $|x|=10$, then $x=x_{2} x_{4}$ or $x=x_{2} x_{4}^{2}$. If $x=x_{2} x_{4}, x_{2} x_{4} \stackrel{S q^{2}}{\rightleftarrows} x_{8} \stackrel{S q^{4}}{\longmapsto}$ x_{4} is a path connecting x and a lower dimensional vertex. If $x=x_{2} x_{4}^{2}, x_{2} x_{4}^{2} \stackrel{S q^{2}}{\leftarrow} x_{2} x_{10}$ $\stackrel{S q^{6}}{\leftrightarrows} x_{2} x_{16} \stackrel{S q^{4} S q^{8}}{\longmapsto} x_{2} x_{4}$ is a path connecting x and a lower dimensional vertex.

Proof of Theorem 1.6 for E_{7}. Similarly to the argument for the case E_{6}, we only have to prove that there is a path connecting x and a lower dimensional vertex for any non-zero element x of $H_{*}\left(\Omega E_{7}\right)$ with degree greater than 2 and $S q^{i} x=0$ for all $i>0$. We consider the following lists.

v	$u=S q^{4} v$	$\|u\|$
$?$	x_{2}	2
$x_{2} x_{8}$	$x_{2} x_{4}$	6
x_{14}	x_{10}	10
$x_{2} x_{16}$	$x_{2} x_{4} x_{8}$	14
$x_{2} x_{8} x_{14}$	$x_{2}\left(x_{4} x_{14}+x_{8} x_{10}\right)$	20
$x_{14} x_{18}+x_{16}^{2}$	\bar{x}_{18}	28
$x_{2}\left(x_{10}^{2} x_{26}+x_{14} x_{16}^{2}\right)+x_{4} x_{10}^{3} x_{14}$	\bar{x}_{4}	44
y_{60}	x_{56}	56
y_{78}	x_{74}	74
y_{80}	\bar{x}_{26}	76
y_{116}	x_{56}^{2}	112

where

$$
\begin{aligned}
y_{60} & =x_{10}^{2} x_{14} x_{26}+x_{10} x_{16}^{2} x_{18}+x_{10}^{3} x_{14} x_{16}+x_{14}^{2} x_{16}^{2}+x_{8} x_{10}^{2} x_{16}^{2}, \\
y_{78} & =x_{10} x_{14} x_{18}^{3}+x_{10}^{2} x_{14} x_{22}^{2}+x_{14} x_{16}^{4}+x_{14}^{2} x_{16}^{2} x_{18}+x_{14}^{3} x_{18}^{2}, \\
y_{80} & =x_{2}\left(x_{22}^{2} x_{34}+x_{4} x_{8} x_{22}^{3}+x_{14}^{2} x_{16}^{2} x_{18}+x_{14} x_{16}^{4}+x_{8} x_{10}^{4} x_{14} x_{16}\right)+x_{10}^{2} y_{60}, \\
y_{116} & =x_{10}^{2} x_{22}^{2} x_{26}^{2}+x_{10}^{4} x_{16}^{2} x_{22}^{2}+x_{10}^{2} x_{14}^{2} x_{16}^{2} x_{18}^{2}+x_{14}^{6} x_{16}^{2} .
\end{aligned}
$$

$\|x\|$	$\|z\|$	z	$S q^{8} z$
$10 n+14$	$10 n+18$	$x_{18} x_{10}^{n}$	$S q^{8}\left(x_{18} x_{10}^{n}\right)=x_{10}^{n+1}$
$10 n+16$	$10 n+20$	$x_{2} x_{18} x_{10}^{n}$	$S q^{8}\left(x_{2} x_{18} x_{10}^{n}\right)=x_{2} x_{10}^{n+1}$
$10 n+18$	$10 n+22$	$x_{22} x_{10}^{n}$	$S q^{8}\left(x_{22} x_{10}^{n}\right)=x_{14} x_{10}^{n}$
$10 n+20$	$10 n+24$	$x_{2} x_{22} x_{10}^{n}$	$S q^{8}\left(x_{2} x_{22} x_{10}^{n}\right)=x_{2} x_{14} x_{10}^{n}$
$10 n+22$	$10 n+26$	$z_{26} x_{10}^{n}$	$S q^{8}\left(z_{26} x_{10}^{n}\right)=x_{4} x_{14} x_{10}^{n}$

where $z_{26}=x_{4} x_{22}+x_{2} x_{10} x_{14}$.
The first list above shows that there is an element y such that $S q^{4} y=x$. The second
list above shows that, if $|x| \geq 14$, there is a path connecting x and a lower dimensional vertex just as in the proof for E_{6}.

If $|x|<14$, then $x=x_{2} x_{4}, x_{10}$ or $x_{2} x_{10}$.
If $x=x_{2} x_{4}$, then $S q^{2} x_{8}=x$ and $S q^{4} y=x_{4} \neq 0$. If $x=x_{10} x^{\prime}$, where $x^{\prime}=1$ or x_{2}, then $S q^{6}\left(x_{16} x^{\prime}\right)=x$ and $S q^{8}\left(x_{16} x^{\prime}\right)=x_{8} x^{\prime} \neq 0$.

Thus we complete the proof of Theorem 1.6 for E_{7}.

4. Proof of Theorem 3.1.

In this section we prove Theorem 3.1. We put

$$
\begin{aligned}
& A=\left\{y \in H_{*}\left(\Omega E_{6}\right)\left[x_{4}^{-1}\right] \mid S q^{i} y=0 \text { for all } i>0\right\} \\
& B=\boldsymbol{F}_{2}\left[x_{4}^{2}, x_{20}, \bar{x}_{16}\right]\left[x_{4}^{-1}\right]\left\{1, x_{2}, x_{2} x_{4}, x_{4}^{3}+x_{2} x_{10}\right\}=\Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[\bar{x}_{4}, x_{20}, \bar{x}_{16}\right]\left[x_{4}^{-1}\right]
\end{aligned}
$$

where $\bar{x}_{4}=x_{4}^{3}+x_{2} x_{10}$. To prove the theorem it is sufficient to prove that $A=B$. Since we have the following isomorphisms as modules

$$
\begin{aligned}
H_{*}\left(\Omega E_{6}\right)\left[x_{4}^{-1}\right] & \cong \Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[x_{4}, x_{8}, x_{10}, x_{14}, x_{16}, x_{22}\right]\left[x_{4}^{-1}\right] \\
& \cong \Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[x_{4}, x_{8}, x_{10}, x_{14}, \bar{x}_{16}, x_{22}\right]\left[x_{4}^{-1}\right] \\
& \cong \Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[\bar{x}_{4}, x_{20}, \bar{x}_{16}\right]\left[x_{4}^{-1}\right] \otimes \Lambda\left(x_{10}\right) \otimes \boldsymbol{F}_{2}\left[x_{8}, x_{14}, x_{22}\right]
\end{aligned}
$$

any element y of $H_{*}\left(\Omega E_{6}\right)\left[x_{4}^{-1}\right]$ is written uniquely as

$$
y=\sum_{a, b, d \geq 0, c=0,1} x_{22}^{a} x_{14}^{b} x_{10}^{c} x_{8}^{d} P_{a, b, c, d}
$$

where $P_{a, b, c, d} \in \Lambda\left(x_{2}\right) \otimes \boldsymbol{F}_{2}\left[\bar{x}_{4}, x_{20}, \bar{x}_{16}\right]\left[x_{4}^{-1}\right]$. We define the second degree $|y|_{2}$ of y by

$$
|y|_{2}=\max \left\{\left|x_{22}^{a} x_{14}^{b} x_{10}^{c} x_{8}^{d}\right| \mid P_{a, b, c, d} \neq 0\right\}
$$

By $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$ we denote the submodule of A (resp. B) which consists of elements with the second degree i.

It is easy to see that $B \subset A$ and $A_{0}=B_{0}$ by definition. By induction on the second degree we prove that $A=B$.

Let M be a positive integer and assume that $A=B$ up to degree $2 M-2$. We prove that the equality holds in degree $2 M$.

For a positive integer a we put

$$
P_{a}^{22}=\sum_{b, d \geq 0, c=0,1} x_{14}^{b} x_{10}^{c} x_{8}^{d} P_{a, b, c, d}
$$

then we have
LEMMA 4.1. $\quad P_{a}^{22}=0$ unless a is a power of 2 . Moreover, P_{a}^{22} is an element of B.

Proof. We prove this lemma by downward induction on a. For sufficiently large a the assertion is trivially true. Assume that, for $a \geq 2^{n+1}, P_{a}^{22}=0$ unless a is a power of 2 and P_{a}^{22} are elements of B. Put $Q=\sum_{2^{n} \leq a<2^{n+1}} x_{22}^{a-2^{n}} P_{a}^{22}$, then

$$
y=\sum_{i>n} x_{22}^{2^{i}} P_{2^{i}}^{22}+x_{22}^{2^{n}} Q+\sum_{a<2^{n}} x_{22}^{a} P_{a}^{22}+\text { terms without } x_{22} .
$$

Since for any $\ell>0$ we have

$$
\begin{aligned}
0=S q^{\ell} y= & \sum_{i>n} S q^{\ell}\left(x_{22}^{2^{i}}\right) P_{2^{i}}^{22}+\sum_{k>0} S q^{k}\left(x_{22}^{2^{n}}\right) S q^{\ell-k} Q \\
& +\left(S q^{\ell} Q\right) x_{22}^{2^{n}}+\sum_{a<2^{n}} S q^{\ell}\left(x_{22}^{a} P_{a}^{22}\right)+\text { terms without } x_{22}
\end{aligned}
$$

and $S q^{k}\left(x_{22}^{2^{i}}\right) \in \boldsymbol{F}_{2}\left[x_{10}, x_{14}\right]$ for $k>0$, the coefficient of $x_{22}^{2^{n}}, S q^{\ell} Q$, must be 0 . Thus, by induction, we have $Q \in A_{2 M-22 \cdot 2^{n}}=B_{2 M-22 \cdot 2^{n}}$. This implies that $P_{a}^{22}=0$ for $2^{n}<a<2^{n+1}$ and that $P_{2^{n}}^{22} \in A_{2 M-22 \cdot 2^{n}}=B_{2 M-22 \cdot 2^{n}}$.

By Lemma $4.1 y$ is written as

$$
y=\sum_{a \geq 0} x_{22}^{2^{a}} P_{2^{a}}^{22}+\sum_{b, d \geq 0, c=0,1} x_{14}^{b} x_{10}^{c} x_{8}^{d} P_{0, b, c, d},
$$

where $P_{2^{a}}^{22}$ and $P_{0, b, c, d}$ are elements of B.
As $S q^{i} x_{22}, S q^{i} x_{14}, S q^{i} x_{10}$ are in $\boldsymbol{F}_{2}\left[x_{4}, x_{10}, x_{14}\right]$ for $i>0$, if for a positive integer d we put

$$
P_{d}^{8}=\sum_{b \geq 0, c=0,1} x_{14}^{b} x_{10}^{c} P_{0, b, c, d},
$$

then similarly we have
LEmma 4.2. $\quad P_{d}^{8}=0$ unless d is a power of 2. Moreover, P_{d}^{8} is an element of B.
Thus we proved that y is written as

$$
\begin{equation*}
y=\sum_{a \geq 0} x_{22}^{2^{a}} P_{2^{a}}^{22}+\sum_{b \geq 0, c=0,1} x_{14}^{b} x_{10}^{c} P_{b, c}+\sum_{d \geq 0} x_{8}^{2^{d}} P_{2^{d}}^{8}, \tag{4.1}
\end{equation*}
$$

where $P_{2^{a}}^{22}, P_{b, c}=P_{0, b, c, 0}, P_{2^{d}}^{8} \in B$.
By applying $S q^{2}$ to the equality (4.1) we have

$$
\begin{aligned}
0 & =S q^{2} y=x_{10}^{2} P_{1}^{22}+\sum_{b \geq 0} x_{14}^{b} x_{4}^{2} P_{b, 1}+x_{2} x_{4} P_{1}^{8} \\
& =\left(x_{4}^{3} x_{8}+x_{20}+x_{2}\left(x_{4}^{2} x_{10}+x_{4} x_{14}+x_{8} x_{10}\right)\right) P_{1}^{22}+\sum_{b \geq 0} x_{14}^{b} x_{4}^{2} P_{b, 1}+x_{2} x_{4} P_{1}^{8}
\end{aligned}
$$

which implies that

$$
P_{1}^{22}=0, \quad P_{b, 1}=0 \quad \text { for } b>0, \quad x_{4}^{2} P_{0,1}=x_{2} x_{4} P_{1}^{8}
$$

Then y is written as

$$
\begin{equation*}
y=\sum_{a \geq 1} x_{22}^{2^{a}} P_{2^{a}}^{22}+\sum_{b \geq 0} x_{14}^{b} P_{b, 0}+x_{10} P_{0,1}+\sum_{d \geq 0} x_{8}^{d} P_{2^{d}}^{8} \tag{4.2}
\end{equation*}
$$

By applying $S q^{4}$ to the equality (4.2) we have

$$
\begin{aligned}
0 & =S q^{4} y=x_{10}^{4} P_{2}^{22}+\sum x_{14}^{2 b} x_{10} P_{2 b+1,0}+x_{4} P_{1}^{8} \\
& =\left(x_{4}^{3} x_{8}+x_{20}\right)^{2} P_{2}^{22}+\sum x_{14}^{2 b} x_{10} P_{2 b+1,0}+x_{4} P_{1}^{8}
\end{aligned}
$$

which implies that

$$
P_{2}^{22}=0, \quad P_{2 b+1,0}=0, \quad P_{1}^{8}=0
$$

By the last equality we have $P_{0,1}=x_{2} x_{4}^{-1} P_{1}^{8}=0$. Thus y is written as

$$
y=\sum_{a \geq 2} x_{22}^{2^{a}} P_{2^{a}}^{22}+\sum_{b \geq 0} x_{14}^{2 b} P_{2 b, 0}+\sum_{d \geq 1} x_{8}^{d} P_{2^{d}}^{8}
$$

Now it is easy to show, by induction on n, that y is written as

$$
y=\sum_{a \geq n+1} x_{22}^{2^{a}} P_{2^{a}}^{22}+\sum_{b \geq 0} x_{14}^{2^{n} b} P_{2^{n} b, 0}+\sum_{d \geq n} x_{8}^{d} P_{2^{d}}^{8}
$$

Therefore $y=P_{0,0} \in B$ as desired.

5. Proof of Theorem 3.2.

As in the proof of Theorem 3.1 we proceed the calculation in the ring $H_{*}\left(\Omega E_{7}\right)\left[x_{10}^{-1}\right]$. Since

$$
\begin{aligned}
x_{4}= & \bar{x}_{4} x_{10}^{-4}+x_{2} x_{10}^{-4}\left(x_{10} x_{16}^{2}+x_{10}^{2} x_{22}+x_{14}^{3}\right) \\
x_{18}= & x_{10}^{-1} \bar{x}_{18}+x_{10}^{-1} x_{14}^{2} \\
x_{26}= & x_{10}^{-5} \bar{x}_{26}+x_{2} x_{10}^{-5}\left(x_{10}^{4} x_{34}+x_{4} x_{8} x_{10}^{4} x_{22}+x_{14}^{4} x_{18}+x_{10} x_{16}^{4}\right. \\
& \left.+x_{4} x_{10}^{4} x_{14} x_{16}+x_{8} x_{10}^{5} x_{16}\right)+x_{10}^{-3}\left(x_{10}^{2} x_{14} x_{22}+x_{10} x_{14}^{2} x_{18}\right. \\
& \left.+x_{10}^{4} x_{16}+x_{14}^{4}+x_{8} x_{10}^{2} x_{14}^{2}+x_{4} x_{10}^{2} x_{16}^{2}+x_{4} x_{8} x_{10}^{3} x_{14}\right) \\
x_{22}^{2}= & x_{10}^{-3} x_{74}+x_{10}^{-2} x_{16}^{4}+x_{10}^{-4} x_{14}^{6}+x_{10}^{3} x_{14}+x_{10}^{-4} \bar{x}_{18}^{3},
\end{aligned}
$$

we have the following isomorphisms of modules:

$$
\begin{aligned}
H_{*}\left(\Omega E_{7}\right)\left[x_{10}^{-1}\right] \cong & \cong\left(x_{2}, x_{4}, x_{8}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, x_{14}, x_{16}, x_{18}, x_{22}, x_{26}, x_{34}\right]\left[x_{10}^{-1}\right] \\
\cong & \Lambda\left(x_{2}, \bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, \bar{x}_{26}\right]\left[x_{10}^{-1}\right] \\
& \otimes \Lambda\left(x_{8}, x_{22}\right) \otimes \boldsymbol{F}_{2}\left[x_{14}, x_{16}, x_{34}\right] .
\end{aligned}
$$

Therefore, any element y of $H_{*}\left(\Omega E_{7}\right)\left[x_{10}^{-1}\right]$ is written uniquely as

$$
y=\sum_{a, c, d \geq 0, b, e=0,1} x_{34}^{a} x_{22}^{b} x_{16}^{c} x_{14}^{d} x_{8}^{e} P_{a, b, c, d, e},
$$

where $P_{a, b, c, d, e} \in \Lambda\left(x_{2}, \bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, \bar{x}_{26}\right]\left[x_{10}^{-1}\right]$. We define the second degree $|y|_{2}$ of y by

$$
|y|_{2}=\max \left\{\left|x_{34}^{a} x_{22}^{b} x_{16}^{c} x_{14}^{d} x_{8}^{e}\right| \mid P_{a, b, c, d, e} \neq 0\right\} .
$$

We put

$$
\begin{aligned}
A= & \left\{y \in H_{*}\left(\Omega E_{7}\right)\left[x_{10}^{-1}\right] \mid S q^{i} y=0 \text { for all } i>0\right\}, \\
B= & \Lambda\left(\bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, x_{56}^{2}\right]\left[x_{10}^{-1}\right] \bar{x}_{26} \\
& +\boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, x_{56}^{2}\right]\left[x_{10}^{-1}\right]\left\{1, x_{2}, x_{2} x_{4}, x_{2} x_{4} x_{8}, x_{2}\left(x_{4} x_{14}+x_{8} x_{10}\right),\right. \\
& \left.\bar{x}_{4}, x_{2} x_{56}, x_{2} x_{4} x_{56}, x_{2} x_{4} x_{8} x_{56}, x_{2} x_{56}\left(x_{4} x_{14}+x_{8} x_{10}\right)\right\} .
\end{aligned}
$$

Since $x_{56}^{2}=x_{10}^{-4} \bar{x}_{26}^{2}, x_{2} x_{56}=x_{2} \bar{x}_{26} x_{10}^{-2}, x_{2} x_{4}=x_{2} \bar{x}_{4} x_{10}^{-4}$,

$$
B=\Lambda\left(x_{2}, \bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, \bar{x}_{26}\right]\left[x_{10}^{-1}\right]\left\{1, x_{2}\left(x_{4} x_{14}+x_{8} x_{10}\right)\right\} .
$$

Then it is easy to see that $B \subset A$ and $A_{0}=B_{0}$. By induction on the second degree we will prove that $A=B$. Let M be a positive integer and assume that $A=B$ up to degree $2 M-2$. We prove that the equality holds in degree $2 M$.

Let y be an element of $A_{2 M}$. We recall that

$$
\begin{array}{lll}
S q^{2} x_{34}=x_{16}^{2}, & S q^{16} x_{34}=x_{18}=x_{10}^{-1}\left(\bar{x}_{18}+x_{14}^{2}\right), & S q^{2} x_{22}=x_{10}^{2}, \\
S q^{8} x_{22}=x_{14}, & S q^{2} x_{16}=x_{14}+x_{2} x_{4} x_{8}, & S q^{4} x_{16}=x_{4} x_{8}, \\
S q^{8} x_{16}=x_{8}, & S q^{4} x_{14}=x_{10}, \quad S q^{2} x_{8}=x_{2} x_{4}, & S q^{4} x_{8}=x_{4},
\end{array}
$$

and $S q^{2^{i}} x_{2 j}=0$ in all cases not explicitly recorded.
Similarly to the case E_{6} we have the following lemma.
Lemma 5.1. y is written as

$$
y=\sum_{a \geq 0} x_{34}^{2^{a}} P_{2^{a}}^{34}+x_{22} P^{22}+x_{16} P_{1}^{16}+\sum x_{16}^{2 c} x_{14}^{d} x_{8}^{e} P_{2 c, d, e}
$$

where $P_{2^{a}}^{34}, P^{22}$ and P_{1}^{16} are in B and

$$
P_{2 c, d, e} \in \Lambda\left(x_{2}, \bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, \bar{x}_{26}\right]\left[x_{10}^{-1}\right]
$$

By applying $S q^{2}$ to y we have

$$
0=S q^{2} y=x_{16}^{2} P_{1}^{34}+x_{10}^{2} P^{22}+\left(x_{14}+x_{2} x_{4} x_{8}\right) P_{1}^{16}+\sum x_{16}^{2 c} x_{14}^{d} x_{2} x_{4} P_{2 c, d, 1}
$$

As $P_{1}^{34}, P^{22}, P_{1}^{16}, P_{2 c, d, 1} \in B$, by comparing the coefficient of $x_{16}^{2 c} x_{14}^{d}$ in the equality above we have

$$
\begin{equation*}
P_{1}^{34}=x_{2} x_{4} P_{2,0,1}, \quad P_{1}^{16}=x_{2} x_{4} P_{0,1,1}, \quad x_{10}^{2} P^{22}=x_{2} x_{4} P_{0,0,1} \tag{5.1}
\end{equation*}
$$

Since

$$
\begin{aligned}
0 & =x_{4} S q^{2} S q^{4} y \\
& =x_{4}\left(\sum x_{16}^{4 c} x_{14}^{d+2} x_{2} x_{4} P_{4 c+2, d, 1}+\sum x_{16}^{2 c} x_{14}^{2 d} x_{10} x_{2} x_{4} P_{2 c, 2 d+1,1}+\sum x_{16}^{2 c} x_{14}^{d} x_{2} P_{2 c, d, 1}\right) \\
& =\sum x_{16}^{2 c} x_{14}^{d} x_{2} x_{4} P_{2 c, d, 1}
\end{aligned}
$$

and $P_{2 c, d, e} \in \Lambda\left(x_{2}, \bar{x}_{4}\right) \otimes \boldsymbol{F}_{2}\left[x_{10}, \bar{x}_{18}, x_{74}, \bar{x}_{26}\right]\left[x_{10}^{-1}\right]$, we have $x_{2} x_{4} P_{2 c, d, 1}=0$. Then the equality $0=S q^{2} S q^{4} y=\sum x_{16}^{2 c} x_{14}^{d} x_{2} P_{2 c, d, 1}$ implies that

$$
\begin{equation*}
x_{2} P_{2 c, d, 1}=0 \tag{5.2}
\end{equation*}
$$

By the equalities (5.1) and (5.2) we have

$$
P_{1}^{34}=0, \quad P^{22}=0, \quad P_{1}^{16}=0
$$

Then y is written as

$$
y=\sum_{a \geq 1} x_{34}^{2^{a}} P_{2^{a}}^{34}+\sum x_{16}^{2 c} x_{14}^{d} x_{8}^{e} P_{2 c, d, e}
$$

If we put

$$
P_{1}^{14}=\sum x_{16}^{4 c} x_{14}^{2 d} x_{8}^{e} P_{4 c, 2 d+1, e}
$$

then y is written as

$$
y=\sum_{a \geq 1} x_{34}^{2^{a}} P_{2^{a}}^{34}+x_{14} P_{1}^{14}+\sum x_{16}^{2 c} x_{14}^{2 d} x_{8}^{e} P_{2 c, 2 d, e}
$$

and the fact that $P_{1}^{16}=0$ implies that $P_{1}^{14} \in B$ by the same argument as in the proof of Lemma 4.1.

By applying $S q^{4}$ to the equality above we have

$$
0=S q^{4} y=x_{16}^{4} P_{2}^{34}+x_{10} P_{1}^{14}+\sum x_{16}^{4 c} x_{14}^{2 d+2} x_{8}^{e} P_{4 c+2,2 d, e}+\sum x_{16}^{2 c} x_{14}^{2 d} x_{4} P_{2 c, 2 d, 1}
$$

which implies that $x_{10} P^{14}=x_{4} P_{0,0,1}$.
Thus y is written as

$$
y=\sum_{a \geq 1} x_{34}^{2^{a}} P_{2^{a}}^{34}+\sum_{(c, d) \neq(0,0)} x_{16}^{2 c} x_{14}^{2 d} x_{8}^{e} P_{2 c, 2 d, e}+P_{0}
$$

where $P_{0}=P_{0,0,0}+x_{10}^{-1}\left(x_{4} x_{14}+x_{8} x_{10}\right) P_{0,0,1}$. Since $x_{2} P_{0,0,1}=0$ by (5.2), $P_{0} \in B$. Now it is easy to show that, by induction on n, y is written as

$$
y=\sum_{a \geq n} x_{34}^{2^{a}} P_{2^{a}}^{34}+\sum_{(c, d) \neq(0,0)} x_{16}^{2^{n} c} x_{14}^{2^{n} d} x_{8}^{e} P_{2^{n} c, d, 2^{n} d, e}+P_{0}
$$

Therefore $y=P_{0} \in B$ as desired.

References

[1] M. C. Crabb, On stable splitting of $U(n)$ and $\Omega U(n)$, Springer Lecture Notes in Math., 1298 (1986), 35-53.
[2] P. W. Duckworth, The K-theory Pontrjagin rings for the loop spaces on the exceptional Lie groups, Quart. J. Math. Oxford (2), 35 (1984), 253-262.
[3] B. Gray and C. A. McGibbon, Universal phantom maps, Topology, 32 (1993), 371-394.
[4] J. Grodal, The transcendence degree of the mod p cohomology of finite Postnikov systems, Fields Inst. Comm., 19 (1998), 111-130.
[5] M. J. Hopkins, Stable decompositions of certain loop spaces, Ph. D. thesis, Evanston, 1984.
[6] J. R. Hubbuck, Some stably indecomposable loop spaces, Springer Lecture Notes in Math., 1418 (1990), 70-77.
[7] K. Iriye, Universal phantom maps out of loop spaces, Proc. R. Soc. Edinburgh, 130A (2000), 313-333.
[8] A. Kono and K. Kozima, The space of loops on a symplectic group, Japan. J. Math., 4 (1978), 461-486.
[9] A. Kono and K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie group, Proc. R. Soc. Edinburgh, 112A (1989), 187-202.
[10] J. P. May, The homology of E_{∞}-space, Springer Lecture Notes in Math., 533 (1976), 1-68.
[11] C. A. McGibbon, Phantom maps, Chapter 25 in The Handbook of Algebraic Topology, NorthHolland, Amsterdam, 1995.
[12] C. A. McGibbon, Some problems about phantom maps, Fields Inst. Comm., 19 (1998), 241-250.
[13] R. J. Wellington, The unstable Adams spectral sequence for free iterated loop spaces, Memoirs of Amer. Math. Soc., 258 (1982).

Kouyemon Iriye

Department of Applied Mathematics Osaka Women's University
Sakai, Osaka
590-0035, Japan
E-mail: kiriye@mi.s.osakafu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55P99; Secondary 55P35, 55S05.
 Key Words and Phrases. phantom map, loop space, exceptional Lie group.
 This work is partially supported by Grant-in-Aid for Scientific Research (No. 16540076), Ministry of Education, Culture, Sports, Science and Technology.

