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Abstract. In this paper we first prove that, for every hypersurfaceD of degreed in a com-
plex projective space, there exists a holomorphic curvef from the complex plane into the projective
space whose deficiency forD is positive and less than one. Using this result, we construct mero-
morphic mappings from the complexm-space into the complex projective space with the same
properties. We also investigate the effect of resolution of singularities to defects of meromorphic
mappings.

Introduction.

The aim of this paper is to construct meromorphic mappingsf from CCCm into the complex
projective spacePPPn(CCC) with Nevanlinna’s deficient divisors. Throughout this paper, we assume
that n≥ 2. The defect relation for meromorphic mappings shows that the set of Nevanlinna’s
deficient divisors forf is very small. Furthermore, meromorphic mappings without defect are
dense in the space of all meromorphic mappingsf : CCCm→ PPPn(CCC) with respect to a certain kind
of distance (see [M ]). It therefore seems that the construction of meromorphic mappings with
preassigned deficiencies is very difficult. There have been several studies on the construction
of holomorphic curves with deficient hyperplanes. So far, we do not know the existence of
examples of meromorphic mappings with a deficient irreducible hypersurface of high degree
whose deficiency is less than one. In this paper, we prove the existence of meromorphic mappings
that have a preassigned positive deficiency for a given divisorD in PPPn(CCC). We now recall the
defect relation for dominant meromorphic mappingsf : CCCm → PPPn(CCC) due to Griffiths’ school
(cf. [S2]), that is, we have the defect relation

q

∑
j=1

δ f (D j)≤ n+1
d

,

whereD1, · · · ,Dq are nonsingular hypersurfaces of degreed in PPPn(CCC) intersecting normally.
There has been a conjecture of Griffiths ([Gr , p. 379]) stating the defect relation for meromorphic
mappingsf : CCCm→ PPPn(CCC) is also given by the above form under an appropriate nondegeneracy
condition onf . Moreover, there also has been a conjecture such that the estimate

δ f (D)≤ C
d

holds under a generic condition forD, whereC is a positive constant independent off andD
(cf. [Si, p. 289]). However, in the case whereD is a singular divisor, we can construct many
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examples of meromorphic mappingsf such that estimates for deficiencies of the above type do
not hold. This follows from the following main theorem concerning Griffiths’ conjecture that is
the main result in this paper:

MAIN THEOREM. Let D ∈ |L(H)⊗d| be an arbitrary divisor inPPPn(CCC), whereL(H) is the
hyperplane bundle overPPPn(CCC) andd is a positive integer. Then there exists a positive constant
λ (D) depending only onD with λ (D) ≤ d that has the following property: For each positive
numberα with α ≤ λ (D)/d, there exists a meromorphic mappingf : CCCm→ PPPn(CCC) with Zariski
dense image such thatδ f (D) = α. Furthermore, in the case ofm≥ n, there exists a dominant
meromorphic mappingf : CCCm→ PPPn(CCC) with δ f (D) = α.

This theorem yields that for every irreducible hypersurfaceS in PPPn(CCC) there exists a mero-
morphic mappingf such that the deficiencyδ f (S) for S is positive and less than one. We note
here that, in general, the constantλ (D) is dependent on the degreed. For instance, we have
λ (D) = d for some singular divisors. We give some concrete examples in§3. These examples
show that we cannot obtain a good estimate on deficiency whenD has singularities. Furthermore,
we investigate how the existence of singularities ofD affects an estimate for deficiencies in§5.
The result in§5 shows that if we resolve singularities, we have an estimate forδ f (D) depending
on the structure on the singularities. The results obtained in this paper are rather pathological, but
they suggest that the smoothness of divisors is a delicate matter to get a good bound for deficien-
cies. We note that the case of holomorphic curves is essential in the proof of our main theorem.
The method used in our construction is elementary and based on the theory of entire functions
of one complex variable, especially, on some properties of entire functions of order zero proved
by Valiron [V2]. For this reason, we first prove the above theorem for holomorphic curves in§3.
By making use of the idea of the proof for holomorphic curves, we prove the general case in§4.

ACKNOWLEDGEMENT. The authors would like to thank Professors Hirotaka Fujimoto,
Junjiro Noguchi, Nobushige Toda and the referee for their useful advice. The authors also would
like to thank Professors Tadashi Ashikaga, Hiroyuki Kamada, Toshiyuki Katsura and Dr. Shigeki
Oh’uchi for their valuable suggestions and comments.

§§§1. Preliminaries.

We first recall some known facts on Nevanlinna theory of holomorphic curves and mero-
morphic mappings. Letz= (z1, · · · ,zm) be the natural coordinate system inCCCm, and set

‖z‖2 =
m

∑
υ=1

zυzυ , B(r) = {z∈CCCm; ‖z‖< r},

S(r) = {z∈CCCm; ‖z‖= r}, dc =
√−1
4π

(∂ −∂ ),

υ = ddc‖z‖2, σ = dc log‖z‖2∧ (ddc log‖z‖2)m−1.

In the casem= 1, we write∆(r) for B(r) andC(r) for S(r), respectively.
For a (1,1)-currentϕ of order zero onCCCm we set

n(r,ϕ) = r2−2m〈ϕ ∧υm−1, χB(r)〉
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and

N(r,ϕ) =
∫ r

1
n(t,ϕ)

dt
t

,

whereχB(r) denotes the characteristic function ofB(r).
Let M be a compact complex manifold andL → M a line bundle overM. We denote by

Γ (M,L) the space of all holomorphic sections ofL→M. Let |L|= PPP(Γ (M,L)) be the complete
linear system defined byL. For a divisorD on M, we denote byL(D) the line bundle overM
defined byD. Let | · | be a hermitian fiber metric inL and letω be its Chern form. A meromorphic
mappingf : CCCm→M is said to bedominantif

dim M = rank f := max{rankd f(z);z∈CCCm− I( f )},

whereI( f ) is the indeterminacy locus off . For a meromorphic mappingf : CCCm→M, we define

Tf (r,L) = N(r, f ∗ω)

and call it the characteristic function off with respect toL. LetL(H)→PPPn(CCC) be the hyperplane
bundle overPPPn(CCC) andω0 the Fubini-Study form onPPPn(CCC). In the case whereM = PPPn(CCC) and
L = L(H), we always takeω0 for ω and we simply writeTf (r) for Tf (r,L(H)). Let E be an
effective divisor onCCCm. Then we callN(r,E) the counting function ofE. For a meromorphic
function f onCCC and a pointa∈ PPP1(CCC), we writeN(r, a, f ) for N(r, f ∗a). Let L → PPPn(CCC) be a
positive line bundle overPPPn(CCC). ThenL = L(H)⊗d for some positive integerd andD ∈ |L| is a
hypersurface of degreed in PPPn(CCC). It is clear that, ifL = L(H)⊗d, then

Tf (r, L) = d Tf (r)+O(1).

Let f = ( f0, · · · , fn) be a reduced representation off . It is well-known that

Tf (r) =
∫

S(r)
log

(
max

0≤ j≤n
| f j(z)|

)
σ(z)+O(1).

This representation of the characteristic function off is essentially due to H. Cartan. For a
positive increasing functionΛ(r) defined onRRR+, we define the orderρΛ of Λ(r) by

ρΛ = limsup
r→+∞

logΛ(r)
logr

.

We define the orderρ f of f by takingΛ(r) = Tf (r). We now have the following well-known
Nevanlinna’s inequality:

THEOREM 1.1. Let f : CCCm→ M be a nonconstant meromorphic mapping andL → M a
line bundle. Then

N(r, f ∗D)≤ Tf (r,L)+O(1)

for a divisorD ∈ |L| with f (CCC) 6⊆ SuppD, whereO(1) stands for a bounded term asr →+∞.

Let f andD be as in Theorem 1.1. We define Nevanlinna’s deficiencyδ f (D) by
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δ f (D) = 1− limsup
r→+∞

N(r, f ∗D)
Tf (r,L)

.

It is clear that0≤ δ f (D) ≤ 1. If δ f (D) > 0, thenD is called adeficient divisor in the sense of
Nevanlinna.

We next recall properties of entire functions of one complex variable. For a holomorphic
function f onCCC, we denote byM(r, f ) the maximum modulus off on the circleC(r), that is,

M(r, f ) = max
|z|=r

| f (z)|.

We also note that the characteristic function of an entire functionf can be written as

Tf (r) =
∫

C(r)
log+ | f (z)| dθ

2π
+O(1),

wherelog+ x = max{logx,0}. Let Λ1(r) andΛ2(r) be positive increasing functions defined on
R+. We write

Λ1(r) = (1+o(1))Λ2(r)

provided that

lim
r→+∞

Λ1(r)
Λ2(r)

= 1.

The following theorem due to Valiron plays a specially important role in this paper (see [V1,
Chapter 5] and [V2, pp. 28–29]):

THEOREM 1.2 (Valiron). Let f be a transcendental holomorphic function onCCC. Suppose
thatTf (r) = O((logr)2) asr →+∞. Then

lim
r→+∞

logM(r, f )
Tf (r)

= lim
r→+∞

N(r, 0, f )
Tf (r)

= 1.

Furthermore, there exists a Borel subsetε(r) of C(r) such that

log| f (z)|= (1+o(1)) logM(r, f )

for all z∈C(r)\ ε(r) andµ(ε(r))→ 0 asr →+∞, whereµ denotes the Haar measure onC(r)
normalized so thatµ(C(r)) = 1.

REMARK 1.3. We give here some remarks on the exceptional setε(r). There exists the
exceptional set (sayE ) for f such thatε(r) = C(r)∩E . The setE is a countable union of circles
not containing the origin and substanding angles at the origin whose sums is finite. Namely, the
setE is given by

E =
+∞⋃

i=1

Ci ,

whereCi is a circle that has the radiusr i and the center distanceei from the origin. Then we have
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s= 2
+∞

∑
i=1

arcsin

(
r i

ei

)
.

Note that the zero set off is contained inE . For details, see [Ha2, pp. 75–76].

§§§2. Two lemmas.

In this section, we prove two lemmas needed later. We first show the existence of entire
functions of order zero with an approximating growth of preassigned characteristic functions.
We now have the following lemma:

LEMMA 2.1. Letα be an arbitrary positive real number. Then there exists a transcenden-
tal entire functionϕ onCCC such that

Tϕ(r) = α(logr)2 +o((logr)2)

asr →+∞.

PROOF. Take p j = exp( j/α) ( j = 1,2, · · ·) and define an effective divisorE on CCC by
E = ∑∞

j=12p j . If p j < t, then j < α logt. Hence we have

n(t,E) = 2α logt +c(t),

where|c(t)|< 2. Thus we see

N(r,E) = α(logr)2 +O(logr).

Note that∑+∞
j=11/p j < +∞. Now we take the Weierstrass product

ϕ(z) =
+∞

∏
j=1

(
1− z

p j

)2

.

Then it follows from the standard estimate for the Weierstrass product (cf., e.g., Hayman [Ha1,
p. 27, Theorem 1.11]) that

log|ϕ(z)| ≤
∫ r

0

n(t,E)
t

dt+ r
∫ ∞

r

n(t,E)
t2 dt

= N(r,E)+2α logr +O(1)

= α(logr)2 +o((logr)2)

for z∈C(r). Hence we get

Tϕ(z)≤ α(logr)2 +o((logr)2).

On the other hand, by the first main theorem, we see

Tϕ(r)≥ N(r,E)+O(1) = α(logr)2 +o((logr)2).

Therefore, we have
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Tϕ(r) = α(logr)2 +o((logr)2). ¤

We now define a holomorphic curvef = ( f0, · · · , fn) : CCC→ PPPn(CCC) as follows. Letα0 and
α1 be positive real numbers withα1 < α0. By Lemma 2.1, we have entire functionsf0 and f1
such that

Tf j (r) = α j(logr)2 +o((logr)2) ( j = 0,1).

Next, let f2, · · · , fn be transcendental entire functions such thatTf j (r) = o((logr)2) for j =
2, · · · ,n. We define a holomorphic curvef : CCC → PPPn(CCC) by f = ( f0, · · · , fn). We now prove
the following lemma that is a crucial step in our construction of holomorphic curves with defi-
ciencies:

LEMMA 2.2. Let f : CCC→ PPPn(CCC) be as above. Then

Tf (r) = Tf0(r)+o((logr)2) as r →+∞.

PROOF. SinceTf j (r) = O((logr)2) asr →+∞, we have

Tf j (r) =
∫

C(r)
log| f j(z)|dθ

2π
+o((logr)2).

Hence, by using Cartan’s representation of the characteristic function, we see

Tf0(r)+o((logr)2)≤ Tf (r).

By Theorem 1.2, we see

Tf (r) =
∫

C(r)
log

(
max

j
| f j(z)|

)
dθ
2π

+O(1)

≤
∫

C(r)
log

(
(n+1) max

0≤ j≤n
M(r, f j)

)
dθ
2π

+O(1)

= max
0≤ j≤n

logM(r, f j)+O(1)

= max
0≤ j≤n

(1+o(1))Tf j (r)+O(1)

= Tf0(r)+o((logr)2).

Therefore, we have our assertion. ¤

REMARK 2.3. We can construct the above holomorphic curvef with the Zariski dense
image. Its proof is however delicate, and will be given in the proof of Theorem 3.2 in§3.

§§§3. Construction of holomorphic curves with deficient divisor.

In this section we prove our main result for holomorphic curvesf : CCC→ PPPn(CCC). We denote
by ζ = (ζ0, · · · ,ζn) a homogeneous coordinate system inPPPn(CCC). We first consider the case of
hyperplane. We have the following that is a direct conclusion of Lemma 2.2:
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THEOREM 3.1. Let α be an arbitrary positive real number less than one and letH be an
arbitrary hyperplane inPPPn(CCC). Then there exists a holomorphic curvef : CCC→ PPPn(CCC) with the
Zariski dense image such thatδ f (H) = α.

PROOF. Without loss of generality, we may assume thatH = {ζ1 = 0}. We consider a
holomorphic curvef : CCC→ PPPn(CCC) defined in§2. We can choose such af such thatf has the
Zariski dense image (see the proof of Theorem 3.2 below). Now we takeα0 andα1 such that
1−α = α1/α0. Note that

Tf1(r) = N(r, 0, f1)+o((logr)2)

= N(r, f ∗H)+o((logr)2).

It follows from Tf (r) = Tf0(r)+o((logr)2) that

δ f (H) = 1− limsup
r→+∞

N(r, f ∗H)
Tf (r)

= 1− lim
r→+∞

α1(logr)2 +o((logr)2)
α0(logr)2 +o((logr)2)

= α. ¤

We next deal with the case where a given divisorD is a hypersurface of degreed not less than
two, that is,D∈ |L(H)⊗d|with d≥ 2. LetP(ζ ) = P(ζ0, · · · ,ζn) be a homogeneous polynomial of
degreed and define a divisorD in PPPn(CCC) by P= 0. Note thatD may be a reducible hypersurface.
We now prove the following existence theorem:

THEOREM 3.2. There exists a positive constantλ (D) with λ (D) ≤ d depending only on
D that satisfies the following property: For each positive real numberα with α ≤ λ (D)/d, there
exists a holomorphic curvef : CCC→ PPPn(CCC) with the Zariski dense image such thatδ f (D) = α.

PROOF. We first show the existence of holomorphic curvesf with δ f (D) = α. For a given
divisorD, we takef0, · · · , fn in the following way. We writeP(ζ ) as follows:

P(ζ ) = P1(ζ )+P2(ζ ) =
n

∑
j=0

c jζ d
j +P2(ζ ).

Let d j be the highest degree inζ j that are contained inP and setd̃ = min0≤ j≤nd j . We consider
the following three cases.

Case I. Noc j is zero.

Take entire functionsf0 and f1 so thatTf0(r) = α0(1+ o(1))(logr)2 and f1 = ω( f0 + 1),
whereω is a nonzero constant. We also take an entire functionf2 such thatTf2(r) = α1(1+
o(1))(logr)2, whereα1 < α0. Furthermore, we take transcendental entire functionsf3, · · · , fn
so thatTf j (r) = o(Tf j−1(r)) for j = 3, · · · ,n. Define a holomorphic curvef : CCC → PPPn(CCC) by
f = ( f0, · · · , fn). Then, as in the proof of Lemma 2.2, we easily see

Tf (r) = α0(logr)2 +o((logr)2).
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SetF = P( f ). We now chooseω such thatF does not contain the termf d
0 , · · · , f d−κ+1

0 , whereκ
is a nonnegative integer depending only onD. To this end, we rewriteP as follows:

P(ζ ) =
d

∑
j=0

a jζ d− j
0 ζ j

1 +c2ζ d
2 + · · ·+cnζ d

n +Q(ζ ),

whereQ is a polynomial inζ which does not contain termsζ d− j
0 ζ j

1 for j = 0, · · · ,d. We note
that

d

∑
j=0

a j f d− j
0 f j

1 =
d

∑
j=0

a j f d− j
0 (ω( f0 +1)) j

= a0 f d
0 +a1 f d−1

0 ω( f0 +1)+a2 f d−2
0 ω2( f0 +1)2 + · · ·+adωd( f0 +1)d

= (a0 +a1ω +a2ω2 + · · ·+adωd) f d
0 +(the lower terms off0).

We define a polynomialL(z) in z by

L(z) =
d

∑
j=0

a jz
j . (3.3)

Let ω be a rootω of L(z) = 0. Then we can write the entire functionF asF = F1 +F2, where

F1 =
d

∑
j=1

c′j f d− j
0 +c2 f d

2 +
n

∑
j=3

c j f d
j .

It is easy to see that

c′k =
ωk

k!
L(k)(ω).

Sincea0 6= 0 andad 6= 0, we seeω 6= 0. Thus, ifω is a multiple root ofL(x) = 0 with multiplicity
k, then

c′1 = · · ·= c′k−1 = 0.

Now we takeκ such thatκ is the largest multiplicity of the roots ofL(x) = 0. Note that1≤ κ ≤
d−1. Defineλ (D) = κ. We assume thatα < κ/d. Takeα0 andα1 so thatα = 1−α1/α0.
Note that(d−κ)α0 < dα1. By Theorem 1.2, we getN(r, f ∗D) = (1+o(1))TF(r). We writeF2

as∑|ν |=d cν f ν , whereν = (ν0, · · · ,νn). We now consider the following two subcases.

SubcaseIa: The case whereF2 does not contain terms withν0+ν1+ν2 = d− j for 0≤ j ≤
κ, that is, the coefficients of those terms are zero.

We will show that

TF(r) = d(1+o(1))Tf2(r). (3.4)

By the definition of characteristic functions, we easily see
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TF(r) =
∫

C(r)
log+ |F(z)| dθ

2π
+O(1)

≤
∫

C(r)
log+ | f2(z)|d dθ

2π
+o((logr)2)

≤ d(1+o(1))Tf2(r).

Hence we getTF(r) ≤ d(1+ o(1))Tf2(r). Next we showd(1+ o(1))Tf2(r) ≤ TF(r). We first
assume thatα < κ/d. Then(d−κ)α0 < dα1. For any sufficiently larger and forz∈C(r)\ε(r),
we have

|F(z)| ≥ | f2(z)|d
(
|c2|−

∣∣∣∣∣
∑d

j=κ c′j f d− j
1 (z)

f d
2 (z)

∣∣∣∣∣−
∣∣∣∣∣

n

∑
j=3

c j
f d

j (z)

f d
2 (z)

∣∣∣∣∣−
∣∣∣∣
F2(z)
f d
2 (z)

∣∣∣∣
)

≥ | f2(z)|d
(
|c2|−

∣∣∣∣
K exp((1+o(1))(d−κ)α0(logr)2)

exp((1+o(1))dα1(logr)2)

∣∣∣∣+o(1)
)

≥ | f2(z)|d(|c2|− |K exp((1+o(1))((d−κ)α0−dα1)(logr)2)|+o(1))

≥ |c2|
2

(1+o(1))| f2(z)|d,

whereK is a some positive constant. Hence we have

TF(r) =
∫

C(r)
log+ |F(z)| dθ

2π
+O(1)

≥
∫

C(r)
log+ | f2(z)|d dθ

2π
−µ(ε(r)) log+ M(r,F)

≥ d(1+o(1))Tf2(r).

Thus we get (3.4). We therefore obtainδ f (D) = α. Next assume thatα = κ/d. We takef0, · · · , fn
such that

Tf0(r) = α0(1+o(1))(logr)2 and Tf j (r) = o((logr)2) ( j = 1, · · · ,n).

Then we easily see that

Tf (r) = (1+o(1))Tf0(r) and N(r, f ∗D)≤ (d−κ)(1+o(1))Tf0(r).

We writeF = F(1) +F(2), whereF(1) = c′κ f d−κ
0 andF(2) = F−F(1). Then it is easy to see that,

for any sufficiently larger and forz∈C(r)\ ε(r),

∣∣∣∣∣
F(2)(z)
F(1)(z)

∣∣∣∣∣≤ exp(−(1+o(1))α0(logr)2).

Hence we easily have
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N(r, f ∗D) =
∫

C(r)
log+ |F(z)| dθ

2π
+o((logr)2)

≥
∫

C(r)
log+ | f0(z)|d−κ dθ

2π
+o((logr)2)

= (d−κ)(1+o(1))Tf0(r).

Hence we have the estimate

(d−κ)(1+o(1))Tf0(r) = N(r, f ∗D).

This shows thatδ f (D) = κ/d.

SubcaseIb: The case whereF2 contains at least one term withν0 + ν1 + ν2 = d− j for
0≤ j ≤ κ, that is, at least one coefficient of those terms is not zero.

We writeF as

F =
d

∑
j=1

b j f j
0 f d− j

2 +F3,

whereF3 does not contain the termsf ν0+ν1
0 f ν2

2 with ν0 + ν1 + ν2 = d− j for 0≤ j ≤ κ. Let
k = max{ j;b j 6= 0}. Since(d−κ)α0 ≤ dα1, we see(d−κ)α0 < kα0 +(d− k)α1. Then the
growth of f k

0 f d−k
2 is greater than those off d−κ

0 and f d
2 . We may assume that the zero divisor of

f0 (resp. f2) is contained inRRR+ (resp. RRR−). Then the exceptional sets forf0 and f2 does not
intersect. Indeed, by the construction off0 (see the proof of Lemma 2.1), we can writef0 as
follows:

f0(z) =
+∞

∏
ν=1

(
1− z

pν

)2

,

wherepν+1 > pν > 0. Let ζ1, ζ2 ∈C(r). Suppose thatReζ1 > 0 andReζ2 < 0. Then, for any
r > 0, we have

∣∣∣∣1−
ζ1

pν

∣∣∣∣ <

∣∣∣∣1−
ζ2

pν

∣∣∣∣

for eachν . Hence we obtain| f0(ζ1)| ≤ | f0(ζ2)|. This implies that the set

{z∈C(r); Rez< 0}

does not intersect the exceptional set forf0. Hence we have our assertion. Thus we see

logM(r, f k
0 f d−k

2 ) = (kα0 +(d−k)α1 +o(1))(logr)2

and hence

N(r, f ∗D) = (kα0 +(d−k)α1 +o(1))(logr)2.

Thus we get
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δ f (D) = 1− kα0 +(d−k)α1

dα0

=
(d−k)(α0−α1)

dα0

<
(d−k)α0− (d−k−κ)α0

dα0

=
κ
d

.

This implies that there exists a holomorphic curvef with δ f (D) = α for any 0 < α < κ/d.
Next we consider caseα = κ/d. If there exists the termf d−κ

0 in F2, we take transcendental
entire functionsf2, · · · , fn so thatTf j (r) = o(Tf j−1(r)) for j = 2, · · · ,n. Thenδ f (D) = κ/d. If

F2 does not contain the termf d−κ
0 , we get a holomorphic curvef with δ f (D) = α by taking

(d−k−κ)α0 = (d−k)α1.

Case II. Some of theζ j ’s are not contained inP andP1(ζ ) 6≡ 0.

This case is essentially the same as the Case I. We may assume thatc0 = 0 andc1 6= 0. We
setλ (D) = d. We take transcendental entire functionsf0, · · · , fn such thatTf0(r) = (logr)2 +
o((logr)2) andTf j (r) = o(Tf j−1(r)) for j = 1, · · · ,n. By a suitable choice off1, · · · , fn, we see
f (CCC)∩D 6= Ø. By this choice of thef j ’s, it is clear thatδ f (D) = 1. Now assume thatα < 1. We
take f0 and f1 as in§2. Take transcendental entire functionsf2, · · · , fn so thatTf j (r) = o(Tf j−1(r))
for j = 2, · · · ,n. By Lemma 2.2, we have

Tf (r) = Tf0(r)+o((logr)2)

asr →+∞. We consider a holomorphic functionF0 defined by

F0 = c1 f d
1 + · · ·+cn f d

n +F2.

Then, by a method similar to the Case I, we get a holomorphic curvef with δ f (D) = α.

Case III. The casẽd < d.

In this case,P = P2. Without loss of generality, we may assume thatd0 = d̃. Now, we set

λ (D) = d−d0. We writeP2 = P(0)
2 +P(1)

2 , whereP(0)
2 is the sum of monomials that containζ0

andP(1)
2 does not containζ0. Then we may assume

P(0)
2 (ζ ) = ζ d0

0 Q0(ζ ′)+ζ d0−1
0 Q1(ζ ′)+ · · ·+Qd0(ζ

′),

where ζ ′ = (ζ1, · · · ,ζn) and Q j(ζ ′) are polynomials inζ ′. We may assume thatQ0(ζ ′) =
Q0(ζ1, · · · ,ζp) with p≤ n. We take transcendental entire functionsf0, · · · , fn as follows. Let
Tf j (r) = α j(1+o(1))(logr)2 with α1 < α0 for j = 0,1. For j = 2, · · · , p, we setf j = b j f1 +q j ,
whereb j are constants andq j are transcendental entire functions such thatTq2(r) = o((logr)2)
andTq j (r) = o(Tq j−1(r)). We also takeTf j (r) = o(Tf j−1(r)) for j = p+ 1, · · · ,n. Note that for
any sufficiently larger and forz∈C(r)\ ε(r), we see

log| f j(z)|= α1(logr)2 +o((logr)2)
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for j = 2, · · · , p. Define a holomorphic curvef by f = ( f0, · · · , fn). Let F2 = P(0)
2 ( f )+ P(1)

2 ( f )
andF( j)

2 = P( j)
2 ( f ) for j = 0,1. Now chooseb1, · · · ,bp so that the functionf d−d0

1 is contained in

F(0)
2 . We defineΛ(l) = {(λ0,λ1) ∈ (ZZZ≥0)2;λ0 +λ1 = l}. Set f λ

01 = f λ0
0 f λ1

1 for λ ∈Λ(l). Then
we have

F(0)
2 =

d

∑
k=0

∑
λ∈Λ(d−k);λ0≤d0

aλ (z) f λ
01Rλ ( fp+1, · · · , fn),

whereaλ are small functions with respect tof0. Note thata(d0,d−d0) is a constant. Then, for any
sufficiently larger and forz∈C(r)\ ε(r), we see

| f d0
0 (z) f d−d0

1 (z)|= Cexp((d0α0 +(d−d0)α1 +o(1))(logr)2),

whereC is a positive constant. Hence

log|F2(z)| ≤ (d0α0 +(d−d0)α1 +o(1))(logr)2. (3.5)

On the other hand, we set

G(z) = F2(z)−a(d0,d−d0) f0(z)d0 f1(z)d−d0.

Then, for any sufficiently larger and forz∈C(r)\ ε(r), we see

|G(z)| ≤ exp((d0α0 +(d−d0)α1 +o(1))(logr)2).

Hence we easily have

|F2(z)| ≥ | f d0
0 (z) f d−d0

1 (z)|
(
|a(d0,d−d0)|−

∣∣∣∣∣
G(z)

f d0
0 (z) f d−d0

1 (z)

∣∣∣∣∣

)

≥ |a(d0,d−d0)|
2

exp((d0α0 +(d−d0)α1 +o(1))(logr)2). (3.6)

By (3.5) and (3.6), we get

N(r, f ∗D) = (d0α0 +(d−d0)α1)(1+o(1))(logr)2.

Thus we obtain

δ f (D) = 1− d0α0 +(d−d0)α1

dα0
=

λ (D)
d

(
1− α1

α0

)
.

Therefore, for each positive numberα less thanλ (D)/d, there exists a holomorphic curvef
with δ f (D) = α. Furthermore, if we take entire functionsf1, · · · , fn such thatTf0(r) = (1+
o(1))(logr)2 andTf j (r) = o((logr)2) for j = 1, · · · ,n. Then we have a holomorphic curvef with
δ f (D) = λ (D)/d. We have now shown the existence of holomorphic curvesf with the desired
property. Next, we will show that the above holomorphic curves can be constructed such that
they have the Zariski dense images.

PROOF OFZARISKI DENSENESS OF THE IMAGE OFf . We first consider the Case II. The
proof is somewhat complicated. Hence we first give an idea of the proof as follows. Suppose
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that there exists a homogeneous algebraic relationR( f0, · · · , fn) = 0 among f j ’s. We rewrite
R( f0, · · · , fn) = 0 as follows:

−As f s
0 = As−1 f s−1

0 + · · ·+A0.

Let {uν}+∞
ν=1 be the zero set off1, where|uν | < |uν+1| and|uν | → +∞ asν → +∞. Then there

exist a subsequence{uν j}+∞
j=1 of {uν}+∞

ν=1 and a sequence{zν j}+∞
j=1 contained in a neighborhood

of {uν j}+∞
j=1 such that the growth of the left hand side of the above equality is extremely larger

than that of the right hand side of it atzν j as j → ∞.
Now, we give the proof of the Case II. SinceTf j (r) = o(Tf j−1(r)) for j = 2, · · · ,n, it is

easy to see thatf2, · · · , fn have no homogeneous algebraic relation. Suppose that there exists
nontrivial algebraic relationR( f0, · · · , fn) = 0 amongf j ’s, whereR(ζ0, · · · ,ζn) is a homogeneous
polynomial of degreel . If this relation does not contain one of thef j with j = 0,1, then we
easily see thatf has the Zariski dense image. Hence we consider another case, that is, the
relationR( f0, · · · , fn) = 0 contains both off0 and f1. We recall that

Tf j (r) = (1+o(1))α j(logr)2 ( j = 0,1)

with α1 < α0. We rewrite the above relation as follows:

As f s
0 +As−1 f s−1

0 + · · ·+A0 = 0,

whereA j = A j( f1, · · · , fn) andAs 6≡ 0. We also write

As = at f t
1 +at−1 f t−1

1 + · · ·+a0,

whereap = ap( f2, · · · , fn) for p = 0, · · · , t ands+ t ≤ l . We may assume that the zero divisor
of f0 (resp. f1) is contained inRRR+ (resp. RRR−). Let ε0(r) (resp. ε1(r)) be the exceptional set
for f0 (resp. f1). By the same reason in the SubcaseIb, we seeε0(r)∩ ε1(r) = Ø. The zero set
{uν}+∞

ν=1 of f1 can be written as{−rν}+∞
ν=1, where{rν}+∞

ν=1 is a positive increasing sequence with
rν →+∞ (ν →+∞). Let ρ be a positive number withρ ¿ 1. Set

Cν = {z∈CCC; |z+ rν |= ρrν} and Dν = {z∈CCC; |z+ rν | ≤ ρrν}.

Suppose thatap 6≡ 0 for somep with 0≤ p≤ t. We can takef2, · · · , fn such that

Tap(r) = (1+o(1))(logr)σp,

where1 < σp < 2. Then there exists a subsequence{rν j}+∞
j=1 of {rν}+∞

ν=1 such thatap has no

zero inDν j . Indeed, we first note thatTap(r) = o((logr)2). Suppose thatap has a zero in allDν
except for finite numbers ofν . By the construction off1, the zero divisor off1 is ∑+∞

ν=12(−rν)
(see the proof of Lemma 2.1). For sufficiently largeν , we see

N(2rν ,0,ap)≥ N(2rν ,0, f1)/2

= (1+o(1))α1(log 2rν)2/2

= (1+o(1))α1(log rν)2/2.
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Thus we have a contradiction. LetEp be the exceptional set forap. Then for eachη with
0 < η < ρ, there exists a numberR such that the sum of length of circles contained inDν j ∩Ep

is sufficiently smaller than(η/2)rν j for rν j ≥R. Note that a sequence{rν}+∞
ν=1 grows rapidly by

the construction. Thus there exists a positive numberγ j with (η/2)rν j < γ j < ηrν j such that

Γj = {z∈CCC; |z+ rν j |= γ j}

does not intersectEp (see Remark 1.3). Hence by Theorem 1.2, we see

log|ap(z)|= (1+o(1)) logM(|z|,ap)

for z ∈ Γj . For eachz ∈ Γj , there exists a positive numberτz such that|z| = τzrν j , where
|rν j − γ j |/rν j ≤ τz≤ |rν j + γ j |/rν j . Hence1−η < τz < 1+η . Then we see

logM(|z|,ap) = (1+o(1))(log|z|)σp

= (1+o(1))(logrν j + logτz)σp

≥ (1+o(1))(logrν j )
σp(1+ log(1−η)/ logrν j )

σp

= (1+o(1))(logrν j )
σp

= (1+o(1)) logM(rν j ,ap).

Thus we get

log|ap(z)| ≥ (1+o(1)) logM(rν j ,ap)

for z∈ Γj . Set

Σ(γ j ; rν j ) = {z∈CCC; |z+ rν j | ≤ γ j}.

Sinceap is a nonvanishing holomorphic function inΣ(γ j ; rν j ), we see

log|ap(z)| ≥min{log|ap(z)|;z∈ Γj} ≥ (1+o(1)) logM(rν j ,ap)

for z∈ Σ(γ j ; rν j ). We now consider the case oft 6= 0. Let ε be a sufficiently small positive
number less thanmin{1,α1}. Then there exists a positive integerN depending onf1 andε that
has the following property: Ifj ≥N, then there exists a pointz∈ (C(rν j )\ε1(rν j ))∩D(rν j ) such
that

log| f1(z)|> α1(1− ε)(logrν j )
2.

Hence there existszν j ∈C(rν j ) such that

log| f1(zν j )|= β (logrν j )
2,

where0 < β < α1− ε. Note thatzν j ∈ ε1(rν j ) andε1(rν j ) is contained in a small neighborhood
of −rν j . Without loss of generality, we may assume that

1
2
≤

∣∣∣∣1+
at−1

at f1
+ · · ·+ a0

at f t
1

∣∣∣∣≤ 2
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in some neighborhood ofzν j . Sinceε0(rν j )∩ ε1(rν j ) = Ø, we get

log|As(zν j ) f s
0(zν j )|= (1+o(1))(sα0 + tβ )(logrν j )

2.

In the case oft = 0, we have

log|As(zν j ) f s
0(zν j )|= log|a0(zν j ) f s

0(zν j )|= (1+o(1))sα0(logrν j )
2.

On the other hand, in the both of two cases, we see

log|As−1(zν j ) f s−1
0 (zν j )+ · · ·+A0(zν j )| ≤ (1+o(1))((s−1)α0 + lβ )(logrν j )

2.

We again rewrite the above algebraic relation as follows:

−As f s
0 = As−1 f s−1

0 + · · ·+A0.

Now we takeβ such that0 < β < α1− ε andlβ < α0. Since

sα0 + tβ > sα0 > (s−1)α0 + lβ > 0,

we have a contradiction by lettingj →+∞. Therefore, we conclude thatf has the Zariski dense
image in this case.

We next consider the Case I. Note thatf0 and f0 + 1 have no nontrivial algebraic rela-
tion by homogeneous polynomials. Suppose that there exists nontrivial algebraic relationR( f0,
( f0 +1)ω, · · · , fn) = 0, whereR is a nonzero homogeneous polynomial. We rewrite this relation
as follows:

Au( f0 +1)u +Au−1( f0 +1)u−1 + · · ·+A0 = 0.

Since f0 and f0 +1 have no nontrivial homogeneous algebraic relation, each

A j = A j( f0, f2, · · · , fn)

contains at least one off2, · · · , fn. Thus we can write the above relation as follows:

−Bs f s
0 = Bt−1 f s−1

0 + · · ·+B0,

whereB j = B j( f2, · · · , fn). Now, we have a contradiction by the above method.
We finally consider the Case III. In this case,f j = b j f1 + q j for j = 2, · · · , p, whereb j are

constants andq j are transcendental entire functions such thatTq2(r) = o((logr)2) andTq j (r) =
o(Tq j−1(r)). We also recall thatTf j (r) = α1(1+o(1))(logr)2 for j = 0,1 andTf j (r) = o(Tf j−1(r))
for j = p + 1, · · · ,n. SinceTf j (r) = o(Tf j−1(r)) for j = p + 1, · · · ,n, it is easy to see that
fp+1, · · · , fn have no homogeneous algebraic relation. Suppose that there exists nontrivial al-
gebraic relationR( f0, · · · , fn) = 0 by a homogeneous polynomialR. If the above relation does
not contain one of thef0 and f1, it is easy to see thatf has the Zariski dense image. If the relation
R( f0, · · · , fn) = 0 contains both of thef0 and f1, we rewrite the above relation as follows:

s

∑
j=0

A j(q1, · · · ,qp, f1, fp+1, · · · , fn) f j
0 = 0.

SinceTf j (r) = o((logr)2) for j = p+ 1, · · · ,n andTq j (r) = o((logr)2), we now have a contra-
diction as in the Case II. Therefore, we have completed the proof. ¤
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REMARK 3.7. We give here note on the constantλ (D) in Theorem 3.2. LetP(ζ ) be a
homogeneous polynomial of degreed such thatD = {P = 0}. Let d j be the degree inζ j that are
contained inP. Setd̃ = min0≤ j≤nd j . Let L(z) be the polynomial in (3.3) and denote byκ the
largest multiplicity of roots of the equationL(z) = 0, where1≤ κ ≤ d−1. Note thatλ (D) may
be dependent ond andd̃. We do not know whetherλ (D) is sharp or not. We now give a list of
the constantλ (D) obtained in the proof of Theorem 3.2:

(I) If d = d̃, thenλ (D) = κ.
(II) If d̃ < d, thenλ (D) = d− d̃.

We give here some examples of irreducible hypersurfaces of degreed.

EXAMPLE 3.8. We define an irreducible hypersurfaceDd of degreed in PPPn(CCC) by

ζ d
1 + · · ·+ζ d

n = 0.

Note thatDd has just one singular point(1,0, · · · ,0). In this case,λ (D) = d. Hence, for an
arbitrary positive real numberα not greater than one, there exists a holomorphic curvef : CCC→
PPPn(CCC) with the Zariski dense image such thatδ f (Dd) = α. Note that there exist nonconstant
holomorphic curves fromCCC into PPPn(CCC) that omit the above hypersurfaceDd of arbitrary high
degree. Letψ(z) andϕ(z) be arbitrary entire functions andµ a d-th root of−1. If we define a
holomorphic curvef : CCC→ PPPn(CCC) by

f (z) = (ψ(z),ϕ(z),µϕ(z),1, · · · ,1),

then f omitsDd. Note thatf is linearly degenerate. This example is essentially due to P. Kiernan
(cf. [G1, Part 7]).

EXAMPLE 3.9. We next give an example of a nonsingular hypersurface. We define a
nonsingular hypersurfaceSd in PPPn(CCC) of degreed≥ 2 by

ζ d−1
0 ζ2−ζ d

1 +ζ1ζ d−1
2 +

n

∑
j=3

ζ d
j = 0.

In this case, we haveλ (D) = 1. For the above hypersurfaceSd, there exists a nonconstant
holomorphic curvef : CCC→ PPPn(CCC) omitting Sd for all d ≥ 2. Indeed, letϕ(z) be an arbitrary
entire function. We take entire functionsϕ3, · · · ,ϕn such that

ϕd
3 + · · ·+ϕd

n = 0.

Define a holomorphic curvef : CCC→ PPPn(CCC) by

f (z) =
(

exp

(
d

d−1
ϕ(z)

)
, expϕ(z), 1, ϕ3(z), · · · ,ϕn(z)

)
.

Then we seef (CCC)∩Sd = Ø. Note thatf is algebraically degenerate. This example is essentially
due to M. L. Green (see [G2, p. 321]).

EXAMPLE 3.10. Let n = 2 and define an irreducible curveCd by

ζ0ζ d−1
2 −ζ d

1 = 0.
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Note thatCd also has just one singular point(1,0,0), if d≥ 3. We also note thatCd is a rational
curve. ForCd, we haveλ (Cd) = d−1 by Theorem 3.2. Hence, for an arbitrary positive number
α ≤ (d−1)/d, there exists a holomorphic curve with the Zariski dense imagef : CCC→ PPP2(CCC)
such thatδ f (Dd) = α. Note that a holomorphic curvef constructed in§2 has the above property.
Indeed, letf be as in§2 and assumeα = 1−α1/α0. In this cased > α0/α1. We consider an
entire functionF defined by

F = f0 f d−1
2 − f d

1 .

Then, by a method similar to the Case I in the proof of Theorem 3.2, we have the estimate:

TF(r) = N(r, f ∗Cd)+o((logr)2) = d(1+o(1))Tf1(r).

Therefore, we getδ f (Cd) = α.

REMARK 3.11. We note that, for each positive integerd not less than two, there exists a
holomorphic curvef : CCC→ PPP2(CCC) such thatf omitsCd. In fact, if we definef by

f (z) = (expz+exp(1−d)z2,1,expz2),

then we easily seef (CCC)∩Cd = Ø (cf. [G2, p. 319] and [S2, p. 178]). Note thatf has the Zariski
dense image.

We note here that there has been another method to construct holomorphic curves with
deficiencies. The holomorphic curves constructed above is of order zero. On the other hand, N.
Toda has pointed out that the above examples of holomorphic curves can be proved by making
use of Ahlfors-Weyl’s method (see [W]). In his construction, he used exponential curves and
obtained holomorphic curves of order one with deficiencies. Note that this method works in the
case that can be reduced to the hyperplane case. Indeed, letFd be the Fermat surface degreed,
that is,

Fd : ζ d
0 + · · ·+ζ d

n = 0.

Then our method gives a holomorphic curvef with δ f (Fd) = α (0 < α ≤ 1/d), but we cannot
construct a holomorphic curve with positive deficiency forFd by Ahlfors-Weyl’s method. Hence
it seems that our method has a wide range of applicability.

§§§4. Construction of meromorphic mappings with deficient divisor.

In this section, we construct meromorphic mappingsf : CCCm→ PPPn(CCC) with deficiency for
a preassigned divisor. In our construction, we essentially use the method of the construction of
holomorphic curves in§3. Throughout this section, we assumem≥ 2. Let F be a holomorphic
function onCCCm. As the case ofm= 1, we define

M(r,F) = max
z∈S(r)

|F(z)|.

LEMMA 4.1. LetF be a holomorphic function onCCCm. Then

TF(r)+O(1)≤ logM(r,F)≤ 1− (r/R)2

(1− r/R)2m(TF(R)+O(1))
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for arbitrary positive numbersr andRwith r < R.

For a proof, see, e.g., Noguchi [N, Lemma 1]. Setδ (k) = ((1−1/k)2m)/(1− (1/k)2) for a
positive numberk. It is clear thatδ (k)→ 1 ask→+∞. By Lemma 4.1, we see

TF(r/k)+O(1)≤ logM(r/k,F)≤ δ (k)−1(TF(r)+O(1))

for positive numbersk andr with k > 1. For a holomorphic functionF onCCCm andγ ∈CCCm with
||γ ||= 1, we defineFγ : CCC→CCC by Fγ(s) = F(sγ) for s∈CCC. HenceFγ is the restriction ofF(z) to
a complex linè γ through the origin defined bỳγ : z= sγ = (sγ1, · · · ,sγm). Setγ0 := (1,0, · · · ,0).
Take a holomorphic functionϕ(z) onCCC so thatTϕ(r) = α(1+o(1))(logr)2. Let the zero divisor
of ϕ is ∑ j ν j p j . We define a holomorphic functionF(z) on CCCm by F(z) = ϕ(z1)1(z), where
z= (z1, · · · ,zm) and1 is a nonzero polynomial inz. For the reason why we take the polynomial1,
see Remark 4.5 below. Note thatF(z) has zeros atH j , whereH j denotes the hyperplane through
z1 = p j that is perpendicular to thez1-axis. Then it is easy to see that

M(r,F) = (1+o(1))M(r,Fγ0) = (1+o(1))M(r,ϕ). (4.2)

Note thatN(r,0,Fγ) ≤ N(r,0,Fγ0)+ O(logr) for sufficiently larger. We will give an estimate
for N(r,0,F) by TF(r). It is clear thatN(r,0,F) ≤ TF(r)+O(1). For sufficiently small positive
real numberε, setSε = {z∈CCCm; |z1| < ε}. Let S(1) be the unit sphere inCCCm and denote byσ
the invariant measure onS(1) normalized so thatσ(S(1)) = 1. SetS′ε = S(1)∩Sε . Note that
we cannot get a good estimate forN(r,0,Fγ) if γ ∈ S′(ε). For instance, we seeN(r,0,Fγ) =
O(logr) for γ ∈ S(1) with γ = (0,γ2, · · · ,γm). Let γ = (γ1,γ2, · · · ,γm) ∈ S(1)\Sε and denote by
Hr the hyperplane throughz1 = r (r ∈ RRR>0) that is perpendicular to thez1-axis. SinceHr ∩ `γ =
{Pr(r,z2, · · · ,zm)}, there exists just ones∈CCC∗ such thatsγ1 = r andsγ j = zj for j = 2, · · · ,m.
Hence we sees= r/γ1. Sinceγ ∈ S(1)\Sε , this implies that‖Pr‖= r/|γ1|< r/ε. Hence to each
zerop of Fγ0 with |p|= r there corresponds the zerop′ of Fγ with |p′|= r/γ1. Thus we see

N(r/ε,0,Fγ)≥ N(r,0,Fγ0)+o((logr)2) = (1+o(1))α(logr)2

and hence

N(r,0,Fγ)≥ (1+o(1))α(logεr)2 ≥ (1+o(1))(TFγ0
(r)+2α(logε)(logr)).

Now, we will use the following averaging formula (see [S1, p. 91]):

N(r,0,F) =
∫

γ∈S(1)
N(r,0,Fγ)σ(γ)+O(1).

By the above formula we see

N(r,0,F)≥
∫

γ∈S(1)\Sε
N(r,0,Fγ)σ(γ)

≥
∫

γ∈S(1)\Sε
(1+o(1))(TF(r)+2α(logε)(logr))σ(γ)

= (1−σ(S′ε))(1+o(1))(TF(r)+2α(logε)(logr)).

Thus, for a fixedε, we have the following estimate:

(1−σ(S′ε))(1+o(1))(TF(r)+2α(logε)(logr))≤ N(r,0,F)≤ TF(r)+O(1). (4.3)
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We now take transcendental entire functionsf0, · · · , fn of one complex variable satisfying
the following condition: Forj = 0,1, let

Tf j (r) = α j(1+o(1))((logr)2),

whereα1 < α0. For j = 2, · · · ,n, we takef j so thatTf j (r) = o(Tf j−1(r)). By making use of the
above method, we regardf j as entire functions onCCCm, that is, we defineFj(z) = f j(z1)1 j(z) for
j = 0, · · · ,n, where1 j(z) are some nonzero polynomials. Now, we assume thatFj(z) = f j(z1) for
j = 0,1. We now define a meromorphic mappingf : CCCm→ PPPn(CCC) by f = (F0, · · · ,Fn). Then we
have the following lemma:

LEMMA 4.4. Let f be as above. Then

δ (k) logM(r,F0)≤ (1+o(1))Tf (r)≤ logM(r,F0).

PROOF. As in the proof of Lemma 2.2, we easily have

(1+o(1))Tf (r)≤ logM(r,F0)

by definition ofTf (r). On the other hand, by (4.3) we see

Tf (r)≥
∫

S(r)
log|F0(z)|σ(z)

= N(r,0,F0)+O(1)

≥ δ (k)(1+o(1)) logM(r/k,F0)

≥ δ (k)α0(1+o(1))((log(r/k))2)

= δ (k)α0(1+o(1))((logr)2).

Therefore we have the desired conclusion. ¤

REMARK 4.5. We can construct the above meromorphic mappingf with the Zariski dense
image. Indeed, the argument in the proof of Theorem 3.2 also works in this case. Furthermore,
if m≥ n, we have a dominant meromorphic mappingf by a suitable choice of1 j ’s. For instance,
we can makef to be dominant by taking10(z) ≡ 1 and1 j(z) = zj for j ≥ 1. Hence we may
assume thatf is dominant ifm≥ n.

We first give a generalization of Theorem 3.1 as follows.

THEOREM 4.6. Let α be an arbitrary positive real number less than one and letH be an
arbitrary hyperplane inPPPn(CCC). Then there exists a meromorphic mappingf : CCCm→ PPPn(CCC) with
the Zariski dense image such thatδ f (H) = α. If m≥ n, then there exists a dominant meromorphic
mappingf : CCCm→ PPPn(CCC) with δ f (H) = α.

PROOF. Without loss of generality, we may assume thatH = {ζ1 = 0}. We consider
a meromorphic mappingf : CCCm → PPPn(CCC) as in Lemma 4.4. Choose such af so that f has
the Zariski dense image. Now we takeα0 and α1 such that1−α = α1/α0. We note that
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(1+ o(1))Tf1(r) = N(r, f ∗H) andTf (r) = (1+ o(1))Tf0(r). Hence by (4.3), Lemma 4.4 and
letting r →+∞, we see

1− (1−σ(S′ε))
(

α1

α0

)
≤ δ f (H)≤ 1−δ (k)

(
α1

α0

)
.

Lettingk→+∞ andε → 0, we getδ f (H) = α. ¤

We next consider the caseD ∈ |L(H)⊗d| (d≥ 2). In this case, by making use of (4.2), (4.3)
and Lemma 4.4, we have the following theorem by the same method in the proof of Theorem
3.2:

THEOREM 4.7. Let D ∈ |L(H)⊗d| be an arbitrary divisor inPPPn(CCC), whered is a positive
integer. Then there exists a positive constantλ (D) depending only onD with λ (D)≤ d that has
the following property: For each positive numberα with α ≤ λ (D)/d, there exists a meromorphic
mapping f : CCCm→ PPPn(CCC) with the Zariski dense image such thatδ f (D) = α. Furthermore, if
m≥ n, then there exists a dominant meromorphic mappingf : CCCm→ PPPn(CCC) with δ f (D) = α.

We note that the numberλ (D) is as same as in Remark 3.6. It follows from Theorem 4.7
that we can find many examples of singular divisors and meromorphic mappingsf :CCCm→PPPn(CCC)
for which Griffiths’ defect relation does not hold. For instance, we consider the examples of
divisor as in§3. Namely, letCd be a curve as in Example 3.9 andα a positive real number less
than(d−1)/d. Then there exists a dominant meromorphic mappingf : CCCm→ PPP2(CCC) such that
δ f (Cd) = α. In particular, there exists a dominant meromorphic mappingf : CCCm→ PPP2(CCC) such
that

δ f (Cd) =
d−2

d
.

Hence we also have an example for which Griffiths’ defect relation does not hold. We note
that there exists a dominant meromorphic mappingf : CCC2 → PPP2(CCC) omittingCd for eachd (see
Shiffman [S2, p. 178]).

REMARK 4.8. Let P andd̃ be as in§3. Suppose thatd ≥ 3. We note that, ifd̃ ≤ d−2,
thenD has a singular point. Indeed, we may assume thatd̃ = d0. We writeP as follows:

P(ζ ) = ζ d−k
0 Q1(ζ )+Q2(ζ ),

whereQ2(ζ ) does not containζ0 and ζ d−k
0 is the greatest common divisor inP−Q2. Since

d− k≤ d−2, we see thatD has a singular point(1,0, · · · ,0). Setw j = ζ j/ζ0 for j = 1, · · · ,n.
DefineP̃(w) = ζ−d

0 P(ζ ), wherew = (w1, · · · ,wn). If d−d0 ≥ n+1, then the polynomial̃P(w)
has a zero at(0, · · · ,0) with multiplicity at leastn+ 1. HenceD is not normal crossings at
(1,0, · · · ,0). This fact shows that the hypothesis in Griffiths’ defect relation, that is,D is at most
simple normal crossings, cannot be simply dropped.

§§§5. Effect of the resolution of singularities to deficiencies.

In this section we investigate how affects the resolution of singularities of divisors to defi-
ciencies. In§3, we considered an example of the singular curveCd defined by
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Cd : ζ0ζ d−1
2 −ζ d

1 = 0.

This curve has only one singular pointP(1,0,0), if d ≥ 3. If π : QP(PPP2(CCC)) → PPP2(CCC) is a
monoidal transformation with the centerP, then this gives a resolution of singularity ofC.
Namely, letC̃ andC̄ be the total transform and the proper transform ofCd, respectively. We
also denote byE the exceptional curve. Then we have

C̃ = (d−1)E +C̄

andC̄ is a nonsingular curve inQP(PPP2(CCC)) (see Lemma 6.1 in§6). We define a meromorphic
mapping f̃ : CCCm→ QP(PPP2(CCC)) by f̃ = π−1 ◦ f . We will give an estimate forδ f̃ (C̄) depending
on the structure of the singularity. To this end, we have to calculate the Chern form of the line
bundleL(C̃). The precise calculation of the Chern form and the resolution of singularity will be
done in the next section and hence we freely use the results in§6. The following is our main
result in this section:

PROPOSITION5.1. Let α and f be as in Example3.9. Then

δ f̃ (C̄) =
α

1+(1−α)(d−1)
.

In particular, the estimate

α
d

< δ f̃ (C̄) <
d−1
2d−1

is valid.

PROOF. It suffices to give a proof in the casem= 1. Let Σ1 be a Hirzebruch surface of
rank one, that is,Σ1 is a nonsingular subvariety ofPPP2(CCC)×PPP1(CCC) defined by

Σ1 = {(ζ0,ζ1,ζ2;ξ0,ξ1) ∈ PPP2(CCC)×PPP1(CCC); ζ2ξ0−ζ1ξ1 = 0},

whereξ = (ξ0,ξ1) is a homogeneous coordinate system ofPPP1(CCC). Then it is well-known that
Σ1 = QP(PPP2(CCC)). Let p1 : Σ1 → PPP1(CCC) andp2 : Σ1 → PPP2(CCC) be the natural projections. Letω1

(resp.ω2) be the Fubini-Study form onPPP1(CCC) (resp.PPP2(CCC)). We first calculateN(r, f̃ ∗E). We
note that

U0∩C̃ = {(1 : x : tx;1 : t); xd− (tx)d−1 = 0}

and

U1∩C̃ = {(1 : τy : y;τ : 1); (τy)d−yd−1 = 0}.

In U0, the exceptional curveE is defined byx= 0 andC̄ is defined byx− t d−1 = 0. On the other
hand, inU1, the exceptional curveE is defined byy = 0 andC̄ is defined byτ dy−1 = 0. Note
thatτ = 1/t. By the construction off , we see

N(r, f̃ ∗E) = N(r,0, f2)

= o((logr)2).
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Hence we haveN(r, f̃ ∗C̄) = N(r, f ∗C)+o((logr)2). This shows

N(r, f̃ ∗C̄) = d(1+o(1))α1(logr)2.

Next we show

Tf̃ (r,L(C̄)) = Tf (r)+(d−1)Tf1(r).

By Lemma 6.4 in§6, we havec1(L(C̄)) = p∗1ω1 +(d−1)p∗2ω2. By Jensen’s formula and the
definition of f̃ , we see

Tf̃ (r,L(C̄)) =
∫ r

1

dt
t

∫

∆(t)
f̃ ∗(p∗1ω1 +(d−1)p∗2ω2)

=
∫ r

1

dt
t

∫

∆(t)
ddc log

(
1+

∣∣∣∣
f1
f0

∣∣∣∣+
∣∣∣∣

f2
f0

∣∣∣∣
)

+(d−1)
∫ r

1

dt
t

∫

∆(t)
ddc log

(
1+

∣∣∣∣
f2
f1

∣∣∣∣
)

=
∫

C(r)
log

(
1+

∣∣∣∣
f1(z)
f0(z)

∣∣∣∣+
∣∣∣∣

f2(z)
f0(z)

∣∣∣∣
)

dθ
2π

+(d−1)
∫

C(r)
log

(
1+

∣∣∣∣
f2(z)
f1(z)

∣∣∣∣
)

dθ
2π

= Tf (r)+(d−1)Tf1(r).

This shows our assertion. Thus we get

Tf̃ (r,L(C̄)) = (α0 +(d−1)α1 +o(1))(logr)2.

Hence we have

δ f̃ (C̄) = 1− limsup
r→+∞

N(r,C̄)
Tf̃ (r,L(C̄))

= 1− lim
r→+∞

d(1+o(1))α1(logr)2

(α0 +(d−1)α1 +o(1))(logr)2

=
α

1+(1−α)(d−1)
.

Therefore we have the desired conclusion. ¤

REMARK 5.2. We give here a remark on the above estimate forδ f̃ (C̄). We first recall the
defect relation for dominant meromorphic mappings intoΣ1. Let L be an ample line bundle over
Σ1 andK(Σ1) the canonical bundle ofΣ1. Set

γ(L) =
[

K(Σ1)∗

L

]
= inf{γ ∈QQQ; γc1(L)+c1(K(Σ1)) > 0}.

Let D j ∈ |L| and assume thatD1 + · · ·+Dq has simple normal crossings. Then a defect relation
for dominant meromorphic mappingsf : CCCm→ Σ1 is given by the following (see [S2, Corollary
3.3]):

q

∑
j=1

δ f (D j)≤ γ(L).
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We will calculate the value ofγ(L). For the line bundleL, there exists an ample divisorD such
thatL = L(D). We may assumeD = aE+bF∞, wherea andb are positive integers witha < b.
Let KΣ1 be the canonical divisor ofΣ1. It is well-known thatKΣ1 =−2E−3F∞. Then we see

γD+KΣ1 = (γa−2)E +(γb−3)F∞.

By making use of Nakai’s criterion (cf. [H, p. 380]), we easily have

γ(L) =
1

b−a
if 3a−2b≥ 0 and γ(L) =

2
a

if 3a−2b < 0.

If L = L(C̄), we haveγ(L(C̄)) = 2. In the case where target spaces are complex projective spaces,
an ample line bundleL is written asL = L(H)⊗d for some positive integerd. Hence we have the
defect relation and the conjecture mentioned in the Introduction. For a meromorphic mapping
f : CCCm→ Σ1 with the Zariski dense image, we expect that the above defect relation holds under
a suitable condition on singularities ofD.

§§§6. Appendix.

In this section, we give the resolution of singularity ofCd, and calculate the Chern classes
of line bundles determined by the proper transformC̄ of Cd. For background materials, we refer
to [GH] and [H]. We first give the resolution of singularity. Recall the singular curveCd defined
by ζ0ζ d−1

2 −ζ d
1 = 0. This curve has only one singular pointP(1,0,0) if d≥ 3. Then we have the

following:

LEMMA 6.1. Let π : QP(PPP2(CCC))→ PPP2(CCC) be a monoidal transformation at the centerP.
Denote byC̃ andC̄ the total transform and the proper transform ofCd, respectively. Then the
total transformC̃ is given by

C̃ = (d−1)E +C̄,

whereE is the exceptional curve of the first kind and the proper transformC̄ is nonsingular.

PROOF. Let U0 be the affine open set determined byζ0 6= 0 in PPP2(CCC). Setx = ζ1/ζ0 and
y= ζ2/ζ0 in U0. We define an affine curveC0 such thatC0 =Cd∩U0. Then we have the defining
equation of the affine curveC0 as follows:

xd−yd−1 = 0.

We now give a resolution of singularity ofC0 at(x,y) = (0,0). Letϖ : Ũ0→U0 be the blowing up
centered at(0,0). Let {(x1,y1)} and{(x2,y2)} be local coordinate systems iñU0. By definition
of a blowing up, we consider the following two cases:

Case I. The pull back ofCd by x = x1, y = y1x1.

In this case, we have one of the affine part of the total transform ofCd defined byxd
1 −

yd−1
1 xd−1

1 = 0 and the exceptional curveE1 defined byx1 = 0. We also have a nonsingular curve
C̄0 defined byx1 = yd−1

1 . Since

dimCCCCCC[[x1,y1]]/(x1,x1−yd−1
1 ) = d−1,
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we see that̄C0 andE1 intersects each other at(0,0) with multiplicity d−1.

Case II. The pull back ofCd by x = x2y2, y = y2.

In this case, we see that another part of the total transform defined byxd
2yd

2−yd−1
2 = 0 and

the exceptional curveE2 is defined byy2 = 0. We also have a nonsingular curvēC′0 defined by
xd

2y2−1 = 0. Note that the multiplicity ofE2 is d−1 andC̄′0∩E2 = Ø.

Now we have the exceptional curve of the first kindE by patching upE1 andE2. We also
have the proper transform̄C0 of C0. By taking a completion of̄C0, we have the proper transform
C̄ of Cd. It is clear thatC̄ is nonsingular. Therefore we have the desired conclusion. ¤

Next we calculate the Chern form of the line bundleL(C̄). Let Σ1 be the Hirzebruch surface
of rank one, that is,

Σ1 = {(ζ0 : ζ1 : ζ2;ξ0 : ξ1) ∈ PPP2(CCC)×PPP1(CCC); ξ0ζ2−ξ1ζ1 = 0}.

Then it is well-known thatQP(PPP2(CCC)) = Σ1. Let p1 : PPP2(CCC)×PPP1(CCC)→ PPP2(CCC) andp2 : PPP2(CCC)×
PPP1(CCC) → PPP1(CCC) be the natural projections. We also denote byp j the restriction ofp j to Σ1.
Then it is clear thatE = p1

−1((1 : 0 : 0)). Let F∞ = p2
−1((0 : 1)). It is well-known that the

divisor class group Cl(Σ1) is generated byF∞ andE. To calculate the Chern form ofL(C̄), we
first determine a local coordinate system onΣ1. Set

Ui = {(ζ0 : ζ1 : ζ2) ∈ PPP2(CCC); ζi 6= 0} and Vj = {(ξ0 : ξ1) ∈ PPP1(CCC); ξ j 6= 0}.

We also setWi j = (Ui ×Vj)∩Σ1. Let t = ξ1/ξ0 on V0 and τ = ξ0/ξ1 on V1. Let x = ζ1/ζ0

andy = ζ2/ζ0 on (U0×PPP1(CCC))∩Σ1. If we setU0 = W00 andU1 = W01, then(x, t) and(y,τ)
give local coordinate systems onU0 andU1, respectively. Letu = ζ0/ζ1 and v = ζ2/ζ1 on
(U1×PPP1(CCC))∩Σ1. If we setU2 = W10, then we have a local coordinate system(u, t) onU2. Let
z= ζ0/ζ2 andw = ζ1/ζ2 on (U2×PPP1(CCC))∩Σ1. SetU3 = W21 and determine a local coordinate
system(z,τ) on U3. Hence we have a system of local coordinate neighborhoods{U0, · · · ,U3}
as follows:

U0 = {(1 : x : tx;1 : t)}, U1 = {(1 : τy : y;τ : 1)},
U2 = {(u : 1 : t;1 : t)}, U3 = {(z : τ : 1;τ : 1)}.

The change of local coordinate systems is given by

y = tx, τ = 1/t on U0∩U1, u = 1/x on U0∩U2,

x = τ/z, τ = 1/t on U0∩U3, y = t/u, t = 1/τ on U1∩U2,

z= 1/y on U1∩U3, z= u/t, τ = 1/t on U2∩U3.

Note thatU j
∼= CCC2 for all j.

Next, we calculate transition functions{ψαβ} of the line bundleL(F∞). It is clear that
U0∩F∞ = U2∩F∞ = Ø. We also have

U1∩F∞ = {(1 : τy : y;τ : 1); τ = 0} and U3∩F∞ = {(z : τ : 1;τ : 1); τ = 0}.



Deficiencies of meromorphic mappings 257

Hence we have transition functions{ψαβ} as follows:ψ01 = ψ03 = t andψ02 = 1. Note that we
can determine other transition functionsψ12,ψ13 andψ23 from the following relations:ψ12 =
ψ10ψ02, ψ13 = ψ10ψ03 andψ23 = ψ20ψ03. Note thatU2∩E = U3∩E = Ø. Since

U0∩E = {(1 : x : tx;1 : t);x = 0} and U1∩E = {(1 : τy : y;τ : 1);y = 0},

transition functions{ϕαβ} of L(E) are given byϕ01 = τ andϕ02 = ϕ03 = x. Note that the total
transformC̃ of Cd is represented by

C̃ = {(ζ0 : ζ1 : ζ2;ξ0 : ξ1) ∈ PPP2(CCC)×PPP1(CCC);ξ0ζ2 = ξ1ζ1, ζ0ζ d−1
2 = ζ d

1 }

in Σ1. Then we have

U0∩C̃ = {(1 : x : tx;1 : t); xd− (tx)d−1 = 0},

U1∩C̃ = {(1 : τy : y;τ : 1); (τy)d−yd−1 = 0},

U2∩C̃ = {(u : 1 : t;1 : t); 1−utd−1 = 0},

U3∩C̃ = {(z : τ : 1;τ : 1); τ d−z= 0}.

Hence we have transition functions{φαβ} of L(C̃): φ01 = 1, φ02 = xd andφ03 = yd. Note that
φ01 = (ψ01)d(ϕ01)d, φ02 = (ψ02)d(ϕ02)d andφ03 = (ψ03)d(ϕ03)d. Thus we see

C̃ = d(E +F∞) (6.2)

in Cl(Σ1). Let ω2 andω1 be the Fubini-Study forms onPPP2(CCC) andPPP1(CCC), respectively, that is,
ω1 = ddc log‖ξ‖2 andω2 = ddc log‖ζ‖2. We obtain the following local expressions ofω1 on
V0 andω2 onU0, respectively:

ω1 =
√−1
2π

dt∧dt
(1+ |t|2)2 , ω2 =

√−1
2π

(
dx∧dx+dy∧dy

1+ |x|2 + |y|2 − (xdx+ydy)∧ (xdx+ydy)
(1+ |x|2 + |y|2)2

)
.

Next we take curvesCj on Σ1 such thatc1(L(Cj)) = ω j for j = 1,2. Then we see

C1·E =
∫

E
p∗2ω1 =

∫

t∈CCC

√−1
2π

dt∧dt
(1+ |t|2)2 = 1,

C1·F∞ =
∫

F∞
p∗2ω1 =

∫

{τ=0}

√−1dτ ∧dτ
2π(1+ |τ|2)2 = 0,

C2·E =
∫

E
p∗1ω2 =

∫

{x=0}
p∗1ω2 = 0,

C2·F∞ =
∫

F∞
p∗1ω2 =

∫

y∈CCC

√−1dy∧dy
2π(1+ |y|2)2 = 1.

Take curvesCj on Σ1 such thatc1(L(Cj)) = ω j for j = 1,2. We writeCj as follows: C1 =
a1E+b1F∞ andC2 = a2E+b2F∞, wherea j andb j are integers. Hence, by the above calculation,
we have thatC1 = F∞ andC2 = E +F∞. Thus we have
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p∗1ω1 = c1(L(F∞)), p∗2ω2 = c1(L(E)⊗L(F∞)). (6.3)

Therefore, by Lemma 6.1, (6.2) and (6.3), we have the following:

LEMMA 6.4. The Chern form ofL(C̄) is given by

c1(L(C̄)) = p∗2ω2 +(d−1)p∗1ω1.
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