A remark on Schubert cells and the duality of orbits on flag manifolds

By Simon GINDIKIN and Toshihiko MATSUKI

(Received Nov. 27, 2003)

Abstract. It is known that the closure of an arbitrary K_C -orbit on a flag manifold is expressed as a product of a closed K_C -orbit and a Schubert cell ([**M2**], [**Sp**]). We already applied this fact to the duality of orbits on flag manifolds ([**GM**]). We refine here this result and give its new applications to the study of domains arising from the duality.

1. Duality of orbits on flag manifolds.

Let G_C be a connected complex semisimple Lie group and G_R a connected real form of G_C . Let K_C be the complexification in G_C of a maximal compact subgroup K of G_R . Let $X = G_C/P$ be a flag manifold of G_C where P is an arbitrary parabolic subgroup of G_C . Then there exists a natural one-to-one correspondence between the set of K_C -orbits S and the set of G_R -orbits S' on X given by the condition:

$$S \leftrightarrow S' \iff S \cap S'$$
 is non-empty and compact (A)

([M3]). In the following, we will identify orbits S with K_C -P double cosets and S' with G_R -P cosets.

We defined in [**GM**] a subset C(S) of $G_{\boldsymbol{C}}$ by

 $C(S) = \{x \in G_{\mathbf{C}} \mid xS \cap S' \text{ is non-empty and compact in } X = G_{\mathbf{C}}/P\}$

where S' is the $G_{\mathbf{R}}$ -orbit on X given by (A).

If S is closed, then S' is open ([M1]) and so the condition

 $xS \cap S'$ is non-empty and compact in $G_{\mathbf{C}}/P$

implies

 $xS \subset S'$.

Hence the set $C(S)_0$ is the cycle domain (cycle space) for S' (**[WW**]) where $C(S)_0$ denotes the connected component of C(S) containing the identity.

On the other hand, let S_{op} denote the unique open K_C -B double coset in G_C where B is a Borel subgroup of G_C contained in P. (We will keep this notation for the whole note.) Then S'_{op} is the unique closed G_R -B double coset in G_C and the condition

 $xS_{\text{op}} \cap S'_{\text{op}}$ is non-empty and compact in $G_{\boldsymbol{C}}/B$

implies

²⁰⁰⁰ Mathematics Subject Classification. Primary 14M15; Secondary 32M05. Key Words and Phrases. Schubert cell, flag manifold.

$$xS_{\rm op} \supset S'_{\rm op}$$
.

Let $\{S_j \mid j \in J\}$ be the set of K_C -B double cosets in G_C of codimension one and $T_j = S_j^{cl}$ denote the closure of S_j . The sets T_j will play an important role in our constructions.

The complement of S_{op} in $G_{\boldsymbol{C}}$ is written as

$$\bigcup_{j\in J}T_j$$

(by Theorem 2 in Section 2). So the set $C(S_{op})$ is the complement of the infinite family of complex hypersurfaces

$$gT_j^{-1}$$
 $(j \in J, g \in S'_{op})$

and hence the connected component $C(S_{op})_0$ is Stein.

This domain is sometimes called the "Iwasawa domain" since it is a maximal domain where all Iwasawa decompositions can be holomorphically extended from $G_{\mathbf{R}}$.

In **[GM]**, we defined

$$C = \bigcap C(S)$$

where we take the intersection for all K_C -orbits S on X on all flag manifolds $X = G_C/P$ of G_C and conjectured

$$C = \widetilde{D_0}Z$$

(Conjecture 1.3) where $D_0 = \widetilde{D_0}/K_C$ is the domain introduced by [AG] (which is sometimes denoted as Ω_{AG}) and Z is the center of G_C . For connected components, it means

$$C_0 = D_0. \tag{B}$$

This conjecture (B) was solved recently as follows. It is proved in Proposition 8.3 of [GM] that

$$C_0 = C(S_{\rm op})_0.$$

In other words, $C(S)_0$ is minimal when $S = S_{op}$. We believe that it is one of central facts of this theory since it gives a very strong estimate of all C(S) through $C(S_{op})$ only. So (B) is equivalent to the equality

$$C(S_{\rm op})_0 = \widetilde{D_0} \tag{C}$$

which was recently established by many people's contributions as follows.

The domain $C(S_{op})_0$ was considered in [**BGW**] for SU(p,q) (under the name "polar set") and for general cases in [**G**]. In [**G**] was conjectured (C) as well as the coincidence of $\widetilde{D_0}$ with the universal domain of all analytic extensions from the Riemann symmetric spaces.

In 1999, J. Faraut and T. Kobayashi constructed some Hermitian symmetric domains Ξ_0 containing G_R/K in the classical case and gave a proof for $\Xi_0 \subset C(S_{op})_0$ in an unpublished note. Using this inclusive relation, they also showed that all the joint eigenfunctions on G_R/K with

respect to G_R -invariant differential operators on G_R/K can be holomorphically extended to the domains Ξ_0 . It is known that Ξ_0 are subdomains of $\widetilde{D_0}$ and that they coincide in some cases including Hermitian cases (c.f. [BHH], [KS2]).

Later, Krötz and Stanton proved the inclusion

$$\overline{D_0} \subset C(S_{\rm op})_0 \tag{D}$$

for all classical cases in **[KS1]** and also applied it to holomorphic extension of solutions of invariant differential operators. Independently, **[GM]** proved the equality (C) for all classical cases and exceptional Hermitian cases. Huckleberry gave a general proof of the inclusion (D) in **[H]** using the strictly plurisubharmonicness of a function ρ which is proved in **[BHH]**. Recently, the second author gave a general proof of (D) without complex analysis (**[M4]**).

On the other hand, Barchini proved the opposite inclusion $C(S_{op})_0 \subset D_0$ by a general argument in **[B**].

REMARK 1. In [FH], the authors deduce the equality $C_0 = \widetilde{D_0}$ from their result about C(S) for closed S and Proposition 8.1 in [GM]. As we showed above, this equality is already the consequence of Proposition 8.3 in [GM] and the equality (C). So it does not need the results in [FH].

2. Schubert cells in the category of K_C -B double cosets.

The principal idea of our considerations in [**GM**] was that $C(S)_0$ will be essentially independent of neither *S* nor the flag manifold $X = G_C/P$. To justify it, we need to build bridges between C(S) for different *S* and for it we need to see connections between different K_C -orbits. It turns out that Schubert cells are very efficient tool for such considerations as in Section 2 and Section 8 in [**GM**]. They give a possibility to obtain an important information about general C(S) from a consideration of simplest *S*. Here we refine connections between K_C -orbits and Schubert cells and give more examples of applications.

For a simple root α in the root system with respect to the order defined by *B*, we can define a parabolic subgroup

$$P_{\alpha} = B \cup B w_{\alpha} B$$

of $G_{\boldsymbol{C}}$ such that $\dim_{\boldsymbol{C}} P_{\alpha} = \dim_{\boldsymbol{C}} B + 1$.

LEMMA 1. Let S_1 be a $K_{\mathbf{C}}$ -B double coset. Then we have:

(i) If dim_{*c*} $S_1 P_\alpha = \dim_{c} S_1$, then $S_1^{cl} P_\alpha = S_1^{cl}$.

(ii) If dim_{*c*} $S_1P_{\alpha} = \dim_{$ *c* $} S_1 + 1$, then there exists a $K_{$ *c* $}$ -B double coset S_2 such that $S_1^{cl}P_{\alpha} = S_2^{cl}$.

PROOF. Though this lemma follows easily from [M2] Lemma 3, we will give a proof for the sake of completeness. Write $S_1 = K_C g B$. Then we have a natural bijection

$$(g^{-1}K_{\mathbf{C}}g \cap P_{\alpha}) \setminus P_{\alpha}/B \cong K_{\mathbf{C}} \setminus K_{\mathbf{C}}gP_{\alpha}/B = K_{\mathbf{C}} \setminus S_{1}P_{\alpha}/B$$

by the map $x \mapsto gx$.

(i) If dim_{*C*} $S_1 P_{\alpha} = \dim_{$ *C* $} S_1$, then $(g^{-1}K_{\mathcal{C}}g \cap P_{\alpha})B/B$ is Zariski open in $P_{\alpha}/B = P^1(\mathcal{C})$ and hence it is dense. So we have

$$S_1^{\rm cl} = (K_{\boldsymbol{C}}gB)^{\rm cl} \supset S_1P_{\boldsymbol{\alpha}} \supset S_1$$

and therefore $S_1^{cl} = S_1^{cl} P_{\alpha}$.

(ii) Suppose dim_C $S_1 P_{\alpha} = \dim_{C} S_1 + 1$. Then there exists a $p \in P_{\alpha}$ such that $(g^{-1}K_{C}g \cap P_{\alpha})pB/B$ is Zariski open in $P_{\alpha}/B = P^{1}(C)$ since the number of K_{C} -B double cosets in G_{C} is finite. If we write $S_2 = K_{C}gpB$, then we have

$$(S_2)^{\operatorname{cl}} \supset S_1 P_\alpha \supset S_2$$

and therefore $S_2^{cl} = S_1^{cl} P_{\alpha}$.

THEOREM 1. Let S_1 be a $K_{\mathbf{C}}$ -B double coset in $G_{\mathbf{C}}$ and w an element of the Weyl group W. Then we have:

(i) $S_1^{cl}(BwB)^{cl} = S_2^{cl}$ for some $K_{\mathbf{C}}$ -B double coset S_2 .

(ii) (minimal expression) There exists a $w' \in W$ such that $w' \leq w$ (Bruhat order), $\ell(w') = \dim_{\mathbb{C}} S_2 - \dim_{\mathbb{C}} S_1$ and that

$$S_1^{\rm cl}(Bw'B)^{\rm cl} = S_2^{\rm cl}.$$

Here $\ell(w') = \dim_{\mathbf{C}} Bw'B - \dim_{\mathbf{C}} B$ is the length of w'.

PROOF. (i) This follows from Lemma 1 because every Schubert cell $(BwB)^{cl}$ is written as

$$(BwB)^{\rm cl} = P_{\alpha_1} \cdots P_{\alpha_\ell}$$

where $w = w_{\alpha_1} \cdots w_{\alpha_\ell}$ is a minimal expression of $w \in W$.

(ii) By Lemma 1, we can choose a subsequence β_1, \ldots, β_q $(q = \dim_{\mathbb{C}} S_2 - \dim_{\mathbb{C}} S_1)$ of $\alpha_1, \ldots, \alpha_\ell$ such that

$$\dim_{\boldsymbol{C}} S_1^{\operatorname{cl}} P_{\beta_1} \cdots P_{\beta_k} = \dim_{\boldsymbol{C}} S_1^{\operatorname{cl}} P_{\beta_1} \cdots P_{\beta_{k-1}} + 1$$

for $k = 1, \ldots, q$ and that

$$S_2^{\rm cl} = S_1^{\rm cl} (BwB)^{\rm cl} = S_1^{\rm cl} P_{\alpha_1} \cdots P_{\alpha_\ell} = S_1^{\rm cl} P_{\beta_1} \cdots P_{\beta_q} = S_1^{\rm cl} (Bw'B)^{\rm cl}$$

with $w' = w_{\beta_1} \cdots w_{\beta_q}$.

REMARK 2. $S_1^{cl}(BwB)^{cl} = S_2^{cl}$ implies $S_1^{cl} \subset S_2^{cl}$. But $S_1^{cl} \subset S_2^{cl}$ does not always imply $S_1^{cl}(BwB)^{cl} = S_2^{cl}$ for some w (c.f. [M2]).

DEFINITION 1. For every K_{C} -B double coset S, we can define, by Theorem 1, a subset J(S) of J by

$$J(S) = \{ j \in J \mid S^{cl}(BwB)^{cl} = T_j \text{ for some } w \in W \}.$$

LEMMA 2. Let S be a non-open $K_{\mathbf{C}}$ -B double coset. Then there exists a simple root α such that

$$\dim_{\boldsymbol{C}} SP_{\boldsymbol{\alpha}} = \dim_{\boldsymbol{C}} S + 1.$$

PROOF. Write $G_{\mathbf{C}} = (Bw_0B)^{cl} = P_{\alpha_1} \cdots P_{\alpha_m}$ with the longest element w_0 in W. If

160

 $\dim_{\boldsymbol{C}} SP_{\alpha} = \dim_{\boldsymbol{C}} S$

for all simple roots α , then we have, by Lemma 1,

$$G_{\boldsymbol{C}} = S^{\mathrm{cl}} G_{\boldsymbol{C}} = S^{\mathrm{cl}} P_{\alpha_1} \cdots P_{\alpha_m} = S^{\mathrm{cl}},$$

a contradiction.

THEOREM 2. If $\ell(w) < \operatorname{codim}_{\boldsymbol{C}} S$, then

 $S^{\mathrm{cl}}(BwB)^{\mathrm{cl}} \subset T_j$

for some $j \in J(S)$.

PROOF. Since $\operatorname{codim}_{\boldsymbol{C}} S^{\operatorname{cl}}(BwB)^{\operatorname{cl}} = d > 0$, we can choose simple roots $\alpha_1, \ldots, \alpha_{d-1}$ such that

$$\operatorname{codim}_{\boldsymbol{C}} S^{\operatorname{cl}}(BwB)^{\operatorname{cl}} P_{\alpha_1} \cdots P_{\alpha_{d-1}} = 1$$

by Lemma 2. Since $(BwB)^{cl}P_{\alpha_1}\cdots P_{\alpha_{d-1}} = (Bw'B)^{cl}$ for some $w' \in W$, we have

$$S^{\mathrm{cl}}(BwB)^{\mathrm{cl}} \subset S^{\mathrm{cl}}(Bw'B)^{\mathrm{cl}} = T_i$$

for some $j \in J(S)$.

3. Applications.

DEFINITION 2. For every subset J' in J, we define a domain $\Omega(J')$ in $G_{\mathcal{C}}$ by

$$\Omega(J') = \{ x \in G_{\boldsymbol{C}} \mid xT_j \cap S'_{\text{op}} = \emptyset \text{ for all } j \in J' \}_0.$$

We can prove the following corollary:

COROLLARY. Let S be a closed K_C -P double coset in G_C . Write $S = S_1^{cl}$ with the dense K_C -B double coset S_1 in S. Then we have

$$C(S)_0 = \Omega(J(S_1)).$$

REMARK 3. (i) We can see $C(S_{op})_0 = \Omega(J)$. By the same argument as for $C(S_{op})_0$ in Section 1, we can prove $\Omega(J')$ is Stein for every subset J' in J. So the Steinness of $C(S)_0$ ([W]) becomes a corollary of this equivalence $C(S)_0 = \Omega(J(S_1))$ (c.f. [HW]).

(ii) It is clear that $\Omega(J') \supset \Omega(J)$ for every subset J' in J. So we have

$$C(S)_0 \supset C(S_{\rm op})_0.$$

But this inclusion was already proved in Proposition 8.3 in [**GM**]. This is natural because the way of proof of the corollary below is essentially the same as that of Proposition 8.3 in [**GM**]. So the above corollary may be considered as its refinement.

PROOF OF COROLLARY. Let *x* be an element on the boundary of $C(S)_0$. Then

161

 \Box

S. GINDIKIN and T. MATSUKI

$$xS \cap S'_2P \neq \emptyset$$

for some $G_{\mathbf{R}}$ -P double coset S'_2P in the boundary of S'. Here we take S_2 as the dense $K_{\mathbf{C}}$ -B double coset contained in S_2P . Since S is right P-invariant, we have

$$xS \cap S'_2 \neq \emptyset$$
 and $\dim_{\mathbf{C}} S_2 > \dim_{\mathbf{C}} S$.

Applying Theorem 1 (ii) to the pair (S_2^{cl}, G_C) , we can take a $w \in W$ such that $\ell(w) = \operatorname{codim}_{C} S_2$ and that

$$S_2^{\rm cl}(BwB)^{\rm cl} = G_{\boldsymbol{C}}.$$

So we have $S_2(BwB)^{cl} \supset S_{op}$ and hence

$$S_2' \subset S_{\rm on}' (Bw^{-1}B)^{\rm cl}.$$

Since $xS \cap S'_2 \neq \emptyset$, we have

$$xS \cap S'_{\mathrm{op}}(Bw^{-1}B)^{\mathrm{cl}} \neq \emptyset.$$

Hence

$$xS(BwB)^{\mathrm{cl}} \cap S'_{\mathrm{op}} \neq \emptyset$$

which implies $xT_j \cap S'_{op} \neq \emptyset$ for some $j \in J(S_1)$ by Theorem 2. Thus $x \notin \Omega(J(S_1))$.

Conversely, suppose

$$xT_i \cap S'_{op} \neq \emptyset$$

for some $T_j = S(BwB)^{cl} = S_1^{cl}(BwB)^{cl}$. Note that $j \in J(S_1)$ by Definition 1 and that we may assume $\ell(w) = \operatorname{codim}_{\mathbf{C}} S - 1 = \operatorname{codim}_{\mathbf{C}} S_1 - 1$ by Theorem 1 (ii). Then we have

$$xS \cap S'_{\mathrm{op}}(Bw^{-1}B)^{\mathrm{cl}} \neq \emptyset$$

and hence

$$xS \cap S'_3 \neq \emptyset$$

for some $K_{\mathbf{C}}$ -B double coset S_3 such that $S'_3 \subset S'_{op}(Bw^{-1}B)^{cl}$. Hence $S_3(BwB)^{cl} \supset S_{op}$ and therefore dim ${}_{\mathbf{C}}S_3 \ge \dim_{\mathbf{C}}G_{\mathbf{C}} - \ell(w) > \dim_{\mathbf{C}}S$. So we have

$$S'_3 \cap S' = \emptyset$$

because S' is the union of $G_{\mathbf{R}}$ -B double cosets S'_4 satisfying $S_4 \subset S$. Hence we have

$$xS \not\subset S'$$

and therefore

$$x \notin C(S)$$
.

REMARK 4. (i) The condition $\ell(w) = \operatorname{codim}_{\boldsymbol{C}} S - 1$ does "not always" imply

$$\operatorname{codim}_{\boldsymbol{C}} S^{\operatorname{cl}}(BwB)^{\operatorname{cl}} = 1.$$

Counter examples exist already for $G_{\mathbf{R}} = SU(2, 1)$.

(ii) The construction of the domain $\Omega(J(S_1))$ is essentially equivalent to the construction of "Schubert domain" in [**HW**]. We can see that the proof of our corollary using the results in Section 2 is extremely simple. Let us explain the connection between these two constructions introducing notations in [**HW**].

Take a Borel subgroup B_0 of G_C so that $G_R B_0$ is closed in G_C . A Borel subgroup B of G_C is called an "Iwasawa Borel subgroup" if

$$B = g_0 B_0 g_0^{-1}$$
 for some $g_0 \in G_{\mathbf{R}}$.

Let $Z = G_C/Q$ be a flag manifold. Then we can take Q so that $Q \supset B_0$. Every Schubert cell Y in Z for B is written as

$$Y = (Bg_0 wQ)^{\rm cl} = (g_0 B_0 wQ)^{\rm cl}$$

with some $w \in W$. Let *S* be a closed K_{C} -*Q* double coset. (They use the symbol C_0 for *S*.) The "incidence variety" H_Y is written as

$$H_Y = \{g \mid gS \cap Y \neq \emptyset\} = YS^{-1} = (g_0B_0wQ)^{cl}S^{-1} = (S(Qw^{-1}B_0)^{cl}g_0^{-1})^{-1}.$$

If $\operatorname{codim} H_Y = 1$, then

$$H_Y^{-1} = S(Qw^{-1}B_0)^{\text{cl}}g_0^{-1} = T_j g_0^{-1}$$

for some $j \in J' = J(S_1)$ (where S_1 is the dense K_C - B_0 double coset in S) and $g_0 \in G_R$ by our notation.

They defined

$$\mathscr{Y}(S') = \{Y = (g_0 B_0 w Q)^{\mathrm{cl}} \mid \operatorname{codim} H_Y = 1\}$$

(They use the symbol *D* for *S'*. Note that the condition $Y \subset Z \setminus S'$ follows from $\operatorname{codim} H_Y = 1$ because

$$Y \cap S' = \emptyset \iff S'Y^{-1} = S'(Qw^{-1}B_0)^{cl}g_0^{-1} \not\ni e$$
$$\iff S'(Qw^{-1}B_0)^{cl} \not\ni g_0$$
$$\iff S'(Qw^{-1}B_0)^{cl} \cap G_{\mathbf{R}}B_0 = \emptyset$$
$$\iff S(Qw^{-1}B_0)^{cl} \cap K_{\mathbf{C}}B_0 = \emptyset$$
$$\iff \operatorname{codim} S(Qw^{-1}B_0)^{cl} \ge 1.)$$

The Schubert domain is defined as

$$\Omega_{S}(S') = \left\{ G_{\boldsymbol{C}} \setminus \left(\bigcup_{Y \in \mathscr{Y}(S')} H_{Y} \right) \right\}_{0}.$$

This definition is equivalent to our definition of $\Omega(J')$ because

$$g \notin \bigcup_{Y \in \mathscr{Y}(S')} H_Y \iff g^{-1} \notin T_j g_0^{-1} \text{ for all } j \in J' \text{ and } g_0 \in G_{\mathbb{R}}$$
$$\iff g^{-1} G_{\mathbb{R}} B_0 \cap T_j = \emptyset \text{ for all } j \in J'$$
$$\iff G_{\mathbb{R}} B_0 \cap g T_j = \emptyset \text{ for all } j \in J'.$$

REMARK 5. The problem of the description of the domain of cycles $C(S)_0$ for groups $G_{\mathbf{R}}$ of Hermitian type is simpler than the general case. Firstly, in this case, $D_0 = \widetilde{D_0}/K_{\mathbf{C}}$ has a very simple description: $D_0 \cong G_{\mathbf{R}}/K \times \overline{G_{\mathbf{R}}/K}$ (Proposition 2.2 in [GM]). As usual, the equality $C(S)_0 = \widetilde{D_0}$ for $S \iff S'$ of nonholomorphic type is reduced to two inclusions. The proof of $C(S)_0 \subset \widetilde{D_0}$ in [WZ1] had a mistake which was corrected in [WZ2]. The opposite inclusion was checked in [WZ1] for classical Hermitian groups. In Proposition 2.4 of [GM], we gave a very simple proof of this inclusion for arbitrary groups of Hermitian type which is free of case-by-case considerations: the use of Schubert cells makes this fact almost trivial. The note [WZ2] also contains this fact with a proof referred to [HW] but without an appropriate reference on the preceding proof in [GM]. Moreover it asserts a misleading statement that the paper [GM] does not contain a direct proof.

References

- [AG] D. N. Akhiezer and S. G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann., 286 (1990), 1–12.
- [B] L. Barchini, Stein extensions of real symmetric spaces and the geometry of the flag manifold, Math. Ann., 326 (2003), 331–346.
- [BGW] L. Barchini, S. G. Gindikin and H. W. Wang, The geometry of flag manifold and holomorphic extension of Szegö kernels for SU(p,q), Pacific J. Math., **179** (1997), 201–220.
- [BHH] D. Burns, S. Halverscheid and R. Hind, The geometry of Grauert tubes and complexification of symmetric spaces, Duke Math. J., 118 (2003), 465–491.
- [FH] G. Fels and A. Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity, preprint (AG/0204341).
- [G] S. Gindikin, Tube domains in Stein symmetric spaces, In: Positivity in Lie theory: Open problems, (eds. Hilgert, Lawson, Neeb and Vinberg), Walter de Gruyter, Berlin-New York, 1998, 81–98.
- [GM] S. Gindikin and T. Matsuki, Stein extensions of Riemannian symmetric spaces and dualities of orbits on flag manifolds, In: Transform. Groups, 8 (2003), 333–376.
- [H] A. Huckleberry, On certain domains in cycle spaces of flag manifolds, Math. Ann., 323 (2002), 797–810.
- [HW] A. Huckleberry and J. A. Wolf, Schubert varieties and cycle spaces, Duke Math. J., 120 (2003), 229–249.
- [KS1] B. Krötz and R. Stanton, Holomorphic extension of a representation: (I) automorphic functions, Ann. of Math., 159 (2004), 641–724.
- [KS2] B. Krötz and R. Stanton, Holomorphic extensions of representations: (II) geometry and harmonic analysis, preprint.
- [M1] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J., 12 (1982), 307–320.
- [M2] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, In: Representation of Lie Groups, Kyoto, Hiroshima, 1986, (eds. K. Okamoto and T. Oshima), Adv. Stud. Pure Math., 14, Kinokuniya Company LTD., Tokyo, 1988, pp. 541–559.

- [M3] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hiroshima Math. J., 18 (1988), 59–67.
- [M4] T. Matsuki, Stein extensions of Riemann symmetric spaces and some generalization, J. Lie Theory, 13 (2003), 563–570.
- [Sp] T. A. Springer, Some results on algebraic groups with involutions, In: Algebraic Groups and Related Topics, (ed. R. Hotta), Adv. Stud. Pure Math., 6, Kinokuniya Company LTD., Tokyo; North-Holland, Amsterdam-New York-Oxford, 1985, pp. 525–534.
- [WW] R. O. Wells and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math., **105** (1977), 397–448.
- [W] J. A. Wolf, The Stein condition for cycle spaces of open orbits on complex flag manifolds, Ann. of Math., 136 (1992), 541–555.
- [WZ1] J. A. Wolf and R. Zierau, Linear cycle spaces in flag domains, Math. Ann., 316 (2000), 529–545.
- [WZ2] J. A. Wolf and R. Zierau, A note on the linear cycle spaces for groups of Hermitian type, J. Lie Theory, **13** (2003), 189–191.

Simon GINDIKIN

Department of Mathematics Hill Center, Rutgers University 110 Frelinghysen Road, Piscataway NJ 08854-8019 U.S.A. E-mail: gindikin@math.rutgers.edu

Toshihiko MATSUKI

Department of Mathematics, Faculty of Science Kyoto University Kyoto 606-8502 Japan E-mail: matsuki@math.kyoto-u.ac.jp