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Stable suspension order of universal phantom maps
and some stably indecomposable loop spaces

By Kouyemon IRIYE

(Received Jan. 16, 2006)

Abstract. We study a stable suspension order of a universal phantom map out
of a space. We prove that it is infinite if X is a non-trivial finite Postnikov space,
a classifying space of connected Lie group or a loop space on a connected Lie group
with torsion. We also show that the loop spaces on the exceptional Lie groups Fg
and E7 are stably indecomposable.

1. Introduction.

Throughout this paper all spaces have basepoints, all maps and homotopies preserve
them. p denotes a fixed prime and X, denotes the localization at the prime p of a
nilpotent space X.

A map out of a CW-complex X is called a phantom map if its restriction to each
n-skeleton X, is null homotopic. The universal phantom map out of X is a based map

through which all other phantom maps out of X factor. This map is a part of the
extended cofiber sequence

vXniXQ vzxnﬁ szn—)"'»
n=1 n=1 n=1

where F : \/,"; X,, — X is the folding map, that is, F|x, : X,, — X is the inclusion
map. For a map f: X — Y by the stable suspension order of f we mean the order of
the class [f] in liLn[E"X, 2"Y).

For a CW-complex X by %>°X we denote the suspension spectrum. For a map
f X — Y between CW-complexes by the strong stable suspension order of f we mean
the order of the class X f : ¥°X — £V in {E*°X,X*Y}.

Since the natural map

Im[S" X, £"Y] — {E®X, 5°Y}
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is not necessarily monomorphic for an infinite dimensional complex X, for a map f :
X — Y it is necessary to distinguish between its stable suspension order and strong
stable suspension order.

First we study the (strong) stable suspension order of the universal phantom maps
out of K(m,n)(,) and BG ). These spaces satisfy the assumption of the following theo-
rem.

THEOREM 1.1.  Let X be a connected p-local CW-complez of finite type over the ring
Zy. If H*(X; F,) has an element of infinite height, then the strong stable suspension
order of the universal phantom map out of X is infinite.

As a corollary we have the following partial answer to Question 18 of McGibbon
[12]. Needless to say, if the strong stable suspension order of a map is infinite, then so
is its stable suspension order.

COROLLARY 1.2.  Let X be a connected nilpotent finite Postnikov system of finite
type with finite w1 (X). Then the strong stable suspension order of the universal phantom
map out of X,y is infinite unless its mod p homology groups are trivial.

Let G be a connected Lie group. Then the strong stable suspension order of the
universal phantom map out of BG ) is infinite unless its mod p homology groups are
trivial.

Next we study the (strong) stable suspension order of the universal phantom map
out of a loop space on a simply connected Lie group.

In [7] we proved that for almost all Lie groups G the universal phantom maps out
of QG are essential. More precisely we proved the following theorem.

THEOREM 1.3. Let G be a simply connected Lie group. The universal phantom
map out of QG ) is trivial if and only if G is p-equivalent to a product of spheres.

By the Mitchell-Richter splitting of QSU(n) [1], it is stably homotopy equivalent
to a bouquet of finite complexes. The identity map id : £°QSU(n) — E£°QSU(n),
therefore, factors throught the folding map X F : VE®(QSU (n)); — X°QSU(n), that
is, the universal phantom map out of QSU(n) is stably trivial. Thus the strong stable
suspension order of the universal phantom map out of QSU(n) is zero. But we do not
know whether the stable suspension order of the universal phantom map out of QSU(n)
is zero.

For a nilpotent CW-complex X of finite type, by Theorem 3.3 of [3], the stable
suspension order of the universal phantom map out of X,y is zero if and only if X" X,
is homotopy equivalent to a bouquet of finite dimensional complexes for some n.

QUESTION 1.4. Let n > 2. Is ¥™QSU(n) homotopy equivalent to a bouquet of
finite complexes for sufficiently large m?

Hopkins [5] proved that QSp(2) and QSp(3) are stably indecomposable. Later Hub-
buck [6] added QG5 and QFy to the list of such spaces. Their results imply that the
stable suspension order of the universal phantom maps out of QG are non-zero for
G = Sp(2), Sp(3), G2, F,. We extend this result to loop spaces on Lie groups as
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follows:

THEOREM 1.5. Let G be a simply connected, simple Lie group.

If H.(G; Z) has a p-torsion, then the strong stable suspension order of the universal
phantom map out of QG is infinite.

If G = Sp(n) with n > 1, then the strong stable suspension order of the universal
phantom map out of QG 3y is non-zero.

Theorem 1.5 and the fact that QG5 and QQF} are stably indecomposable suggest that
if a simply connected simple Lie group G has a p-torsion, then QG is stably indecompos-
able. Partially we can prove this suggestion.

THEOREM 1.6. QFEg and QFE; are stably indecomposable at the prime 2.

As for QSp(n), although Sp(n) is torsion free, Hubbuck conjectured that they are
all stably indecomposable at the prime 2 unless n = 1. For n < 10 it is not difficult to
show that his conjecture is true.

For a connected space X of finite type we associate a graph G(X) as follows. The
vertices of G(X) are non-zero elements of H,(X; Fy) and a pair of vertices {z, y} is an
edge of G(X) if and only if S¢‘r = y or Sq¢'y = x for some i > 0, where Sq’ is the
dual Steenrod operation of degree i. If X is stably homotopy equivalent to a wedge of
non-trivial spaces or spectra, then G(X) is not connected. To prove Theorem 1.6 we will
show that the graphs associated with QFEg and QQE7 are connected. Unfortunately, the
graphs associated with loop spaces on other Lie groups are not connected.

This paper is organized as follows: In Section 2 we study a stable suspension
order of a universal phantom map and prove Theorem 1.1, Corollary 1.2 and The-
orem 1.5. In Section 3 we prove that QFg and QF; are stably indecomposable
by assuming technical theorems. In Section 4 and Section 5 we compute the sets
{z € H.(X; F3)|Sq'z = 0 for all i > 0} for X = QFs and QFE;.

The author would like to thank N. Minami. He kindly told the author that the
natural map liLn[E”X ,2"Y] — {E°X,X*°Y} is not necessarily monomorphic for an

infinite dimensional complex X.

2. Stable suspension order of universal phantom map.

In this section we prove Theorem 1.1, Corollary 1.2 and Theorem 1.5.

PROOF OF THEOREM 1.1. In this proof H,(X) stands for H,(X; F},). Since X is
connected, we can assume that each n-skeleton of X is also connected.

By way of a contradiction, we assume that the strong stable suspension order of the
universal phantom map out of X is finite. Since spaces are p-local, the order is p™ for
some non-negative integer m. Since in the cofiber sequence

o0 o . o0

\ o=x, T uex =8 \/ 5K,

n=1 n=1
pE®0O =~ %, there is a map ¢ : E°X — \/°_, ¥°X,, such that X°F o g ~ p™idy~x.
By taking adjoint we have the following (homotopy) commutative diagram:
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X ——Q(X)

N

QV, X)L Q(x)

where Q(X) = lim OFYF X n: X — Q(X) is the adjoint map to the identity idsex :
X — X%X, p: Q(X) — Q(X) is the p-th power map, and ¢’ : X — Q(\/,—, X,,) is
the adjoint map to g : ¥°X — \/°_, £>°X,,. Now we apply the mod p homology theory
to the diagram above and we will obtain a contradiction.

For a space K of finite type over the ring Z(,) by &« : Hp.(K) — H.(K) we denote
the p-th root map, which is the dual of the p-th power map in H*(K). If K is an H-space,
then the p-th power map p : K — K induces a map given by p.(z) = &.(x)P in homology
and &, : H,.(K) — H.(K) is a homomorphism of algebras.

Thus we have (p" on). = &7 )P oy : Ho(X) — H.(Q(X)). Let Z € H*(X) be an
element of infinite height and z; € H.(X) be the dual of ¥’ for j > 0 and its image in
H,.(Q(X)) will be denoted by the same letter since H,(X) is a submodule of H,(Q(X)).
Then &, (xj41) = x; for j > 0.

We choose a positive integer M such that z,, € Im(H.(Xp) — H.(X)). Since
Xy is finite dimensional, we may assume that ¢’'(X,s) C Q(\/:Ll X,,) for some N and
that ¢’ is the composite of ¢'|x,, : Xy — Q(\/i:[:1 X,,) and the natural inclusion map
Q(\/f:[:1 X,) — Q(V,~; X,). We consider the composite h: X — Q(Xy):

%) N
h:XiQ(\/Xn>‘L((’2Q<\/Xn) 2 0(xXy)

n=1 n=1

where ¢ : /)2 | X, = \/g:1 XoVV iy Xn — \/T[L1 X, is the map which collapses the
second factor to the base point.
Now we recall the following two facts to complete the proof.

(1) Any even dimensional element z in H,(Q(X)) has an infinite height since
H,(Q(X)) is a free commutative algebra. This is well known, see Section 4 of
[10]. In particular, 2P # 0.

(2) There is no infinite sequence {y; € H.(Q(XN))] & (yj41) = y; for all j > 0 and
y; # 0 for some j}. This can be proved by using the Nishida relation, see e.g.,
Lemma 3.5 of [13]. In fact, if ¥ = 0 on H,(K) for a connected space K, then so
is on H,(Q(K)).

Put « = 2 and consider an infinite sequence {h.(z;) € H.(Q(Xn))};=0,1,2,.... This
sequence contradicts the fact (2) above as follows. Let iy : Xy — X be the inclusion
map. Since

Q(in)ohoin = Q(in) o Q(F) 0 Q(q) o g’ oin
~Q(in)oQ(F)og|x,, ~Q(F)og oiy

and ., € Im(H, (X)) — H. (X)), we have
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Q(in)x © hu(m) = Q(F)x © gl(wm) = pI 0 () = (€7 (wm))P" = 2" #0,

that is, hs(z,,) # 0. On the other hand we have . h.(xj+1) = he(€axjy1) = ha(z;). O

PROOF OF COROLLARY 1.2. The fact that H*(X; F,) has an element of infinite
height is proved by Grodal, [4, Theorem 1.1]. For BG this fact is also known, see e.g.,
p. 385 of [3]. O

Similarly to Theorem 3.3 of [3] it is easy to prove the following theorem, which we
need to prove Theorem 1.5.

THEOREM 2.1.  For a nilpotent CW-complex X the strong suspension order of the
universal phantom map out of X,y is zero if and only if X ) is stably homotopy equivalent
to a bouquet of p-localization of finite complexes.

PRrROOF OF THEOREM 1.5. First we show the second statement.

For n = 2 the statement follows Theorem 2.1 and the fact that QSp(2) is stably
indecomposable.

Let n > 2. By Kono and Kozima [8], H.(QSp(n); Fy) is isomorphic to
Fy[xo, x4, . .., 24n—2] and the action of the Steenrod algebra on xg and z19 are given
by Sq¢?’x¢ = 22, Sq?x10 = 23 and Sq*z19 = 26. Since G(Q2Sp(n)) has the following path

2
Sq 2 Sq° 2

2 4
2i+2 ¢  2i+4 2i Sq 2i4+2
Ty — T5 — T10Ty > TeTy X5 e TG,

T
G(22Sp(n)) has a connected component which has elements with arbitrary large dimen-
sion. Thus in a stable category (2Sp(n) is not homotopy equivalent to a bouquet of finite
dimensional complexes, which implies the second statement by Theorem 2.1.

To prove the first statement we use complex Z/2-graded K-homology theory. We
know that K¢(2G) is free Z-module and K;(QG) = 0. We give Ky(2G) the ascending
filtration corresponding to the CW-filtration of QG. Since the Atiyah-Hirzebruch spectral
sequence collapses, the natural map Ko(Q2G)2, — Ho,(QG; Z) is epimorphic with kernel
Ko(QG)an—2, see [2] and [6].

Let & € Ko(QG)s = Z be a generator. Then there is an indecomposable element
€9y € Ko(QG)a, such that €5 = péyy, + & by [2]. The Spin(n) case is treated similarly.

From now on until the end of this proof we assume that all spaces are localized at
the prime p. If the strong stable suspension order of the universal phantom map out of
QG is finite, say p™, then there is a stable map

qg: X0G — \/ZOO(QG)Ql

such that p" ~ X*°F o g : X°0G — X*°0G. We take sufficiently large N so that the
map h : X°0G — £°(QG)qn defined by

h=YX®FoX®go0g:X%0G — V2, 5%°(QG) e — VI 2%(QG)2; — X°(QG)2n

satisfies the equality h. = p™ on Ko(X*°QG)opm = Ko(QG)opm, where g : V2, (QG)2; —
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VL, (QG)2; collapses V52 1 (2G)2; to the base point. We consider the stable Adams op-
eration v, in K-homology groups, that is, for an element € K(X*°X) = liLnKO(Z%X)
we take a representative 7, € Ko(¥?"X) and define ¢,(n) = p~"¢P(n,), where
PP 1 Ko(¥2"X) — Ko(X?"X) is the unstable Adams operation. Since 1/11’(555) =
(Yr&)?P" = pP" el in Ko(QG), we have ¢,h,(€0) = pP ha(€) ) in Ko(S°(QG)an).
Since eigenvalues of the linear map ¢, : Ko(Z®°(Q2G)an) ® Q — Ko(Z°(QG)2n) @ Q
are bounded, there is an s > max{N, m} such that h, (Egs) = 0. Here we claim

LEMMA 2.2. There are n € Ko(QG)opm and ' € Ko(Q2G)2ps such that fgs =
& +pn+pty.

We postpone the proof of Lemma 2.2 and continue to prove Theorem 1.5. Applying
h, to the equality obtained in Lemma 2.2 we have

0=h(€)) = hu(€2) + hu(pm) + P Lhi(y) = p™ & + p™ L (n + ha ()

since hy, = p™ on Ky(2G)2pm. The equality above implies that £ = —p(n + h. (7)) in
Ky(QG). Clearly this is impossible and completes the proof. O

Proor orF LEMMA 2.2. We have

s s—1 s—1 P s—1 . s—1_
&= (@) =& =3 (p )plg;pgg -

5 )
=0

Since for i = p'j, where 0 < i < p*~! and (p,j) = 1, we have
(psl> _ <psl> _ psfl (psl _ 1>
i p'j pij\pj—1)

ps—l )
I/p<( ; )p1> >s—1—t+pj>s>m,

we obtain

s s—1
where v,(k) denotes the p-exponent of an integer k. We proved that & = &

(mod p™ 1 Ky(QG)aps) for s > m. Thus inductively we know that

m

{gs =& (mod p™ T Ko(QG) 2y ).
Clearly {gm =& (mod pKo(QG)2pm) and we complete the proof. O

3. QFg and QF; are stably indecomposable.

In this section we will prove that QFg and 2F7 are stably indecomposable assuming
technical theorems. From now on H,(X) stands for H,(X; F5).
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First we recall the ring structure of H,(QFg), H,(LE7) and the action of the Steen-
rod algebra on them [9]:

A(x2) ® Fylxy, x8, 710, T14, T16, T22),
H.(QE7) = AMxg, x4, 28) ® Fa[T10, T14, T16, T18, 22, T26, T34],
2. 2. 4. _ 2 _ .2
Sq ry = x3, Sq°rs = w14, Sq g = 14, Sq*z10 = xi,
4 2 4 _ 8 _
Sq w1y = 210, S¢°T16 = T1a + T2xuxs, S¢°T16 = T4T8, S¢°T16 = Ts,
8 _ 2 _ .2 8 _ 4 _
Sq°r18 = 110, Sq°T22 = X710, Sq°ras = 114, Sq*T6 = T2,
8 _ 2 .2 16 _
Sq°ra6 = 118, Sq T34 = T, SqPr3y = 118,
and Sq¢* z2; = 0 in all cases not explicitly recorded. Here the degree of x5; is 2j. Since we

are working in homology theory, the Adem relations are given as follows: for 0 < a < 2b
we have

b—1-t -
Sq"Sq* = ( Lo >Sqtsqa+b "

Thus, for example, we have S¢Sx34 = (S¢*Sq® + Sq'Sq®) w3y = Sqa3y = 23, Sq'?x96 =
(S¢®Sq* + Sq'Sq't + Sq%S5q'0)x0s = SqPx9s = 214, and so on.

We have to calculate the subrings of H,(2Eg) and H.(QE7) which consist of those
elements annihilated by Sq* for all i > 0.

THEOREM 3.1.
{:L' € H.(QEg)|Sq'z = 0 for all i > O} =F [35275020,516] {1,x2,x2x4,x2x10 + xi},
where

3 2 2
T20 = TyTg + X7p + X2 (5543310 + 414 + 3389610),
- 5 3 2 2 2 2
T16 = TyT16 + TyT10T14 + TyT1y + Ty T8IT20 + TgT20
2 3
+ Taxy (33103316 + TyT14 + 3343322)-
THEOREM 3.2.
{x € H.(QF7)|Sq'z =0 for alli >0}
=A(Z4) ® F T 20z
= A(Z4 2| T10, X18; 74, L5626
- 2
+ F [9610, T18,T74, 9656] {1, T2, ToZy, T2T4Ts, T2(T4214 + T8T10),

T4, T2T56, TaTaT56, TaTaT8T56, T2(T4T14 + T8T10)T56 },

where
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- 2
T18 = 10718 + Ty,
. 4 2 2 3
T4 = T4 + X2 (mlomw + x{gT22 + a:14),
3 2 2 4 4 2 2 2 2
Tse = T1pT26 + T1oT14T22 + T10L14%18 + T1o%16 + T1g + TeTipT14 + TaZipTT6
3
+ 4T3 %14,
6 2 2 4 2 3 3 2 4
T74 = TipT14 + T10T14%78 T T10%16 + T10%71s + T10T22 + T14T18,

- 4 4 4 4 4 5 2
Tog = T2 (33101‘34 + T4x8T (T2 + T14T18 + T10T1g + TaX1gT14%16 + $81‘10$16) + T T56-

Here we remark that Sq?z56 # 0 but Sq*(xax56) = 0 for all i > 0.
Theorems 3.1 and 3.2 will be proved in sections 4 and 5, respectively. In this section
by assuming Theorems 3.1 and 3.2 we prove Theorem 1.6.

PRrROOF OF THEOREM 1.6 FOR FEg. According to the remark after Theorem 1.6 we
will show that the graph G(2Eg) is connected. To prove this it is sufficient to prove that
for any non-zero element = of H.(QFEg) with || > 2 there is a path connecting z and a
lower dimensional vertex.

If Sq¢'z # 0 for some i > 0, then the claim is clearly true.

We assume, therefore, that Sq’z = 0 for all i > 0. By Theorem 3.1 z is in & =
Fy (2%, 190, Z16){1, T2, T224, T2w10+23 }. As the list below shows, for a given multiplicative
generator u of &7 there is an element v such that Sqg?v = u. For given x, therefore, there
is also an element y such that S¢?y = x.

v u=Sq¢v | |u

Ty i) 2

rg ToZy 6

I10 SL’Z 8

X410 ToZ10 + (L’i 12

To2 + T428T10 + T2X4T16 20 20
Z38 T16 36

where
_ .3 2 2 2 5
T3g = TyT10T16 + T10T14 + (564338 + J?g)(a?Qz + 242810 + T2TaT16) + T2TLT16-

If |x] = 8 or |x| > 12, there is an element z such that |z| = |y|, S¢?z = 0 and
Sq'z # 0 for some i > 2 as the following list shows.

|| || z Sq'z
8n+8 | 8n+10 | zoxgzi™ | S¢t (xgxgx?l") = xgxi”"’l
8n+18 | 8n+20 | 23,23 Sq*(z3y23") = At
8n+12 | 8n+ 14 | w423 Sq* (3314x?1") = z1023"
8n+14 | 8n+16 | zizi" Sq® (23z3") = 23" +?
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Then Sq?y = Sq¢®(y + z) = x and Sq'y # Sq'(y + z) for some i > 2, that is, there is
a path connecting z and a lower dimensional vertex Sq'y or Sq'(y + z).

Sq2 Sq*
If |z| < 8 or |z| = 10, then * = wazy or * = xoz3. If & = woxy, Toxy — T8
Sq2

x4 is a path connecting z and a lower dimensional vertex. If z = z92%, 2022 — 271

Sq° Sq*Sq® . . . .

s ToTig > T4 is a path connecting x and a lower dimensional vertex. [l
PROOF OF THEOREM 1.6 FOR E;. Similarly to the argument for the case Fg, we

only have to prove that there is a path connecting x and a lower dimensional vertex for

any non-zero element x of H,(2F7) with degree greater than 2 and Sq¢'z = 0 for all

i > 0. We consider the following lists.

u = Sq*v [ul

? i) 2

Toxg Toly 6

Z14 x10 10
T2X16 L4y 14
ToT8T14 xo(Tax14 + T8710) | 20
14718 + .13?6 T18 28
To (l‘%ol‘gﬁ + 1‘14.%‘%6) + .2?4.%‘:130.1314 T4 44
Y60 T56 56

Y78 T4 74

Y20 T 76

Y116 R 112

where

2 2 3 2,2 2 .2
Y60 = T10T14%26 + T10T16T18 + LpT14T16 + T14T76 + T8T10T 16,
3 2 2 4 2 .2 3 .2
Y7s = T10T14%78 + T1pT14T35 + T14T16 + T14T16T18 + T14%7s)
2 3 2 .2 4 4 2
Yso = T2 (x22$34 + X4X8T59 + X4 T1gT18 + T14X1g + 338331096143716) + Z70Y60;

_ 2.2 .2 4 2 .2 2 2.2 2 6 .2
Y116 = T19T22T26 + T19T16T22 + T10T14T16L18 T T14T76-

|| 2| z Sq¢®z
n 8 n\ _ ,n+1
10n+14 | 10n +18 | z1827 Sq® (z152ty) = 27
10n +16 | 10n+ 20 | xoz182t, | S¢° (1’2.%18%?0) = xgx?Jl
10n + 18 | 10n + 22 22227 Sq® (;@gx{’o) = x1427,
10n + 20 10n + 24 IEQIQQI’?O qu (IEQZZZQQIE?O) = IL‘QI’14I’?O
10n +22 | 10n + 26 2267 Sq® (2261:?0) = z4x1427

where 226 = T4Z22 + T2X10L14-
The first list above shows that there is an element y such that Sq*y = z. The second
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list above shows that, if |z| > 14, there is a path connecting = and a lower dimensional
vertex just as in the proof for Ejg.

If |z| < 14, then © = 2024, T19 OF T2Z10.

If £ = 2924, then Sq?zs = = and Sq*y = 24 # 0. If x = x192’, where 2’ = 1 or x,
then Sq®(z162') = = and Sq®(w162") = 22’ # 0.

Thus we complete the proof of Theorem 1.6 for F7. g

4. Proof of Theorem 3.1.

In this section we prove Theorem 3.1. We put
A={ye H.(QFq)[z;'] | S¢’y =0 for all i > 0},
B = Fy[23, 220, %16 [27 [ { 1, 22, zowa, 23 + 22710} = A(22) ® Fs[T4, 20, T16) [z '],

where 74 = zi + z9x19. To prove the theorem it is sufficient to prove that A = B. Since
we have the following isomorphisms as modules

H,(QEg) ;"]

1

A(x2) ® Fo[za, 5,710, T14, T16, T22) [27 ]

Il

(22) ® Fy[rq, 3, T10, T14, T16, T22) [7] '

Az
A(x2) ® Fa[Z4, 220, T16] [27 ] ® Alz10) ®@ Folzs, 714, 222],

I

any element y of H,(QEg)[x; "] is written uniquely as

a b _c _d
y= E 25921427028 Pab,c.d;
a,b,d>0, ¢=0,1

where Py pc.a € A(z2) @ Fa[T4, 220, 3316][3321]. We define the second degree |yl of y by

lyle = max{|zg2xl{4x({ox§l| | Pab,cd # 0}'

By A; (resp. B;) we denote the submodule of A (resp. B) which consists of elements with
the second degree 7.

It is easy to see that B C A and Ay = By by definition. By induction on the second
degree we prove that A = B.

Let M be a positive integer and assume that A = B up to degree 2M — 2. We prove
that the equality holds in degree 2M.

For a positive integer a we put

22 b .c ..d
P;m = § 21427028 Pab,c.d;
b,d>0, ¢=0,1

then we have

LEMMA 4.1. P22 =0 unless a is a power of 2. Moreover, P?? is an element of B.
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PrOOF. We prove this lemma by downward induction on a. For sufficiently large
a the assertion is trivially true. Assume that, for a > 2"+ P22 = () unless a is a power
of 2 and P22 are elements of B. Put Q =Yy, _gns1 T35~ P22, then

y = Z x%;PQ% +22,Q + Z 155 P2 4 terms without 2gs.
i>n a<2n
Since for any £ > 0 we have
0="5¢y = 5q"(+3) P2 + Y 5¢"(23,)S¢" " Q
i>n k>0

+ (SQZQW%; + Z Sqt (x‘ZIQPfQ) + terms without o9
a<2n

and qu(xgg) € Fy[x19,x14] for k > 0, the coefficient of 235, S¢‘Q, must be 0. Thus,
by induction, we have Q € Asp;_99.9n = Baps_29.9n. This implies that P32 = 0 for
2" <a < 2n+1 and that PQT% S A2M_22,2n = BQM_QQ,Qn. [l

By Lemma 4.1 y is written as

2% 1522 b ooc d
Y= E o Pod + E 21425025 F0.b,c,d
a>0 b,d>0, c=0,1

where P2 and Po.b,c.d are elements of B.
As Sq'waa, Sqiz1s, S¢'w10 arve in Fy[wy, 210,714 for i > 0, if for a positive integer d
we put

8 b _.c
Py = E 214270 F0,b,¢,d;
b>0, ¢=0,1

then similarly we have
LEMMA 4.2. PC? = 0 unless d is a power of 2. Moreover, Pd8 is an element of B.
Thus we proved that y is written as

2% 22 b 2¢ 8
y= E x5y P + E 274250 Ppc + E 3 Poa, (4.1)
a>0 b>0, ¢=0,1 d>0

where PQQQQ, Pb7c = PO,b7c,0; P2Sd € B.
By applying S¢? to the equality (4.1) we have

0=S¢*y = xfOsz + Z zl{4xin,1 + zoxy PP
b>0

3 2 22 b .2 3
= (334338 + X209 + T2 (:1343:10 + 24714 + xgazlo))Pl + g 21425 Py 1 + woxs Py,
b>0
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which implies that
P122 =0, Pb,l =0 forb> 0, miPO,l = $2x4P18'

Then y is written as

Yy = Z(Eggp%? + Z.’E?4Pb’0 + {E10P011 + Zl’ngd (42)
a>1 b>0 d>0

By applying S¢* to the equality (4.2) we have

0=Sq'y =z, P35 + Z 235010 Pabr1,0 + T4 Py
= (¢3zs +220) PP + Y a¥w10Pops10 + 24 P,
which implies that
P32 =0, Pyy10=0, P=0.

By the last equality we have Py 1 = :vnglPls = 0. Thus y is written as

§ : 2% p22 § : 2b § : d p8
Yy = :L’22P o + 1’14P2b70 + SUSPQd.
a>2 b>0 d>1

Now it is easy to show, by induction on n, that y is written as

29 p22 2"b d p8
y= E Ty Poa + E 21q Panpo + E 25 Pya.
a>n+1 b>0 d>n

Therefore y = Py o € B as desired. O

5. Proof of Theorem 3.2.

As in the proof of Theorem 3.1 we proceed the calculation in the ring H.,(QE7)[z7].
Since

T4 = T4x]y + 2oy (210076 + Loz + 3,),
Tis = T19 T1s + T7g Ty,
Tog = xf05f26 + SCQI’IOPS (x%0x34 + w4x8x%0x22 + m‘ﬂxlg + xlox%G
+ 1'41'41101'141716 + Isfl??OIEw) + Il_og (1'%055145522 + 9310¢%4I18
+ o6 + 71y + 22700, + TaxToats + rawswipaia),

2 _ -3 2 4 4 6 3 —4-3
Ty = T1gT74 + T1g T1g + T1g T14 T T19T14 T+ T19 T73;
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we have the following isomorphisms of modules:

H,(QE7) (275 ] = A2, 24, 28) @ Fo[210, T14, T16, T18, T22, T2g, T34) [T70 |
= A(23,%4) ® Folw10, T1s, @74, Tog] (270 ]

® A(zs, T22) ® Fa[214, T16, T34].

Therefore, any element y of H, (QE7)[501_01] is written uniquely as

a b _c .d e
Yy = E T34 T29%16%14%8Pab,c,d,e;
a,c,d>0, b,e=0,1

where P, c.d.e € A(z2,%4) @ Fa[210, T18, T74, jgg][xfol]. We define the second degree |y|2
of y by

lylo = max{‘m&xéﬂf@ﬁxﬂ | Pap,cde # 0}-
We put

A= {y € H*(QE7)[.’E1701} | Sq'y = 0 for all i > 0},
B = A(Z4) ® F3[210, T13, I747I§6] [Il_ol}f%
+ By [w10, B1s, w74, 23] [270 | {1, @2, wow4, 2owaws, wa (24214 + 25710,

Ty, ToT56, TaTaT56, TaTaT8T56, T2T56(TaT14 + xsho)}
: 2 _ . —4-2 = =2 I
Since T56 = T1g L6y L2L56 = L2X26L 1 ; L2L4 = T2L4T g ,
- - - -1
B = N(x2,Z4) @ Fy[w10, T1s, 274, Tag) [279 | {1, B2 (w4214 + 28210) }-

Then it is easy to see that B C A and Ay = By. By induction on the second degree
we will prove that A = B. Let M be a positive integer and assume that A = B up to
degree 2M — 2. We prove that the equality holds in degree 2M.

Let y be an element of Asy;. We recall that

2. _ .2 16,  _ o1y 2 2. _ .2
Sq w3y = w15, Sq w34 = w18 = T (5618 + 3314)7 Sq-xea = T,
8. 2. 4. _
Sq°wae = x14, Sq°T16 = T14 + T2T4 s, Sq w16 = T478,
8.  _ 4. _ 2. 4. _
Sq¢°r16 = 283, Sq¢"T14 =710, SqT83=1T214, 5S¢ T8 =14,

and Sq2ix2j = 0 in all cases not explicitly recorded.
Similarly to the case Eg we have the following lemma.

LEMMA 5.1.  y is written as
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2% 34 22 16 2% d e
y= E x5y Pya + 202 P™" + 216 P + E 1621428 Pac d e
a>0

where Py, P*2 and P are in B and
Poge € Nz2,24) ® P10, Z1s, T74, Ta6) [270 |-
By applying S¢? to y we have
0=S¢*y = x%6P134 + z%OPQQ + (14 + x2x4x8)P116 + Z x%éxﬁmx;;ch’d,l

As P} P22 PI6 Py, 41 € B, by comparing the coefficient of 2§29, in the equality
above we have

P134 = $2$4P2}0717 P116 = $2x4PO,1,17 x?OPQQ = 1‘2.%'4]30’0,1. (51)
Since
0= 245¢*Sq*y
=24 ( D ateal P eaws Proroan + Y at6aiivi0maraPac garin + Y 2160402 Pac 1)

2c, .d
= E 162140224 Poc a1

and ch7d76 S A(Z‘Q,i‘4) ® Fy [1‘10,.%1& $74,§?26} [1‘1_01], we have 1‘2.134P20,d,1 = (0. Then the
equality 0 = S¢*>Sqy = > 22¢2¢,29 Pac 4,1 implies that

2 Pc.a1 = 0. (5.2)
By the equalities (5.1) and (5.2) we have
Pt =0, P?=0, P°=0.

Then y is written as

2 p34 2c, .d e
QZE x50 Psa JFE 1621425 P, d e

a>1

If we put

E 33 3314338P462d+1 e

then y is written as
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2 534 14 2. 2d e
Y= E w34 Poa + w14 P + E 21627225 Pac,2d e
a>1

and the fact that P!® = 0 implies that P}* € B by the same argument as in the proof of
Lemma 4.1.
By applying S¢* to the equality above we have

_ o4 _ 4 p34 14 de 2d42 e 2¢..2d
0=2S8q¢"y =zsP" +z10P; +§ T16T14 $8P4c+2,2d,e+§ 1627404 Pac 24,1,

which implies that x10PM = 24P 0,1
Thus y is written as

2% p34 2¢ 2d
y= Zx34P o+ § : 1627428 Pac 24, + P,
azl (¢,d)#(0,0)

where Py = Py o0+ xfol (2414 + 8210) Po,0,1- Since 22Py 01 = 0 by (5.2), Py € B. Now
it is easy to show that, by induction on n, y is written as

2% p34 2"¢, 2"d
y= Z T34 Poa + E : 276014 28 Ponc g ona,e + Fo.
a>n (c:d)(0,0)

Therefore y = Py € B as desired. (]
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