Hyperspaces with the Hausdorff Metric and Uniform ANR's

By Masayuki KURIHARA, Katsuro SAKAI and Masato YAGUCHI

(Received Jun. 27, 2003) (Revised May 22, 2004)

Abstract. For a metric space X = (X, d), let $Cld_H(X)$ be the space of all nonempty closed sets in *X* with the topology induced by the Hausdorff extended metric:

$$d_H(A,B) = \max\left\{\sup_{x\in B} d(x,A), \sup_{x\in A} d(x,B)\right\} \in [0,\infty].$$

On each component of $\operatorname{Cld}_H(X)$, d_H is a metric (i.e., $d_H(A,B) < \infty$). In this paper, we give a condition on X such that each component of $\operatorname{Cld}_H(X)$ is a uniform AR (in the sense of E. Michael). For a totally bounded metric space X, in order that $\operatorname{Cld}_H(X)$ is a uniform ANR, a necessary and sufficient condition is also given. Moreover, we discuss the subspace $\operatorname{Dis}_H(X)$ of $\operatorname{Cld}_H(X)$ consisting of all discrete sets in X and give a condition on X such that each component of $\operatorname{Dis}_H(X)$ is a uniform AR and $\operatorname{Dis}_H(X)$ is homotopy dense in $\operatorname{Cld}_H(X)$.

1. Introduction.

Let X = (X,d) be a metric space. The set of all non-empty closed sets in X is denoted by Cld(X). On the subset $Bdd(X) \subset Cld(X)$ consisting of bounded closed sets in X, we can define the *Hausdorff metric* d_H as follows:

$$d_H(A,B) = \max\left\{\sup_{x\in B} d(x,A), \sup_{x\in A} d(x,B)\right\},\$$

where $d(x,A) = \inf_{a \in A} d(x,a)$. We denote the metric space $(\operatorname{Bdd}(X), d_H)$ by $\operatorname{Bdd}_H(X)$. On the whole set $\operatorname{Cld}(X)$, we allow $d_H(A,B) = \infty$, but d_H induces the topology of $\operatorname{Cld}(X)$ like a metric does. The space $\operatorname{Cld}(X)$ with this topology is denoted by $\operatorname{Cld}_H(X)$. When X is bounded, $\operatorname{Cld}_H(X) = \operatorname{Bdd}_H(X)$. Even though X is unbounded, $\operatorname{Cld}_H(X)$ is metrizable. Indeed, let \overline{d} be the metric on X defined by $\overline{d}(x,y) = \min\{1,d(x,y)\}$. Then, \overline{d}_H is an admissible metric of $\operatorname{Cld}_H(X)$. It should be noted that each component of $\operatorname{Cld}_H(X)$ is contained in $\operatorname{Bdd}(X)$ or in the complement $\operatorname{Cld}(X) \setminus \operatorname{Bdd}(X)$. Thus, $\operatorname{Bdd}_H(X)$ is a union of components of $\operatorname{Cld}_H(X)$. On each component of $\operatorname{Cld}_H(X), d_H$ is a metric even if it is contained in $\operatorname{Cld}(X) \setminus \operatorname{Bdd}(X)$. Then, we regard every component of $\operatorname{Cld}_H(X)$ as a metric space with d_H .

When X is compact, it is well-known that $\operatorname{Cld}_H(X)$ (= $\operatorname{Bdd}_H(X)$) is an ANR (an AR)¹ if and only if X is locally connected (connected and locally connected) [12]. However, in case X is non-compact, this does not hold. In this paper, we construct a metric AR X such that $\operatorname{Cld}_H(X)$

²⁰⁰⁰ Mathematics Subject Classification. 54B20, 54C55.

Key Words and Phrases. Hyperspace of closed sets, Hausdorff metric, uniform AR, uniform ANR, uniformly locally C^* -connected, almost convex, C-connected, Lawson semilattice.

This work is supported by Grant-in-Aid for Scientific Research (No. 14540059), Japan Society for the Promotion of Science.

¹An ANR (an AR) means an absolute neighborhood retract (an absolute retract) for metrizable spaces.

is not an ANR. Recently, Costantini and Kubiś [4] showed that $Bdd_H(X)$ is an AR if X is *almost convex*, that is, for each $x, y \in X$ and for each s, t > 0 such that d(x, y) < s + t, there exists $z \in X$ with d(x,z) < s and d(y,z) < t. Under a more mild condition on X, we show that each component of $Cld_H(X)$ is a uniform AR in the sense of Michael [9]. For a totally bounded metric space X, in order that $Cld_H(X)$ (= $Bdd_H(X)$) is a uniform ANR, a necessary and sufficient condition is given. Moreover, we discuss the subspace $Dis_H(X) \subset Cld_H(X)$ consisting of all discrete sets in X and give a condition on X such that each component of $Dis_H(X)$ is a uniform AR and $Dis_H(X)$ is homotopy dense in $Cld_H(X)$, where Y is *homotopy dense* in Z if there exists a homotopy $h: Z \times I \to Z$ such that $h_0 = id_Z$ and $h_t(Z) \subset Y$ for t > 0.

2. Main results and examples.

First of all, we shall construct a metric AR X such that $Cld_H(X)$ (nor $Dis_H(X)$) is not an ANR.

EXAMPLE 1. The following subspace X of Euclidean plain \mathbf{R}^2 is an AR:

$$X = [1,\infty) \times \{0\} \cup \bigcup_{n \in \mathbf{N}} \{n, n+2^{-n} \mid n \in \mathbf{N}\} \times \mathbf{I}.$$

Then, $\operatorname{Cld}_H(X)$ is not locally path-connected at $A = \mathbb{N} \times \{1\}$. Otherwise, we can find $0 < \gamma < 1$ such that if $d_H(A,B) < \gamma$ then A and B are connected by a path with diam < 1. Choose $k \in \mathbb{N}$ so that $2^{-k} < \gamma$, and let $B = A \cup \{(k + 2^{-k}, 1)\} \in \operatorname{Cld}_H(X)$. Since $d_H(A,B) < \gamma$, there is a path $f : \mathbb{I} \to \operatorname{Cld}_H(X)$ such that f(0) = A, f(1) = B and diam $f(\mathbb{I}) < 1$. Let

$$U = \{t \in \mathbf{I} \mid f(t) \cap \{k + 2^{-k}\} \times (0, 1] \neq \emptyset\} \text{ and } V = \{t \in \mathbf{I} \mid f(t) \cap \{k + 2^{-k}\} \times \mathbf{I} = \emptyset\}.$$

Then, $0 \in U$, $1 \in V$ and $U \cap V = \emptyset$. Since $f(t) \cap [0, \infty) \times \{0\} = \emptyset$ for every $t \in I$, it is easy to see that U and V are open in I and $U \cup V = I$. This contradicts to the connectedness of I. Similarly, $\text{Dis}_H(X)$ is not locally path-connected at A.

In order to state the main results, we need some notations and definitions. Let X = (X,d) be a metric space. For $A \subset X$ and $\gamma > 0$, we denote

$$N(A, \gamma) = \{x \in X \mid d(x, A) < \gamma\}$$
 and $\overline{N}(A, \gamma) = \{x \in X \mid d(x, A) \leq \gamma\}.$

When $A = \{a\}$, we write $N(\{a\}, \gamma) = B(a, \gamma)$ and $\overline{N}(\{a\}, \gamma) = \overline{B}(a, \gamma)$.

A metric space X is called a *uniform ANR* if for an arbitrary metric space Z = (Z,d) containing X isometrically as a closed subset, there exist a uniform neighborhood U of X in Z (i.e., $U = N(X, \gamma)$ for some $\gamma > 0$) and a retraction $r : U \to X$ which is uniformly continuous at X, that is, for each $\varepsilon > 0$, there is some $\delta > 0$ such that if $x \in X$, $z \in U$ and $d(x,z) < \delta$ then $d(x,r(z)) < \varepsilon$. When U = Z in the above, X is called a *uniform AR*. A uniform ANR is a uniform AR if it is homotopically trivial, that is, all the homotopy groups are trivial. In [10], it is shown that a metric space X is a uniform ANR if and only if every metric space Z containing X isometrically as a dense subset is a uniform ANR and X is homotopy dense in Z.

A collection \mathscr{A} of subsets of *X* is said to be *uniformly discrete* if there exists some $\delta > 0$ such that the δ -neighborhood $B(x, \delta)$ of each $x \in X$ meets at most one member of \mathscr{A} , that is,

 $\inf\{\operatorname{dist}(A,A') \mid A \neq A' \in \mathscr{A}\} > 0,$

where $dist(A, A') = inf\{d(x, x') | x \in A, x' \in A'\}.$

For $\eta > 0$, an η -chain in a metric space X = (X, d) is a finite sequence $(x_i)_{i=0}^k$ of points in X such that $d(x_i, x_{i-1}) < \eta$ for each i = 1, ..., k, where k is called the *length* of $(x_i)_{i=0}^k$ and diam $\{x_i | i = 0, 1, ..., k\}$ is the *diameter* of $(x_i)_{i=0}^k$. When $x_0 = x$ and $x_k = y$, we call $(x_i)_{i=0}^k$ an η chain from x to y and we say that x and y are connected by $(x_i)_{i=0}^k$. It is said that X is C-connected (or connected in the sense of Cantor) if each pair of points in X are connected by an η -chain in X for any $\eta > 0$.

Now, we say that X is *uniformly locally* C^* -*connected* if for each $\varepsilon > 0$ there exists $\delta > 0$ with the following property:

ul $C^*(\varepsilon)$ For each $\eta > 0$, there is some $k \in \mathbb{N}$ such that each pair of δ -close points of X are connected by an η -chain with length $\leq k$ and diam $< \varepsilon$.

This concept is invariant under uniform homeomorphisms, that is, if a metric space is uniformly homeomorphic to a uniformly locally C^* -connected metric space then it is also uniformly locally C^* -connected. It is easy to see that every almost convex metric space is uniformly locally C^* -connected. One should note that the unit circle $S^1 \subset \mathbb{R}^2$ with the Euclidean metric is uniformly locally C^* -connected but not almost convex. The following is our first main result which generalizes Costantini and Kubiś' result [4] mentioned in Introduction:

THEOREM A. For every uniformly locally C^* -connected metric space X, the collection of all components of $\operatorname{Cld}_H(X)$ is uniformly discrete and each component of $\operatorname{Cld}_H(X)$ is a uniform AR, hence the spaces $\operatorname{Cld}_H(X)$ and $\operatorname{Bdd}_H(X)$ are uniform ANR's.

Here, it should be remarked that a metric space is a uniform ANR if and only if the collection of all components is uniformly discrete and each component is a uniform ANR.

The uniformly local *C*^{*}-connectedness is stronger than the uniformly local version of *C*-connectedness. It is said that *X* is *uniformly locally C-connected* if for each $\varepsilon > 0$ there exists $\delta > 0$ with the following property:

ul $C(\varepsilon)$ For each $\eta > 0$, each pair of δ -close points of X are connected by an η -chain in X with diam $< \varepsilon$.

This concept is also invariant under uniform homeomorphisms. As seen in the following example, the uniformly local C-connectedness does not imply the uniformly local C^* -connectedness.

EXAMPLE 2. For each $n \in \mathbf{N}$, let e_n be the unit vector in $\mathbf{R}^{\mathbf{N}}$ defined by $e_n(i) = 0$ if $i \neq n$ and $e_n(n) = 1$. We define a metric space X = (X, d) as follows:

$$X = \bigcup_{n \in \mathbb{N}} \mathbf{R}e_n \subset \mathbf{R}^{\mathbb{N}}, \ d(x, y) = \sum_{n \in \mathbb{N}} \min\{2^{-n}, |x(n) - y(n)|\}$$

Then, X is uniformly locally C-connected but it is not uniformly locally C^* -connected.

To see the uniformly local *C*-connectedness, for each $\varepsilon > 0$, let $x, y \in X$ with $d(x, y) < \varepsilon$. When $x, y \in \mathbf{R}e_n$ for some $n \in \mathbf{N}$, for each $\eta > 0$, choose $k \in \mathbf{N}$ so that $\eta(k-1) \leq |x(n) - y(n)| < \eta k$, and define $x_i = x + \eta i e_n$ for i = 0, 1, ..., k-1 and $x_k = y$. Then, $(x_i)_{i=0}^k$ is an η -chain from x to y in X with diam $< \varepsilon$. When $x \in \mathbf{R}e_n$ and $y \in \mathbf{R}e_m$ for $n \neq m \in \mathbf{N}$, since d(x, y) = d(x, 0) + d(y, 0), for each $k \in \mathbf{N}$, we can obtain an η -chain from *x* to *y* with diam $< \varepsilon$ by joining two η -chains from *x* to 0 and from 0 to *y*.

To see that X is not uniformly locally C^* -connected, for each $\delta > 0$, choose $n \in \mathbf{N}$ so that $2^{-n} < \delta$. Then, for every $m \in \mathbf{N}$, $d(0, me_n) \leq 2^{-n} < \delta$. If $(x_i)_{i=0}^k$ is a 2^{-n} -chain from 0 to me_n then $k \geq m2^n$. This means that X is not uniformly locally C^* -connected.

The following is our second main result:

THEOREM B. For a totally bounded metric space X, the space $\operatorname{Cld}_H(X)$ (= $\operatorname{Bdd}_H(X)$) is a uniform ANR if and only if X is uniformly locally C-connected, whence each component of $\operatorname{Cld}_H(X)$ is a uniform AR.

For the space $\text{Dis}_H(X)$, we have the following result:²

THEOREM C. Let X be a metric space with the following two properties:

- (C1) Every bounded closed set in X is compact;
- (C₂) For each $\varepsilon > 0$, there exist $k, \delta > 0$ such that any pair of δ -close points in X are connected by a k-Lipschitz path $f : \mathbf{I} \to X$ with diam $f(\mathbf{I}) < \varepsilon$.

Then, the collection of all components of $\text{Dis}_H(X)$ is uniformly discrete and each component of $\text{Dis}_H(X)$ is a uniform AR, hence $\text{Dis}_H(X)$ is an ANR. In this case, $\text{Dis}_H(X)$ is homotopy dense in $\text{Cld}_H(X)$.

In the above, each component of $\operatorname{Cld}_H(X)$ is a uniform AR but this follows from Theorem A. In fact, it will be seen that the condition (C₂) above implies the uniformly local C^{*}-connectedness.

3. Lawson semilattices which are uniform ANR's.

A *topological semilattice* is a topological space *S* equipped with a continuous operation $\lor : S \times S \to S$ which is idempotent, commutative and associative (i.e., $x \lor x = x$, $x \lor y = y \lor x$, $(x \lor y) \lor z = x \lor (y \lor z)$). A topological semilattice *S* is called a *Lawson semilattice* if *S* admits an open basis consisting of subsemilattices [8]. It is known that a metrizable Lawson semilattice is *k*-aspherical for each k > 0 ([4, Proposition 2.3]).

In [1], it is shown that a metrizable Lawson semilattice is an ANR (resp. an AR) if and only if it is locally path-connected (resp. connected and locally path-connected). Here, we consider the condition that a metric Lawson semilattice is a uniform ANR. By B^{n+1} and S^n , we denote the unit (n + 1)-ball and the *n*-sphere, respectively. We will use the following result in [5]:

PROPOSITION 3.1. For each $n \ge 1$, there exists a map $r: \mathbf{B}^{n+1} \to \mathfrak{F}_3(\mathbf{S}^n)$ such that r(x) = x for all $x \in \mathbf{S}^n$, where

$$\mathfrak{F}_3(\mathbf{S}^n) = \{A \subset \mathbf{S}^n \mid \operatorname{card} A \leq 3\} \subset \operatorname{Fin}(\mathbf{S}^n).$$

A metric space X is *uniformly locally k-connected* if, for each $\varepsilon > 0$, there exists $\delta > 0$ such that for each $n \leq k$, every map $f : \mathbf{S}^n \to X$ with diam $f(\mathbf{S}^n) < \delta$ extends to a map $\tilde{f} : \mathbf{B}^{n+1} \to X$ with diam $\tilde{f}(\mathbf{B}^{n+1}) < \varepsilon$. Evidently, X is uniformly locally 0-connected if and only if

²This is established in [7].

X is uniformly locally path-connected. For each simplex σ , we denote by $\sigma^{(k)}$ the union of all *k*-faces of σ . The following is proved in [10]:

PROPOSITION 3.2. A uniformly locally (k-1)-connected metric space X is a uniform ANR if X has the following property $(\tilde{e})_k$:

 $(\tilde{e})_k$ There exists $\beta > 1$ such that every map $f : |K^{(k)}| \to X$ of the k-skeleton of an arbitrary simplicial complex K extends to a map $\overline{f} : |K| \to X$ such that $\operatorname{diam} \overline{f}(\sigma) \leq \beta \operatorname{diam} f(\sigma^{(k)})$ for each $\sigma \in K$.

Moreover, if X is (k-1)-connected then X is a uniform AR.

LEMMA 3.3. If X is uniformly locally path-connected, then the collection of all components of X is uniformly discrete in X.

PROOF. First, note that components of *X* are path-connected. By the uniformly local pathconnectedness of *X*, we have $\delta > 0$ such that a pair of δ -close points of *X* are connected by a path in *X*. Then, dist $(C, C') \ge \delta$ for each two distinct components $C \ne C'$ of *X*.

It is said that a metric space *X* is *uniformly locally contractible* if for each $\varepsilon > 0$, there exist $\delta > 0$ such that the δ -ball B(x, δ) at each $x \in X$ is contractible in the ε -ball B(x, ε). Every uniform ANR is uniformly locally contractible by [9, Proposition 1.5 and Theorem 1.6]. And, as is easily observed, every uniformly locally contractible metric space is uniformly locally k-connected for all $k \ge 0$.

THEOREM 3.4. Let $L = (L, d, \vee)$ be a metric Lawson semilattice such that

$$d(x \lor x', y \lor y') \leq \max\{d(x, y), d(x', y')\} \text{ for each } x, x', y, y' \in L.$$

Then, the following are equivalent:

- (a) the collection of all components of L is uniformly discrete in L and each component of L is a uniform AR;
- (b) *L* is a uniform ANR;
- (c) *L* is uniformly locally contractible;
- (d) L is uniformly locally path-connected.

PROOF. The implication (a) \Rightarrow (b) is easy. The implications (b) \Rightarrow (c) \Rightarrow (d) have been observed in the above. It remains to show (d) \Rightarrow (a).

The first half of (a) follows from Lemma 3.3. To see the second half of (a), let *C* be a component of *L*. Then, *C* is a path-connected. Moreover, *C* is a subsemilattice of *L*. In fact, for each $x, y \in C$, by using a path $f : \mathbf{I} \to C$ from *x* to *y*, a path $g : \mathbf{I} \to L$ from *x* to $x \lor y$ can be defined by $g(t) = f(0) \lor f(t)$ for $t \in \mathbf{I}$, hence $x \lor y \in C$.

By Proposition 3.2, it suffices to show that *C* satisfies the property $(\tilde{e})_1$. Let *K* be a simplicial complex and $f_1 : |K^{(1)}| \to C$ be a map. Suppose we have defined maps $f_i : |K^{(i)}| \to C$, i < n, such that $f_i ||K^{(i-1)}| = f_{i-1}$ and diam $f_i(\sigma^{(i)}) = \text{diam} f_1(\sigma^{(1)})$ for all $\sigma \in K$. By Proposition 3.1, for each *n*-simplex $\sigma \in K$, there is a map $r_\sigma : \sigma \to \mathfrak{F}_3(\partial \sigma)$ such that $r_\sigma(x) = \{x\}$ for each $x \in \partial \sigma$. We extend f_{n-1} to a map $f_n : |K^{(n)}| \to C$ by $f_n | \sigma = f_\sigma \circ r_\sigma$ for each *n*-simplex $\sigma \in K$, where $f_\sigma : \mathfrak{F}_3(\partial \sigma) \to C$ is defined as follows:

$$f_{\sigma}(\{a_1, a_2, a_3\}) = f_{n-1}(a_1) \lor f_{n-1}(a_2) \lor f_{n-1}(a_3).$$

Then, diam $f_n(\sigma^{(n)}) = \text{diam} f_1(\sigma^{(1)})$ for all $\sigma \in K$. In fact, each $x, y \in \sigma^{(n)}$ are contained in *n*-faces σ_x and σ_y of σ , respectively. We can write

$$f_n(x) = f_{n-1}(a_1) \lor f_{n-1}(a_2) \lor f_{n-1}(a_3) \text{ and}$$
$$f_n(y) = f_{n-1}(b_1) \lor f_{n-1}(b_2) \lor f_{n-1}(b_3),$$

where $r_{\sigma_x}(x) = \{a_1, a_2, a_3\}$ and $r_{\sigma_y}(y) = \{b_1, b_2, b_3\}$. By the inductive assumption, we have

$$d(f_n(x), f_n(y)) \leq \max\{d(f_{n-1}(a_i), f_{n-1}(b_j)) \mid i, j = 1, 2, 3\}$$
$$\leq \sup\{d(f_n(x'), f_n(y')) \mid x', y' \in \sigma^{(n-1)}\}$$
$$= \operatorname{diam} f_{n-1}(\sigma^{(n-1)}) = \operatorname{diam} f_1(\sigma^{(1)}).$$

Thus, by induction, we obtain maps $f_n : |K^{(n)}| \to C$, $n \in \mathbb{N}$, such that $f_n ||K^{(n-1)}| = f_{n-1}$ and $\operatorname{diam} f_n(\sigma^{(n)}) = \operatorname{diam} f_1(\sigma^{(1)})$ for all $\sigma \in K$. These maps induce the extension $\overline{f} : |K| \to C$ of f such that $\operatorname{diam} \overline{f_n}(\sigma^{(n)}) = \operatorname{diam} f_1(\sigma^{(1)})$ for all $\sigma \in K$. Hence, C has the property $(\tilde{e})_1$.

4. Proof of Theorem A.

It is known that $Cld_H(X) = (Cld_H(X), \cup)$ is a Lawson semilattice satisfying the following condition:

$$d_H(A \cup A', B \cup B') \leq \max\{d_H(A, B), d_H(A', B')\}$$
 for each $A, A', B, B' \in \operatorname{Cld}_H(X)$.

Refer to [4, Proposition 2.4] (cf. the proof of [1, Fact 4]). By Theorem 3.4, we can reduce Theorem A to the following:

THEOREM 4.1. For every uniformly locally C^* -connected metric space X, the space $\operatorname{Cld}_H(X)$ is uniformly locally path-connected.

Before proving this theorem, we give a characterization of the uniformly local C^* connectedness. For two metric spaces $X = (X, d_X)$ and $Y = (Y, d_Y)$, let C(X, Y) be the set
consisting of all continuous functions from X to Y. It is said that $\mathscr{F} \subset C(X, Y)$ is uniformly
equi-continuous if for each $\varepsilon > 0$, there is $\delta > 0$ such that $d_Y(f(x), f(x')) < \varepsilon$ for each $f \in \mathscr{F}$ and $x, x' \in X$ with $d_X(x, x') < \delta$.

THEOREM 4.2. Let D be a countable dense subset of the unit interval I with the usual metric and $0, 1 \in D$. Then, a metric space X = (X,d) is uniformly locally C*-connected if and only if for each $\varepsilon > 0$, there exist $\delta > 0$ and $\mathscr{F} \subset C(D,X)$ satisfying the following:

- (i) F is uniformly equi-continuous,
- (ii) diam $f(D) < \varepsilon$ for every $f \in \mathscr{F}$,
- (iii) for each δ -close $x, y \in X$, there is $f \in \mathscr{F}$ with f(0) = x and f(1) = y.

PROOF. First, we show the "if" part. For each $\varepsilon > 0$, we have $\delta > 0$ and $\mathscr{F} \subset C(D,X)$ satisfying (i), (ii) and (iii). By (i), for each $\eta > 0$, there is $k \in \mathbb{N}$ such that $d(f(t), f(t')) < \eta$ for each $f \in \mathscr{F}$ and $t, t' \in D$ with |t - t'| < 2/k. By (iii), for each δ -close $x, y \in X$, we have $f \in \mathscr{F}$ with f(0) = x and f(1) = y. Since *D* is dense in *I*, there are $0 = t_0 < t_1 < \cdots < t_k = 1$ such that $t_i - t_{i-1} < 2/k$. Then, $(f(t_i))_{i=0}^k$ is an η -chain from *x* to *y* of diameter $< \varepsilon$ by (ii). Thus, *X* is uniformly locally *C*^{*}-connected.

Conversely, assume that *X* is uniformly locally C^* -connected. For each $\varepsilon > 0$ and $n \in \mathbf{N}$, we can choose $\delta_n > 0$ so that for each $\eta > 0$, there is $k \in \mathbf{N}$ such that each pair of δ_n -close points of *X* are connected by an η -chain of length $\leq k$ and diameter $< 2^{-n}\varepsilon$, where $\delta_n < 2^{-n}\varepsilon$. Then, we have $k_n \in \mathbf{N}$ such that each pair of δ_n -close points of *X* are connected by δ_{n+1} -chain of length $\leq k_n$ and diameter $< 2^{-n}\varepsilon$. Since *D* is a countable dense subset of *I*, we can obtain $\{0,1\} = D_0 \subset D_1 \subset D_2 \subset \cdots \subset D$ and $\varepsilon_1 > \varepsilon_2 > \cdots > 0$ such that $D = \bigcup_{n \in \mathbf{N}} D_n$, $\lim_{n \to \infty} \varepsilon_n = 0$, each component *J* of $I \setminus D_{n-1}$ contains $k_n - 1$ many points of D_n and diam $J < \varepsilon_n$.

For each pair of δ_1 -close points $x, y \in X$, we can easily construct $f_{xy}: D \to X$ with $f_{xy}(0) = x$, $f_{xy}(1) = y$ and the following property:

(*) if $t_0 < t_1 < \cdots < t_{k_n} \in D_n$ and (t_0, t_{k_n}) is a component of $I \setminus D_{n-1}$ (hence $t_0, t_{k_n} \in D_{n-1}$), then $(f(t_i))_0^{k_n}$ is a δ_{n+1} -chain with the diameter $< 2^{-n}\varepsilon$.

For each $t, t' \in D$, let J and J' be components of $I \setminus D_{n-1}$ such that $t \in clJ$ and $t' \in clJ$. If $|t-t'| < \varepsilon_n$ then $clJ \cap clJ' \neq \emptyset$, whence it is easy to see that $d(f(t), f(t')) < 2^{-n+2}\varepsilon$. Therefore, $\mathscr{F} = \{f_{xy} \mid x, y \in X, d(x, y) < \delta_1\}$ is uniformly equi-continuous and $diam f_{xy}(D) < \varepsilon$ for every $f_{xy} \in \mathscr{F}$.

PROOF OF THEOREM 4.1. For each $\varepsilon > 0$, we have $\delta > 0$ and $\mathscr{F} \subset C(D,X)$ which satisfies (i), (ii) and (iii) in Theorem 4.2. For each $A, B \in \operatorname{Cld}_H(X)$ with $d_H(A,B) < \delta$, let $\mathscr{F}_{A,B} = \{f \in \mathscr{F} \mid f(0) \in A, f(1) \in B\}$. Each $a \in A$ is δ -close to some $b \in B$, whence we have $f \in \mathscr{F}_{A,B}$ with f(0) = a. Similarly, for each $b \in B$, there is $f \in \mathscr{F}_{A,B}$ such that f(1) = b. We can define a path $\varphi : I \to \operatorname{Cld}_H(X)$ from A to B as follows:

$$\varphi(t) = \begin{cases} \operatorname{cl}_X \bigcup \{ f([0,2t] \cap D) \mid f \in \mathscr{F}_{A,B} \} & \text{if } t \in [0,1/2], \\ \operatorname{cl}_X \bigcup \{ f([2t-1,1] \cap D) \mid f \in \mathscr{F}_{A,B} \} & \text{if } t \in [1/2,1]. \end{cases}$$

For each $t \in [0, 1/2]$, $A \subset \varphi(t) \subset N(A, \varepsilon)$, hence $d_H(A, \varphi(t)) < \varepsilon$. Similarly, $d_H(B, \varphi(t)) < \varepsilon$ for each $t \in [1/2, 1]$. Therefore, diam_{d_H} $\varphi(I) < 2\varepsilon$.

We verify the continuity of φ . For each $\varepsilon' > 0$, since $\mathscr{F}_{A,B}$ is uniformly equi-continuous, there is $\delta' > 0$ such that $d(f(2t), f(2t')) < \varepsilon'$ for each $f \in \mathscr{F}_{A,B}$ and $t, t' \in D$ with $|t - t'| < \delta'$. Let $0 \leq t' < t \leq 1/2$ with $|t - t'| < \delta'$. Observe that $\varphi(t') \subset \varphi(t)$. For each $x \in \varphi(t)$ and $0 < \varepsilon'' < \varepsilon'$, we have $f \in \mathscr{F}_{A,B}$ and $s \in [0,t] \cap D$ such that $d(x, f(2s)) < \varepsilon''$. When $s \leq t'$, we have $d(x, \varphi(t')) < \varepsilon'' < \varepsilon'$ because $f(2s) \in \varphi(t')$. When s > t', we have $d(x, \varphi(t')) < \varepsilon'' + \varepsilon'$ because $f(2t') \in \varphi(t')$ and

$$d(x, f(2t')) \leq d(x, f(2s)) + d(f(2s), f(2t')) < \varepsilon'' + \varepsilon'.$$

Consequently, $d(x, \varphi(t')) \leq \varepsilon'$. It follows that $d_H(\varphi(t), \varphi(t')) \leq \varepsilon'$, hence $\varphi|[0, 1/2]$ is continuous. Similarly, $\varphi|[1/2, 1]$ is continuous. Thus, it follows that φ is continuous.

For a complete metric space X and a dense subset $D \subset I$, every uniformly continuous map $f: D \to X$ extends over I. Then, the following follows from Theorem 4.2:

COROLLARY 4.3. Every uniformly locally C^* -connected complete metric space is uniformly locally path-connected.

5. Proof of Theorem B.

Due to Theorem A, the "if" part of Theorem B follows from the following:

PROPOSITION 5.1. Every totally bounded uniformly locally C-connected metric space X is uniformly locally C*-connected.

PROOF. For each $\varepsilon > 0$, we have $\delta > 0$ with $ulC(\varepsilon/2)$. For each $0 < \eta < \varepsilon/4$, since X is totally bounded, we have $x_1, \ldots, x_n \in X$ such that $\bigcup_{i=1}^n B(x_i, \eta/3) = X$. For each $x, y \in X$ with $d(x, y) < \delta$, we show that x and y are connected by an η -chain with length $\leq n + 1$ and diam $< \varepsilon$. We may assume that $d(x, y) \geq \eta$. By $ulC(\varepsilon/2)$, we have an $\eta/3$ -chain $(y_j)_{j=0}^k$ in X from x to y with diam $< \varepsilon/2$. For each $j = 1, \ldots, k-1$, choose $x_{i(j)}$ so that $d(y_j, x_{i(j)}) < \eta/3$. Then, $(x_{i(j)})_{j=1}^{k-1}$ is an η -chain in X with diam $< \varepsilon$ and $i(1) \neq i(k-1)$ because $d(x, y) \geq \eta$. If $x_{i(j)} = x_{i(j')}$ for some j < j' then the sequence $x_{i(1)}, \ldots, x_{i(j)}, x_{i(j')+1}, \ldots, x_{i(k)}$ is also an η -chain in X. Hence, we can choose $j_1 = 1 < j_2 < \cdots < j_m = k - 1$ so that $i(j_\ell) = i(j_{\ell+1} - 1)$ and $i(j_\ell) \neq i(j_{\ell'})$ for $\ell < \ell'$, whence the sequence $x_{i(j_1)}, \ldots, x_{i(j_m)}, y$ is an η -chain in X to y with diam $< \varepsilon$ and length $m + 1 \leq n + 1$.

The "only if" part of Theorem B follows from the following:

PROPOSITION 5.2. Let \mathscr{H} be a subspace of $\operatorname{Cld}_H(X)$ such that $\{x\} \in \mathscr{H}$ for each $x \in X$. If \mathscr{H} is uniformly locally path-connected then X is uniformly locally C-connected.

PROOF. For each $\varepsilon > 0$, there is some $\delta > 0$ such that if $d(x, y) < \delta$ then there is a map $f: \mathbf{I} \to \mathscr{H}$ such that $f(0) = \{x\}$, $f(1) = \{y\}$ and $\dim_{d_H} f(\mathbf{I}) < \varepsilon/2$. By the compactness of \mathbf{I} , for each $\eta > 0$, we have $t_0 = 0 < t_1 < \cdots < t_n = 1$ such that $d_H(f(t_i), f(t_{i-1})) < \eta$, hence we can inductively choose $x_i \in f(t_i)$ so that $d(x_i, x_{i-1}) < \eta$, whence $x_0 = x$ and $x_n = y$. Since $\dim_{d_H} f(\mathbf{I}) < \varepsilon$, it follows that $f(t) \subset B(x, \varepsilon/2)$ for each $t \in \mathbf{I}$, hence $d(x_i, x) < \varepsilon/2$ for each $i = 1, \ldots, n$. Then, $(x_i)_{i=0}^n$ is an η -chain from x to y with diam $< \varepsilon$. Thus, X is uniformly locally C-connected.

Similarly to the above, the following can be proved:

PROPOSITION 5.3. Let \mathscr{H} be a subspace of $\operatorname{Cld}_H(X)$ such that $\{x\} \in \mathscr{H}$ for each $x \in X$. If \mathscr{H} is locally path-connected then each $x \in X$ has an arbitrarily small C-connected neighborhood, namely X is locally C-connected.

6. Proof of Theorem C.

In this section, we prove Theorem C. A subset $A \subset X$ is said to be ε -discrete if $d(x, y) > \varepsilon$ for $x \neq y \in A$. The following proposition shows that Dis(X) is dense in $Cld_H(X)$.

PROPOSITION 6.1. For $\varepsilon > 0$, each $A \in \operatorname{Cld}_H(X)$ contains an ε -discrete subset B such that $A \subset N(B, \varepsilon)$, hence $d_H(A, B) < \varepsilon$.

PROOF. By Zorn's Lemma, *A* has a maximal ε -discrete subset B_0 . Then $A \subset N(B_0, \varepsilon)$. Otherwise, we could take a point $y \in A \setminus N(B_0, \varepsilon)$, whence $B_0 \subsetneq B_0 \cup \{y\} \subset A$ and $B_0 \cup \{y\}$ is ε -discrete. This contradicts the maximality of B_0 .

Due to [10, Theorem 2], every uniform ANR is homotopy dense in a metric space in which it is isometrically embedded as a dense subset. Thus, by Theorem 3.4, we can reduce Theorem C to the following:

THEOREM 6.2. Let X be a metric space with the following properties:

- (C₁) Every bounded closed set in X is compact;
- (C₂) For each $\varepsilon > 0$, there exists $k, \delta > 0$ such that any pair of δ -close points in X are connected by a k-Lipschitz path $f : \mathbf{I} \to X$ with diam $f(\mathbf{I}) < \varepsilon$.

Then, $Dis_H(X)$ is uniformly locally path-connected.

PROOF. For each $\varepsilon > 0$, choose $k, \delta > 0$ so that any pair of δ -close points in X are connected by a k-Lipschitz path $f : \mathbf{I} \to X$ with diam $f(\mathbf{I}) < \varepsilon/2$. Let $A, B \in \text{Dis}(X)$ and $d_H(A, B) < \delta$. Since each $x \in B$ is δ -close to some point in A, there is a collection $\{f_x \mid x \in B\}$ of k-Lipschitz paths in X such that $f_x(0) = x$, $f_x(1) \in A$ and diam $f_x(\mathbf{I}) < \varepsilon/2$. Then, A and $A \cup B$ are connected by the path $h_A : \mathbf{I} \to \text{Dis}_H(X)$ defined as follows:

$$h_A(t) = A \cup \{f_x(1-t) \mid x \in B\}.$$

To verify that $h_A(t) \in \text{Dis}_H(X)$ for each $t \in I$, assume the contrary, that is, $h_A(t)$ is not discrete for some $t \in I$. Then, 0 < t < 1 because $h_A(0) = A$ and $h_A(1) = A \cup B$ are discrete. We have infinitely many distinct points $x_i \in B$, $i \in N$, such that $(f_{x_i}(1-t))_{i \in N}$ converges to some $y \in X$. Since

$$d(x_i, y) \leq d(f_{x_i}(0), f_{x_i}(1-t)) + d(f_{x_i}(1-t), y)$$

$$\leq k(1-t) + d(f_{x_i}(1-t), y),$$

it follows that $d(x_i, y) < k$ for sufficiently large $i \in N$. Thus, $\{x_i \mid i \in N\}$ is an infinite bounded set. On the other hand, since $\{x_i \mid i \in N\} \subset B$, it is discrete in *X*. This is a contradiction because every bounded closed set in *X* is compact.

To see the continuity of h_A and diam $h_A(I) < \varepsilon/2$, let $t, t' \in I$. Since

$$d(f_x(1-t), f_x(1-t')) < k|t-t'| \text{ for every } x \in B,$$

we have $d_H(h_A(t), h_A(t')) < k|t - t'|$, hence h_A is continuous. On the other hand, since

$$d(f_x(1-t), f_x(1-t')) \leq \operatorname{diam} f(\mathbf{I}) < \varepsilon/2 \text{ for each } x \in B,$$

it follows that

$$h_A(t) = A \cup \{f_x(1-t) \mid x \in B\}$$

$$\subset N(A \cup \{f_x(1-t') \mid x \in B\}, \varepsilon/2) = N(h_A(t'), \varepsilon/2).$$

Similarly, $h_A(t') \subset N(h_A(t), \varepsilon/2)$. Hence, $d_H(h_A(t), h_A(t')) < \varepsilon/2$. Thus, we have diam $h_A(I) < \varepsilon/2$.

Similarly there exists a path $h_B : I \to \text{Dis}_H(X)$ such that $h_B(0) = B$, $h_B(1) = A \cup B$ and diam $h_B(I) < \varepsilon/2$. By using h_A and h_B , it is easy to obtain a path from A to B in $\text{Dis}_H(X)$ with diam $< \varepsilon$. Therefore, $\text{Dis}_H(X)$ is uniformly locally path-connected.

PROPOSITION 6.3. If a metric space X satisfies the condition (C_2) , then X is uniformly locally C^* -connected.

PROOF. For each $\varepsilon > 0$, take $\delta, k > 0$ as in the condition (C₂). We define

$$\mathscr{F} = \{ f \in C(D,X) \mid f \text{ is } k\text{-Lipschitz with } \operatorname{diam} f(D) < \varepsilon \}.$$

It is easily follows from the definition that \mathscr{F} satisfies the conditions (i) and (ii) in Theorem 4.2. For each δ -close points $x, y \in X$, there is a *k*-Lipschitz path $f : \mathbf{I} \to X$ with f(0) = x, f(1) = yand diam $f(\mathbf{I}) < \varepsilon$. Then, observe that $f | \mathbf{D} \in \mathscr{F}$. Thus, \mathscr{F} satisfies the condition (iii) in Theorem 4.2. Therefore, by Theorem 4.2, *X* is uniformly locally *C*^{*}-connected.

The following example shows that the uniformly local path-connectedness of $\text{Dis}_H(X)$ does not imply the condition (C₁) nor (C₂) for *X*.

EXAMPLE 3. The space $X = I \setminus \{2^{-n} | n \in N\}$ with the usual metric does not satisfy (C₁) nor (C₂). We show that $\text{Dis}_H(X)$ is uniformly locally path-connected.

First, we prove that $\text{Dis}_H((0,1))$ is path-connected. Each $A \in \text{Dis}_H((0,1))$ can be written as $A = \{a_n \mid n \in \mathbb{Z}\}$, where $a_n \leq a_{n+1}$ for every $n \in \mathbb{Z}$. Then, we can define a path $f_A : \mathbb{I} \to \text{Dis}_H(X)$ from A to $\{a_0\}$ as follows: $f_A(0) = A$, $f(1) = \{a_0\}$, $f_A(2^{-n}) = \{a_i \mid |i| \leq n\}$ for $n \in \mathbb{N}$ and, for $2^{-n-1} < t < 2^{-n}$,

$$f_A(t) = f_A(2^{-n}) \cup \{(2^{n+1}t - 1)a_n + (2 - 2^{n+1}t)a_{n+1}\}$$
$$\cup \{(2^{n+1}t - 1)a_{-n} + (2 - 2^{n+1}t)a_{-(n+1)}\}$$

By connecting f_A and a path from a_0 to 1/2, we can obtain a path from A to $\{1/2\}$ in $\text{Dis}_H((0,1))$. Thus, $\text{Dis}_H((0,1))$ is path-connected. Similarly, it can be seen that $\text{Dis}_H([0,1))$ and $\text{Dis}_H((0,1])$ are also path-connected.

Next, we prove that $\text{Dis}_H((-1,0) \cup (0,1))$ is path-connected. Let

$$A_+ = \{2^{-n} \mid n \in \mathbf{N}\}$$
 and $A_- = \{-2^{-n} \mid n \in \mathbf{N}\}.$

Then, A_+ and A_- can be connected to $A_- \cup A_+$ by paths $f_{\pm} : I \to \text{Dis}_H((-1,0) \cup (0,1))$ defined as follows: $f_{\pm}(0) = A_{\pm}, f_{\pm}(1) = A_- \cup A_+, f_+(t) = tA_- \cup A_+$ and $f_-(t) = A_- \cup tA_+$ for 0 < t < 1, where $tA = \{tx \mid x \in A\}$. Now, let $B \in \text{Dis}_H((-1,0) \cup (0,1))$. If $B \subset (-1,0)$ or $B \subset (-1,0)$ then B can be connected to A_- or A_+ by a path in $\text{Dis}_H((-1,0))$ or in $\text{Dis}_H((0,1))$, hence it can be connected to $A_- \cup A_+$ by a path in $\text{Dis}_H((-1,0) \cup (0,1))$. When $B \not\subset (-1,0)$ and $B \not\subset (0,1)$, we have two paths $f: \mathbf{I} \to \text{Dis}_H((-1,0))$ and $f: \mathbf{I} \to \text{Dis}_H((0,1))$ such that $f(0) = B \cap (-1,0)$, $f(1) = A_-, g(0) = B \cap (0,1)$ and $g(1) = A_+$. Then, a path $h: \mathbf{I} \to \text{Dis}_H((-1,0) \cup (0,1))$ from Bto $A_- \cup A_+$ can be defined by $h(t) = f(t) \cup g(t)$. Similarly, we can see that $\text{Dis}_H([-1,0) \cup (0,1])$, $\text{Dis}_H([-1,0) \cup (0,1))$ and $\text{Dis}_H((-1,0) \cup (0,1])$ are also path-connected.

For each $0 \le a < b$, $\text{Dis}_H([a,b] \cap X)$ is a closed subspace of $\text{Dis}_H(X)$. By using the above facts, we can easily show that $\text{Dis}_H([a,b] \cap X)$ is path-connected.

For each $\varepsilon > 0$, choose $n \in \mathbf{N}$ so that $2^{-n+1} < \varepsilon$, let

$$X_i = [(i-1)2^{-n}, (i+1)2^{-n}] \cap X, \ i = 0, \dots, 2^n.$$

Note that each pair of 2^{-n} -close points of *X* are contained in the same X_i . For each $A, B \in \text{Dis}_H(X)$ with $d_H(A, B) < 2^{-n}$, let

$$E = \{i \mid A \cap X_i \neq \emptyset, B \cap X_i \neq \emptyset\}.$$

Then, $A \cup B \subset \bigcup_{i \in E} X_i$. For each $i \in E$, since $\text{Dis}_H(X_i)$ is path-connected, there is a path $f_i : I \to \text{Dis}_H(X_i)$ with $f_i(0) = A \cap X_i$ and $f_i(1) = B \cap X_i$. A path $f : I \to \text{Dis}_H(X)$ from A to B can be defined by $f(t) = \bigcup_{i \in E} f_i(t)$. Then, $f(t) \subset \bigcup_{i \in E} X_i$ for each $t \in I$ and $f(t) \cap X_i \supset f_i(t) \neq \emptyset$ for each $t \in I$ and $i \in E$. It follows that

$$d_H(f(t), f(t')) \leq \operatorname{diam} X_i \leq 2^{-n+1} < \varepsilon \text{ for } t, t' \in I,$$

that is, diam $f(I) < \varepsilon$. Thus, $\text{Dis}_H(X)$ is uniformly locally path-connected.

7. Further problems and related results.

After the eariler version of this paper had been submitted, Banakh and Voytsitski [2] succeeded in proving the converse of Theorem A, that is,

THEOREM 7.1 ([2]). The space $\operatorname{Bdd}_H(X)$ (or $\operatorname{Cld}_H(X)$) is a uniform ANR if and only if X is uniformly locally C*-connected.

In Example 1, X is not a uniform ANR but $\operatorname{Cld}_H(X)$ need not be an ANR even for a uniform AR X. In [2], Banakh and Voytsitski showed that $\operatorname{Cld}_H(\mathbb{R}^N)$ is not an ANR, where \mathbb{R}^N has the usual product metric. The following is unknown:

PROBLEM 1. Characterize metric spaces X such that $Dis_H(X)$ are ANR's.

In case X is uniformly locally compact (i.e., there is some $\delta > 0$ such that $\overline{B}(x, \delta)$ is compact for each $x \in X$), it is proved in [2] that $\operatorname{Dis}_H(X)$ is a uniform ANR if and only if X is uniformly locally C^* -connected. Due to Theorem A, $\operatorname{Cld}_H(\boldsymbol{Q})$ and $\operatorname{Cld}_H(\boldsymbol{R} \setminus \boldsymbol{Q})$ are ANR's with respect the usual metric. However, the following is open:

PROBLEM 2. Is $\text{Dis}_H(\boldsymbol{Q})$ or $\text{Dis}_H(\boldsymbol{R} \setminus \boldsymbol{Q})$ an ANR?

The following proposition is shown in [7], which shows the complexity of the space $Cld_H(X)$.

PROPOSITION 7.2. The space $\operatorname{Cld}_H(\mathbb{R}^n)$ has uncountably many components. Moreover, the space $\operatorname{Comp}_H(\mathbb{R}^n)$ of all compact sets is one of them and all but this component are non-separable.

PROOF. First, we show that $\operatorname{Cld}_H(\mathbf{R})$ has uncountably many components. Let $A = \{n^2 \mid n \in \mathbf{N}\}$. We can write $A = \{k(i, j) \mid i, j \in \mathbf{N}\}$ such that $k(i, j) \neq k(i', j')$ if $(i, j) \neq (i', j')$. For each nonempty set $E \subset \mathbf{N}$, we denote $A_E = \{k(i, j) \mid i \in \mathbf{N}, j \in E\} \in \operatorname{Cld}_H(\mathbf{R})$. Observe that if $E \neq E'(\subset \mathbf{N})$, then $A_E \setminus A_{E'}$ or $A_{E'} \setminus A_E$ contains infinitely many points, which implies that $d_H(A_E, A_{E'}) = \infty$. Then A_E and $A_{E'}$ are contained in different components. Since \mathbf{N} has uncountably many subsets, $\operatorname{Cld}_H(\mathbf{R})$ has uncountably many components.

The case $n \ge 2$ is simpler than the above. For each $x \in S^{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$, let $A_x = \{tx \mid t \in [0,\infty)\} \in \operatorname{Cld}_H(X)$. Then, for $x \ne y \in S^{n-1}$, evidently $d_H(A_x, A_y) = \infty$. Now, let \mathscr{A}_x be the component of $\operatorname{Cld}_H(\mathbb{R}^n)$ containing A_x . Then $\mathscr{A}_x \cap \mathscr{A}_y = \emptyset$ for $x \ne y \in S^{n-1}$. Hence, $\operatorname{Cld}_H(\mathbb{R}^n)$ has uncountably many components.

It should be note that $\text{Comp}_H(\mathbf{R}^n)$ is connected and clopen in $\text{Cld}_H(\mathbf{R}^n)$. Hence $\text{Comp}_H(\mathbf{R}^n)$ is component of $\text{Cld}_H(\mathbf{R}^n)$.

Now, let \mathscr{H} be a component of $\operatorname{Cld}_H(\mathbb{R}^n)$ such that $\mathscr{H} \neq \operatorname{Comp}_H(\mathbb{R}^n)$. Then \mathscr{H} contains an unbounded closed set A in \mathbb{R}^n . Choose $a_n \in A$, $n \in \mathbb{N}$, so that $||a_{n+1}|| > ||a_n|| + 3$. Let

$$A_1 = A \cup \bigcup_{n \in \mathbf{N}} \overline{\mathbf{B}}(a_n, 1).$$

Then, we have the path $h: \mathbf{I} \to \operatorname{Cld}_H(\mathbf{R}^n)$ defined by

$$h(t) = A \cup \bigcup_{n \in \mathbf{N}} \overline{\mathbf{B}}(a_n, t).$$

Since h(0) = A and $h(1) = A_1$, it follows that $A_1 \in \mathcal{H}$. For each $E \subset \mathbf{N}$, let $A_E = A_1 \setminus \bigcup_{n \in E} B(a_n, 1)$. There exists the path $h_E : \mathbf{I} \to \operatorname{Cld}_H(\mathbf{R}^n)$ defined by $h_E(t) = A_1 \setminus \bigcup_{n \in E} B(a_n, t)$. Since $h_E(0) = A_1$ and $h_E(1) = A_E$, it follows that $A_E \in \mathcal{H}$. It is easy to see that $d_H(A_E, A_{E'}) = 1$ if $E \neq E'$. This means that $\{A_E \mid E \subset \mathbf{N}\}$ is discrete subset of \mathcal{H} . Since $\operatorname{card}\{A_E \mid E \subset \mathbf{N}\} > \aleph_0$, \mathcal{H} is non-separable.

For an arbitrary Banach space *X*, every component of $Cld_H(X)$ is a complete metric AR by Theorems A and [3, Theorem 3.2.4].

PROBLEM 3. For a Banach space (or a Hilbert space) X, is every component of $Cld_H(X)$ homeomorphic to a Hilbert space?

Even if X is Euclidean space \mathbf{R}^n , the above is unknown, that is,

PROBLEM 4. Is each non-separable component of $\operatorname{Cld}_H(\mathbb{R}^n)$ homeomorphic to a Hilbert space?

In relation to above problems, some results with different topologies have been obtained in [1], [6] and [11]. For topologies on hyperspaces, we refer to the book [3].

THEOREM 7.3 ([11]). For a Hausdorff space X, the hyperspace $\operatorname{Cld}_F(X)$ with the Fell

topology is homeomorphic to $Q \setminus \{0\}$ if and only if X is locally compact, locally connected, separable metrizable and has no compact components, where $Q = \mathbf{I}^N$ is the Hilbert cube.

THEOREM 7.4 ([1]). For every infinite-dimensional Banach space X with weight τ , the hyperspace $\operatorname{Cld}_{AW}(X)$ with the Attouch-Wets topology is homeomorphic to the Hilbert space $\ell_2(2^{\tau})$ with weight 2^{τ} , where w(X) is the weight of X.

THEOREM 7.5 ([6]). For every infinite-dimensional separable Banach space X, the hyperspace $\operatorname{Cld}_W(X)$ with the Wijsman topology is homeomorphic to the separable Hilbert space ℓ_2 .

Finally, the authors would like express their sincere thanks to Taras Banakh for his helpful comments and suggestions. He noticed that Example 1 can be simplified in the present form.

References

- T. Banakh, M. Kurihara and K. Sakai, Hyperspaces of normed linear spaces with the Attouch-Wets topology, Set-Valued Anal., 11 (2003), 21–36.
- [2] T. Banakh and R. Voytsitski, Charactering metric space whose hyperspaces are absolute neighborhood retracts, preprint.
- [3] G. Beer, Topologies on Closed and Closed Convex Sets, MIA, 268, Kluwer Acad. Publ., Dordrecht, 1993.
- [4] C. Costantini and W. Kubiś, Paths in hyperspaces, Appl. Gen. Topol., 4 (2003), 351-360.
- [5] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to X₀-dimensional linear metric spaces, Topology Appl., **19** (1985), 251–260.
- [6] W. Kubiś, K. Sakai and M. Yaguchi, Hyperspaces of separable Banach spaces with the Wijsman topology, Topology Appl., 148 (2005), 7–32.
- [7] M. Kurihara, Hyperspaces of metric spaces, Master's Thesis, University of Tsukuba, 2000.
- [8] J. D. Lawson, Topological semilattices with small subsemilattices, J. London Math. Soc. (2), 1 (1969), 719–724.
- [9] E. Michael, Uniform AR's and ANR's, Compositio Math., **39** (1979), 129–139.
- [10] K. Sakai, The comletions of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan, 52 (2000), 835-846.
- K. Sakai and Z. Yang, Hyperspaces of non-compact metrizable spaces which are homeomorphic to Hilbert cube, Topology Appl., 127 (2002), 331–342.
- [12] M. Wojdysławski, Rétractes absoulus et hyperespaces des continus, Fund. Math., **32** (1939), 184–192.

Masayuki KURIHARA

Benten 2-23-1-175 Chuo-ku, Chiba, 260-0045 Japan Institute of Mathematics University of Tsukuba Tsukuba, 305-8571 Japan E-mail: sakaiktr@sakura.cc.tsukuba.ac.jp

Masato YAGUCHI

Katsuro SAKAI

Institute of Mathematics University of Tsukuba Tsukuba, 305-8571 Japan E-mail: masato@math.tsukuba.ac.jp