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Abstract. Let f be a smooth function of two variablesy and for each positive integer
letd"f be a symmetric tensor field of ty({6, n) defined byd"f := 51, (1) (87'a)f)dx"'dy
and Zgn; a finitely many-valued one-dimensional distribution obtained fidlhh: for example,
11 is the one-dimensional distribution defined by the gradient vector field 6fy; consists
of two one-dimensional distributions obtained from one-dimensional eigenspaces of Hedsian of
In the present paper, we shall study the behavia@gf; around its isolated singularity in ways
which appear inf]-[4]. In particular, we shall introduce and study a conjecture which asserts that
the index of an isolated singularity with respecé@ghf is not more than one.

1. Introduction.

Let f be a smooth function on a domaih of R? and setd; := (9/dx + /—13/dy)/2.
Then Loewner’s conjecturdor a positive integem € N asserts that if a vector fiel\i(f”) :
= Re(07f)d/0x+ Im(d7f)d/dy has an isolated zero point, then its index with respect to
an is not more tham. Loewner’s conjecture fon = 1 is easily and affirmatively solved;
Loewner’s conjecture fon = 2 is equivalent to a conjecture which asserts that the index of an
isolated umbilical point on a surface is not more than one (this conjecture is calléadthe
conjectureor the Local Caratleodory’s conjecture If the index conjecture is true, then by
Hopf-Poincaé’s theorem, we may affirmatively solgaratheodory’s conjecturewhich asserts
that there exist at least two umbilical points on a compact, strictly convex surffe ife may
find [5], [6], [9], [10], [11] and [12] as recent papers in relation to Car@blory’s and Loewner's
conjectures.

For each positive integer, letd" f be a symmetric tensor field of tyf§e, n) defined by

ne. w (N onf i
d f._'Z)<i>de“ dy. (1)

For a numberp € Rand a pointp € D, we set

—

7] .0
Upi=cosp+sinp . (@)p(9) == (d"1)p(Ug....Ug). @

A one-dimensional subspateof the tangent plane gt € D is called acritical direction of d" f

at pif there exists a critical poingy of (ﬁ)p satisfyingU 4, (p) € L. A point pg of D is called an
umbilical pointof d" f if (W)po is constant. Le#/gn+ be a finitely many-valued one-dimensional
distribution on an open set of non-umbilical pointsddff such thatZgn gives all the critical
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directions ofd"f at each point. For examplédlf is the one-dimensional distribution defined by
the gradient vector field of; % consists of two one-dimensional distributions obtained from
one-dimensional eigenspaces of Hessiaffi af each point. The purpose of the present paper is
to study the behavior o¥gns around an isolated umbilical point df'f in ways which appear

in [1]-[4]. In particular, we shall define and study the index of an isolated umbilical point with
respect tZqns. We shall see that the index is a rational number and not always represented as
the half of an integer. We conjecture thihe index of an isolated umbilical point with respect to
Jgnt is not more than oneWe shall see that far € {1,2} (respectivelyn = 3), this conjecture

is equivalent to (respectively, distinct from) Loewner’s conjecture. We shall affirmatively solve
the former conjecture in the case whdrés a homogeneous polynomial. In addition, we shall
study this conjecture in the case whéris a real-analytic function.

ACKNOWLEDGEMENT. The author is grateful to the referees for their helpful comments
and suggestions. This work was supported by the Japan Society for the Promotion of Science.

2. Many-valued one-dimensional distributions.

Let 2 be a continuous one-dimensional distribution on a donthinf a smooth two-
dimensional manifolds. In the present paper, a pdi#,U) is called adistribution element
A distribution element(%y,Up) is called adirect continuationof (2,U) if UgNU # @ and
if 20=2 onUpnNU. A set of distribution element§(Z;,U;)}ien is called acontinuationif
(Zi+1,Ui11) is a direct continuation ofZ;,U;) for anyi € N.

For a pointp € S, let X, be the set of the distribution elements such that éaci) € X,
satisfiesp € U. We introduce an equivalence relatieninto Xp: for two (21,U1),(%2,U>) €
Xp, We write (71,U1) ~ (2»,U) if there exists a neighborhoddp of p in U1 NU; satisfying
91 = 9 onUg. We denote byN(p the set of the equivalence classes in relation to the equivalence
relation~.

Let D be a domain ofs. A correspondencé’ of eachp € D to a subsetZ(p) of Xp is
called amany-valued one-dimensional distribution D. For a many-valued one-dimensional
distributionZ on D and a distribution elemer(tz,U), we write (2,U) C (@7 D) if U c D and
if (2,U) represents an element @f(q) for anyg € U. A many-valued one-dimensional distri-
bution & is calledcontinuousif for eachp € D and eachw € (p), there exists a distribution
element(2,U) € w satisfying(2,U) C (@,D); a many-valued one-dimensional distribution
Jis calledcompleteif the following holds: if a convergent sequengp; }icn in D and a con-
tinuation {(Z;,U;) }ien satisfy pi € U;j and (Z,U;) C (QZ, D) for anyi € N, then there exists
a distribution element%y,Up) satisfyinglim;_.. pi € Up, (Z0,Up) C (QZ,D) and the condition
that there exists a numbgy € N such that( %y,Up) is a direct continuation of%;,U;) for any
i 2 ip; @ many-valued one-dimensional distributighis calledseparatedf distinct two distri-
bution element$21,U),(22,U) C (@,D) represent distinct elements 6f(q) for anyq e U;

a many-valued one-dimensional distributiénis calledpointwise separated 21(q) # 22(q)
for distinct two distribution elementszy,U), (2,,U) C (@, D) and anyg € U; a many-valued
one-dimensional distributio is calledpointwise separablg Zis separated and if the follow-
ing holds: if two distribution element&z:,U),(%2,U) c (2,D) satisfy Z1(do) = Z2(qo) for
someqp € U, then there exist a neighborho@g, of gp in U and continuous functiong;, ¢ on
Oy, satisfying the following:
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(a) @1(d0) = @(o);

(b) Uy = (cosp)d/ox+ (sin@)d/dy represent$Z;, Oq,) for i € {1,2};

(c) there exists a nonzero numlue# 0 satisfyingc(¢ — ¢) = 0 on O,
where(x,y) are local coordinates d@y,.

Let % be a continuous, complete, separated many-valued one-dimensional distribution
onD. Then2 is calledconnectedf there do not exist two continuous, complete, separated
many-valued one-dimensional distributiofis, Z» on D satisfyingZ(p) = Z1(p) U Z»(p) and
Z1(p) N Zo(p) = D for any p € D. If 7 is not connected, then there exists a set of connected,
continuous, complete, separated many-valued one-dimensional distrib@tﬁ;r}ae/\ satisfy-
ing 2(p) = Upen 25 (p) and %y, (p) N %y, (p) = @ for arbitrary distinct twoly, A2 € A and any
p € D. EachZ, is called aconnected componeaf .

Let Z be a continuous, complete, separated many-valued one-dimensional distribution on
D. Then we see that if there exists a positive intagee N satlsfymglj@(po) = np for some
po € D, thentZ(p) = ng for any p € D. If such a positive integer exists, thénis in particular
calledng-valuedor finitely many-valuedWe see that itZ is no-valued and pointwise separable,
then there exists a divisor; of ng such that any connected component%bi‘s ng-valued.

Let Z be a continuous, complete, pointwise separabplealued one-dimensional distribu-
tion on a domairD for someng € N and suppose that there exists an isolated complepeuit
Dfor S i.e., pois a point ofS\ D such that a punctured nelghborhoocb@in Sis contained iD.
Thenpg may be an isolated singularity o, i.e., itis possible that/ may not be completely ex-
tended topy. Let (x,y) be local coordinates on a neighborhoodpguch thatpy corresponds to
(0,0) andro a positive number satisfyinf0 < X2 4+y? < rg} CD. Let®g, , denote the set of the
continuous functions of0, ro) x Rsuch that for eactp;., € ®;., and eactir,6) € (0,ro) xR,
there exists a distribution elemef®,U) C (@, D) satisfying(r cos@,rsin6) € U and the con-
dition that for any(r’,8’) € (0,rg) x (6 — 11/2,0 + 11/2) satisfying(r’ cosd’,r’sin6’) e U,

0 0
U% (r/s/)_coscpjpo(r 9) +sm(pjpo(r 9)—}/6@

holds at(r’ cos6’,r’sin8’). We see that there exists an integere Z satisfying

_ Py (1 6+ 2n070) — 95,5, (1, 6)

N m
for any ©5-00 € Po-pe and any(r,0) € (0,ro) x R. SinceZ is pointwise separable, we see that
the integemmy is uniquely determined. The number

Mo

indp, (2) := o

is called thendexof po with respect 7

REMARK. The definition ofind,, () does not depend on the choice of local coordi-
nates(x,y).

REMARK. If ng = 1, then we see tha® may be considered as a continuous one-
dimensional distribution in the usual sense and thago(@) is equal to the index ofg with
respect t@7 also in the usual sense.
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REMARK. We set

90@”;p0(|’, 6+ 2n9~rr) - (p@;po(rv 9)
T

m_(,; =

for @;.,, € ®5.,, and(r, 6) € (0,ro) x R. Thenm;; is an integer such than;; andn are rela-
tively prime. The numbgm_@/Zn_@ is the index ofpg with respect to any connected component
of 2 and equal tandy, (2).

REMARK. If we adopt the above definition of the index of an isolated singularity, then
referring to [7, pp. 112—-113], we may obtain an analogue of Hopf-Poiglsaheorem for a con-
tinuous, complete, pointwise separable finitely many-valued one-dimensional distribution.

3. Symmetric tensor fields.

Letn be a positive integer anla smooth, symmetric tensor field of ty(&n) on a domain
D of R?. ThenT is represented as follows:

T= ii (T) Tidx"dy,
whereT; is a smooth function o®. For a numberp € Rand a pointp € D, we set
To(@) :==Tp(Ug,...,Up).
Then
To(@) = i; (?) Ti(p)cos' gsin @.

A one-dimensional subspateof the tangent plane gi € D is called acritical direction of T
at p if there exists a critical pointy of 'T'p satisfyingU o, (p) € L. A tensor fieldT is called
umbilicalat p or pis called arumbilical pointof T if 'T'p is constant, i.e., if any one-dimensional
subspace of the tangent planepais a critical direction of T. The set of the umbilical points
of T is denoted bydmb(T). An umbilical pointpg of T is calledisolatedif pp is an isolated
complement oD\ Umb(T). There exists a continuous, complete, pointwise separable, finitely
many-valued one-dimensional distributigh on a neighborhood of each point oD\ Umb(T)
formed by critical directions of ateachpe U. If n=1o0r2, thenZy is always well-defined on
D\ Umb(T) and consists of one or two continuous one-dimensional distributioBs\dmb(T)
and we see that tf@T = 2, then the two one-dimensional distributions are perpendicular to each
other at any point with respect to the Euclidean metridnUmb(T). On the other hand, if
n > 3, then it is possible tha#r may not be well-defined ob \ Umb(T).

For a smooth functiorf on D and each positive integer, we have defined a symmetric
tensor fieldd"f of type (0,n) as in (1). The following are examples O+

EXAMPLE. We see tha@dlf is just the continuous one-dimensional distribution given by
the gradient vector field of and thatZ consists of one or two continuous one-dimensional
distributions obtained from one-dimensional eigenspaces of Hessiaatafach point.
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EXAMPLE. Let f be a harmonic function oB, i.e., letf satisfyd?f /dx?+ 9%f /9y* =0
onD. Then noticing

nf an

o+ ox—1gy

sinng,

we see that for eacp € D\ Umb(d"f), there exists a number, € R such that each critical
point of (W)p is represented by, + mr/n for some integem € Z. Therefore we see that
there exists a continuous, complete, pointwise separatedued one-dimensional distribution
Jqns on D\ Umb(d"f). Suppose that is a spherical harmonic function of degriee- n. Then
we may suppos® = R? and we see thaf0,0) is the only umbilical point od"f on R2. In
Section 4, we shall see that the inded ) (@dnf) of (0,0) with respect t0Zgn; is equal to
1-k/n. Therefore we see that; . is equal ton/(2k,n), where(2k,n) is the greatest common

divisor of 2k andn. In particular, we see that#/nis not any integer, thefgn¢ does not consist
of n continuous one-dimensional distributionsBh\ {(0,0)} and that if2k andn are relatively
prime, thenyn; is connected.

EXAMPLE. We setf := x*+y*. Then for any(x,y) € R?, we obtain

1 — .
ﬁ(dgf)(’(*y) (@) = xcoS’ @+ ysir .

Therefore we obtain

—

1 d(de)(cose,sinG) .

7—2T((p) = —cospsingcog 6 + @).
We see that0,0) is the only umbilical point ofi*f on R? and that there exists a connected, con-
tinuous, corgplete, pointwise separable (but not pointwisNe sepa@ted)ied one—dimen§ional
distributionZ4s; onR?\ {(0,0)} such that the indeind,o o) (Zgs¢) of (0,0) with respect taZs
is equal to—1/3.

REMARK. We setf := x*+18x%y?2 4 2y*. Then we may suppod2 = R?. For any(x,y) €
R?, we obtain

%(Eﬁ)(xw (@) = xCcos’ @+ 3ycos psing -+ 3xcossir? @+ 2ysin® @.
Therefore we obtain

d(dBF) (cosp s
1 d(@¥)cos56) (@) = cosB sing(cos @ — sin’ @) + sinB cos’ .

72 do

We see that0,0) is the only umbilical point ot f on R?. We shall show tha@dsf may not be
well-defined orR?\ {(0,0)}. We see that there exist

(a) anumbeB, € (0,71/2),

(b) a continuous increasing function onl; := [—71/2, 6],

(c) acontinuous decreasing functigponl; := [— 8o, 6], and

(d) a continuous increasing functiop onl3 :=[—8y, 11/2)
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satisfying e
d(d3 f ) (cosB,sinB)
i (@) =0

for any 8 < I; and

m(=m/2)=-m/2,  ni(6o) = N2(6o) € (—1/2,0),
Ns(m/2) =m/2,  nN2(—6o) =ns(—6o) € (0,1/2).

In addition, we see that if a numbes € [—11/2, 1/2) satisfies

—

d(dsf)(cose,sine)
do
for some6 € [—1/2,1/2), thengy = ni(6) for somei € {1,2,3}. Therefore we see thaks,
may not be well-defined oR?\ {(0,0)}.

%) =0

Let f be a smooth function on a domaih of R? and pp an isolated umbilical point of
d"f such that there exists a neighborhdddf pg in D satisfyingu NnUmb(d"f) = {po} and
the condition that there exists a continuous, complete, pointwise separable, finitely many-valued
one-dimensional distributiofign onU \ { po} formed by all the critical directions @ f at each
point ofU \ {po} (for example, if the sum of the multiplicities of the critical points((f‘\f)p in
[0, 1) does not depend on the choicef U \ {pp} and if f is real-analytic, then this condition
is satisfied). In the following sections, we shall study the behavicrof aroundpp and

CONJECTURE3.1. The indexindp, (@dnf) of pg with respect t0Zqn¢ is not more than
one

REMARK. We setv(f") :=Re(d)'f)d/0x+1Im(d)f)d/dy as in Section 1. We obtain
1(of 0 odfa
VAR AN N
f 2{0x0x+0y0y}

We see tha‘t/(f1> is the half of the gradient vector field éf Therefore Conjecture 3.1 for= 1
is equivalent to Loewner’s conjecture for= 1. The following holds:

v 1{ <02f - 021‘) 0+202fﬁ},
4\ dx2 9y2)adx ~Ixdyady
Then we see that for a poipte D, the following are mutually equivalent:
(a) pis a zero point o’i/(fz);
(b) atp, Hessian Hesgsof f is represented by the unit matrix up to a constant;
(c) pis an umbilical point of?f.
In addition, noticing that for ang € R,

9%t 9%f\ _ 0°f B cog/2) —sin(g/2)
B (ax2 B ayZ) NPt 25y 0% = 2<Hess" <sin<<p/2>> ’ ( cos(qo/2>> >

(¢/2)




A conjecture in relation to Loewner’s conjecture 7

(where( , ) is the scalar product iR?), we see that for a numberc Rand at a point oD, the
following are mutually equivalent:

@) V(fz) is represented by , up to a constant;

(b) Y(cog@/2),sin(¢p/2)) is an eigenvector dfless;

(c) Uy isinacritical direction ofi2f.
In particular, we see that the index of an isolated zero pnjrnfv(fz) is twice the index of an
isolated umbilical poinpg of d?f. Hence we see that Conjecture 3.1 for 2 is equivalent to
Loewner’s conjecture fon = 2. However, ifn = 3, thenRe(d)'f) = Im(d; f) = 0 at a point do
not always imply that"f is umbilical at the same point: ifis even, then for a polynomial

Fo0y) =X (L4%) + XMy — (1) "2 2y (L y) — (1),

we obtain
n n! 17} _ 7]
Vil = on ((n+ l)x—ax nyay

which implies tha{0,0) is a (unique) zero point cv(fn), while there exists no umbilical point of
d"f; if nis odd, then for a polynomial

F0y) = XML )+ Xty — (1) 2t — (1) YA (L 4y),

we obtain the same conclusion. In additionn i 3, then an isolated umbilical point af'f is
not always an isolated zero pomt‘vhén s if we setf(x,y): (x2+y2) wherel :=[n/2] + 1,
then (0,0) is a unique umbilical point ofi"f and Zgn; is well-defined onR?\ {(0,0)}, while

V<f”) is identically zero. Hence we see that the solution of one of Conjecture 3.1 and Loewner’s
conjecture fom = 3 does not give any solution of the other.

In the next section, we shall study and affirmatively solve Conjecture 3.1 in the case where
f is a homogeneous polynomial. The following lemma shall be useful in the next section.

LEMMA 3.2. Let ¢, a, b be real numbers andx,y) orthogonal coordinates olR?

satisfying
X'\ _ (cospp —singy) (), (a
yl B Sin(po COoS(y y b
at any point ofR?. Then for anyp € R,
n n omf . B
iZO ( [ ) de%iyi(va) cos" ' gsin @
n onf -
= %( > a(xX)"1a(y) -(X,Y) cod (@ + @) sin (@ + @o).

We may prove Lemma 3.2 by induction with respechte N.
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4. Homogeneous polynomials.

4.1. Results.
Let n be a positive integer angl a homogeneous polynomial of degree- n such that
there exists a continuous, complete, pointwise separable, finitely many-valued one-dimensional
distribution @dng on R?\ {(0,0)} formed by all the critical directions ai"g at each point of
R?\ Umb(d"g). In order to grasp the behavior %ng around(0,0), we shall first notice a point
at which the “position vector fieldkd /dx+yd/dy is in a critical direction ofi"g.
For eachd € R, setg(0) := g(cosf,sinf). Then by Euler’s identity, we obtain

LEMMA 4.1. Foranyf €eR,

(d/@)(cose,sine) (9) (3)

Il
—N—
. -
Il |
;H
—
o~
|
=
——
Q
2

d(dng cos,sin ni .
(d"g) (coss.sin6) {n } o). @

G @)= R T[] kD)

By Lemma 4.1, we see that for a numifigr the position vector field is in a critical direction
of d"g at(cosf, sin6p) if and only if 6 satisfiegdg,/d6)(6p) = 0. We denote by, the set of the
numbers at whickg/d6 = 0. Letn be a continuous function dRsuch that for ang € R,U ;g
is in a critical direction ofi"g at (cos6, sin@) andEgn, the set of such continuous functionsrps
Let R(d"g) be the set of the numbe#s such that there exists an elemep} < Eqn, satisfying
60 = Ng,(60). ThenR(d"g) C R, holds. We are interested in the relation between the funéion
(of one variablef) andng, aroundfy € R(d"g).

SupposeR, = R. Thenk is even and is represented bgx? +y?)¥/2 up to a constant. We
obtain 6 € Egn,, i.e., R(d"g) = R In addition, by Lemma 3.2, we see th@ang is pointwise
separated. Therefore we obtamal g ) (@dng) =1

In the following, suppos®, # R. Then for eaclf, € R,, there exists a positive integgr
satisfying (d#*15/d6++1)(6p) # 0. The minimum of such integers is denoted fy(6p). An
element € R, is said to be

(a) relatedif 6y satisfiesj(6o) = 0 or if u,(6p) is odd

(b) non-relatedif 8y satisfiesj(6o) # 0 and if u,(6p) is even.

In the next subsection, we shall prove

Q.‘Q_
Q| Qe

LEMMA 4.2. Let 6 be an element oR(d"g) and lg, an open interval satisfyingg, N
R(d"g) = {6o}. Then the following hold
(a) if By is related, then there exists a nonzero nunﬂé@r(@o) satisfying

¢ (60)(8 — ey (6))(8 — ) > O

forany8 € lg, \ {60} and anyng, € Eqgn, satisfyingng,(6o) = 6o;
(b) if 6pis non-related, then there exists a nonzero num"ié)'a(eo) satisfying

&M (60)(0 —1,(8)) > 0

forany € lg, \ {6} andng, € Eqn, satisfyingng,(6o) = 6o.
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For arelated elemeityh € R(d"g), the sign ofcgn)(eo) in (a) of Lemma 4.2 is called the&gn

of B and denoted bgigr}” (6p).
For each elemerfly € R(d"g) and the intervalg,, we may suppose that if1, n. are ele-
ments ofEqgn, satisfyingni = n» at some poin® of lg, \ {60}, thenni = n> on the connected

component ofg, \ { 6o} containingd. Then there exists a positive integdém(eo) € N such that

N_(E”)(Go)2 is the number of the elementse Egn, restricted orlg, satisfyingn (6o) = 6o.
Let R, (d"g)(respectivelyR_(d"g)) be the set of the related elementsR§ti"g) with posi-
tive (respectively, negative) sign and foe {+, —}, we set

Ne (d"g) := S NS (6p).
6o€Re (d"9)1(0,0+ 1)

In the next subsection, we shall prove the following:

THEOREM4.3. The index’nd(oﬁo)(@dng) is represented as follows

N, (d"g) —N_(d"g)
Ndng

ind(oio) (-@d”g) =1-

3

whereNgn, is a positive integer such thatgn, is Ngn,-valued
In addition, we shall prove
LEMMA 4.4, N, (d"g) = N_(d"g).

REMARK. In[1], we may find the prototypes of Lemma 4.2, Theorem 4.3 and Lemma
4.4, respectively. In4], we proved Lemma 4.2 fan = 2.

By Theorem 4.3 together with Lemma 4.4, we obtain
ind(o.0)(Zany) < 1. (5)

From (5), we obtain the affirmative answer to Conjecture 3.1 in the case Wher@ homoge-
neous polynomial. Indeed, (5) is a reason why we have reached Conjecture 3.1.

4.2. Proofs.
Letn, g be as in the previous subsection. For numiteig € R, we set

n .
5dng(9,(p) - %d(d g)éc(;se,sme) (9). ©6)
Then for anyn € Egn, and anyd € R, ang(e, n(6)) = 0. In the following, suppos®, # R.
Suppose that fofp € R,, d"g is not umbilical at cosf, sinfy). Then there exists a positive
integerv satisfying (6VDan,/d¢") (6o, 60) # 0. The minimum of such integers is denoted by
v (6p). Suppose that fofy € R, d"g is umbilical at(cos, sinfy). Then we writev."” (6) =
. We obtain a mapv;”) from R, into NU {e}. We immediately obtain

LEMMA 4.5. For 6y € R;, the following are mutually equivalent
(@) 6o € R, \R(d'g);

(b) g(60) =0;

(©) v (B0) = .
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For a related elemerty € R, it is said that theritical sign of 6y is positive (respectively,
negative) if the following holds

dHo(60)+17

JoreE1 ) = 0 (respectively> 0).

g(6o

The critical sign off is denoted by c-sigyify). We shall prove

LEMMA 4.6. Supposeé = 2 and letfy be an element oR, satisfyingg(6g) # 0. Then
(@) 6o € R(d"g) holds if and only ifvé”)(eo) is an odd integer
(b) if 6o € R,\ R(d"g), then@ is related and satisfies-sign,(6p) = — and v§”>(90) = oo,

PrROOF. By (4), (6) and the implicit function theorem, we obtaflp € R(d"g) for an
elementy of R, satisfyingv.” (6p) = 1.

We shall provevém(eo) = 1for an element, of R, satisfyingg(6o) # 0 andu,(6p) = 2.
Noticing Lemma 3.2, we may suppofe = 0. If we represeny asg = TK oax<'y}, then we
obtainag # 0 by g(0) # 0, and we obtaim; = 0 by 0 € R,. In addition, by

d?%g
52 (0) = 282 — ko @)
together withu, (0) = 2, we obtain
k
% = 5. (8)
The following hold:
dDgn on d"g
5 (0.0 =~ (10} (n—1) 5 55 (1,0), ©)
0[‘] n—1
Txﬁ(l,o { I_L } (10)
a"g -
ax2y7 { s } -

Applying (10) and (11) to (9), we obtain

dﬁdng . n-1 . 2(n—1)
70 (O,O)—{ir!)(k—l)}{—ao+k(k_1)az}. (12)

By (8) together with (12), we obtain

3Dan, B 1 N .
90 (0,0) = —{k |_L(k—l)}ao.

Sinceag # 0, we obtainy,” (0) = 1.
We shall provevé”)(O) =1if O is a related element oR, satisfying g(0) # 0 and
c-sign,(0) = +. By (7) together with c-sigy{0) = +, we obtain
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(13)

&le
A
NI =

By (12), (13) anch < k, we obtain(dDgn,/d)(0,0) # 0, i.e.,v\" (0) = 1.
We shall proved ¢ R(d"g) if O is a related element d®, satisfying c-sigp(0) = — and
vén)(O) = 0. We see than is even and we obtain

0, if ie{1,3,...,n—1},
~ lemki)ao, if i€{0.2,....n},

()0 )

(aﬁg)(cos&sine) ((0)

- {hj(k— i)}aocoé”‘e

+{Azcos L gsing + a (@) sir? @} cos "1 0sing + B(0, @) sir? 6,

where

Therefore we obtain

whereA; € R\ {0} anda, 3 are smooth functions. In addition, we obtain

nDgn, (6, @) = {(Azcoé1 @+ a()sing)cos 10+ Z—Z(G, ®) sine} sing,

whered is a smooth function. Hence we obtdirg R(d"g).

n
9
Let 0 be a related element &, satisfying c-sigp(0) = — and v_;”)(O) € N\ {1}. Then we
obtain

0, if ie{13,....2[(v\"(0)+1)/2] -1},
"o {C(n, ki)ao, if ie€{0,2...,2[v\"0)/2]}
and
0, it v\"(0)is even,
AL {C(n, kvi"(0)+1)ap, if viV(0)is odd.

Then we may represebn, (6, @) as

Dany(6,0) = 3 Bij6'¢,
i.1=0

whereBig # 0, Boj = 0 for j € {0, 1,...,v"V(0) - 1} and BOV(”>(o) # 0. Therefore we obtain

(0Dgn, /36)(0,0) # 0. By the implicit function theorem, we see that there exist a positive
numbere > 0 and a smooth functiop of one variable satisfying
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B

) n n
V(@) = -2 0 " © +0((pv§ >(0>) (14)
B1o
and
{(6,0) € (—&,€)?; Dang(8,9) =0} = {(y(0),9) ; 9 (—¢,€)}.

Therefore ifv_,gn)(O) is odd, therD is an element oR(d"g); if v_,§”>(0) is even, then there does not
exist any distribution a¥/gn, on R?\ {(0,0)}.

Hence we obtain Lemma 4.6. O

REMARK. In [3], we may find the prototype of Lemma 4.6. i [we proved that for an
elementdy of R;, 6 € R, \ R(d2g) holds if and only ifj(6p) # 0 andv,? (65) = e hold.

PROOF OFLEMMA 4.2. Let 6 be an element dR(d"g )satlsfy|nng ( b) = 1. Then by
the implicit function theorem, we see thatrjg, is an element oEgn, satisfyingng,(6o) = 6o,
thennyg, is smooth ah and satisfies

_ n-1 1~ 0y
W(%) = {in(k—i)}jg:ﬁ(eo)/md (6o, 60) (15)

foranyu € {0,1,..., 4,(6o)}. Therefore we obtain Lemma 4.2.
Let 0 be an element dR(d"g) satisfyingg(0) # 0 and vé”)(O) = 2. ThenO s related and
vi"(0) is odd. Noticing (14), we obtain

Bou" (0

B1o

(8-10(8))6 >0 (16)

forany@ € lp\ {0} andno € Egn, satisfyingno(0) = 0. Therefore we obtain Lemma 4.2.

Let 0 be an element dR(d"g) satisfyingg(0) = 0 and vg(”)(O) = 0. Then we see that there
exists an integeip > n satisfyinga; = 0 fori € {0,1,...,ip — 1} anda, # 0. Therefore we may
represenDgn, as

Bary (6.9) = 6°" 5 By, (6.9),

Whereﬁggg is a homogeneous polynomial of degréetwo variablesd, ¢. We obtairf)é'};l) £0.

If we represenﬁgﬁ ,as

i
5() S(i.1) gi—j i
D n (ev(p): D n 6 J(pJ7
dng ]Zb d"y

then we obtaiD ”gl “)Dg;;l’“) > 0for arbitrary twojy, j» € {0,1,...,n—1}. Then we obtain
(6—no(6))6 > 0forany6 € lp\ {0} and anyno € Egn, satisfyingno(0) = 0. Similarly, we see
that if 0 is an element oR(d"g) satisfyingg(0) =0 andvg(")(O) € N, then(6 —no(6))0 > 0for
any@ € lg\ {0} and anyng € Egn, satisfyingno(0) = 0. Hence we obtain Lemma 4.2. [
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We shall prove

PROPOSITION4.7. Let 6y be a related element dj(d"g).
(a) If g(6o) # O, then the sign of the nonzero number

58 di (@15 U @) By,

g (O) = deﬂg(90)+1 &'(p"y(n)(eo) (90760)

gives the sign ofy;
(b) if §(6p) =0, then the sign 0B, is positive

PROOF. Let 6 be a related element &(d"g) satisfying(6) # 0 and v (6o) = 1.
Then by (15), we obtain (a). L& be a related element &(d"g) satisfyingg(0) = 0. Then in
the proof of Lemma 4.2, we have provst@r_f,”)(O) = +. Let0 be a related element &(d"g)
satisfyingg(0) # 0 and vé”)(O) = 2. Then noticing (16), we see that the sign of the nonzero
numberBOv[J(n)(O) Bi1o gives the sign 00. We obtain

(n) ~
1 dVs (O)an
By - ! 0,0, B1og(0) > 0.
ov™ (0) vg(”)(O)! 0<p‘/§")(0) (0,0) 109(0)

Since c-sigp(0) = —, we see that the sign cﬁé”)(O) gives the sign oD. Hence we obtain
Proposition 4.7. O

REMARK. In[1], we may find the prototype of Proposition 4.7. W,[we proved Propo-
sition 4.7 forn = 2.

We shall prove

PROPOSITION4.8. Let 6 be a related element dR(d"g) satisfyingc-sign,(6o) = +.
Thensign;m(eo) =+.
PROOF. Let 8 be arelated element &d"g) with c-sign,(6p) = +. Suppos@& = 1. Then
we obtain
alﬁdlg
29

(60, 60) = —kg(6b).

Since c-sigp(6y) = +, we obtainégm(eo) > 0. Therefore from Proposition 4.7, we obtain

sigrf,l)(eo) = +. In the following, suppose = 2. In addition, noticing (b) of Proposition 4.7,

we may supposg(6p) # 0. Then sincevé”)(eo) =1, we may represer&é”)(eo) as

Hy(60)+17 IDun
o1 60) = (360 Sy @) ) (60 o (6.6 ) a7)
We obtain
Lo dg o k(k=1) 1 3Dgn, B
(D70 = T T (g8 o (@) Fhem @9
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Since c-sigp(6y) = +, we obtain

1 0Dgn,
g(6o) o0

(60, 60) <O,

andé_q(”)(eo) > 0. Therefore from Proposition 4.7, we obtain Proposition 4.8. O

By (17) together with (18), we obtain

PROPOSITION4.9. Let 6y be arelated element d®(d"g) satisfyingc-sign,(6p) = — and

d%g ~
(n—1) 552 (80) # (k(k—1))5(6o).

Thensigr;(,")(eo) = + (respectively) is equivalent to

(n— 1)(%(60)/5(60) € (k(k—n), ) (respectively[0,k(k—n))).

do?
REMARK. Let 6 be a related element &%, satisfying c-sigp(6p) = —. Then from
Lemma 4.5, we obtaifly € R(d'g) and from Proposition 4.9, we obtamign(,l) (60) = —.
REMARK. Let 6y be a related element &{(d"g) satisfying c-sigp(6p) = —. We see by
(18) that

2~

(0= 1) 5a(80) /3(60) =kt

is equivalent tov" (8p) = 2. If v\"(8p) = 2, then bothsign” (6y) = + andsign,” (6o) = —
may happen and we may grasp the sigiioby (a) of Proposition 4.7.

REMARK. In [1], we may find the prototype of Proposition 4.8; @],[we may find the
prototype of Proposition 4.9. 1/], we proved Proposition 4.8 for= 2.

We shall prove
LEMMA 4.10. For an elementy € R(d"g) satisfyingg(6p) # 0, Ngm)(eo) = 1holds

PrROOF. If v;”)(eo) =1, then by the implicit function theorem, we obta\'\ij")(eo) =1
Suppose/g(")(eo) 2> 2. Then we obtaim > 2 and referring to the proof of Lemma 4.6, we obtain
N (6) = 1. O

REMARK. For any elemenéy € R(d%g), Ng<2) (60) =1 (see #]).

PROOF OFLEMMA 4.4. Let 6y, 6, be two related elements &d"g) satisfying6, > 61
and the condition that 6y, 62), there exists no related element®fd"y). Then either c-
sign,(61) = + or c-sign(62) = + holds. Therefore from Proposition 4.8, we see that either
sign,(61) = + or sign,(62) = + holds. Noticing (b) of Proposition 4.7 and Lemma 4.10, we
obtain Lemma 4.4. O
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PROOF OFTHEOREM4.3. We first suppose th@dng is pointwise separated. LBt d"g)
be the number of the related elementRod"g) in [0, 1) and 6y, 65, ..., Oy (an,) related elements
of R(d"g) satisfying

Og 91<92<"'<9N(d”g)<7-[~

In addition, fori € {1,2,...,N(d"g)} and j € Z, set8 jyan, = 6 + jm. Then fori € Z,
we see that in6_1,6), there exists no related elementRfd"g). Let @y, be an element
of @5, (00) Satisfying@n,(r, 61) = 6y for anyr > 0. Then we see that if both siém(el) =

+ and siglém(ez) = + hold, thengyn,(r,8,) < 6> and that if just one of sigﬂ?(@l) =+ and
signgn)(ez) = + holds, thengn,(r, 62) = 6,. We suppose sié?f(el) = +. Forip € N, suppose
that the sign o, is positive and that the number of the related elemen®&(dfy) in [61, 6,))
with positive sign minus the number of the related elemen®(dfy) in [61, 6,,) with negative
sign is equal tdgNgn, for somelp € NU {0}. Then for anyr > 0, we obtain

(' %”g(rv 9|0) = IOT['

We see thaBNgn,N(d"g) + 1 is such a positive integer &sand that the corresponding inteder
is equal to2(N;.(d"g) — N_(d"g)). Therefore we obtain

Bongn, N(dng)+1 — @ing (T, Bangn N(ang) 1) = 2(N-(d"g) —N_(d"g)) 7t
for anyr > 0. This implies

(mng(r, 61+ 2Ndngﬂ) — (an_q(l’, 91) 1 N, (dng) —N_ (dng)
2Ndng7T Ndng '

Hence we obtain Theprem 4.3.
We suppose tha¥gn, is not always pointwise separated. l8gtc R(d"g) satisfyg(61) # 0.

ThenN(”)(Gl) =1. Let (pé%) be an element ocD~ n,:(00) satisfyingqoé%) (r,61) = 6y for anyr > 0.
For each integeir> 2, let (pén) be an element o®; , . ) Such that for anyr,8) € (0,») x R
and anyi € N, the following hold:

(@) cpé‘n;%e) > gl (1.0);
(b) the following give all the critical directions af"g at (r cos6,r sin6):

(i+1) (

i i+Ngn —1
9l (1,6), ol ocees Gy 0

9)7 (p((jLZZ)(rve ’ quﬂy

(i+Ngn,) ( )

(©) @, r,e)= qoéL)g(r,G)Jr .

Then we obtain
N PN (¢ gy 4oy = 6 2
foranyl € {1,2,...,Ngn, }. In particular, we obtain

@i (1, 61+ 2Nepy 1) + 2(N, (d"g) — N_ (d"9)) 7T = @) (r, 61) + 2N, 1.
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@i (1, 81+ 2Ny 1) — @l (1. 61) L Ni(d')—N_(d")

2Ndng T Ndng

Hence we obtain Theorem 4.3. O

EXAMPLE. Letg be a spherical harmonic function of degileeWe shall compute the
index of (0,0) with respect to@dng. We see that anfly € R, is related and satisfigg 6g) # 0
and c-sigg(6y) = +. Therefore from Lemma 4.6, we obtaRid"g) = R, and by Proposition 4.8
together with Lemma 4.10, we obtafi\l (d"g),N_(d"g)) = (k,0). SinceNgn, = n, we obtain
ind<070) (.@dng) =1- k/n

5. Real-analytic functions.

Let n be a positive integer ang a positive number. Lef be a real-analytic function on a
neighborhood) := {x?+y? < r3} of (0,0) in R? satisfying the following:

(@) (0,0) is an umbilical point ofi"F;

(b) F is represented &= y;>,F ", whereF ) is a homogeneous polynomial of degiee
We see that ifiis odd, therF (" is identically zero. Suppose thi, 0) is the only umbilical point
of d"F onU and that there exists a continuous, complete, pointwise separable, finitely many-
valued one-dimensional distributigiy= onU \ {(0,0)} formed by all the critical directions of
d"F at each point ot \ {(0,0)}. We set

me:=min{i >n; FU£0}, g :=F™).
Let @rr be an element o®;;, . o). We shall prove

ProrPoOSITIONS.1. For each numbefy € R,
(a) there exists a numbegyng o(6p) satisfying

!mfpan(r, 60) = @irr0(6o),

and @ynro(6o) is a critical point of ((j/”g:)(cos%’singo);
(b) there exist numbergyng (6o + 0), g o( Bo — O) satisfying
o' @nFo(8) = @rro(Bo+0).

Let S(d"gg ) denote the set of the numbegsuch thatd"gg is umbilical at(cos6p,sin6p).
ThenS(d"gg) C Ry.. In the following, suppose the following:

(a) each critical point o(cﬁg\F)(cosgo,smgo) for eachfy € R\ S(d"gg) is obtained as in (a)
of Proposition 5.1 from someynr € @5, -0 0):

(b) there exists a continuous, complete, pointwise separable, finitely many-valued one-
dimensional distributior@dngF onR%\ {(0,0)} formed by all the critical directions af"g; at
each point oR?\ Umb(d"gp);

(©) Zarr is Nan,, -valued.

RemARK. If ne {1,2}, then conditions (a)—(c) are always satisfied.
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For eachfy € R, we set
TanF0(60) := @inr,0(60 +0) — @nF o(6o —0).
We shall prove

PROPOSITION5.2. () If 6 € Rsatisfiesgnr o(6b) # O, thenbo € S(d"gg);
(b) indg)(Zanr) is represented as follows
ind(ojo) (_@dnp)
1

= indg.0) (Zange ) + N 7T lane.0(60).
d9r % oeS(dnge )N[B,6+2Ngn, - 1)

PROOF OFPROPOSITION5.1. We represend"F as

dF=3 d"'F 0,

izn

Then we obtain

—

(an)(rcoseo,rsinGO) = z riin(m)(coseo,sineo)

i>n

for anyr € (0,rg) and any8, € R. Therefore we see that for an arbitrary positive nungoer0,
there exists a positive numbey> 0 such that for any € (0,rg) and anyp € R,

1 d(ﬁ ) (r cos6p,r sinfp)
rme—n do

((p) - nljdng;: (907 (p) <é&.

In particular, we obtain
N|Dang, (B, @re (1, 60))| < € (19)

for anyr € (0,rp). If 6o € R\ S(d"gg), then each critical point (J(fd/”g\F)<coseo_sin90) is isolated.
Therefore by (19), we obtain (a) of Proposition 5.1 in the case wBgeR\ S(d"gr). Let 6y
be an element o8(d"gg). Since(0,0) is an isolated umbilical point ad"F, we see that there
exists an integemg (6p) > me satisfying the following:
(a) for any integeft satisfyingmg <i < mg(6o) — 1, d"F () is umbilical at(cos8p, sin6y);
(b) d"F (™ (%)) js not umbilical at(cosfy, sinby).
Then we see that for an arbitrary positive number 0, there exists a positive numbry > 0
such that for any € (0,ro),

|[~)dn|:(m|:(90)) (90, GinF (I’, 90)) ‘ <E&.

Sinced"gg is umbilical at(cos6y,sin6y), we obtain (a) of Proposition 5.1 in the case where
6y € S(d"gg). In addition, by (a) of Proposition 5.1, we obtain (b) of Proposition 5.1. O

PROOF OFPROPOSITIONS.2. If 6y € R\ S(d"gg ), then noticing Proposition 5.1, we ob-
tain Ignr o(80) = 0. Hence we obtain (a) of Proposition 5.2. Fbe R, the following holds
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. ~ @unr, 6 + 2Ngn,_ 1T — @yrE, 0
ind(o,0) (Zanr ) = o 2Nd:: 7)1 o2 (20)
F

In addition, for anyr > 0, the following holds:

(mn,:’o(e + 2Nd”gp 7'[) — (mn,:’o(e)

= Qg (1, 0 + 2Nange TT) — @inge (v, 6) + loro(60).  (21)
90€S(dng|:)m[9,9+2Ndan M)

From (20) and (21), we obtain (b) of Proposition 5.2. O

REMARK. In [4], we proved the prototypes of Propositions 5.1 and 5.hfer2, respec-
tively.

By Theorem 4.3, Lemma 4.4 and Proposition 5.2, we see tifastitisfiesS(d"gg) = @,
thenind(ovo) (@dnp) <1.
We shall prove

THEOREM5.3. Suppose

Ndan -1

> era(fo+2m <m (22)
for any 6 € S(d"gg ). Thenind g (Pare) S 1.
PROOF. By Theorem 4.3, Lemma 4.5, Lemma 4.6 and Proposition 4.8, we obtain
ind(o,0) (Zang: ) < 1—Ns(d"ge) /Nangg , (23)

whereNs(d"gg) 1= £{S(d"gg) N [0,6 + m)}. If (22) holds for any6 € S(d"gg), then by (b)
of Proposition 5.2 together with (23), we obtait o ¢, (@dn,:) < 1. Hence we obtain Theorem
5.3. O

REMARK. We see that (22) is always true foe= 1.

REMARK. In[4], we proved the prototype of Theorem 5.3 foe 2 on condition that the
right hand side of (22) is equal &t.

We shall prove

THEOREM5.4. Suppose thajg (6o) # 0 for any 6, € S(d"gg) and thatZgng is pointwise
separated. Theimdqq) (Zanr) < 1.

In order to prove Theorem 5.4, we need a lemma.
Forn = 2, we set

180w () ()
—(n—i) (g’;)n_i*(?;)m}
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We see that for a poinp € U, mynr(p) = 0 holds if and only if the gradient vector field
(OF /0x)0/dx+ (OF /dy)d/dy of F is in a critical direction ofi"F at p. We set

Wy (1, 0) := wynp (r cos, rsind)
and
(n+1)mg —2n, if FMW =0,
My 1= .
me+n(n—2), if FMW 0,

Then we see thatynr /r ™" may be continuously extended{o= 0}. By the implicit function
theorem, we obtain

LEMMA 5.5. Let 8y be an element o§(d"gg) satisfyinggg (6p) # 0. Then there exist a
neighborhood/g, of (0, 6) in R? and a real-analytic curv€g, in Vg, through(0, 6y) satisfying

(a)Cg, = {(r, 0) € Ve, ; G (1, 0) /rene = o};

(b) Cg, is not tangent to thé@-axis at(0, 6p).

REMARK. In [4], we proved Lemma 5.5 fan= 2.

PROOF OFTHEOREM5.4. Supposen = 2. Then noticing Lemma 5.5 and thédyng is
pointwise separated, we see that there exists a nonzero negbg(6p) satisfying

CanF,0(60)anF o(B0+2i1T) = 0

for anyi € Z and
NdngF -1

20 [areo(6o+2im) € {—11,0, 11}
i=

Therefore from Theorem 5.3, we obtaird g (@dnp) < 1. Supposen = 1. Then Lemma 4.5
says that forp € Ry, §r(6) = 0 is equivalent tofy € S(d'gg). This implies that the first
assumption in Theorem 5.4 is always falseriee 1. Hence we obtain Theorem 5.4. O

REMARK. In [4], we proved the prototype of Theorem 5.4 for 2.
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