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Derived equivalence classification of symmetric algebras

of domestic type

By Thorsten Holm and Andrzej Skowroński
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Abstract. We give a complete derived equivalence classification of all sym-
metric algebras of domestic representation type over an algebraically closed field.
This completes previous work by R. Bocian and the authors, where in this paper we
solve the crucial problem of distinguishing standard and nonstandard algebras up to
derived equivalence. Our main tool are generalized Reynolds ideals, introduced by
B. Külshammer for symmetric algebras in positive characteristic, and recently shown
by A. Zimmermann to be invariants under derived equivalences.

1. Introduction.

Throughout the paper K will denote a fixed algebraically closed field. By an algebra
we mean a finite dimensional K-algebra. For an algebra A, we denote by modA the cat-
egory of finite dimensional right A-modules and by D the standard duality HomK(−,K)
on modA. An algebra A is called selfinjective if A ∼= D(A) in modA, that is the pro-
jective A-modules are injective. Further, an algebra A is called symmetric if A and
D(A) are isomorphic as A-A-bimodules. Recall also that an algebra A is symmetric
if and only if there exists an associative, symmetric, nondegenerate K-bilinear form
(−,−) : A × A → K. The classical examples of selfinjective algebras (respectively,
symmetric algebras) are provided by the finite dimensional Hopf algebras (respectively,
the group algebras of finite groups). Moreover, for any algebra B, the trivial extension
T(B) = B nD(B) of B by the B-B-bimodule D(B) is a symmetric algebra, and B is a
factor algebra of T(B). If A is a selfinjective algebra, then the left and the right socle of
A concide, and we denote them by soc(A). Two selfinjective algebras A and Λ are said
to be socle equivalent if the factor algebras A/ soc(A) and Λ/ soc(Λ) are isomorphic. For
an algebra A, we denote by Db(mod A) the derived category of bounded complexes from
mod A. Finally, two algebras A and Λ are said to be derived equivalent if the derived
categories Db(mod A) and Db(mod Λ) are equivalent as triangulated categories.

Since Happel’s work [13] interpreting tilting theory in terms of equivalences of de-
rived categories, the machinery of derived categories has been of interest to representation
theorists. In [21] J. Rickard proved his celebrated criterion: two algebras A and Λ are
derived equivalent if and only if Λ is the endomorphism algebra of a tilting complex over
A. Since a lot of interesting properties are preserved by derived equivalences, it is for
many purposes important to classify classes of algebras up to derived equivalence, instead
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of Morita equivalence. For instance, for selfinjective algebras the representation type is
an invariant of the derived category. Further, derived equivalent selfinjective algebras are
stably equivalent [22], and hence have isomorphic stable Auslander-Reiten quivers. It
has been also proved in [23] that the class of symmetric algebras is closed under derived
equivalences. Finally, we note that derived equivalent algebras have the same number of
pairwise nonisomorphic simple modules and isomorphic centers.

One central problem of modern representation theory is the determination of the
derived equivalence classes of selfinjective algebras of tame representation type. Recall
that for a tame algebra the indecomposable modules occur, in each dimension d, in a
finite number of discrete and a finite number of one-parameter families. A distinguished
class of tame algebras is formed by the representation-finite algebras for which there are
only finitely many isomorphism classes of indecomposable modules. In [22] J. Rickard
classified the Brauer tree algebras (for instance, representation-finite blocks of group
algebras) up to derived equivalence in connection with Broué’s conjecture [12]. The de-
rived equivalence classification of all representation-finite selfinjective algebras has been
established by H. Asashiba [1]. We refer also to [16] for the derived equivalence clas-
sification of algebras of the dihedral, semidihedral and quaternion type (for instance,
representation-infinite tame blocks of group algebras), which are tame and symmetric.

In this paper, we are concerned with the problem of derived equivalence classifica-
tion of all tame selfinjective algebras of domestic representation type. Recall that for
algebras of domestic type there exists a common bound (independent of the fixed dimen-
sion) for the numbers of one-parameter families of indecomposable modules. The Morita
equivalence classification of these algebras splits into two cases: the standard algebras,
whose basic algebras admit simply connected Galois coverings, and the remaining non-
standard algebras. By general theory (see [11], [17], [26], [27]), the connected standard
representation-finite (respectively, representation-infinite domestic) selfinjective algebras
are Morita equivalent to the orbit algebras B̂/G of the repetitive algebras B̂ of tilted
algebras B of Dynkin (respectively, Euclidean) type with respect to actions of admissible
infinite cyclic groups G of automorphisms of B̂. The nonstandard selfinjective algebras
of domestic type are very exceptional and are Morita equivalent to socle and geometric
deformations of the corresponding standard selfinjective algebras of domestic type (see
[10], [24], [27], [28], [30]).

The aim of this paper is to give a complete derived equivalence classification of
all connected representation-infinite symmetric algebras of domestic type. The Morita
equivalence classification of these algebras has been established recently in [8], [9],
[10], [28]. In Section 2 we define (by quivers and relations) the following families of
representation-infinite domestic symmetric algebras:

A(p, q), where 1 ≤ p ≤ q,
Λ(m), where m ≥ 2,
Γ(n), where n ≥ 1,
T (p, q), where 1 ≤ p ≤ q,
T (2, 2, r)∗, where r ≥ 2,
T (3, 3, 3), T (2, 4, 4), and T (2, 3, 6),
Ω(n), where n ≥ 1 and charK = 2.
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The following theorem is the main result of the paper.

Theorem 1.1. The algebras A(p, q), Λ(m), Γ(n), T (p, q), T (2, 2, r)∗, T (3, 3, 3),
T (2, 4, 4), T (2, 3, 6), and Ω(n) (charK = 2) form a complete set of representatives of
pairwise different derived equivalence classes of connected representation-infinite sym-
metric algebras of domestic type.

The derived equivalence classification of the standard (respectively, nonstandard)
representation-infinite symmetric algebras of domestic type has been established in our
joint papers with R. Bocian [6] (respectively, [7]). However, it remained open in these
papers whether a standard and a nonstandard algebra can be derived equivalent, or not.
(Recall that in general it is a notoriously difficult problem to distinguish algebras up
to derived equivalence. The main problem is usually to find suitable derived invariants
which are possible to compute.) In this paper we solve this problem, thereby completing
the derived equivalence classification of symmetric algebras of domestic representation
type. More precisely, we prove in Section 4 that the derived equivalence classes of the
connected standard and nonstandard representation-infinite symmetric algebras of do-
mestic type are disjoint. The crucial tool for proving this are the socalled generalized
Reynolds ideals defined by B. Külshammer in [19] for symmetric algebras in positive
characteristic. These sequences of ideals of the center of the algebra have recently been
shown by A. Zimmermann to be invariant under derived equivalences [32]. This invariant
is suitable for our purposes since the nonstandard symmetric algebras of domestic type
occur only in characteristic 2. In the final Section 5 we present (for completeness) the
derived equivalence classification of all representation-finite symmetric algebras from [1],
and give an alternative proof of the important step in Asashiba’s classification that the
derived equivalence classes of the connected standard and nonstandard representation-
finite symmetric algebras are disjoint. Our argument, using the above Reynolds ideals,
considerably simplifies the original proof in [1].

For basic background on the representation theory applied here we refer to the books
[3], [5], [14], [18] and to the survey articles [27], [31].

2. Derived normal forms of domestic symmetric algebras.

In order to define derived normal forms of the connected representation-infinite
domestic symmetric algebras, consider the following families of quivers

•
α4yysss
ss

•
α3

oo •
β3

// •
β4

&&MMM
MM

.

.

.
•α2

ffMMMMM • β2

88qqqqq •

.

.

.
∆(p, q) :
p, q ≥ 1 •

α1

YY22222 β1

EĒ
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The algebras A(p, q). For 1 ≤ p ≤ q, denote by A(p, q) the algebra given by the
quiver ∆(p, q) and the relations:

α1α2 . . . αpβ1β2 . . . βq = β1β2 . . . βqα1α2 . . . αp,

αpα1 = 0, βqβ1 = 0,

αiαi+1 . . . αpβ1 . . . βqα1 . . . αi−1αi = 0, 2 ≤ i ≤ p− 1,

βjβj+1 . . . βqα1 . . . αpβ1 . . . βj−1βj = 0, 2 ≤ j ≤ q − 1.
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We note that A(p, q) is a standard one-parametric symmetric algebra of Euclidean type
Ã2(p+q)−3 (see [6, (5.3)(1)]).

The algebras Λ(m). For m ≥ 2, denote by Λ(m) the algebra given by the quiver
∆(1,m) and the relations:

α2
1 = (β1β2 . . . βm)2, α1β1 = 0, βmα1 = 0,

βjβj+1 . . . βmβ1 . . . βmβ1 . . . βj−1βj = 0, 2 ≤ j ≤ m− 1.

We note that Λ(m) is a standard one-parametric symmetric algebra of Euclidean type
Ã2m−1 (see [6, (5.3)(2)]).

The algebras Γ(n). For n ≥ 1, denote by Γ(n) the algebra given by the quiver
∆(2, 2, n) and the relations:

α1α2 = (γ1γ2 . . . γn)2 = β1β2,

α2γ1 = 0, β2γ1 = 0, γnα1 = 0,

γnβ1 = 0, α2β1 = 0, β2α1 = 0,

γjγj+1 . . . γnγ1 . . . γnγ1 . . . γj−1γj = 0, 2 ≤ j ≤ n− 1.

We note that Γ(n) is a standard one-parametric symmetric algebra of Euclidean type
D̃2n+3 (see [6, (5.3)(3)]).

The algebras T (p, q, r). For 2 ≤ p ≤ q ≤ r, denote by T (p, q, r) the algebra
given by the quiver ∆(p, q, r) and the relations:

α1α2 . . . αp = β1β2 . . . βq = γ1γ2 . . . γr,

βqα1 = 0, γrα1 = 0, αpβ1 = 0,

γrβ1 = 0, αpγ1 = 0, βqγ1 = 0,

αiαi+1 . . . αpα1 . . . αi−1αi = 0, 2 ≤ i ≤ p− 1,

βjβj+1 . . . βqβ1 . . . βj−1βj = 0, 2 ≤ j ≤ q − 1,

γkγk+1 . . . γrγ1 . . . γk−1γk = 0, 2 ≤ k ≤ r − 1.

Observe that T (p, q, r) is isomorphic to the trivial extension algebra T(H(p, q, r)) of the
path algebra H(p, q, r) of the quiver ∆∗(p, q, r) obtained from ∆(p, q, r) by deleting the
arrows α1, β1, γ1. Further, 1/p + 1/q + 1/r > 1 if and only if (p, q, r) = (2, 2, r), (2, 3, 3),
(2, 3, 4), (2, 3, 5), or equivalently ∆∗(p, q, r) is a Dynkin quiver of type Dr+2, E6, E7,
or E8, respectively. In this case, T (p, q, r) is a standard representation-finite symmetric
algebra (see [17]). Similarly, 1/p + 1/q + 1/r = 1 if and only if (p, q, r) = (3, 3, 3),
(2, 4, 4), (2, 3, 6), or equivalently ∆∗(p, q, r) is an Euclidean quiver of type Ẽ6, Ẽ7, or Ẽ8,
respectively. In this case, T (p, q, r) is a standard 2-parametric symmetric algebra (see
[2]).
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The algebras T (p, q). For 1 ≤ p ≤ q, denote by T (p, q) the algebra given by the
quiver Σ(p, q) and the relations:

α1α2 . . . αpγ = β1β2 . . . βqσ,

γα1α2 . . . αp = σβ1β2 . . . βq,

αpσ = 0, σα1 = 0, βqγ = 0, γβ1 = 0,

αiαi+1 . . . αpγα1 . . . αi−1αi = 0, 2 ≤ i ≤ p− 1,

βjβj+1 . . . βqσβ1 . . . βj−1βj = 0, 2 ≤ j ≤ q − 1.

Then T (p, q) is isomorphic to the trivial extension algebra T(H(p, q)) of the path algebra
H(p, q) of the quiver Σ∗(p, q) of Euclidean type Ãp+q−1 obtained from Σ(p, q) by deleting
the arrows γ and σ. In particular, T (p, q) is a standard 2-parametric symmetric algebra
(see [4]).

The algebras T (2, 2, r)∗. For r ≥ 2, denote by T (2, 2, r)∗ the algebra given by
the quiver Θ(r) and the relations:

α1α2 = β1β2 = γ1γ2 . . . γr, γ1γ2 = σ1σ2,

γrα1 = 0, β2α1 = 0, γrβ1 = 0, α2β1 = 0,

α2γ1 = 0, α2σ1 = 0, β2γ1 = 0, β2σ1 = 0,

α2α1α2 = 0, β2β1β2 = 0,

γ2γ3 . . . γrσ1 = 0, σ2γ3 . . . γrγ1 = 0,

γkγk+1 . . . γrγ1γ2 . . . γk−1γk = 0, 3 ≤ k ≤ r − 1.

Then T (2, 2, r)∗ is isomorphic to the trivial extension algebra T(H(2, 2, r)∗) of the path
algebra H(2, 2, r)∗ of the quiver Θ∗(r) of Euclidean type D̃r+2 obtained from Θ(r) by
deleting the arrows α1, β1, γ1 and σ1. In particular, T (2, 2, r)∗ is a standard 2-parametric
symmetric algebra (see [2]).

The algebras Ω(n). For n ≥ 1, denote by Ω(n) the algebra given by the quiver
∆(1, n) and the relations:

α1β1β2 . . . βn + β1β2 . . . βnα1 = 0,

α2
1 = α1β1β2 . . . βn, βnβ1 = 0,

βjβj+1 . . . βnα1β1β2 . . . βj−1βj = 0, 2 ≤ j ≤ n− 1.

Then Ω(n) is a nonstandard one-parametric selfinjective algebra. Furthermore, Ω(n) is
a symmetric algebra if and only if charK = 2. Moreover, in this symmetric case, Ω(n)
is socle equivalent to the algebra Ω(n)′ = A(1, n), called the standard form of Ω(n) (see
[10]).

The following derived equivalence classifications of standard symmetric algebras of
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domestic type has been established in [6, Theorems 1 and 2].

Theorem 2.1. The algebras A(p, q), Λ(m), Γ(n), T (p, q), T (2, 2, r)∗, T (3, 3, 3),
T (2, 4, 4), T (2, 3, 6) form a complete set of representatives of pairwise different derived
equivalence classes of connected, standard, representation-infinite symmetric algebras of
domestic type.

It has been proved in [28] (see also [10]) that the nonstandard representation-infinite
symmetric algebras of domestic type occur only in characteristic 2. Furthermore, the
following theorem, proved in [7, Theorem 1], gives the derived equivalence classification
of these algebras.

Theorem 2.2. The algebras Ω(n), for n ≥ 1 and charK = 2, form a complete set
of representatives of pairwise different derived equivalence classes of connected, nonstan-
dard, representation-infinite symmetric algebras of domestic type.

3. Generalized Reynolds ideals.

In this section we briefly recall the definition of the sequence of generalized Reynolds
ideals. For more details on this invariant we refer to [19], [20], [15], [32].

Let K be an algebraically closed field of characteristic p > 0. Let A be a finite
dimensional symmetric K-algebra with associative, symmetric, nondegenerate K-bilinear
form (−,−) : A × A → K. For a K-subspace M of A, denote by M⊥ the orthogonal
complement of M inside A with respect to the form (−,−). Moreover, let K(A) be the
K-subspace of A generated by all commutators [a, b] := ab− ba, for any a, b ∈ A. Then
for any n ≥ 0 set

Tn(A) =
{
x ∈ A | xpn ∈ K(A)

}
.

Then, by [19], the orthogonal complements Tn(A)⊥, n ≥ 0, are ideals of the center Z(A)
of A, called generalized Reynolds ideals. They form a descending sequence

Z(A) = T0(A)⊥ ⊇ T1(A)⊥ ⊇ T2(A)⊥ ⊇ T3(A)⊥ ⊇ . . .

In fact, B. Külshammer proved in [20] that the equation (ξn(z), x)pn

= (z, xpn

) for any
x, z ∈ Z(A) defines a mapping ξn : Z(A) → Z(A) such that ξn(A) = Tn(A)⊥.

Then we have the following theorem proved recently by A. Zimmermann [32].

Proposition 3.1. Let A and B be derived equivalent symmetric algebras over
an algebraically closed field of positive characteristic p. Then there is an isomorphism
ϕ : Z(A) → Z(B) of the centers of A and B such that ϕ(Tn(A)⊥) = Tn(B)⊥ for all
positive integers n.

Proof. See [32, Theorem 1]. ¤

Hence the sequence of generalized Reynolds ideals gives a new derived invariant, for
symmetric algebras over algebraically closed fields of positive characteristic.
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In the next section we shall use this invariant for proving our main result. The
algebras occurring in our context are all given by a quiver with relations (bound quiver)
and a basis of the algebra is provided by the set of all pairwise distinct (modulo the ideal
generated by the imposed relations) nonzero paths of the quiver.

The following simple observation will turn out to be useful.

Proposition 3.2. Let A = KQ/I be a symmetric bound quiver algebra, and as-
sume that a K-basis B of A is given by the pairwise distinct nonzero paths of the quiver
Q (modulo the ideal I). Then the following statements hold :

(1) An associative nondegenerate symmetric K-bilinear form (−,−) for A is given as
follows

(x, y) =

{
1 if xy ∈ soc(A) \ {0}
0 otherwise

for x, y ∈ B.
(2) For any n ≥ 0, the socle soc(A) is contained in the generalized Reynolds ideal

Tn(A)⊥.

Proof. (1) It is well-known (see [31, Section 2]) that an algebra A is symmetric if
and only if there is a K-linear form ψ : A → K such that ψ(ab) = ψ(ba) for all elements
a, b ∈ A and the kernel of ψ contains no nonzero left or right ideal of A. Moreover,
for such a (symmetrizing) form ψ : A → K, the K-bilinear form (−,−) : A × A → K

given by (a, b) = ψ(ab) for all a, b ∈ A is an associative, symmetric, nondegenerate form.
For the symmetric algebra A = KQ/I considered in the proposition, we may take the
symmetrizing form ϕ : A → K which assigns 1 to any nonzero residue class of a path in Q

in A = KQ/I from the socle soc(A), and 0 to the residue classes of the remaining paths
of Q. Then the bilinear form (−,−) associated to ϕ satisfies the required statement (1).

(2) By [15] we have for any symmetric algebra A that

∞⋂
n=0

Tn(A)⊥ = soc(A) ∩ Z(A).

But for the algebras described in the proposition we always have soc(A) ⊆ Z(A). ¤

4. Proof of the main result.

The aim of this section is to give the proof of Theorem 1.1, applying Theorems 2.1
and 2.2. We need some general facts.

For a selfinjective algebra A, we denote by Γs
A the stable Auslander-Reiten quiver

of A, obtained from the Auslander-Reiten quiver ΓA of A by removing the projective-
injective vertices and the arrows attached to them. Recall that two selfinjective algebras
A and B are called stably equivalent if their stable module categories modA and modB

are equivalent.
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Proposition 4.1. Let A and B be stably equivalent connected selfinjective algebras
of Loewy length at least 3. Then the stable Auslander-Reiten quivers Γs

A and Γs
B are

isomorphic.

Proof. See [5, Corollary X.1.9]. ¤

Proposition 4.2. Let A and Λ be derived equivalent selfinjective algebras. Then
A and Λ are stably equivalent.

Proof. See [22, Corollary 2.2]. ¤

We know from Theorem 2.1 (respectively, Theorem 2.2) that the algebras A(p, q),
Λ(m), Γ(n), T (p, q), T (2, 2, r)∗, T (3, 3, 3), T (2, 4, 4), T (2, 3, 6) (respectively, Ω(n), for
charK = 2) form a complete set of representatives of pairwise different derived equiv-
alence classes of connected standard (respectively, nonstandard) representation-infinite
symmetric algebras of domestic type. Moreover, these algebras are basic, connected and
of Loewy length at least 3. It also follows from Propositions 4.1 and 4.2 that the stable
Auslander-Reiten quivers of two derived equivalent connected selfinjective algebras of
Loewy length at least 3 are isomorphic. In order to distinguish the derived equivalence
classes of the standard and nonstandard representation-infinite symmetric algebras of
domestic type, we need the shapes of the stable Auslander-Reiten quivers of algebras
occuring in Theorems 2.1 and 2.2.

Proposition 4.3. The following statements hold :

(1) Γs
A(p,q) consists of an Euclidean component of type ZÃ2(p+q)−3 and a P1(K)-

family of stable tubes of tubular type (2p− 1, 2q − 1).
(2) Γs

Λ(n) consists of an Euclidean component of type ZÃ2n−1 and a P1(K)-family of
stable tubes of tubular type (n, n).

(3) Γs
Γ(n) consists of an Euclidean component of type ZD̃2n+3 and a P1(K)-family of

stable tubes of tubular type (2, 2, 2n + 1).

Proof. See [6, Proposition 5.3]. ¤

Proposition 4.4. The following statements hold :

(1) Γs
T (p,q) consists of two Euclidean components of type ZÃp+q−1 and two P1(K)-

families of stable tubes of tubular type (p, q).
(2) Γs

T (2,2,r)∗ consists of two Euclidean components of type ZD̃r+1 and two P1(K)-
families of stable tubes of tubular type (2, 2, r + 2).

(3) Γs
T (3,3,3) consists of two Euclidean components of type ZẼ6 and two P1(K)-

families of stable tubes of tubular type (2, 3, 3).
(4) Γs

T (2,4,4) consists of two Euclidean components of type ZẼ7 and two P1(K)-
families of stable tubes of tubular type (2, 3, 4).

(5) Γs
T (2,3,6) consists of two Euclidean components of type ZẼ8 and two P1(K)-

families of stable tubes of tubular type (2, 3, 5).

Proof. We know that T (p, q), T (2, 2, r)∗, T (3, 3, 3), T (2, 4, 4), T (2, 3, 6) are
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the trivial extension algebras of the hereditary algebras H(p, q), H(2, 2, r)∗, H(3, 3, 3),
H(2, 4, 4), H(2, 3, 6) of Euclidean types Ãp+q−1, D̃r+1, Ẽ6, Ẽ7, Ẽ8, respectively. Then
the required statements follow from the structure of the Auslander-Reiten quivers of
the hereditary algebras of Euclidean types (see [25, (3.6)]) and the description of the
Auslander-Reiten quivers of the trivial extensions of the hereditary algebras given in [29,
Theorem 3.4], [31, Theorem 2.5.2] (see also [4], [2]). ¤

Proposition 4.5. The stable Auslander-Reiten quiver Γs
Ω(n) of Ω(n) consists of

an Euclidean component of type ZÃ2n−1 and a P1(K)-family of stable tubes of tubular
type (2n− 1).

Proof. See [7, Proposition 2.2]. ¤

As a direct consequence of the above three propositions we obtain the following fact.

Proposition 4.6. Let A be an algebra of one of the forms A(p, q), Λ(n), Γ(n),
T (p, q), T (2, 2, r)∗, T (3, 3, 3), T (2, 4, 4), T (2, 3, 6), and let B be an algebra of the form
Ω(n). Assume that the stable Auslander-Reiten quivers of A and B are isomorphic. Then
A = A(1, n) and B = Ω(n) for some n ≥ 1.

Therefore the following proposition completes the proof of Theorem 1.1.

Proposition 4.7. Let K be an algebraically closed field of characteristic 2. Then,
for any n ≥ 1, the symmetric algebras Ω(n) and Ω(n)′ = A(1, n) are not derived equiva-
lent.

Proof. Let us denote by Ω either of the algebras Ω(n) or Ω(n)′.
We shall compute the series of generalized Reynolds ideals for the symmetric algebras

Ω,

Z(Ω) ⊇ T1(Ω)⊥ ⊇ T2(Ω)⊥ ⊇ . . .

as described in Section 3.
We shall show that the ideals in these series have different dimensions for the algebras

Ω(n) and Ω(n)′ = A(1, n). Since the series of Reynolds ideals is a derived invariant (see
Proposition 3.1), we can then distinguish these algebras up to derived equivalence.

The centers of these algebras have dimension n + 2 as vector space over K. More
precisely, it is straightforward to check that a K-basis is given as follows

Z(Ω) =
〈
1, β1 . . . βn, s1 := αβ1 . . . βn, sj := βj . . . βnαβ1 . . . βj−1 (2 ≤ j ≤ n)

〉
K

where we abbreviate α = α1. Note that the latter n elements s1, . . . , sn form a basis of
the socle of Ω.

Since we are dealing with characteristic 2, we have

T1(Ω) :=
{
x ∈ Ω | x2 ∈ K(Ω)

}
.
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Recall that K(Ω) is the subspace of the algebra Ω generated by all commutators [x, y] =
xy − yx, where x, y ∈ Ω. Now consider the first generalized Reynolds ideal

T1(Ω)⊥ :=
{
y ∈ Z(Ω) | (x, y) = 0 for all x ∈ T1(Ω)

}
,

where (−,−) is the nondegenerate symmetric K-bilinear form for the symmetric algebra
Ω, as defined in Proposition 3.2. Note that for such a basic symmetric algebra A, the
socle is contained in any Reynolds ideal Tm(A)⊥ (see Proposition 3.2(2)).

We consider the following sequence of ideals

soc(Ω) ⊆ T1(Ω)⊥ ⊂ Z(Ω).

Here, the second inclusion is strict, since 1 is not contained in any Reynolds ideal of Ω.
In fact, soc(Ω) ⊆ T1(Ω), and (1, s) = 1 for every s ∈ soc(Ω).

On the other hand, the socle of Ω has only codimension 2 in the center Z(Ω), leaving
us with β1 . . . βn as the crucial basis element to check.

But the element β1 . . . βn is easily seen to be orthogonal to all basis elements in the
ideal generated by the arrows of the quiver, except to α. In fact, (α, β1 . . . βn) = 1 since
αβ1 . . . βn belongs to the socle of Ω.

Now we have to consider the algebras Ω(n) and Ω(n)′ separately. Note that the
distinction in the relations is that α2 = αβ1 . . . βn is nonzero in Ω(n), whereas α2 = 0 in
Ω(n)′.

For Ω(n), the crucial fact to observe is that α 6∈ T1(Ω(n)). In fact, α2 = αβ1 . . . βn

is nonzero, and it can be checked that it can not be written as a linear combination of
commutators. But this implies that β1 . . . βn ∈ T1(Ω(n))⊥. So we get the following series
of ideals and their codimensions:

soc(Ω(n)) ⊂︸ ︷︷ ︸
1

T1(Ω(n))⊥ =
〈
β1 . . . βn, soc(Ω(n))

〉
K

⊂︸ ︷︷ ︸
1

Z(Ω(n)).

On the other hand, for Ω(n)′, we have α ∈ T1(Ω(n)′), since α2 = 0. Since β1 . . . βn is
not orthogonal to α, we conclude that β1 . . . βn 6∈ T1(Ω(n)′)⊥. Hence the corresponding
series of ideals for Ω(n)′ takes the form

soc(Ω(n)′) =︸ ︷︷ ︸
0

T1(Ω(n)′)⊥ ⊂︸ ︷︷ ︸
2

Z(Ω(n)′).

Since the series of generalized Reynolds ideals, and in particular the codimensions occur-
ring, is invariant under derived equivalences, we can now conclude that the nonstandard
algebra Ω(n) and the standard algebra Ω(n)′ are not derived equivalent. ¤

5. Derived normal forms of representation-finite symmetric algebras.

In [1, Theorem 2.2] H. Asashiba proved that the derived equivalence classes of con-
nected representation-finite standard (respectively, nonstandard) selfinjective algebras
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are determined by the combinatorial data called the types, and the derived equivalence
classes of the standard and nonstandard representation-finite selfinjective algebras are
disjoint. Furthermore, by the results of C. Riedtmann [24, Proposition 5.7(b)] and
J. Waschbüsch [30], the nonstandard representation-finite selfinjective algebras are sym-
metric, are given by some Brauer quivers, and occur only in characteristic 2 (see also
[28, (3.6)–(3.8)]).

The aim of this section is to present the derived equivalence classification of all
connected representation-finite symmetric algebras by quivers and relations.

For m,n ≥ 1, denote by Nmn
n the algebra given by the quiver

•
α1

// •
α2 ""DD

DD
DD

•
αn

<<zzzzzz •
α3

²²

∆(n)

•
αn−1

OO

•
α4

¦¦¯̄
¯̄

•
αn−2

YY2222
•

zzz
bbDDD

. . .

and the relations:

(
αiαi+1 . . . αnα1 . . . αi−1

)m
αi = 0, 1 ≤ i ≤ n.

It is well-known that these algebras form a complete set of representatives of the Morita
equivalence classes of the symmetric Nakayama algebras. In [22, Theorem 4.2] J. Rickard
proved that they form a complete set of representatives of the derived equivalence classes
of the Brauer tree algebras (which occur in the representation theory of representation-
finite blocks of group algebras). Finally, we note also that the algebra Nn

n is the trivial
extension algebra T(H(n)) of the path algebra H(n) of the quiver ∆(n)∗ obtained from
∆(n) by deleting the arrow αn.

For m ≥ 2, denote by D(m)′ the algebra given by the quiver ∆(1,m) and the
relations:

α2
1 = β1β2 . . . βm, βmβ1 = 0,

βiβi+1 . . . βmα1β1 . . . βi−1βi = 0, 2 ≤ i ≤ m− 1.

Then D(m)′ is a standard representation-finite symmetric algebra of Dynkin type D3m

(see [24]).
In Section 2 we defined also the trivial extension algebras T (2, 2, r), r ≥ 2, T (2, 3, 3),

T (2, 3, 4), T (2, 3, 5) of the hereditary algebras H(2, 2, r), r ≥ 2, H(2, 3, 3), H(2, 3, 4),
H(2, 3, 5) of Dynkin types Dr+2, E6, E7, E8, respectively. In [17, Theorems 3.1 and
3.7] D. Hughes and J. Waschbüsch proved that the trivial extension T(B) of a connected
algebra B is representation-finite if and only if B is a tilted algebra of Dynkin type.
Moreover, in [22, Theorem 3.1] J. Rickard proved that if A and B are derived equivalent
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algebras then their trivial extensions T(A) and T(B) are also derived equivalent. There-
fore, the trivial extension algebras Nn

n = T (H(n)), n ≥ 1, T (2, 2, r), r ≥ 2, T (2, 3, 3),
T (2, 3, 4), T (2, 3, 5) form a complete set of representatives of pairwise different derived
equivalence classes of the connected representation-finite trivial extension algebras T(B).
We also note that by [11, Section 1] all connected representation-finite symmetric alge-
bras of Dynkin types E6, E7, E8 are actually the trivial extension algebras of tilted
algebras of Dynkin types E6, E7, E8.

In [24] C. Riedtmann proved that the Morita equivalence classes of the connected
standard representation-finite symmetric algebras of Dynkin type Dn, which are not
trivial extension algebras, are given by some (looped) Brauer trees (see also [28, Theo-
rem 3.11]). Then applying Rickard’s constructions from [22, Section 4] one easily proves
that the algebras D(m)′, m ≥ 2, give a complete set of representatives of the derived
equivalence classes of these symmetric algebras.

Applying the combinatorial descriptions of the stable Auslander-Reiten quivers of
representation-finite selfinjective algebras (see [1, Section 2], [11, Section 1]) one easily
shows that the stable Auslander-Reiten quivers of the standard symmetric algebras Nmn

n ,
m,n ≥ 1, D(m)′, m ≥ 2, T (2, 2, r), r ≥ 2, T (2, 3, 3), T (2, 3, 4), T (2, 3, 5) are pairwise
nonisomorphic. Therefore, summing up the above discussion and invoking Propositions
4.1 and 4.2, we obtain the following result.

Proposition 5.1. The algebras K, Nmn
n , m,n ≥ 1, D(m)′, m ≥ 2, T (2, 2, r),

r ≥ 2, T (2, 3, 3), T (2, 3, 4), T (2, 3, 5) form a complete set of representatives of pairwise
different derived equivalence classes of connected, standard, representation-finite sym-
metric algebras.

For m ≥ 2, denote by D(m) the algebra given by the quiver ∆(1,m) and the
relations:

α2
1 = β1β2 . . . βm, βmβ1 = βmα1β1,

βiβi+1 . . . βmα1β1 . . . βi−1βi = 0, 1 ≤ i ≤ m.

If charK 6= 2, then D(m) is a standard representation-finite symmetric algebra of Dynkin
type D3m and D(m) ∼= D(m)′. On the other hand, if charK = 2, then D(m) is non-
standard (see [24, (5.7)] or [30]). Further, D(m) and D(m)′ are socle equivalent, and
D(m)′ is called the standard form of D(m).

Applying Rickard’s method from [22, Section 4], H. Asashiba proved in [1, Section 7]
the following proposition.

Proposition 5.2. The algebras D(m), m ≥ 2, for charK = 2, form a complete
set of representatives of pairwise different derived equivalence classes of connected non-
standard representation-finite symmetric algebras.

Applying again the combinatorial descriptions of the stable Auslander-Reiten quivers
of representation-finite selfinjective algebras one easily deduces the following fact.

Proposition 5.3. Let A be an algebra of one of the forms K, Nmn
n , D(m)′,

T (2, 2, r), T (2, 3, 3), T (2, 3, 4), T (2, 3, 5), and B an algebra of the form D(m). Assume
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that the stable Auslander-Reiten quivers of A and B are isomorphic. Then A = D(m)′

and B = D(m) for some m ≥ 2.

In [1, Section 3] H. Asashiba proved that, if charK = 2, then the algebras D(m)
and D(m)′ are not stably (hence not derived) equivalent. We will give an alternative,
simplified, proof of the latter fact, applying Proposition 3.1.

Proposition 5.4. Let K be an algebraically closed field of characteristic 2. Then,
for any m ≥ 2, the symmetric algebras D(m) and D(m)′ are not derived equivalent.

Proof. For a fixed m ≥ 2, we denote by D either of the algebras D(m) or D(m)′.
Note that the socle soc(D) of the algebra D has as K-basis the following m elements

s1 := αβ1 . . . βm = α3 = β1 . . . βmα,

sj := βj . . . βmαβ1 . . . βj−1, for j = 2, . . . , m,

where we abbreviate α = α1.
Then it is straightfoward to verify that the center of the algebra D is as K-vector

space generated by the following basis

Z(D) = 〈1, β1 . . . βm, s1, s2, . . . , sm〉K .

We shall study the series of ideals of the center

soc(D) ⊆ T1(D)⊥ ⊆ Z(D).

Since the socle only has codimension 2 in the center, and since the unit 1 can not be
contained in the Reynolds ideal T1(D)⊥, the crucial question is whether β1 . . . βm is
contained in T1(D)⊥, or not.

Since we are dealing with characteristic 2, recall that

T1(D) :=
{
x ∈ D | x2 ∈ K(D)

}
,

where K(D) is the subspace of D generated by all commutators.
First we consider the standard algebra D(m)′. We have the relation βmβ1 = 0, so

α2 = β1 . . . βm = [β1, β2 . . . βm] ∈ K(D(m)′).

Thus, α ∈ T1(D(m)′). But by the definition of the nondegenerate symmetric bilinear
form on D(m)′, given in Proposition 3.2, we have (α, β1 . . . βm) = 1, because the product
αβ1 . . . βm = s1 is a nonzero socle element. Therefore, β1 . . . βm 6∈ T1(D(m)′)⊥. The
sequence of ideals of the center under consideration takes the form

soc(D(m)′) =︸ ︷︷ ︸
0

T1(D(m)′)⊥ ⊂︸ ︷︷ ︸
2

Z(D(m)′).
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Secondly, we study the analogous sequence of ideals for the nonstandard algebra
D(m).

Claim. α2 6∈ K(D(m)).

Proof of the Claim. This can be seen by working out an explicit basis for
the commutator space K(D(m)). Let B be the monomial basis of D(m) consist-
ing of all pairwise distinct nonzero paths in the quiver with relations. Set B̄ :=
B \ {e1, . . . , em, α, α2, s1, . . . , sm}, where ej is the trivial path at the vertex j. Then
a K-basis of K(D(m)) is given as follows

K(D(m)) =
〈
B̄, α2 − s2, . . . , α

2 − sm, sm − α3
〉

K
.

Now it is readily checked that α2 can indeed not be written as a linear combination of
these basis elements.

From the claim we can conclude that α 6∈ T1(D(m)). But the element β1 . . . βm is
orthogonal to all basis elements in the ideal generated by the arrows of the quiver, except
to α. In fact, the product of β1 . . . βm with any path of length ≥ 1 becomes 0, except for
α. Since α 6∈ T1(D(m)), we therefore get that

β1 . . . βm ∈ T1(D(m))⊥.

Hence the sequence of ideal under consideration takes the form

soc(D(m)) ⊂︸ ︷︷ ︸
1

T1(D(m))⊥ = 〈β1 . . . βm, soc(D(m))〉K ⊂︸ ︷︷ ︸
1

Z(D(m)).

Comparing the codimensions of the ideals in these sequences for D(m)′ and D(m),
we can finally conclude, by invoking Proposition 3.1, that the algebras D(m)′ and D(m)
are not derived equivalent. ¤

Summing up, we obtain the following derived equivalence classification of the
representation-finite symmetric algebras.

Theorem 5.5. The algebras K, Nmn
n , m,n ≥ 1, D(m), D(m)′, m ≥ 2, T (2, 2, r),

r ≥ 2, T (2, 3, 3), T (2, 3, 4), T (2, 3, 5) form a complete set of representatives of pairwise
different derived equivalence classes of connected representation-finite symmetric alge-
bras.
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61–92.

[13] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62

(1987), 339–389.

[14] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras,

London Math. Soc. Lecture Note Series, 119, Cambridge Univ. Press, 1988.
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