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A remark on Schubert cells and the duality of orbits on flag manifolds
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Abstract. It is known that the closure of an arbitraryKCCC-orbit on a flag manifold is ex-
pressed as a product of a closedKCCC-orbit and a Schubert cell ([M2], [Sp]). We already applied this
fact to the duality of orbits on flag manifolds ([GM ]). We refine here this result and give its new
applications to the study of domains arising from the duality.

1. Duality of orbits on flag manifolds.

Let GCCC be a connected complex semisimple Lie group andGRRR a connected real form ofGCCC.
Let KCCC be the complexification inGCCC of a maximal compact subgroupK of GRRR. Let X = GCCC/P
be a flag manifold ofGCCC whereP is an arbitrary parabolic subgroup ofGCCC. Then there exists a
natural one-to-one correspondence between the set ofKCCC-orbitsSand the set ofGRRR-orbitsS′ on
X given by the condition:

S↔ S′⇐⇒ S∩S′ is non-empty and compact (A)

([M3]). In the following, we will identify orbitsS with KCCC-P double cosets andS′ with GRRR-P
cosets.

We defined in [GM ] a subsetC(S) of GCCC by

C(S) = {x∈GCCC | xS∩S′ is non-empty and compact inX = GCCC/P}

whereS′ is theGRRR-orbit onX given by (A).
If S is closed, thenS′ is open ([M1]) and so the condition

xS∩S′ is non-empty and compact inGCCC/P

implies

xS⊂ S′.

Hence the setC(S)0 is the cycle domain (cycle space) forS′ ([WW ]) whereC(S)0 denotes the
connected component ofC(S) containing the identity.

On the other hand, letSop denote the unique openKCCC-B double coset inGCCC whereB is a
Borel subgroup ofGCCC contained inP. (We will keep this notation for the whole note.) ThenS′op

is the unique closedGRRR-B double coset inGCCC and the condition

xSop∩S′op is non-empty and compact inGCCC/B

implies
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xSop⊃ S′op.

Let {Sj | j ∈ J} be the set ofKCCC-B double cosets inGCCC of codimension one andTj = Scl
j denote

the closure ofSj . The setsTj will play an important role in our constructions.
The complement ofSop in GCCC is written as

⋃

j∈J

Tj

(by Theorem 2 in Section 2). So the setC(Sop) is the complement of the infinite family of
complex hypersurfaces

1T−1
j ( j ∈ J, 1 ∈ S′op)

and hence the connected componentC(Sop)0 is Stein.
This domain is sometimes called the “Iwasawa domain” since it is a maximal domain where

all Iwasawa decompositions can be holomorphically extended fromGRRR.
In [GM ], we defined

C =
⋂

C(S)

where we take the intersection for allKCCC-orbitsS on X on all flag manifoldsX = GCCC/P of GCCC

and conjectured

C = D̃0Z

(Conjecture 1.3) whereD0 = D̃0/KCCC is the domain introduced by [AG] (which is sometimes
denoted asΩAG) andZ is the center ofGCCC. For connected components, it means

C0 = D̃0. (B)

This conjecture (B) was solved recently as follows. It is proved in Proposition 8.3 of [GM ]
that

C0 = C(Sop)0.

In other words,C(S)0 is minimal whenS= Sop. We believe that it is one of central facts of this
theory since it gives a very strong estimate of allC(S) throughC(Sop) only. So (B) is equivalent
to the equality

C(Sop)0 = D̃0 (C)

which was recently established by many people’s contributions as follows.
The domainC(Sop)0 was considered in [BGW] for SU(p,q) (under the name “polar set”)

and for general cases in [G]. In [G] was conjectured (C) as well as the coincidence ofD̃0 with
the universal domain of all analytic extensions from the Riemann symmetric spaces.

In 1999, J. Faraut and T. Kobayashi constructed some Hermitian symmetric domainsΞ0

containingGRRR/K in the classical case and gave a proof forΞ0⊂C(Sop)0 in an unpublished note.
Using this inclusive relation, they also showed that all the joint eigenfunctions onGRRR/K with
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respect toGRRR-invariant differential operators onGRRR/K can be holomorphically extended to the
domainsΞ0. It is known thatΞ0 are subdomains of̃D0 and that they coincide in some cases
including Hermitian cases (c.f. [BHH ], [KS2]).

Later, Kr̈otz and Stanton proved the inclusion

D̃0 ⊂C(Sop)0 (D)

for all classical cases in [KS1] and also applied it to holomorphic extension of solutions of
invariant differential operators. Independently, [GM ] proved the equality (C) for all classical
cases and exceptional Hermitian cases. Huckleberry gave a general proof of the inclusion (D) in
[H] using the strictly plurisubharmonicness of a funtionρ which is proved in [BHH ]. Recently,
the second author gave a general proof of (D) without complex analysis ([M4]).

On the other hand, Barchini proved the opposite inclusionC(Sop)0 ⊂ D̃0 by a general argu-
ment in [B].

REMARK 1. In [FH], the authors deduce the equalityC0 = D̃0 from their result about
C(S) for closedSand Proposition 8.1 in [GM ]. As we showed above, this equality is already the
consequence of Proposition 8.3 in [GM ] and the equality (C). So it does not need the results in
[FH].

2. Schubert cells in the category ofKKKCCC-BBB double cosets.

The principal idea of our considerations in [GM ] was thatC(S)0 will be essentially indepen-
dent of neitherSnor the flag manifoldX = GCCC/P. To justify it, we need to build bridges between
C(S) for differentS and for it we need to see connections between differentKCCC-orbits. It turns
out that Schubert cells are very efficient tool for such considerations as in Section 2 and Section
8 in [GM ]. They give a possibility to obtain an important information about generalC(S) from
a consideration of simplestS. Here we refine connections betweenKCCC -orbits and Schubert cells
and give more examples of applications.

For a simple rootα in the root system with respect to the order defined byB, we can define
a parabolic subgroup

Pα = B∪BwαB

of GCCC such thatdimCCC Pα = dimCCC B+1.

LEMMA 1. LetS1 be aKCCC-B double coset. Then we have:
(i) If dimCCC S1Pα = dimCCC S1, thenScl

1 Pα = Scl
1 .

(ii) If dimCCC S1Pα = dimCCC S1+1, then there exists aKCCC-B double cosetS2 such thatScl
1 Pα =

Scl
2 .

PROOF. Though this lemma follows easily from [M2] Lemma 3, we will give a proof for
the sake of completeness. WriteS1 = KCCC1B. Then we have a natural bijection

(1−1KCCC1∩Pα)\Pα/B∼= KCCC\KCCC1Pα/B = KCCC\S1Pα/B

by the mapx 7→ 1x.
(i) If dimCCC S1Pα = dimCCC S1, then(1−1KCCC1∩Pα)B/B is Zariski open inPα/B = P1(CCC) and

hence it is dense. So we have
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Scl
1 = (KCCC1B)cl ⊃ S1Pα ⊃ S1

and thereforeScl
1 = Scl

1 Pα .
(ii) SupposedimCCC S1Pα = dimCCC S1 + 1. Then there exists ap ∈ Pα such that(1−1KCCC1∩

Pα)pB/B is Zariski open inPα/B = P1(CCC) since the number ofKCCC-B double cosets inGCCC is
finite. If we writeS2 = KCCC1pB, then we have

(S2)cl ⊃ S1Pα ⊃ S2

and thereforeScl
2 = Scl

1 Pα . ¤

THEOREM 1. Let S1 be aKCCC-B double coset inGCCC andw an element of the Weyl group
W. Then we have:

(i) Scl
1 (BwB)cl = Scl

2 for someKCCC-B double cosetS2.
(ii) (minimal expression) There exists aw′ ∈W such thatw′ ≤ w (Bruhat order), `(w′) =

dimCCC S2−dimCCC S1 and that

Scl
1 (Bw′B)cl = Scl

2 .

Here`(w′) = dimCCC Bw′B−dimCCC B is the length ofw′.

PROOF. (i) This follows from Lemma 1 because every Schubert cell(BwB)cl is written as

(BwB)cl = Pα1 · · ·Pα`

wherew = wα1 · · ·wα`
is a minimal expression ofw∈W.

(ii) By Lemma 1, we can choose a subsequenceβ1, . . . ,βq (q = dimCCC S2− dimCCC S1) of
α1, . . . ,α` such that

dimCCC Scl
1 Pβ1

· · ·Pβk
= dimCCC Scl

1 Pβ1
· · ·Pβk−1

+1

for k = 1, . . . ,q and that

Scl
2 = Scl

1 (BwB)cl = Scl
1 Pα1 · · ·Pα`

= Scl
1 Pβ1

· · ·Pβq = Scl
1 (Bw′B)cl

with w′ = wβ1
· · ·wβq. ¤

REMARK 2. Scl
1 (BwB)cl = Scl

2 implies Scl
1 ⊂ Scl

2 . But Scl
1 ⊂ Scl

2 does not always imply
Scl

1 (BwB)cl = Scl
2 for somew (c.f. [M2]).

DEFINITION 1. For everyKCCC-B double cosetS, we can define, by Theorem 1, a subset
J(S) of J by

J(S) = { j ∈ J | Scl(BwB)cl = Tj for somew∈W}.

LEMMA 2. LetSbe a non-openKCCC-B double coset. Then there exists a simple rootα such
that

dimCCC SPα = dimCCC S+1.

PROOF. Write GCCC = (Bw0B)cl = Pα1 · · ·Pαm with the longest elementw0 in W. If
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dimCCC SPα = dimCCC S

for all simple rootsα, then we have, by Lemma 1,

GCCC = SclGCCC = SclPα1 · · ·Pαm = Scl,

a contradiction. ¤

THEOREM 2. If `(w) < codimCCCS, then

Scl(BwB)cl ⊂ Tj

for somej ∈ J(S).

PROOF. SincecodimCCCScl(BwB)cl = d > 0, we can choose simple rootsα1, . . . ,αd−1 such
that

codimCCCScl(BwB)clPα1 · · ·Pαd−1 = 1

by Lemma 2. Since(BwB)clPα1 · · ·Pαd−1 = (Bw′B)cl for somew′ ∈W, we have

Scl(BwB)cl ⊂ Scl(Bw′B)cl = Tj

for somej ∈ J(S). ¤

3. Applications.

DEFINITION 2. For every subsetJ′ in J, we define a domainΩ(J′) in GCCC by

Ω(J′) = {x∈GCCC | xTj ∩S′op = Ø for all j ∈ J′}0.

We can prove the following corollary:

COROLLARY. Let Sbe a closedKCCC-P double coset inGCCC. Write S= Scl
1 with the dense

KCCC-B double cosetS1 in S. Then we have

C(S)0 = Ω(J(S1)).

REMARK 3. (i) We can seeC(Sop)0 = Ω(J). By the same argument as forC(Sop)0 in
Section 1, we can proveΩ(J′) is Stein for every subsetJ′ in J. So the Steinness ofC(S)0 ([W])
becomes a corollary of this equivalenceC(S)0 = Ω(J(S1)) (c.f. [HW ]).

(ii) It is clear thatΩ(J′)⊃Ω(J) for every subsetJ′ in J. So we have

C(S)0 ⊃C(Sop)0.

But this inclusion was already proved in Proposition 8.3 in [GM ]. This is natural because
the way of proof of the corollary below is essentially the same as that of Proposition 8.3 in [GM ].
So the above corollary may be considered as its refinement.

PROOF OFCOROLLARY. Let x be an element on the boundary ofC(S)0. Then
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xS∩S′2P 6= Ø

for someGRRR-P double cosetS′2P in the boundary ofS′. Here we takeS2 as the denseKCCC-B double
coset contained inS2P. SinceS is rightP-invariant, we have

xS∩S′2 6= Ø and dimCCC S2 > dimCCC S.

Applying Theorem 1 (ii) to the pair(Scl
2 , GCCC), we can take aw ∈W such that̀ (w) =

codimCCC S2 and that

Scl
2 (BwB)cl = GCCC.

So we haveS2(BwB)cl ⊃ Sop and hence

S′2 ⊂ S′op(Bw−1B)cl.

SincexS∩S′2 6= Ø, we have

xS∩S′op(Bw−1B)cl 6= Ø.

Hence

xS(BwB)cl∩S′op 6= Ø

which impliesxTj ∩S′op 6= Ø for somej ∈ J(S1) by Theorem 2. Thusx /∈Ω(J(S1)).
Conversely, suppose

xTj ∩S′op 6= Ø

for someTj = S(BwB)cl = Scl
1 (BwB)cl. Note that j ∈ J(S1) by Definition 1 and that we may

assumè(w) = codimCCC S−1 = codimCCC S1−1 by Theorem 1 (ii). Then we have

xS∩S′op(Bw−1B)cl 6= Ø

and hence

xS∩S′3 6= Ø

for someKCCC-B double cosetS3 such thatS′3 ⊂ S′op(Bw−1B)cl. HenceS3(BwB)cl ⊃ Sop and there-
foredimCCC S3 ≥ dimCCC GCCC− `(w) > dimCCC S. So we have

S′3∩S′ = Ø

becauseS′ is the union ofGRRR-B double cosetsS′4 satisfyingS4 ⊂ S. Hence we have

xS 6⊂ S′

and therefore

x /∈C(S). ¤
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REMARK 4. (i) The conditioǹ (w) = codimCCCS−1 does “not always” imply

codimCCC Scl(BwB)cl = 1.

Counter examples exist already forGRRR = SU(2,1).
(ii) The construction of the domainΩ(J(S1)) is essentially equivalent to the construction

of “Schubert domain” in [HW ]. We can see that the proof of our corollary using the results in
Section 2 is extremely simple. Let us explain the connection between these two constructions
introducing notations in [HW ].

Take a Borel subgroupB0 of GCCC so thatGRRRB0 is closed inGCCC. A Borel subgroupB of GCCC

is called an “Iwasawa Borel subgroup” if

B = 10B01
−1
0 for some10 ∈GRRR.

Let Z = GCCC/Q be a flag manifold. Then we can takeQ so thatQ⊃ B0. Every Schubert cellY in
Z for B is written as

Y = (B10wQ)cl = (10B0wQ)cl

with somew∈W. Let Sbe a closedKCCC-Q double coset. (They use the symbolC0 for S.) The
“incidence variety”HY is written as

HY = {1 | 1S∩Y 6= Ø}= YS−1 = (10B0wQ)clS−1 = (S(Qw−1B0)cl1−1
0 )−1.

If codimHY = 1, then

H−1
Y = S(Qw−1B0)cl1−1

0 = Tj1
−1
0

for some j ∈ J′ = J(S1) (whereS1 is the denseKCCC-B0 double coset inS) and10 ∈ GRRR by our
notation.

They defined

Y (S′) = {Y = (10B0wQ)cl | codimHY = 1}.

(They use the symbolD for S′. Note that the conditionY ⊂ Z \S′ follows from codimHY = 1
because

Y∩S′ = Ø⇐⇒ S′Y−1 = S′(Qw−1B0)cl1−1
0 63 e

⇐⇒ S′(Qw−1B0)cl 63 10

⇐⇒ S′(Qw−1B0)cl∩GRRRB0 = Ø

⇐⇒ S(Qw−1B0)cl∩KCCCB0 = Ø

⇐⇒ codimS(Qw−1B0)cl ≥ 1.)

The Schubert domain is defined as
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ΩS(S′) =

{
GCCC \

(
⋃

Y∈Y (S′)
HY

)}

0

.

This definition is equivalent to our definition ofΩ(J′) because

1 /∈
⋃

Y∈Y (S′)
HY ⇐⇒ 1−1 /∈ Tj1

−1
0 for all j ∈ J′ and10 ∈GRRR

⇐⇒ 1−1GRRRB0∩Tj = Ø for all j ∈ J′

⇐⇒GRRRB0∩1Tj = Ø for all j ∈ J′.

REMARK 5. The problem of the description of the domain of cyclesC(S)0 for groups
GRRR of Hermitian type is simpler than the general case. Firstly, in this case,D0 = D̃0/KCCC has a
very simple description:D0

∼= GRRR/K×GRRR/K (Proposition 2.2 in [GM ]). As usual, the equality
C(S)0 = D̃0 for S (↔ S′) of nonholomorphic type is reduced to two inclusions. The proof of
C(S)0⊂ D̃0 in [WZ1] had a mistake which was corrected in [WZ2]. The opposite inclusion was
checked in [WZ1] for classical Hermitian groups. In Proposition 2.4 of [GM ], we gave a very
simple proof of this inclusion for arbitrary groups of Hermitian type which is free of case-by-
case considerations: the use of Schubert cells makes this fact almost trivial. The note [WZ2]
also contains this fact with a proof referred to [HW ] but without an appropriate reference on the
preceding proof in [GM ]. Moreover it asserts a misleading statement that the paper [GM ] does
not contain a direct proof.
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