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Abstract. In this paper we first prove that, for every hypersurfcef degreed in a com-
plex projective space, there exists a holomorphic ctifrem the complex plane into the projective
space whose deficiency féris positive and less than one. Using this result, we construct mero-
morphic mappings from the compler-space into the complex projective space with the same
properties. We also investigate the effect of resolution of singularities to defects of meromorphic
mappings.

Introduction.

The aim of this paper is to construct meromorphic mappihg®m C™ into the complex
projective spac®,(C) with Nevanlinna’s deficient divisors. Throughout this paper, we assume
thatn > 2. The defect relation for meromorphic mappings shows that the set of Nevanlinna’s
deficient divisors forf is very small. Furthermore, meromorphic mappings without defect are
dense in the space of all meromorphic mappifig€™ — P,(C) with respect to a certain kind
of distance (seeM]). It therefore seems that the construction of meromorphic mappings with
preassigned deficiencies is very difficult. There have been several studies on the construction
of holomorphic curves with deficient hyperplanes. So far, we do not know the existence of
examples of meromorphic mappings with a deficient irreducible hypersurface of high degree
whose deficiency is less than one. In this paper, we prove the existence of meromorphic mappings
that have a preassigned positive deficiency for a given diBsor P,(C). We now recall the
defect relation for dominant meromorphic mappirfgsC™ — P,(C) due to Griffiths’ school
(cf. [S2), that is, we have the defect relation

q n+1
> 81(D) < 7=,
=1

whereDy,---,Dq are nonsingular hypersurfaces of degte@ P,(C) intersecting normally.
There has been a conjecture of Griffith& (] p. 379]) stating the defect relation for meromorphic
mappingsf : C™ — Py(C) is also given by the above form under an appropriate nondegeneracy
condition onf. Moreover, there also has been a conjecture such that the estimate

C
5f(D)§ a

holds under a generic condition f@, whereC is a positive constant independent foind D
(cf. [Si, p.289]). However, in the case whelkeis a singular divisor, we can construct many
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examples of meromorphic mappinfisuch that estimates for deficiencies of the above type do
not hold. This follows from the following main theorem concerning Griffiths’ conjecture that is
the main result in this paper:

MAIN THEOREM. LetD € |L(H)%Y| be an arbitrary divisor inP,(C), whereL(H) is the
hyperplane bundle ovel,(C) andd is a positive integer. Then there exists a positive constant
A (D) depending only o with A(D) < d that has the following propertyFor each positive
numbera with a < A(D)/d, there exists a meromorphic mappifigC™ — Py (C) with Zariski
dense image such that (D) = a. Furthermore, in the case of > n, there exists a dominant
meromorphic mapping : C™ — P,(C) with &;(D) = a.

This theorem yields that for every irreducible hypersurf8ae P,,(C) there exists a mero-
morphic mappingf such that the deficiencd; (S) for Sis positive and less than one. We note
here that, in general, the constantD) is dependent on the degree For instance, we have
A (D) = d for some singular divisors. We give some concrete examplé3.imThese examples
show that we cannot obtain a good estimate on deficiency BHeas singularities. Furthermore,
we investigate how the existence of singularitieDadffects an estimate for deficienciessi.

The result ing5 shows that if we resolve singularities, we have an estimaté;{@) depending

on the structure on the singularities. The results obtained in this paper are rather pathological, but
they suggest that the smoothness of divisors is a delicate matter to get a good bound for deficien-
cies. We note that the case of holomorphic curves is essential in the proof of our main theorem.
The method used in our construction is elementary and based on the theory of entire functions
of one complex variable, especially, on some properties of entire functions of order zero proved
by Valiron [V2]. For this reason, we first prove the above theorem for holomorphic cung&s in

By making use of the idea of the proof for holomorphic curves, we prove the general ¢dse in
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81. Preliminaries.

We first recall some known facts on Nevanlinna theory of holomorphic curves and mero-
morphic mappings. Let= (z,---,zyn) be the natural coordinate systenGff', and set

m
122= 3 22, B(r) = {ze C™ |Z| <},
v=1
St ={zeC™ |zl =1}, d=Y"1G o),
am
v = de¥[ 2|2, o = d°log]|z|2 A (ddFlog]|z|2)™ 1.

In the casen= 1, we writeA(r) for B(r) andC(r) for S(r), respectively.
For a (1,1)-curreny of order zero oi€™ we set

n(r,¢) =r>2™¢p Ao™ % Xg())
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and

Ng) = [ ) T

wherexg) denotes the characteristic function&if).

Let M be a compact complex manifold ahd— M a line bundle oveM. We denote by
" (M, L) the space of all holomorphic sectionslof> M. Let|L| = P(I" (M, L)) be the complete
linear system defined bly. For a divisorD on M, we denote byt (D) the line bundle oveM
defined byD. Let|- | be a hermitian fiber metric ib and letw be its Chern form. A meromorphic
mappingf : C™ — M is said to bedominantif

dimM = rankf := max{rankd f(z);ze C™ —1(f)},
wherel (f) is the indeterminacy locus df. For a meromorphic mappingy: C™ — M, we define
Tf (r7 L) = N(ra f*&))

and call it the characteristic function 6fwith respecttd.. LetL(H) — P,(C) be the hyperplane
bundle oveP,(C) andwy the Fubini-Study form ofP,(C). In the case wheri®! = P,(C) and
L =L(H), we always takeuy for w and we simply writeT; (r) for T¢(r,L(H)). Let E be an
effective divisor onC™. Then we callN(r,E) the counting function oE. For a meromorphic
function f onC and a pointa € P1(C), we writeN(r, a, f) for N(r, f*a). LetL — P»(C) be a
positive line bundle oveP,(C). ThenL = L(H)® for some positive integet andD € |L| is a
hypersurface of degrekin P,(C). Itis clear that, if. = L(H)®9, then

Tt (r, L) =dT; (r) + O(l).

Let f = (fo,---, fn) be a reduced representationfofit is well-known that

Tf(r):/smlog(maxfj(zﬂ) 0(2) +O(1).

0<j<n

This representation of the characteristic functionfos essentially due to H. Cartan. For a
positive increasing function (r) defined orR*, we define the ordgw, of A(r) by

. logA(r)
=limsu
P pr logr

We define the ordeps of f by takingA(r) = T¢(r). We now have the following well-known
Nevanlinna’s inequality:

THEOREM1.1. Letf:C™— M be a nonconstant meromorphic mapping and- M a
line bundle. Then

N(r, f*D) < T¢(r,L) + O(1)
for a divisorD € |L| with f(C) ¢ SupfD, whereO(1) stands for a bounded term as— +.

Let f andD be as in Theorem 1.1. We define Nevanlinna’s deficien¢ip) by
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: N(r, f*D)
ot(D) =1—limsup—————=.
(D) H+oop Ti(r,L)

It is clear thatO < 6¢(D) < 1. If &:(D) > 0O, thenD is called adeficient divisor in the sense of
Nevanlinna

We next recall properties of entire functions of one complex variable. For a holomorphic
function f onC, we denote b (r, f) the maximum modulus of on the circleC(r), that is,

M(r, f) = max|f(2)|.

|2|=r

We also note that the characteristic function of an entire fundtioan be written as
do
Ti(r :/ log" |f(2)| == + O(2),
(0= [, 09" 112 5+ 0w

wherelog® x = max{logx,0}. Let A1(r) andA,(r) be positive increasing functions defined on
RT. We write

M(r) = (1+0(1))Az(r)
provided that

jim 22()

=1
r—+0co /\z(r)

The following theorem due to Valiron plays a specially important role in this paper &kee [
Chapter 5] and{2, pp. 28—-29)):

THEOREM 1.2 (Valiron). Let f be a transcendental holomorphic function@nSuppose
that T¢(r) = O((logr)?) asr — +o0. Then

| logM(r, f) i N(r,0, f)

r—--o00 Tf(l’) o r—+-o0 Tf (I‘)
Furthermore, there exists a Borel subsét) of C(r) such that
log|f(2)| = (1+0(1))logM(r, f)

forall ze C(r)\ &(r) and u(g(r)) — Oasr — +oo, whereu denotes the Haar measure 6xr)
normalized so thati(C(r)) = 1.

REMARK 1.3. We give here some remarks on the exceptionakéet There exists the
exceptional set (sa¥) for f such thaig(r) =C(r)Né&. The se® is a countable union of circles
not containing the origin and substanding angles at the origin whosa sufinite. Namely, the
seté is given by

+o00
&=JG,
i=1

whereC; is a circle that has the radiusand the center distanegfrom the origin. Then we have



Deficiencies of meromorphic mappings 237

S= 2+marcsin<ri>
i; 8/

Note that the zero set dfis contained in5’. For details, seeHa2, pp. 75-76].

§2. Two lemmas.

In this section, we prove two lemmas needed later. We first show the existence of entire
functions of order zero with an approximating growth of preassigned characteristic functions.
We now have the following lemma:

LEMMA 2.1. Leta be an arbitrary positive real number. Then there exists a transcenden-
tal entire functiong onC such that

Ty(r) = a(logr)?+o((logr)?)
asr — +oo,

PrROOF. Take p; =exp(j/a) (j =1,2,---) and define an effective divisd on C by
E= z‘l?"zlzpj. If p; <t, thenj < alogt. Hence we have

n(t,E) = 2alogt + c(t),
where|c(t)| < 2. Thus we see
N(r,E) = a(logr)? + O(logr).

Note thatzji""1 1/pj < +o. Now we take the Weierstrass product

400 7 2
o(2) = <1> .
N5
Then it follows from the standard estimate for the Weierstrass product (cf., e.g., Haliaan [
p.27, Theorem 1.11]) that

ogi(z) < [ "B arr [T E)g

= N(r,E) +2alogr +O(1)
= a(logr)?+o((logr)?)
for ze C(r). Hence we get
Ty (2) < a(logr)®+o((logr)?).
On the other hand, by the first main theorem, we see
Ty(r) > N(r,E) + O(1) = a(logr)? + o((logr)?).

Therefore, we have
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Ty(r) = a(logr)? +o( (logr)?). O

We now define a holomorphic curde= (fo,---, fy) : C — P,(C) as follows. Letag and
a1 be positive real numbers witty < ag. By Lemma 2.1, we have entire functiofigand f1
such that

Tt (r) = aj(logr)®+o((logr)?) (j=0,1).

Next, let fa,---, fn be transcendental entire functions such thatr) = o((logr)?) for j =
2,---,n. We define a holomorphic curve: C — Py(C) by f = (fo,---, fn). We now prove

the following lemma that is a crucial step in our construction of holomorphic curves with defi-
ciencies:

LEMMA 2.2. Letf:C — Py(C) be as above. Then
Tt(r) = Ty, (r) +o((logr)?) asr — 4oo.

PROOF.  SinceTy, (r) = O((logr)?) asr — +o, we have

de
Ti (r)= [ log|fj(z)| == +o((logr)?).
1) = [ Togl;(2)1 5, +ol(logr)?)
Hence, by using Cartan’s representation of the characteristic function, we see
i, (r) +0((logr)?) < Te(r).

By Theorem 1.2, we see

To(r) = /C(r) log (mjax| fi (z)|> 99 on)

2m
</ log | (n+1) max M(r, fj) %4—0(1)
— Jem g o<jen V) 2m
= maxlogM(r, f;) +O(1)

0<j<n

= max(1+0(1))T(r) +O(1)

0<j<n
= Tty (r) +0((logr)?).
Therefore, we have our assertion. O

REMARK 2.3. We can construct the above holomorphic cufveith the Zariski dense
image. Its proof is however delicate, and will be given in the proof of Theorem 32 in

83. Construction of holomorphic curves with deficient divisor.

In this section we prove our main result for holomorphic curfe€ — P,(C). We denote
by { = ({o,---,{n) @ homogeneous coordinate systenPi{C). We first consider the case of
hyperplane. We have the following that is a direct conclusion of Lemma 2.2:
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THEOREM3.1. Leta be an arbitrary positive real number less than one andHdie an
arbitrary hyperplane inP,(C). Then there exists a holomorphic curfe C — P(C) with the
Zariski dense image such that(H) = a.

PROOF.  Without loss of generality, we may assume thlt {{; = 0}. We consider a
holomorphic curvef : C — P,(C) defined in§2. We can choose suchfasuch thatf has the
Zariski dense image (see the proof of Theorem 3.2 below). Now wedglkend a; such that
1—a =ai/ap. Note that

Tr,(r) = N(r, 0, f1) +0((logr)?)
= N(r, f*H) +o((logr)?).

It follows from T¢ (r) = Tty (r) +0((logr)?) that

o(H)=1- Iimsupw

r—-—oo f(r)
. a(logr)?+of(logr)?)
=1- rL'Tm ao(logr)2+o((logr)?)
=aq. 0

We next deal with the case where a given dividas a hypersurface of degrdanot less than
two, thatis,D € |L(H)®9| withd > 2. LetP({) = P({o, - - -, {n) be a homogeneous polynomial of
degreal and define a divisdD in P,(C) by P = 0. Note thatD may be a reducible hypersurface.
We now prove the following existence theorem:

THEOREM3.2. There exists a positive constah(D) with A (D) < d depending only on
D that satisfies the following propertior each positive real number with a < A (D)/d, there
exists a holomorphic curvé: C — P,(C) with the Zariski dense image such ti&a{D) = a.

PROOF. We first show the existence of holomorphic curfesith o; (D) = a. For a given
divisor D, we takefo, -, fn in the following way. We writeP({) as follows:

n

P() =Pu({) +P({) = %Cjzl'd‘FPZ(Z)-
j=

Let d; be the highest degree § that are contained iR and set = ming<j<nd;. We consider
the following three cases.

Case I. Nacj is zero.

Take entire functiondy and f1 so thatTy,(r) = ao(1+0(1))(logr)? and f; = w(fo+ 1),
wherew is a nonzero constant. We also take an entire functiosuch thatTy, (r) = a1(1+
0(1))(logr)?, wherea; < ag. Furthermore, we take transcendental entire functians -, f,
so thatTy; (r) = o(Ty,_,(r)) for j = 3,---,n. Define a holomorphic curvé : C — Py(C) by
f = (fo, -+, fn). Then, as in the proof of Lemma 2.2, we easily see

Tt (r) = ao(logr)?+o((logr)?).
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SetF = P(f). We now choosev such thaF does not contain the terf, - - -, f§~*+1, wherek
is a nonnegative integer depending only@nTo this end, we rewrit® as follows:

d

P(Q) = Z)ajZé”jZf 1608+ e84+ Q(2),
j=

whereQ is a polynomial in{ which does not contain ternz’%’_jllj for j =0,---,d. We note
that

d d
d=j ¢ d-j -
Z)ajfo 'ff:%aifo No(fo+1))!
= =
=apfd+arfd tw(fo+1) +arfd2w?(fo+ 1)% + - +agw’(fo+ 1)

= (ap+ W+ aw? + - - +agw?) f§ + (the lower terms offg).
We define a polynomidl(z) in zby
: ]
L(z) = J;jajz . (3.3)
Let w be a rootw of L(z) = 0. Then we can write the entire functithasF = F, + F», where
d _ n
Fr= Z ¢ fgij +cofd+ ZQCJ' fjd.

=1 i=

It is easy to see that

Ck - WL(k) (w)

Sinceap # 0 anday # 0, we seew # 0. Thus, ifwis a multiple root oL (x) = 0 with multiplicity
k, then

¢i==¢_,=0.

Now we takex such thak is the largest multiplicity of the roots @f(x) = 0. Note thatl < k <
d— 1. DefineA(D) = k. We assume that < k/d. Takeao anda; so thata = 1— a3 /0.
Note that(d — k)ap < dai. By Theorem 1.2, we geM(r, f*D) = (14 0(1))Tg (r). We writeF,
asy|yj—dCvf’, wherev = (vp,---,vn). We now consider the following two subcases.

Subcasé,: The case wherE, does not contain terms withy+ v+ v, =d—jfor0< j <
K, that is, the coefficients of those terms are zero.

We will show that
Te(r) =d(140(1))Ts,(r). (3.4)

By the definition of characteristic functions, we easily see
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()= [ 106" (@] g+ O

< [, log" If22)" 5 +offogr)?
<d(1+0(1))T,(r).
Hence we geflr(r) < d(1+0(1))Ts,(r). Next we showd(1+ 0(1))Ts,(r) < Te(r). We first

assume thatr < k/d. Then(d—k)ap < daj. For any sufficiently large and forze C(r) \ £(r),
we have

ded J nofe
1=
Kexp((140(1))(d — k)ao(logr)?)
> [fa(2)| <|02|‘ exp((1+o(1))daz(logr)2) +o(1)>

> | f2(2)| (|| — |K exp((1+0(1))((d — K)o — daz) (logr)?)| +0(1))

Thus we get (3.4). We therefore obt@i(D) = a. Next assume that = k /d. We takefo, - - -, f,
such that

Tio(r) = ao(1+0(1))(logr)> and Ty (r) =o((logr)®) (j=1,---,n).
Then we easily see that
Ti(r) = (1+0(1))Tr,(r) and N(r,f*D) < (d—kK)(140(1))Ts,(r).

We writeF = F(Y 4-F(), whereF (M) = ¢ f¢-% andF(? = F —F (). Then itis easy to see that,
for any sufficiently Iargar and forze C( ) \s( ),

Z) < exp(—(1+0(1))ao(logr)?).

Hence we easily have
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N(r, f*D) = /C(r) log" |F(2)| g—f[Jro((Iogr)z)

> [, log" 1@~ 5 +o((logr )
=(d—k)(1+0(1))Tt,(r).
Hence we have the estimate
(d—K)(1+0(1))Ts,(r) = N(r, f*D).
This shows thads (D) = k/d.

Subcasdy: The case wher&, contains at least one term witly + v1 + v, =d — | for
0 < j <k, thatis, at least one coefficient of those terms is not zero.

We writeF as
d dei
F= ;b,- fof; ' +Fs,
]:

whereF; does not contain the termfg®™" £,2 with vo+ vy +v, =d—j for 0 < j < k. Let
k=max{j;bj # 0}. Since(d—k)aop < dai, we see(d—k)ag < kapg+ (d—k)ai. Then the
growth of f§f2~X is greater than those df % and f§. We may assume that the zero divisor of
fo (resp. f») is contained inR" (resp. R™). Then the exceptional sets fdg and f> does not
intersect. Indeed, by the construction fgf (see the proof of Lemma 2.1), we can writgas

follows:
~+00 z 2
fo(z) = 1-— ),
o2 \Dl( pv>

wherep,+1 > py > 0. Let (s, {» € C(r). Suppose thaRe {; > 0andRe (> < 0. Then, for any
r > 0, we have

<|p-2

v

122

v

‘ {1

for eachv. Hence we obtaiffo({1)| < |fo({2)|. This implies that the set
{zeC(r); Rez< 0}
does not intersect the exceptional setfgrHence we have our assertion. Thus we see
logM(r, f§197%) = (kao+ (d —k)a1 +o(1))(logr)?
and hence
N(r, f*D) = (kao+ (d —k)ay +0(1))(logr)2.

Thus we get
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Ko+ (d — K)oy

5 (D)=1— doc
_ (d=K)(ap—a1)
dC!O
(d—K)ag— (d—k—K)ag
<
dC(o
_K
=35

This implies that there exists a holomorphic curvevith d:(D) = a for any0 < o < k/d.
Next we consider case = k/d. If there exists the termid ¥ in F,, we take transcendental
entire functionsfy,---, f, so thatTfj(r) = o(TfH(r)) for j =2,---,n. Thend;(D) =«k/d. If
F, does not contain the terrff*", we get a holomorphic curvé with d;(D) = a by taking
(d—k—k)ap=(d—Kk)as.

Case Il. Some of thé;’s are not contained iR andP;({) # 0.

This case is essentially the same as the Case |. We may assurog-th@dandc; # 0. We
setA(D) = d. We take transcendental entire functiofas: - -, fn such thatTy,(r) = (logr)? +
o((logr)?) andTy, (r) = o(Ty;_,(r)) for j = 1,---,n. By a suitable choice ofy,---, f,, we see
f(C)ND # @. By this choice of thdj’s, it is clear thats (D) = 1. Now assume that < 1. We
take fg andf; as in§2. Take transcendental entire functidas - -, f, so thatTfj (= o(TfH(r))
for j=2,--- n. By Lemma 2.2, we have

Tt (r) = Tro(r) +0((logr)?)
asr — 4. We consider a holomorphic functidfy defined by
Fo=afi+  tcfl+F.
Then, by a method similar to the Case I, we get a holomorphic cuwigh ;(D) = a.

Case ll. The casd < d.

In this caseP = P». Without loss of generality, we may assume t@t= d. Now, we set
A(D) =d—do. We writeP, = PZ(O) + P2(1>, wherePZ(O) is the sum of monomials that contadg
and Pz(l> does not contaigp. Then we may assume

PO (2) = Z%Qo(Z') + L8 Qu(T) + -+ + Qu ('),

where {' = ({1,---,{n) and Q;({’) are polynomials in{’. We may assume th&@o({’) =

Qo({1,---,{p) with p < n. We take transcendental entire functiofas: - -, f, as follows. Let
Tt (r) = aj(1+0(1))(logr)? with a; < ag for j =0,1. Forj =2,---,p, we setfj; = bj f; +q,

whereb; are constants angj are transcendental entire functions such Tatr) = o((logr)?)

andTg; (r) = o(Tg;_,(r)). We also takeTt;(r) = o(Ts,_, (r)) for j = p+1,---,n. Note that for
any sufficiently large and forze C(r) \ £(r), we see

log|f;(2)| = au(logr)®+o((logr)?)
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for j =2,---, p. Define a holomorphic curvé by f = (fo,---, fy). LetF = PZ(O)(f) + Pz(l)(f)
i) d—do

ansz(j) = P2<J (f) for j =0,1. Now chooséby, - - -, bp so that the functiorf; ™ is contained in
F%. We definer (1) = {(Ao,A1) € (Zs0)% Ao+ A1 =1}. Setfd = f20f} for A € A(1). Then
we have

R 2 (2) 1R (Fpit, -+, ),
k=0 AeA (d—k);Ag<dg

wherea, are small functions with respect fg. Note thata g, 4_q,) is @ constant. Then, for any
sufficiently larger and forze C(r) \ £(r), we see

12 fy®(2)| = Cexp((doao + (d — do)ar +0(1)) (logr)?),
whereC is a positive constant. Hence
log|F2(2)| < (doao+ (d—do)az +o(1))(logr)2. (3.5)
On the other hand, we set
G(2) = Fa(2) — &gy d—dg) fo(2)© f1(2) 0~ %.
Then, for any sufficiently largeand forze C(r) \ £(r), we see
|G(2)| < exp((doaro+ (d — do)a1 4 0(1))(logr)?).

Hence we easily have

o ;) 9 |__cG@
R(2)| = [f,°(@f ()] <|a(do~d—do)| ng(Z) ff—dO(Z) )
> @L;’do)' exp((doao + (d — do) a1 +0(1))(logr)?). (3.6)

By (3.5) and (3.6), we get
N(r, f*D) = (doao+ (d — do)a1)(1+o(1))(logr)?.

Thus we obtain

d00{0+(d7d0)(11 )\(D) ay
ot(D)=1— dag =g <1—ao).

Therefore, for each positive numbaerless thani (D)/d, there exists a holomorphic cunfe

with &¢(D) = a. Furthermore, if we take entire functiorfs,-- -, fy such thatTs (r) = (1+

0(1))(logr)? andTy, (r) = o((logr)?) for j = 1,---,n. Then we have a holomorphic curéevith

0;(D) = A(D)/d. We have now shown the existence of holomorphic curfvesth the desired

property. Next, we will show that the above holomorphic curves can be constructed such that

they have the Zariski dense images.

PROOF OFZARISKI DENSENESS OF THE IMAGE OF. We first consider the Case Il. The
proof is somewhat complicated. Hence we first give an idea of the proof as follows. Suppose
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that there exists a homogeneous algebraic reld®f, - - -, f,) = 0 amongfj’s. We rewrite
R(fo,:--, fn) = O as follows:

—Asf§ = A371f§‘1+ A

Let {uy}/=, be the zero set ofy, where|uV\ < Uy1] and\uvt — +o asv — +oo. Then there
exist a subsequene{a&t\,J * of {uv * anda sequenc%z\,J . contained in a neighborhood
of {uy; }+ 1 such that the growth of the left hand side of the above equality is extremely larger
than that of the right hand side of itat asj — co.

Now, we give the proof of the Case Il. Sindg, (r) = o(Tr,_,(r)) for j =2,---,n, itis
easy to see thaty,---, f, have no homogeneous algebraic relation. Suppose that there exists
nontrivial algebraic relatioR( fo, - - -, fn) = 0 amongf;’s, whereR({o, - -, {) is a homogeneous
polynomial of degreé. If this relation does not contain one of thgwith j = 0,1, then we
easily see thaf has the Zariski dense image. Hence we consider another case, that is, the
relationR(fo, - - -, fn) = 0 contains both offy and f;. We recall that

Tt (r) = (1+0o(1)aj(logr)? (j=0,1)
with a1 < ag. We rewrite the above relation as follows:
AT +As 1§+ +Ag=0,
whereAj = Aj(f1,---, fn) andAs # 0. We also write
As=afi+a 1f '+ +ao,

whereap = ap(fo,---, fn) for p=0,---,t ands+t <|. We may assume that the zero divisor
of fo (resp. f1) is contained inR"™ (resp. R™). Let &(r) (resp. &(r)) be the exceptional set
for fo (resp f1). By the same reason in the Subca§e/ve seegy(r)Ner(r) = 3. The zero set
{uv =, of f1 can be written ag—r,, v ey Where{rv | Is a positive increasing sequence with
ry — +oo (v — 4). Let p be a positive number W|tb < 1. Set

Cy,={zeC; |z+ry|=pry,} and D, ={zeC; |z+r1,|<pry}.
Suppose that, # 0 for somep with 0 < p < t. We can takef, - - -, f, such that
Ta,(r) = (1+0(1))(logr)°

wherel < gp < 2. Then there exists a subsequercg }+ of {ry}}=, such thata, has no
zero inDy,. Indeed, we first note thah, (r) = o((logr)?). Suppose tha, has a zero in alD,
except for finite numbers of. By the construction of1, the zero divisor offy is 3% 2(—ry)
(see the proof of Lemma 2.1). For sufficiently langewe see

N(er70,ap) Z N(ZI’V,Q fl)/z

= (1+0(1))ay(log 2r,)?/2

= (1+o0(1))ay(logry)?/2.
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Thus we have a contradiction. Lé}, be the exceptional set far,. Then for eachn with
0 < n < p, there exists a numbé&t such that the sum of length of circles containedin N &p
is sufficiently smaller than /2)ry, for ry,; > R. Note that a sequende, y grows rapidly by
the construction. Thus there exists a positive nunypeith (n/2)ry; < yj < nry,; such that

M ={zeC; [z+ry[ =V}
does not interseef, (see Remark 1.3). Hence by Theorem 1.2, we see
loglap(z)| = (1+0(1))logM(|z],ap)

for ze I. For eachz € I, there exists a positive numbey such that|z| = Ty, where
|er — yj|/r\,j <1, < \rvj +yj|/rvj. Hencel—n < 1, < 1+n. Then we see

logM(|2,ap) = (1+0(1))(log|2])?
= (1+0(1))(logry, +logt,)?
> (1+0(1))(logry, ) (1+log(1 - )/ logr, )"
= (140(2))(logry;)?
= (14 0(1))logM(ry;,ap).
Thus we get
log|ap(z)| > (1+0(1))logM(ry;, ap)
forze ;. Set
Z(Yj5ryy) = {zeC; \z+rvj\ <V}
Sinceay is a nonvanishing holomorphic function E(y;;ry, ), we see
log|ap(2)| > min{log|ap(2)[;z€ I} > (1+0(1))logM(ry;, ap)

for ze Z(yj;ry;). We now consider the case bf£ 0. Let € be a sufficiently small positive
number less thamin{1, a1 }. Then there exists a positive intedédepending orf; ande that
has the following property: If > N, then there exists a poiat (C(ry,; )\ €1(rv;)) ND(ry;) such
that

log|fi(2)| > o1 (1— 5)(|09fvj)2.
Hence there exists), € C(Fv,-) such that
log|f1(z,)| = B(logry;)?,

where0 < 8 < a; — €. Note thalzvj € sl(rvj) andsl(rvj) is contained in a small neighborhood
of —ry,. Without loss of generality, we may assume that
1 -1 ao

Tl == <2
5 < +atf1+ +atf{_
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in some neighborhood af,. Sincego(rv;) Nex(ry;) = 2, we get
log|As(zy, ) £8(2u;)| = (1+0(1)) (a0 +tB) (logry,)2.
In the case of = 0, we have
l0g|Ad(z,;) £§(20,)| = 10g|ao(zy; ) 1§z, )| = (1+0(1))scto(logry, 2.
On the other hand, in the both of two cases, we see
log|As—1(zv;) f§ H(zv,) + -+ Ao(zy;)| < (140(1))((s— 1)ao+1B)(logry, ).

We again rewrite the above algebraic relation as follows:

—Asfs = Asaf§ -+ Ao,
Now we takeB such thaD < 8 < a3 — € andI3 < agp. Since

sag+tB >sag> (s—1)apg+I1B >0,

we have a contradiction by letting— +o. Therefore, we conclude théthas the Zariski dense
image in this case.

We next consider the Case |. Note thigtand fg + 1 have no nontrivial algebraic rela-
tion by homogeneous polynomials. Suppose that there exists nontrivial algebraic rBlgtion
(fo+1)w,---, fn) =0, whereRis a nonzero homogeneous polynomial. We rewrite this relation
as follows:

Au(fo+ 1) +Au1(fo+ )" -+ A =0.
Sincefy and fo + 1 have no nontrivial homogeneous algebraic relation, each
Aj =Aj(fo, f2,---, fn)
contains at least one d§, - - -, f,. Thus we can write the above relation as follows:
—Bsf§=Br_1fy 1+ +Bo,

whereB;j = Bj(f2,---, fn). Now, we have a contradiction by the above method.

We finally consider the Case Ill. In this cadg,= bjf, +q; for j = 2,---, p, whereb; are
constants andj; are transcendental entire functions such Tatr) = o((logr)?) andTg, (r) =
0(Tg; ,(r)). We also recall thafy (r) = ar(1+o(1))(logr)?for j =0,1 andTr,; (r) =o(Ty,_, (r))
for j = p+1,---,n. SinceTs;(r) = o(Ts,_,(r)) for j = p+1,---,n it is easy to see that
fp+1,---, fn have no homogeneous algebraic relation. Suppose that there exists nontrivial al-
gebraic relatiorR(fo, -, fn) = 0 by a homogeneous polynomiBl If the above relation does
not contain one of théy andfy, it is easy to see thdthas the Zariski dense image. If the relation
R(fo,- -+, fn) = 0 contains both of thdy and f1, we rewrite the above relation as follows:

S .
AJ(le"'7Qp7 fl7 fp+l"",fn)fj =0.
2 ;

SinceTy, (r) = o((logr)?) for j = p+1,---,n andTg; (r) = o((logr)?), we now have a contra-
diction as in the Case Il. Therefore, we have completed the proof. O
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REMARK 3.7. We give here note on the constantD) in Theorem 3.2. LeP({) be a
homogeneous polynomial of degresuch thaD = {P = 0}. Letd; be the degree ig; that are
contained inP. Setd = Mino<j<nd;. LetL(z) be the polynomial in (3.3) and denote kythe
largest multiplicity of roots of the equatidr(z) = O, wherel < k < d — 1. Note thatA (D) may
be dependent od andd. We do not know whethek (D) is sharp or not. We now give a list of
the constanA (D) obtained in the proof of Theorem 3.2:

(I) If d=d, thenA(D) = k.

() If d<d,thenA(D)=d—d.

We give here some examples of irreducible hypersurfaces of ddgree

ExampPLE 3.8. We define an irreducible hypersurfadg of degreed in P,(C) by
d+-+f =0

Note thatDy has just one singular poirii,0,---,0). In this caseA (D) = d. Hence, for an
arbitrary positive real number not greater than one, there exists a holomorphic clirv€ —

P, (C) with the Zariski dense image such thatDq) = a. Note that there exist nonconstant
holomorphic curves fron€ into P,(C) that omit the above hypersurfaBg of arbitrary high
degree. Let}(z) and¢(z) be arbitrary entire functions and a d-th root of —1. If we define a
holomorphic curvef : C — Py(C) by

f(Z) = (W(Z)ad’(z)aﬂd’(z)vl»'"al),

thenf omitsDy. Note thatf is linearly degenerate. This example is essentially due to P. Kiernan
(cf. [G1, Part 7]).

EXAMPLE 3.9. We next give an example of a nonsingular hypersurface. We define a
nonsingular hypersurfac® in P,(C) of degreed > 2 by

$ -0+ 8+ ; 8 =o.
0 1 2 ];3 j

In this case, we hava (D) = 1. For the above hypersurfac, there exists a nonconstant
holomorphic curvef : C — P,(C) omitting & for all d > 2. Indeed, let$ (z) be an arbitrary
entire function. We take entire functiogs, - - -, ¢, such that

$3+-+ 5 =0.

Define a holomorphic curvé: C — P, (C) by

12~ (ex0( 3216(2)) ex09(2) 1 ba(2) o a2 ).

Then we sed (C) NS = D. Note thatf is algebraically degenerate. This example is essentially
due to M. L. Green (seed2, p. 321]).

ExamMpPLE 3.10. Letn=2and define an irreducible cur@ by

Gof3 i =0.
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Note thatCq4 also has just one singular poiftt, 0,0), if d > 3. We also note thaty is a rational
curve. FoiCy, we haveA (Cy) = d — 1 by Theorem 3.2. Hence, for an arbitrary positive number
a < (d—1)/d, there exists a holomorphic curve with the Zariski dense infag€ — P»(C)
such thads (Dq) = a. Note that a holomorphic curvieconstructed i§2 has the above property.
Indeed, letf be as in§2 and assume = 1— aj/ap. In this cased > ap/a1. We consider an
entire functionF defined by

F=fofdt—fd
Then, by a method similar to the Case | in the proof of Theorem 3.2, we have the estimate:
Te(r) = N(r, *Cq) +0((logr)?) = d(1+0(1)) T, (1).
Therefore, we ged; (Cy) = a.

REMARK 3.11. We note that, for each positive integinot less than two, there exists a
holomorphic curvef : C — P,(C) such thatf omitsCy. In fact, if we definef by

f(2) = (expz+exp(1—d)Z, 1,exp?),

then we easily se&(C)NCqy = D (cf. [G2, p.319] and §2 p. 178]). Note thaf has the Zariski
dense image.

We note here that there has been another method to construct holomorphic curves with
deficiencies. The holomorphic curves constructed above is of order zero. On the other hand, N.
Toda has pointed out that the above examples of holomorphic curves can be proved by making
use of Ahlfors-Weyl's method (se&\]). In his construction, he used exponential curves and
obtained holomorphic curves of order one with deficiencies. Note that this method works in the
case that can be reduced to the hyperplane case. Inde&g betthe Fermat surface degrée
that is,

Fa:8+--+g8=0.

Then our method gives a holomorphic curvevith é¢(Fy) = a (0 < a < 1/d), but we cannot
construct a holomorphic curve with positive deficiencyfgiy Ahlfors-Weyl's method. Hence
it seems that our method has a wide range of applicability.

84. Construction of meromorphic mappings with deficient divisor.

In this section, we construct meromorphic mappirigecC™ — P,(C) with deficiency for
a preassigned divisor. In our construction, we essentially use the method of the construction of
holomorphic curves i§3. Throughout this section, we assume> 2. Let F be a holomorphic
function onC™. As the case ofn= 1, we define

M(r,F)=Z@§g§IF(Z)I~

LEMMA 4.1. LetF be a holomorphic function o8™. Then

1—(r/R)?

Tr (1) +O(1) <logM(r.F) < 75— enn

(Tr(R)+0O(1))
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for arbitrary positive numbers andRwithr < R.

For a proof, see, e.g., Noguct[Lemma 1]. Set(k) = ((1—1/k)®™) /(1 (1/k)?) for a
positive numbek. Itis clear thatd (k) — 1 ask — +. By Lemma 4.1, we see

Te(r/K)4+0(1) < logM(r /k,F) < 8(k)~(Te(r) + O(1))

for positive number& andr with k > 1. For a holomorphic functioff onC™ andy € C™ with
llyl| = 1, we defineF, : C — C by F,(s) = F(sy) for se C. HenceF, is the restriction oF (z) to

a complex line/y through the origin defined by, : z=sy = (sy1,- -, Sym). Setyp:=(1,0,---,0).
Take a holomorphic functio(z) onC so thatTy (r) = a(1+0(1))(logr)?. Let the zero divisor
of ¢ is ¥;vjpj. We define a holomorphic functiof(z) on C™ by F(z) = ¢(z1)g(2), where
z=(z,---,zm) andg is a nonzero polynomial in For the reason why we take the polynongal
see Remark 4.5 below. Note tHfatz) has zeros dtlj, whereH; denotes the hyperplane through
71 = pj that is perpendicular to thg-axis. Then it is easy to see that

M(r,F) = (1+0(1))M(r,Fy,) = (1+0(1))M(r,¢). (4.2)

Note thatN(r,0,F,) < N(r,0,F,) + O(logr) for sufficiently larger. We will give an estimate
for N(r,0,F) by Te(r). Itis clear thatN(r,0,F) < Te(r) + O(1). For sufficiently small positive
real numbee, setS = {ze C™;|z| < €}. Let (1) be the unit sphere i€™ and denote by
the invariant measure 081) normalized so that(S(1)) = 1. SetS, = S(1)NS:.. Note that
we cannot get a good estimate f(r,0,F,) if y € S(¢). For instance, we sel(r,0,F,) =
O(logr) for y € S(1) with y= (0,2, -, ¥m). Lety= (v, V2, -+, ¥m) € 1) \ S and denote by
H, the hyperplane through =r (r € R.o) that is perpendicular to trg-axis. SinceH, N¢, =
{P:(r,22,---,Zm)}, there exists just onge C* such thatsyy =r andsy; = z; for j =2,---,m.
Hence we see=r/yi. Sincey € S(1)\ &, this implies that|P; || =r/|y1| < r /€. Hence to each
zerop of Fy, with | p| = r there corresponds the zepbof F, with |p'| =r/y1. Thus we see

N(r/g,0,F,) > N(r,0,F,) +0o((logr)?) = (1+o0(1))a(logr)?
and hence
N(r,0,F)) > (1+0(1))a(loger)? > (1+0(1)) (T, (r) + 20 (loge)(logr)).

Now, we will use the following averaging formula (se&1] p. 91]):

N(r,O,F):/ N(r,0,F,)o(y) + O(1).

yes(1)
By the above formula we see
N(r,0,F 2/. N(r,0,F))a(y
(rOF)> [ NrOF)(y)

>

/yew\se(lJrO(l))(TF(r)+20(|098)(|09r))0(v)
=(1-0())(1+0(1))(Te(r) +2a(loge) (logr)).
Thus, for a fixede, we have the following estimate:

(1-0(8))(1+0(1))(Te(r) +2a(loge)(logr)) < N(r,0,F) < Te (r) + O(1). (4.3)
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We now take transcendental entire functidpgs - -, f, of one complex variable satisfying
the following condition: Forj = 0,1, let

Tr;(r) = aj(1+0(1))((logr)?),

wherea; < ao. Forj =2,---,n, we takefj so thatTs; (r) = o(Ts,_,(r)). By making use of the
above method, we regaifg as entire functions 068", that is, we defin&;j(z) = fj(z1)g;(2) for
j=0,---,n, whereg,(z) are some nonzero polynomials. Now, we assumeRf(aj = fj(z) for

j =0,1. We now define a meromorphic mappifigC™ — P,(C) by f = (Fy,---,F,). Then we
have the following lemma:

LEMMA 4.4. Letf be as above. Then

O(k)logM(r,Fo) < (1+0(1))Ts(r) <logM(r,Fo).

PROOF. As in the proof of Lemma 2.2, we easily have
(14 0(2))T¢(r) < logM(r, Fo)

by definition of T (r). On the other hand, by (4.3) we see

T > [ loglFo(2)lo)
= N(r,0,Fo) +O(1)
> 6(k)(1+40(1))logM(r /k, Fo)
> &(K)ao(1+0(1))((log(r /k))?)
= 5(k)ao(1+0(1))((logr)?).
Therefore we have the desired conclusion. O

REMARK 4.5. We can construct the above meromorphic mapgimagth the Zariski dense
image. Indeed, the argument in the proof of Theorem 3.2 also works in this case. Furthermore,
if m> n, we have a dominant meromorphic mappingy a suitable choice af;’s. For instance,
we can makef to be dominant by takingy(z) = 1 andg;(z) = z; for j > 1. Hence we may
assume that is dominant ifm> n.

We first give a generalization of Theorem 3.1 as follows.

THEOREM4.6. Leta be an arbitrary positive real number less than one andHdie an
arbitrary hyperplane irP,(C). Then there exists a meromorphic mappingC™ — Pp(C) with
the Zariski dense image such tif&a(H) = a. If m> n, then there exists a dominant meromorphic
mappingf : C™ — Py(C) with &t (H) = a.

PrROOF.  Without loss of generality, we may assume that= {{; = 0}. We consider
a meromorphic mapping : C™ — P,(C) as in Lemma 4.4. Choose suchfaso thatf has
the Zariski dense image. Now we take and ai such thatl — o = a1/ap. We note that
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(140(2))Ts, (r) = N(r, f*H) and T¢(r) = (1+0(1))Tt,(r). Hence by (4.3), Lemma 4.4 and
lettingr — 4o, we see

1- - (£) <a <1-a00 (2).
Qo Qo
Lettingk — + ande — O, we getd; (H) = a. O

We next consider the cagee |L(H)®Y| (d > 2). In this case, by making use of (4.2), (4.3)
and Lemma 4.4, we have the following theorem by the same method in the proof of Theorem
3.2

THEOREMA4.7. LetD € |L(H)®Y| be an arbitrary divisor inP,(C), whered is a positive
integer. Then there exists a positive consta() depending only o with A (D) < d that has
the following propertyFor each positive number with a < A (D)/d, there exists a meromorphic
mappingf : C™ — Py(C) with the Zariski dense image such thatD) = a. Furthermore, if
m > n, then there exists a dominant meromorphic mapgdin@™ — P,(C) with ;(D) = a.

We note that the number(D) is as same as in Remark 3.6. It follows from Theorem 4.7
that we can find many examples of singular divisors and meromorphic mappi@j8— P,(C)
for which Griffiths’ defect relation does not hold. For instance, we consider the examples of
divisor as in§3. Namely, letCq be a curve as in Example 3.9 aoda positive real number less
than(d — 1)/d. Then there exists a dominant meromorphic mapgdin@™ — P,(C) such that
0t (Cq) = a. In particular, there exists a dominant meromorphic mappinG™ — P»(C) such
that

. d-2
==
Hence we also have an example for which Griffiths’ defect relation does not hold. We note

that there exists a dominant meromorphic mappin€? — P,(C) omitting C4 for eachd (see
Shiffman B2, p. 178]).

0t (Cq)

REMARK 4.8. LetP andd be as in§3. SupposeNthad > 3. We note that, id < d—2,
thenD has a singular point. Indeed, we may assumedhaidy. We write P as follows:

P() = Z§*Qu(Q) + (),

whereQ,({) does not contaifo and {8~ is the greatest common divisor B— Q,. Since
d—k <d-2, we see thabD has a singular pointl,0,---,0). Setw; ={j/{ofor j=1,---,n.
DefineP(w) = {;9P({), wherew = (wj,---,Wq). If d —do > n+ 1, then the polynomialP(w)
has a zero at0,---,0) with multiplicity at leastn+ 1. HenceD is not normal crossings at
(1,0,---,0). This fact shows that the hypothesis in Griffiths’ defect relation, th& is,at most
simple normal crossings, cannot be simply dropped.

8§5. Effect of the resolution of singularities to deficiencies.

In this section we investigate how affects the resolution of singularities of divisors to defi-
ciencies. I3, we considered an example of the singular cyeefined by
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Ca: gyt —4f =0.

This curve has only one singular poiR{1,0,0), if d > 3. If m: Qp(P2(C)) — P2(C) is a
monoidal transformation with the cent®y then this gives a resolution of singularity Gf

Namely, let€ andC be the total transform and the proper transfornCgf respectively. We
also denote b¥ the exceptional curve. Then we have

C=(d—1)E+C

andC is a nonsingular curve ip(P2(C)) (see Lemma 6.1 i§6). We define a meromorphic
mappingf : C™ — Qp(P2(C)) by f = m 10 f. We will give an estimate fod;(C) depending

on the structure of the singularity. To this end, we have to calculate the Chern form of the line
bundleL(C). The precise calculation of the Chern form and the resolution of singularity will be
done in the next section and hence we freely use the resu§. iThe following is our main
result in this section:

PrOPOSITIONS.1. Leta andf be as in Exampl8.9. Then

= a
A s T I
In particular, the estimate
a - d-1
a<6f(C)< 201

is valid.

PrRoOOF. It suffices to give a proof in the cage= 1. Let >; be a Hirzebruch surface of
rank one, that is¥; is a nonsingular subvariety &(C) x P1(C) defined by

21 ={(¢0,41,{2;é0,&1) € P2(C) x P1(C); {260 — {1&1 =0},

whereé = (&o, &1) is a homogeneous coordinate systenPgfC). Then it is well-known that
21 =Qp(P2(C)). Let p1: 21 — P1(C) andpy : 21 — P2(C) be the natural projectiqns. Lei;
(resp. wy) be the Fubini-Study form oR1(C) (resp.P»(C)). We first calculateN(r, f*E). We
note that

Y€ = {(1:x:tx;1:1); x4 — (tx)9 "1 =0}
and
HmNC={1:1y:y;1:1); (Ty)d —y9t =0}

In %y, the exceptional curvi is defined byx =0 andCis defined byx—t9-1 = 0. On the other
hand, in%4, the exceptional curvE is defined byy = 0 andC is defined byr%y — 1 = 0. Note
thatt = 1/t. By the construction of , we see

N(r, fE) = N(r,0, f2)

— o((logr)?).
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Hence we havel(r, f*C) = N(r, f*C) 4 o((logr)2). This shows
N(r, f*C) = d(1+0o(1))ay(logr)?.
Next we show
Tr(rL(C)) = Ti(r) +(d = )Ty, (r).

By Lemma 6.4 in§6, we havec(L(C)) = piw1+ (d —1)pswo. By Jensen’s formula and the
definition of f, we see

— r dt
:/ / “(prw1+ (d—1)prwp)
1 A(t)

i

/ dd°|og<1+ + 2) +(d— 1/ dt/ dd°log <1+ ?)
1
) f2(2) ) / ( f2(2) )
= lo ——| ) =—=+(d-1 log( 1+ |-—=
/ g( o | )2n @Y e, 9\ T |) 20
=Ti(r)+(d—1)T, (r).
This shows our assertion. Thus we get
T¢(r,L(C)) = (ao+ (d— 1)az +0(1))(logr)%.
Hence we have
N(r,C)
o:(C —limsup—————~%—
)= prTf( . L(C))
1 d(1+o0(1))az(logr)?
-7 ro+e (ag+(d—1)ay+0(1))(logr)?
o
1+ (l-a)(d-1)
Therefore we have the desired conclusion. O

REMARK 5.2. We give here a remark on the above estimate3¢€). We first recall the
defect relation for dominant meromorphic mappings ibfoLet L be an ample line bundle over
2, andK(27) the canonical bundle of;. Set

y(L) = [K(fl)*} =inf{y e Q; yci(L) +c1(K(Z1)) > 0}.

LetDj € |L| and assume thd&; + - -- + Dg has simple normal crossings. Then a defect relation
for dominant meromorphic mappinds C™ — 5 is given by the following (see§2, Corollary
3.3)):

S 5
D
a°
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We will calculate the value of(L). For the line bundlé., there exists an ample divisbr such
thatL = L(D). We may assumB = aE + bF,, wherea andb are positive integers with < b.
LetKx, be the canonical divisor df;. It is well-known thats, = —2E — 3F,. Then we see

yD+Ks, = (ya—2)E + (yb—3)Fe.

By making use of Nakai’s criterion (cfH, p. 380]), we easily have

y(L):i if 3a—2b>0 and y(L):g if 3a—2b<0.
b—a a
If L= L((E), we havey(L((f)) = 2. In the case where target spaces are complex projective spaces,
an ample line bundlk is written as. = L(H)®9 for some positive integed. Hence we have the
defect relation and the conjecture mentioned in the Introduction. For a meromorphic mapping
f :C™ — 3, with the Zariski dense image, we expect that the above defect relation holds under
a suitable condition on singularities bt

§6. Appendix.

In this section, we give the resolution of singularity@yf, and calculate the Chern classes
of line bundles determined by the proper transf@mf Cy. For background materials, we refer
to [GH] and [H]. We first give the resolution of singularity. Recall the singular ciByelefined
by zozg—l — Zld = 0. This curve has only one singular poR(t,0,0) if d > 3. Then we have the
following:

LEMMA 6.1. Letr: Qp(P2(C)) — P2(C) be a monoidal transformation at the center
Denote byC andC the total transform and the proper transform@f, respectively. Then the
total transformC is given by

€= (d—1E+C,
whereE is the exceptional curve of the first kind and the proper transfGrisinonsingular.

PROOF. LetUg be the affine open set determinedfy:~ 0 in P,(C). Setx = {1/{o and
y={2/{o in Up. We define an affine cun@ such thatty = C4nUy. Then we have the defining
equation of the affine curvg, as follows:

x4 —yd-1 0,

We now give a resolution of singularity 6% at(x,y) = (0,0). Letw : Uy — Up be the blowing up
centered af0,0). Let {(x1,y1)} and{(x2,y2)} be local coordinate systemsliy. By definition
of a blowing up, we consider the following two cases:

Case |. The pull back aty by x = X1, y = y1X1.

In this case, we have one of the affine part of the total transfor@yadefined byx§ —
y_‘l"lx‘f‘l = 0 and the exceptional cuntg, defined byx; = 0. We also have a nonsingular curve
Co defined byx; = y2~1. Since

dime Cl[x1,ya]l/(xa, % —ys 1) =d -1,
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we see tha€ andE; intersects each other @, 0) with multiplicity d — 1.
Case II. The pull back o€y by X = Xay2, y = Y.

In this case, we see that another part of the total transform defingdi/by- ﬂfl =0and
the exceptional curve; is defined byy. = 0. We also have a nonsingular cur@ defined by
xgyz —1=0. Note that the multiplicity of, isd —1 andC{NE, = @.

Now we have the exceptional curve of the first kiady patching ugE; andE;. We also
have the proper transfor@ of Co. By taking a completion o€, we have the proper transform
C of Cy. Itis clear thaCC is nonsingular. Therefore we have the desired conclusion. O

Next we calculate the Chern form of the line bund(€). Let 2; be the Hirzebruch surface
of rank one, that is,

21={({o:¢1:{2é0:é1) € P2(C) x P1(C); &o{o—&1{1 = 0}.

Then it is well-known thaQp(P2(C)) = 23. Let p; : P2(C) x P1(C) — P2(C) andp; : P2(C) x
P1(C) — P1(C) be the natural projections. We also denoteythe restriction ofp; to 2.
Then it is clear thaE = p;1((1:0:0)). LetFo = p271((0: 1)). It is well-known that the

divisor class group CK;) is generated by, andE. To calculate the Chern form &f{C), we
first determine a local coordinate systemXn Set

Ui={(0:41:{2) €P2(C); {{#0} and Vj={(S:¢1) € P1(C); & # 0}

We also seiMj = (U x Vj)NZ1. Lett =¢&1/&oonVoandt = &/&1 onVi. Letx={1/{o
andy = {2/{o on (Up x P1(C))NZ1. If we set?Zp =Woo and %1 = W1, then(x,t) and(y, 1)
give local coordinate systems a#p and %, respectively. Leu = {o/{1 andv = (/{1 on
(U1 x P1(C))NZ;. If we set? = Wi, then we have a local coordinate systant) on 2. Let
z={o/{2 andw = {1/, on (Uy x P1(C))NX3. Set%s =Wh1 and determine a local coordinate
system(z T) on %;. Hence we have a system of local coordinate neighborhé@ds - -, %43}
as follows:

U={(L:x:tx1:1)}, 24={(1:1y:y;1:1)},

U ={(u:1:t;1:t)}, ZB={(z:1:1;1:1)}.
The change of local coordinate systems is given by

y=tx, =1/t on %N, u=1/x on N%,

X=T1/z, T=1/t on %N, y=t/u,t=1/t on 24N,

z=1/y on 24N, z=u/t, T=1/t on YLNU.
Note that7; = C? for all j.

Next, we calculate transition functiorgl,g} of the line bundleL(F). It is clear that
oNFe = %Nk, = @. We also have

UNFe ={(1:1y:y;7:1); T=0} and %NFe={(z:7:1;7:1); T=0}.
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Hence we have transition functiofig/, g } as follows: (o1 = Yoz =t andyip2 = 1. Note that we
can determine other transition functiogs,, 13 and Y3 from the following relations:yy, =
Y1oPo2, Y13 = Y1oPoz andyez = Yhoos. Note thatz, NE = %3 NE = @. Since

UNE={(1:x:tx1:t);x=0} and Z4NE={(1:1y:y;7:1);y=0},

transition functiong ¢} of L(E) are given bypo1 = T andgo2 = ¢o3 = x. Note that the total
transformC of Cy is represented by

C={(¢o: 411 &1 &) € P2(C) x P1(C); &0l2 = &1, ol = ¢f'}
in Z1. Then we have
%NC={(1:x:tx1:t); x4 — (x4 1 =0},
mnC={(1:1y:y;1:1); (1) —y* =0},
UsNC={(u:1:t;1:t); 1—utd1 =0},
UsnNC={(z:1:1;1:1); T9—z=0}.

Hence we have transition functiofigyg} of L(C): o1 =1, @o» = x9 and gz = y9. Note that
@01 = (Y01)4(@01)?, Po2 = (Po2)4(P02)® andos = ((o3)?(¢os)?. Thus we see

€ =d(E+Fx) (6.2)

in CI(Z1). Let wy andw; be the Fubini-Study forms oR»(C) andP4(C), respectively, that is,
w1 = dd®log||€]|? andw, = dd®log||Z||?>. We obtain the following local expressions @f on
Vo andw, onUg, respectively:

Vo1 odtadt V1 (dX/\dx+dy/\dy_ (xdx+Ydy)/\(xdx+VdY)>
2m (1+tP2 7T 2m U 1+ XPH Iy (1+ [+ y[?)?

w1 =

Next we take curve€; on 21 such that:(L(Cj)) = wj for j = 1,2. Then we see
V-1 dtadt 1
tec 2 (1+[t}?)%

V-Idtadr
(=0} 21(1+|1|2)2

C1~E = / p’gwl =
E

)

C]_'Foo :/F p’éwl =

G E= / piwy = / piw, =0,
E {x=0}

Vv —1dyAdy
C~Foo:/ £ :/ i) ALY )
2R = J 2T e 2m(it lyP)2

Take curve<C; on ; such thatcy(L(Cj)) = wj for j = 1,2. We writeC; as follows: C; =
a1E +b R, andC, = axE + bR, wherea; andb; are integers. Hence, by the above calculation,
we have tha€; = F, andC, = E + F,. Thus we have
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prwr =Ci(L(Fw)),  Paw2 = Ci(L(E) ®L(F)). (6.3)

Therefore, by Lemma 6.1, (6.2) and (6.3), we have the following:

[G1]
[G2]
[Gr]
[GH]
[H]
[Hal]
[Ha2]
M]
[N]
[S1]

(2]
(Si]

(vi]
[v2]

W]

LEMMA 6.4. The Chern form oE(C) is given by

€1(L(C)) = powz2 + (d - 1) prws.
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