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Abstract. We define notions of isotropic, coisotropic and lagrangian subman-
ifolds of Dirac manifolds. Notion of Dirac manifolds, Dirac maps and Dirac rela-
tions are defined. Extending the isotropic calculus on presymplectic manifolds and
the coisotropic calculus on Poisson manifolds to Dirac manifolds, we construct the
lagrangian calculus on Dirac manifolds as an extension of the one on symplectic
manifolds. We see that there are three natural categories of Dirac manifolds.

1. Introduction.

In symplectic geometry the following facts are well known.

(a) A map between symplectic manifolds (M1, Ω1) and (M2, Ω2) is a symplectic map
if and only if the graph of the map is a canonical relation, i.e., a lagrangian
submanifold of M1 ×M−

2 , where M−
2 is the symplectic manifold with symplectic

structure −Ω2.
(b) If (N1, N2) is a very clean pair ([14]) of canonical relations of M1×M2 and M2×M3

respectively then the composition N1◦N2 is a canonical relation of M1×M3, where

N1 ◦N2 := {(x, z)|∃y : (x, y) ∈ N1, (y, z) ∈ N2}.

A. Weinstein ([14]) defined the concept of coisotropic submanifold and Poisson relation
as an extension of canonical relation. A submanifold N of a Poisson manifold (M, π)
is coisotropic if π(TN⊥, TN⊥) = 0 by definition, i.e., TN⊥ is isotropic for the Poisson
structure, π̃(TN⊥) ⊂ TN , where π̃ is the bundle map T ∗M → TM inducing the Poisson
bivector π defined by π(a, b) = 〈π̃(a), b〉, a, b ∈ T ∗M . A Poisson relation from (M2, π2)
to (M1, π1) is defined as a coisotropic submanifold of product Poisson manifold (M1 ×
M2, π1⊕(−π2)). Two facts (a), (b) above are extended to Poisson manifolds by replacing
lagrangian submanifolds with coisotropic submanifolds.

These notion and facts form a mathematical system which is useful in the calculus of
Fourier integral operators on manifolds, and then these are called “lagrangian calculus”
in Weinstein [13]. The coisotropic calculus is a basic theory of Poisson groupoid (cf.
[14]), and similarly, one can construct the isotropic calculus on presymplectic manifolds.

The purpose of this paper is to extend the lagrangian (resp. isotropic, resp. coiso-
tropic) calculus on symplectic (resp. presymplectic, resp. Poisson) manifolds to that
on Dirac manifolds. More precisely, we will construct both an isotropic calculus and a
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coisotropic calculus on Dirac manifold, which contain the isotropic calculus on presym-
plectic manifold and the coisotropic calculus on Poisson manifold respectively as special
cases. By similar usage of terms as Weinstein [13], this paper supplies two “Dirac cate-
gories”. One is the category of Dirac manifolds with isotropic submanifolds of product
Dirac manifolds as morphisms, and another is the category of Dirac manifolds with
coisotropic submanifolds of product Dirac manifolds as morphisms. Furthermore, it will
be shown that lagrangian calculus on Dirac manifold is also possible as an “intersection”
of two calculus, and then there exists the third Dirac category whose morphisms are
given by lagrangian submanifolds.

First we will give definitions of isotropic submanifold and of coisotropic submanifold
of Dirac manifold. The notion of Dirac vector space or Dirac manifold is introduced by
T. Courant and A. Weinstein ([6]) and studied by T. Courant ([5]).

A Dirac structure L on a manifold M (resp. vector space V ) is a subbundle of
TM ⊕T ∗M (resp. subspace of V ⊕V ∗) which is maximally isotropic with respect to the
bilinear form 〈·, ·〉+, and whose sections are closed under the Courant bracket:

[(X, α), (Y, β)] = ([X, Y ],LXβ − LY α + d〈(X, α), (Y, β)〉−),

(X, α), (Y, β) ∈ Γ (TM ⊕ T ∗M), (1)

where the bilinear forms 〈·, ·〉± are respectively given by

〈(u, a), (v, b)〉± =
1
2
(〈a, v〉 ± 〈b, u〉),∀(u, a), (v, b) ∈ TM ⊕ T ∗M.

A Dirac structure is a natural extension of symplectic, presymplectic and Poisson
structures: It is well-known that (M, Ω) (resp. (M, π)) is a presymplectic manifold (resp.
Poisson manifold) if and only if the graph LΩ (resp. Lπ) is a Dirac structure. Here the
graphs are given by

LΩ := {(x, Ω̃(x))|x ∈ TM}, (2)

Lπ := {(π̃(a), a)|a ∈ T ∗M}, (3)

where Ω̃ is the bundle map inducing the 2-form Ω defined by Ω(x, y) = 〈y, Ω̃(x)〉,
x, y ∈ TM . In general, a Dirac manifold (M, L) has the involutive distribution ρ(L) (see
Theorem 2.3.6, [5]), where ρ : TM ⊕ T ∗M → TM is the canonical projection, and every
leaf has a closed 2-form ΩL (see (2.3.3), [5]). Hence the foliation consists of presymplectic
leaves.

In a Poisson (resp. presymplectic) manifold, a coisotropic (resp. isotropic) subman-
ifold can be rewritten in terms of Dirac structure as

Lπ(TN⊥) ⊂ TN, (resp. L−1
Ω (TN) ⊂ TN⊥),

where Lπ(TN⊥) 3 x ⇐⇒ ∃a ∈ TN⊥ such that (x, a) ∈ Lπ. We notice that a subspace
C of a Poisson vector space(V, π) is coisotropic if and only if C ∩ Imπ̃ is coisotropic in
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the symplectic vector space (Im π̃, πs) (see, Weinstein [14]).
Definitions of coisotropic subspaces and isotropic subspaces of Dirac vector space

(V, L) are given by the same phrase as above. Namely, using the well-known fact that ρ(L)
has the natural presymplectic structure ΩL, we define a subspace of V to be coisotropic
(resp. isotropic) when the induced space is coisotropic (resp. isotropic) in the quotient
symplectic vector space ρ(L)/ ker Ω̃L. We also define a lagrangian subspace in a Dirac
vector space, as a subspace both isotropic and coisotropic (Definition 3.1). Regarding
a certain isotropic (resp. coisotropic) subspace of a product Dirac vector spaces as a
relation, we will obtain the notion of isotropic (resp. coisotropic) Dirac relation.

We can extend these notions to submanifolds of Dirac manifolds, for example, a
submanifold is isotropic if a tangent space is an isotropic subspace of the tangent space
of the Dirac manifold for every point. Coisotropic submanifolds, lagrangian submanifolds,
etc, are also defined by the similar manner.

For the construction of the calculi on Dirac manifolds, it is crucial to consider the
composition of these relations. Different from the Poisson or the presymplectic manifolds,
some difficulty arises for Dirac manifolds. Roughly speaking, the difficulty is that a com-
position A ◦B of two isotropic (resp. coisotropic) subspaces of Dirac vector spaces does
not necessarily make an isotropic (resp. coisotropic) subspace, and then we need to char-
acterize a certain class of isotropic (resp. coisotropic) subspaces where the compositions
are closed.

The point of this paper is that the auther found the (uniquely determined) subspace
D such that the composition A ◦ D ◦ B is an isotropic (resp. coisotropic) subspaces,
although the composition A◦B is not necessarily isotropic (resp. coisotropic). Thus, the
first main result of this paper is as follows:

(0) Let V1, V2 and V3 be Dirac vector spaces and let S : V1 ← V2 and T : V2 ← V3

be isotropic (resp. coisotropic). Then S ◦ D2 ◦ T : V1 ← V3 is isotropic (resp.
coisotropic). Thus, if S and T are lagrangian, then S ◦D2 ◦ T is also lagrangian
(Theorem 0).

Moreover, we can define an equivalence relation for lagrangian subspaces (see Defi-
nition 3.9). For any two lagrangian subspaces, the equivalence is described by means of
the subspace D. These equivalence classes form a category which can be regarded as an
extension of symplectic category (see, Theorem 4.6, Remarks 4.7, 4.17).

We remark here that for the presymplectic (resp. Poisson) vector space case, the
space D makes no trouble because D contains (resp. is contained in) the diagonal relation.
In section 4.2, we analyze the compositions of the forms A◦D◦B and A◦B in detail. We
will also give a sufficient condition for isotropic, coisotropic submanifolds under which
the submanifolds are closed with respect to the composition ◦ without using D, i.e., the
composition of the form A ◦B (Corollary 4.5 in section 4.5 and Theorem 4.11 in section
4.3).

In section 4.3, we will give definitions of isotropic (resp. coisotropic) Dirac maps
and the definitions of isotropic (resp. coisotropic) Dirac relations. Our main results are
as follows:
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(A) The graph of a map f : M1 → M2 between two Dirac manifolds is a canonical
(resp. isotropic Dirac, resp. coisotropic Dirac) relation in M1 ×M−

2 if and only if
f is a Dirac (resp. isotropic Dirac, resp. coisotropic Dirac) map (Theorem A).

(B) Under suitable clean intersection assumptions, the composition of canonical (resp.
isotropic Dirac, resp. coisotropic Dirac) relations is a canonical (resp. isotropic
Dirac, resp. coisotropic Dirac) relation (Theorem B).

Our formulation is based on the graphs of maps; the isotropic (resp. coisotropic)
Dirac maps are the maps whose graphs are isotropic (resp. coisotropic) Dirac relations.
These definitions can be regarded as direct extensions of the presymplectic maps between
presymplectic manifolds and the Poisson maps between Poisson manifolds.

On the other hand, we can see a germ of the concept of Dirac map in Drinfeld ([7])
and Liu, Weinstein and Xu ([9]). The notion of Dirac map was also clearly given by
Bursztyn and Radko ([2]). In [2], a linear map φ : V → W is called forward (resp.
backward) Dirac map when φ transfers the Dirac structure of V (resp. W ) to the Dirac
structure of W (resp. V ), for the detail see Remark 4.20. We see that the notion of
coisotropic (resp. isotropic) Dirac map is equal to the notion of forward (resp. back-
ward) Dirac map (Remark 4.20). In addition, we refer some recent works of coisotropic,
Lagrangian submanifolds [8], [3].

Acknowledgements. I would like to thank very much Professor Alan Weinstein
and Professor Akira Yoshioka for helpful comments and encouragement. I am grateful
to the referee for helpful comments.

2. Notations and Technical lemmas.

We consider vector spaces V1, V2, V3. Let S, T be subspaces of V1 × V2 and V2 × V3

respectively. Suppose U is a subspace of V3, and let V ∗
i be the dual space of Vi (i = 1, 2, 3).

Definition 2.1. We set maps

− : (x, y) ∈ V1 × V2 7→ (x,−y) ∈ V1 × V2,

−1 : (x, y) ∈ V1 × V2 7→ (y, x) ∈ V2 × V1,

and subspaces

S† := −(S⊥), where S⊥ ⊂ V ∗
1 × V ∗

2 is the annihilator space of S.

T (U) := {x ∈ V2|∃y ∈ V3; (x, y) ∈ T, y ∈ U},
S ◦ T := {(x, z) ∈ V1 × V3|∃y ∈ V2; (x, y) ∈ S, (y, z) ∈ T}.

Remark 2.2. We regard a subspace S ⊂ V1 × V2 as a relation. The ◦-product
defines the category on the class of subspaces in product spaces: The objects are vector
spaces, morphisms are subspaces, and compositions of morphisms are given by ◦-product
(cf. Weinstein [13]).
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By definition, we have −(−S) = S, (S−1)−1 = S, (S ◦ T )−1 = T−1 ◦ S−1 and
(S ◦ T )(U) = S(T (U)), where the subspaces −S and S−1 are the images of S by − and
−1 respectively. Further we obtain

Lemma 2.3.

(a) (−S)−1 = −(S−1).
(b) (−S)⊥ = −(S⊥).
(c) (S−1)⊥ = (S⊥)−1.
(d) (S†)† = S.
(e) S ◦ (−T ) = (−S) ◦ T = −(S ◦ T ).
(f) (S ◦ T )† = S† ◦ T † and (T (U))⊥ = T †(U⊥) = T⊥(U⊥).

Proof. The dual maps of − and −1 are (−)∗ = − and (−1)∗ = −1 respectively,
and hence we have (b) and (c), and then (d) follows. We notice

−1 ◦ − : (x, y) 7→ (x,−y) 7→ (−y, x),

−◦−1 : (x, y) 7→ (y, x) 7→ (y,−x) = (−1)× (−y, x)

which gives (a). For (x, y) ∈ S ◦ (−T ), there are (x, z) ∈ S, (z, y) ∈ −T . Hence (x,−z) ∈
−S and (−z, y), (z,−y) ∈ T , which yields (x, y) ∈ (−S) ◦ T and (x,−y) ∈ S ◦ T .
Thus we obtain S ◦ (−T ) ⊂ (−S) ◦ T and S ◦ (−T ) ⊂ −(S ◦ T ). Similarly we obtain
S ◦ (−T ) ⊃ (−S) ◦ T and S ◦ (−T ) ⊃ −(S ◦ T ). Thus we have (e).

For (f), let pr : V1×V2×V2×V3 → V1×V3 and δV2 denote the natural projection and
the diagonal subspace of V2×V2 respectively. We have S ◦T = pr(S×T ∩V1× δV2 ×V3)
and by an elementary argument we see

(pr(S × T ∩ V1 × δV2 × V3))⊥ = (pr∗)−1((S × T ∩ V1 × δV2 × V3)⊥).

Since (S×T∩V1×δV2×V3)⊥ = (S⊥×T⊥)+(0×(−δV ∗2 )×0) and pr∗(a, b) = (a, 0, 0, b), this
implies (S◦T )⊥ = S†◦T⊥. Then applying “-” to the both sides, we have (S◦T )† = S†◦T †.
We identify U with U ⊂ V3 × 0. Then the second identity follows. ¤

Lemma 2.4. Let W be a subspace of V3. If (0,W ) ⊂ T then T (U) = T (U + W ).

Proof. T (U) ⊂ T (U + W ) is trivial. For x of T (U + W ).

T (U + W ) 3 x ⇐⇒ (x, y) ∈ T, y ∈ U + W.

We put y = u + w, where u ∈ U and w ∈ W . Since (0, w) ∈ T from the assumption, we
have

(x, y)− (0, w) = (x, y − w) = (x, u) ∈ T.

Hence x ∈ T (U). ¤
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Next we prepare the functorial lemmas of Dirac structures. Let (V, L) be a Dirac
vector space and (ρ(L), ΩL) be the induced presymplectic vector space, where ρ : V ⊕
V ∗ → V be the canonical projection. Let i : ρ(L) ↪→ V be the inclusion map and
p : ρ(L) → ρ(L)/ ker Ω̃L be the natural projection, where ΩL is the skew 2-form on ρ(L).
The next lemma gives nice functorial relations between a Dirac vector space and the
induced presymplectic, symplectic vector space.

Lemma 2.5. The diagram (6) below commutes, i.e.,

L = I−1 ◦ LΩL
◦ I†, (4)

LΩs = P−1 ◦ LΩL
◦ P †, (5)

where I := {(x, i(x))|x ∈ ρ(L)}, P := {(x, p(x))|x ∈ ρ(L)}, and (ρ(L)/ ker Ω̃L, Ωs) is the
quotient symplectic vector space.

V ∗ i∗ //

L

²²

(ρ(L))∗

LΩL

²²

oo
p∗

(ρ(L)/ ker Ω̃L)∗

LΩs

²²
V oo

i
ρ(L)

p // ρ(L)/ ker Ω̃L
.

(6)

Proof. Since a Dirac structure L is nothing but a presymplectic subspace
(ρ(L), ΩL) of V × V ∗ ([5]), we have

L = {(x, a)|a ∈ V ∗, a|ρ(L) = Ω̃L(x), x ∈ ρ(L)}. (7)

For x of ρ(L) we have

I−1 ◦ LΩL
◦ I† 3 (x, a) ⇐⇒ (x, x) ∈ I−1, (x, Ω̃L(x)) ∈ LΩL

, (Ω̃L(x), a) ∈ I†

⇐⇒ Ω̃L(x) = i∗(a)

⇐⇒ a|ρ(L) = Ω̃L(x).

Hence we obtain (4). Since Ω̃s := (p∗)−1 ◦ Ω̃L ◦ p−1, we obtain (5). ¤

Let (V, L) be a Dirac vector space with a Dirac structure L. We introduce a subspace
D of V ×V which plays an important role to define ◦D◦-composition in the next sections.
Consider the diagram:

V ←−−−−
i

ρ(L)
p−−−−→ ρ(L)/ ker Ω̃L.

From this diagram we naturally obtain a relation I−1 ◦ P between V and ρ(L)/ ker Ω̃L,
where I, P are the graphs given in Lemma 2.5. Our D is given by
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D := I−1 ◦ P ◦ P−1 ◦ I. (8)

By identifying x with i(x), x ∈ ρ(L), we obtain D 3 (x, y) ⇐⇒ x − y ∈ ker Ω̃L,
x, y ∈ ρ(L), and we see also D = P ◦ P−1. The formula (a) in the next lemma is useful.

Lemma 2.6.

(a) D = L ◦ L−1.
(b) L⊥ = L−1, where L⊥ ⊂ V ∗ × V ∗∗(∼= V ∗ × V ) is the annihilator space of L.
(c) D† = L−1 ◦ L.
(d) D ◦ L = L ◦D† = L and D† ◦ L−1 = L−1 ◦D = L−1. Hence D ◦D = D.

Proof. (b) follows from the definition of Dirac structure. We show (a). If (x, y) ∈
D then (x, b) ∈ L since x ∈ ρ(L). Since x − y ∈ kerΩL and (kerΩL, 0) ⊂ L, we have
(x, b) + (y − x, 0) = (y, b) ∈ L. Thus (x, y) ∈ L ◦ L−1. Conversely let (x, y) ∈ L ◦ L−1.
Then x, y ∈ ρ(L) and (x, b), (y, b) ∈ L, which yields x − y ∈ ker Ω̃L. (c) is given by (a),
(b) and Lemma 2.3(f). (d) is given by (c) and the definition of ◦-product. ¤

We set a symplectic vector space (c(L), Ωs) as follows:

c(L) := ρ(L)/ ker Ω̃L, with the symplectic structure Ωs. (9)

We call the space (c(L), Ωs) symplectic core or simply the core of Dirac vector space
(V, L).

Lemma 2.7. Let (V1, L1) and (V2, L2) be any Dirac vector spaces and W be a
subspace of V1 × V2. Then subspaces L′1 and L′2 given by

L′1 := W ◦ L2 ◦ (W †)−1, L′2 := W−1 ◦ L1 ◦W † (10)

are Dirac structures of V1 and V2 respectively.

Proof. First, we show that L′1 is a skew relation of V1 × V ∗
1 , i.e., L′1 3 (x, a) :

〈x, a〉 = 0. Remark that

L′1 3 (x, a) ⇐⇒ (x, y) ∈ W, (y, b) ∈ L2, (b, a) ∈ (W †)−1.

By definition of †, we have 〈x, a〉−〈y, b〉 = 0. Since (y, b) ∈ L2, we have 〈x, a〉 = 0, which
implies that L′1 is isotropic with respect to the bilinear form 〈·, ·〉+.

Next we show dim L′1 = dim V1. By Lemma 2.3, we have

(L′1)
† = (W )† ◦ (L2)† ◦W−1.

We apply “-” to the both sides and we have

(L′1)
⊥ = (W )† ◦ (L2)⊥ ◦W−1.
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Since L⊥2 = L−1
2 (Lemma 2.6(b)), it follows

(L′1)
⊥ = (W )† ◦ (L2)−1 ◦W−1 = (W ◦ L2 ◦ (W †)−1)−1.

Hence we have (L′1)
⊥ = (L′1)

−1. This implies that dimL′1 = dimV1. In a similar way,
we can see L′2 is a Dirac structure. ¤

3. Isotropic, coisotropic and Lagrangian subobjects.

In this section, we will give definitions of isotropic submanifolds and coisotropic
submanifolds of Dirac manifolds. We will also show several basic properties for these
submanifolds.

We recall Lemma 2.5. A Dirac structure L induces the presymplectic structure ΩL

on ρ(L) and the symplectic structure Ωs on the symplectic core c(L) = ρ(L)/ ker Ω̃L.
Since every subspace W of Dirac vector space (V, L) is sent into the core (c(L), Ωs) along
the diagram

(V, L) ⊃ W
∩ρ(L)−−−−→ (ρ(L), ΩL) ⊃ W ∩ ρ(L)

p−−−−→ (c(L), Ωs) ⊃ p(W ∩ ρ(L)). (11)

We are permitted to define the following notions.

Definition 3.1.

(I-1) A subspace W of a Dirac vector space (V, L) is isotropic if p(W ∩ ρ(L)) is an
isotropic subspace of the symplectic core c(L).

(I-2) A submanifold C of a Dirac manifold (M, L) is isotropic if the tangent space
W = TxC is isotropic in the Dirac vector space (TxM, Lx) for every x ∈ C.

(C-1) A subspace W of a Dirac vector space (V, L) is coisotropic if p(W ∩ ρ(L)) is a
coisotropic subspace of the symplectic core c(L).

(C-2) A submanifold C of a Dirac manifold (M, L) is coisotropic if the tangent space
W = TxC is coisotropic in the Dirac vector space (TxM, Lx) for every x ∈ C.

(L-1) A subspace W of a Dirac vector space (V, L) is lagrangian if W is isotropic and
coisotropic.

(L-2) A submanifold C of a Dirac manifold (M, L) is lagrangian if C is isotropic and
coisotropic.

From (2) of Introduction, if a Dirac structure is given by a presymplectic structure
Ω then the induced presymplectic structure ΩL is Ω. Since (ρ(L), ΩL) is a presymplectic
vector space, a subspace U ⊂ ρ(L) is isotropic (resp. coisotropic) if and only if the
projection p(U) is isotropic (resp. coisotropic) in the symplectic core c(L). Thus, by the
Definition 3.1, we easily have the following:

Corollary 3.2. Let W be a subspace of a Dirac vector space (V, L). The following
conditions are equivalent:

(a) W is isotropic (resp. coisotropic) in V .
(b) W ∩ ρ(L) is isotropic (resp. coisotropic) in V .
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(c) W ∩ ρ(L) is isotropic (resp. coisotropic) in ρ(L) with respect to LΩL
, where ΩL is

the presymplectic structure on ρ(L).
(d) p(W ∩ ρ(L)) is isotropic (resp. coisotropic) in the symplectic core c(L).

The first purpose of this section is to rewrite Definition 3.1 to useful forms in terms
of functorial properties of Dirac structures.

Lemma 3.3. A subspace W of a Dirac vector space (V, L) is isotropic (resp.
coisotropic) if and only if it satisfies the condition

L−1(W ) ⊂ W⊥ + (ρ(L))⊥. (12)

(resp. L(W⊥) ⊂ W + ker Ω̃L) (13)

Proof. We show the coisotropic case. The isotropic case is proved by the similar
manner. For a subspace U ⊂ ρ(L), we denote by U⊥ the annihilator space of U in V ∗,
and by U0 the annihilator space of U in (ρ(L))∗, respectively. Also we denote by (p(U))a

the annihilator space of p(U) in the core (c(L))∗. Then we have U⊥ = (i∗)−1(U0) and
(p(U))a = (p∗)−1(U0).

First step. The subspace p(U) of the symplectic core (c(L), Ωs) is coisotropic if and
only if

Ω̃−1
s ((p(U))a) ⊂ p(U). (14)

The condition (14) is rewritten as LΩs
((p(U))a) ⊂ p(U). From Lemma 2.5, we have

LΩs((p(U))a) = P−1 ◦ LΩL
◦ P †((p(U))a)

= P−1 ◦ LΩL
(p∗((p(U))a))

= p(LΩL
(p∗((p(U))a))).

Since (p(U))a = (p∗)−1(U0), we have p∗((p(U))a) = U0 ∩ Im p∗. Since Im p∗ = Im Ω̃L

and LΩL
(U0 ∩ Im Ω̃L) = LΩL

(U0), we have

LΩs((p(U))a) = p(LΩL
(U0 ∩ Im Ω̃L)) = p(LΩ(U0)).

Hence we have

LΩs
((p(U))a) ⊂ p(U) ⇐⇒ p(LΩL

(U0)) ⊂ p(U)

⇐⇒ LΩL
(U0) ⊂ U + ker p. (15)

The equivalence (15) together with the fact ker p = ker Ω̃L yields

Ω̃−1
s ((p(U))a) ⊂ p(U) ⇐⇒ LΩL

(U0) ⊂ U + ker Ω̃L. (16)
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Second step. By Lemma 2.5, we have L = I−1 ◦LΩL
◦ I†. Then applying U⊥ to the

both sides from the right, we have

L(U⊥) = I−1 ◦ LΩL
◦ I†(U⊥) = I−1 ◦ LΩL

(i∗(U⊥)) = I−1 ◦ LΩL
(U0),

where we use U⊥ = (i∗)−1(U0). Hence we obtain

L(U⊥) ⊂ U + ker Ω̃L ⇐⇒ LΩL
(U0) ⊂ U + ker Ω̃L. (17)

Now, we set U = W ∩ ρ(L). Since U⊥ = W⊥ + ρ(L)⊥ and (0, ρ(L)⊥) ⊂ L, we have the
following from Lemma 2.4.

L(W⊥) ⊂ W + ker Ω̃L ⇐⇒ LΩL
(U0) ⊂ U + ker Ω̃L.

The conditions (14), (16) and (17) show the desired result. ¤

We can write Definition 3.1 into the following equivalent forms.

Proposition 3.4. Let (V, L) be a Dirac vector space and let W be its subspace.
Then the following conditions are equivalent.

(A-1) W is isotropic, i.e., L−1(W ) ⊂ W⊥ + (ρ(L))⊥.
(A-2) L−1(W ∩ ρ(L)) ⊂ (W ∩ ρ(L))⊥.
(A-3) ρ(W ⊕W⊥ ∩ L) = W ∩ ρ(L).
(A-4) D(W ) ⊂ L(W⊥).

Similarly, the following conditions are equivalent.

(B-1) W is coisotropic, i.e., L(W⊥) ⊂ W + ker Ω̃L.
(B-2) L((W + ker Ω̃L)⊥) ⊂ W + ker Ω̃L.
(B-3) ρ∗(W ⊕ W⊥ ∩ L) = W⊥ ∩ ρ∗(L), where ρ∗ : V ⊕ V ∗ → V ∗ is the canonical

projection.
(B-4) L(W⊥) ⊂ D(W ).

Proof. Notice that L−1(W ) = L−1(W ∩ ρ(L)). Then we obtain the equivalence
of (A-1) and (A-2). Similarly the equivalence of (B-1) and (B-2) follows from the fact
(ker Ω̃L)⊥ = ρ∗(L) ([5]).

We remark (A-3) and (B-3) are equivalent to the following (18) and (19) respectively,

∀x ∈ W ∩ ρ(L),∃ a ∈ W⊥ : (x, a) ∈ L, (18)

∀a ∈ W⊥ ∩ ρ∗(L),∃ x ∈ W : (x, a) ∈ L. (19)

(A-1) ⇐⇒ (18): We assume (A-1). For x ∈ W ∩ ρ(L), we take b ∈ V ∗ such that
(x, b) ∈ L. Then by (A-2) we have b ∈ W⊥ + (ρ(L))⊥. We put b = a + f , where a ∈ W⊥

and f ∈ (ρ(L))⊥. Since (0, (ρ(L))⊥) ⊂ L, we have (x, a) = (x, b)− (0, f) ∈ L. This yields
(18). Conversely, we assume (18). For an arbitrary element a ∈ L−1(W ), there is x ∈ W
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such that (a, x) ∈ L−1. Here x ∈ W ∩ρ(L) and (x, a) ∈ L. Then by the assumption (18),
there exists b ∈ W⊥ such that (x, b) ∈ L. Hence (0, a − b) = (x, a) − (x, b) ∈ L which
gives a− b ∈ (ρ(L))⊥. Thus a = b + (a− b) ∈ W⊥ + (ρ(L))⊥ which yields (A-1).
(B-1) ⇐⇒ (19): We assume (B-1). For an element a ∈ W⊥ ∩ ρ∗(L), there is z such
that (z, a) ∈ L by definition. Then the condition (B-2) yields that z ∈ W + ker Ω̃L.
We put z = x + e, where x ∈ W and e ∈ ker Ω̃L. Since (ker Ω̃L, 0) ⊂ L, we have
(x, a) = (z, a) − (e, 0) ∈ L. This implies (19). Conversely, we assume (19). For an
arbitrary x ∈ L(W⊥), there is a ∈ W⊥ such that (x, a) ∈ L by definition, hence a ∈
W⊥ ∩ ρ∗(L). On the other hand, the assumption (19) gives y ∈ W such that (y, a) ∈ L.
Hence we have (x − y, 0) = (x, a) − (y, a) ∈ L. This implies x − y ∈ ker Ω̃L. Thus
x = y + (x− y) ∈ W + ker Ω̃L and we obtain (B-1).
(A-1) ⇐⇒ (A-4): We assume (A-1). Apply L to the both sides of (A-1). Then Lemma
2.4 gives

D(W ) ⊂ L(W⊥ + (ρ(L))⊥) = L(W⊥),

since (0, (ρ(L))⊥) ⊂ L. Then we have (A-4). Conversely we assume (A-4). Apply L−1

to (A-4). Then Lemma 2.6(d) gives

L−1(W ) ⊂ D†(W⊥),

and then (L−1(W ))⊥ ⊃ (D†(W⊥))⊥. From Lemma 2.3(f), this is equivalent to L(W⊥) ⊃
D(W ), where we use L⊥ = L−1. From the definition of D, we obtain D(W ) = W ∩
ρ(L) + ker Ω̃L, and then we have

L(W⊥) ⊃ W ∩ ρ(L) + ker Ω̃L.

Again we take the annihilator space and we see

L−1(W ) ⊂ (W⊥ + ρ(L)⊥) ∩ (ker Ω̃L)⊥.

This implies (A-1). In a similar way we have the equivalence of (B-1) and (B-4). ¤

Since Definition 3.1 is made as a naive and natural extension of the notions in presym-
plectic and Poisson categories, we have also the following:

Corollary 3.5.

(a) In presymplectic (V, LΩ) case, a subspace W is isotropic if and only if Ω̃(W ) ⊂
W⊥, and W is coisotropic if and only if Im Ω̃ ∩W⊥ ⊂ Ω̃(W ).

(b) In Poisson (V, Lπ) case, a subspace W is coisotropic if and only if π̃(W⊥) ⊂ W ,
and W is isotropic if and only if Im π̃ ∩W ⊂ π̃(W⊥).

Proof. For (a) (resp. (b)), we notice ρ(L) = V and Ω̃L = Ω̃ (resp. ρ(L) = Im π̃

and ker Ω̃L = 0). ¤

The conditions (A-4), (B-4) of Proposition 3.4 yield
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Corollary 3.6. Let W1 and W2 be subspaces of a Dirac vector space (V, L). We
assume W1 ⊂ W2. If W1 is coisotropic then W2 is coisotropic and if W2 is isotropic then
W1 is isotropic.

Proof. We assume W2 is isotropic. By Proposition 3.4 we have

D(W1) ⊂ D(W2) ⊂ L(W⊥
2 ) ⊂ L(W⊥

1 ),

where we use W⊥
2 ⊂ W⊥

1 . This implies that W1 is isotropic. The coisotropic case is also
proved by the similar way. ¤

Remark 3.7. Corollary 3.5(b) shows that a submanifold N of a Poisson manifold
M is lagrangian if and only if

TxΣ ∩ TxN = π̃(TxN⊥), ∀x ∈ Σ ∩N,

where Σ is a symplectic leaf. It is to be noticed that the definition of lagrangian sub-
manifolds is the same as in ([11]) when M is a Poisson manifold.

As a main theorem of this section, from (A-4) and (B-4) of Proposition 3.4 we have the
following criterion of a lagrangian subspace.

Theorem 3.8. Let (V, L) be a Dirac vector space and let W be a subspace.

(1) W is lagrangian if and only if the equation L(W⊥) = D(W ) holds.
(2) If L(W⊥) = W then W is lagrangian.

We notice here, lagrangian submanifolds of a Dirac manifold may have various di-
mensions. In fact, if W is lagrangian then W ∩ ρ(L) and W + ker Ω̃L are also lagrangian
and thus, from Corollary 3.6, we have many lagrangian objects between W ∩ ρ(L) and
W + ker Ω̃L.

W ∩ ρ(L) ⊂ · · · ⊂ W ⊂ · · · ⊂ W + ker Ω̃L.

We next introduce an equivalence relation and the set of lagrangian subspaces. Let
W1 and W2 be lagrangian subspaces of a Dirac vector space (V, L). Then, along the dia-
gram (11), we obtain two lagrangian subspaces p(Wi ∩ ρ(L)), (i = 1, 2) in the symplectic
core c(L). We define an equivalence relation W1 ∼ W2 as follows.

Definition 3.9. We say two lagrangian subspaces W1 and W2 are equivalent
W1 ∼ W2, if the relation p(W1 ∩ ρ(L)) = p(W2 ∩ ρ(L)), or equivalently, W1 ∩ ρ(L) +
ker Ω̃L = W2 ∩ ρ(L) + ker Ω̃L holds.

From the definition, we obtain directly

Proposition 3.10. Let (V, L) be a Dirac vector space. If a subspace Wc ⊂ c(L)
is lagrangian in the symplectic core c(L) then the fiber space p−1(Wc) ⊂ ρ(L) ⊂ V is
lagrangian in the Dirac vector space (V, L). Thus, the set of the equivalence classes
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of lagrangian subspaces in V is bijective to the set of all lagrangian subspaces in the
symplectic core c(L).

From the definition of D, we have D(W ) = W ∩ ρ(L) + ker Ω̃L. Then we obtain

Proposition 3.11. Let (V, L) be a Dirac vector space. Any two lagrangian sub-
spaces W1 and W2 are equivalent if and only if D(W1) = D(W2).

Corollary 3.12. Let W be a lagrangian subspace of a Dirac vector space (V, L).
Then W ∼ D(W ).

Definition 3.13. In a Dirac manifold (M, L), we can call subbundle E ⊂ TM is
isotropic (resp. coisotropic, resp. lagrangian) if a fiber Ex is isotropic (resp. coisotropic,
resp. lagrangian) on the Dirac vector space (TxM, Lx) for every x ∈ M similarly to
Poisson manifold case ([14]). The equivalence relation above is also defined for lagrangian
vector bundles.

4. Dirac relations.

4.1. Product Dirac structure.
Let (Mi, Li), (i = 1, 2) be any Dirac manifolds. Then, it is obvious that −L2 is a

Dirac structure on M2. We next show that L1 × L2 is a Dirac structure on M1 ×M2.
We easily see that the bilinear form 〈·, ·〉+ on T (M1 × M2) ⊕ T ∗(M1 × M2) vanishes,
and hence L1 × L2 is maximally isotropic. The Courant bracket (2) satisfies one of the
axioms of Lie algebroid (Leibniz rule) for a pair of the elements of Γ (L1 ×L2) ([5], [9]).
The remains to check is that the Courant bracket (2) is closed on Γ (L1 × L2). We put
ξi ∈ ΓL1 and ηi ∈ ΓL2 and f, g ∈ C∞(M1 × M2) then, by the assumption, we have
[ξ1, ξ2] ∈ ΓL1 and [η1, η2] ∈ ΓL2 and [ξi, ηj ] = 0 and further

[fξi, gξj ] = fg[ξi, ξj ] + fρ(ξi)(g)ξj − gρ(ξj)(f)ξi,

[fηi, gηj ] = fg[ηi, ηj ] + fρ(ηi)(g)ηj − gρ(ηj)(f)ηi,

[fξi, gηj ] = fρ(ξi)(g)ηj − gρ(ηj)(f)ξi,

where ρ : T (M1×M2)⊕T ∗(M1×M2) → T (M1×M2) is the canonical projection. Thus
the Courant bracket is closed on Γ (L1 × L2). Then L1 × L2 is a Dirac structure.

If L1 and L2 are Dirac structures on M1 and M2 respectively then M1 × M2 is a
Dirac manifold with Dirac structure L1 × (−L2). We denote the Dirac manifold (M1 ×
M2, L1 × (−L2)) by M1 ×M−

2 . We use the same notations for Dirac vector spaces.

Remark 4.1. We can easily see that if L corresponds to (ρ(L), ΩL) then −L

corresponds to (ρ(L),−ΩL) and the following properties are satisfied

ρ(L) = ρ(−L), ρ∗(L) = ρ∗(−L),

ρ(L1 × (−L2)) = ρ(L1 × L2), ρ∗(L1 × (−L2)) = ρ∗(L1 × L2).
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4.2. Lagrangian relations.
When N is a submanifold (resp. subspace) of a Dirac manifold (resp. Dirac vector

space) M1×M−
2 (resp. V1×V −

2 ), we sometimes write as N : M1 ← M2 (resp. N : V1 ←
V2).

For a subspace S ⊂ V1 × V2, we notice D1 ×D2(S) = D1 ◦ S ◦D2 and D ◦L = L by
Lemma 2.6(d). From Definition 3.1, Theorem 3.8 and Corollary 3.12 we obtain

Proposition 4.2. Let (V1, L1) and (V2, L2) be Dirac vector spaces and S be a
subspace of V1 × V2. Then the following conditions are equivalent.

(E-1) S : V1 ← V2 is a lagrangian subspace.
(E-2) L1 ◦ S† ◦D†

2 = D1 ◦ S ◦ L2, where Di := Li ◦ L−1
i .

(E-3) D1 ◦ S ◦D2 : V1 ← V2 is a lagrangian subspace.

Remark 4.3. It is easy to see (E-3) ⇐⇒ S ◦ D2 : V1 ← V2 is a lagrangian
subspace ⇐⇒ D1 ◦ S : V1 ← V2 is a lagrangian subspace.

Similar to Proposition 4.2, we have the next proposition, which is easily seen by
Definition 3.1 and Proposition 3.4.

Proposition 4.4. Under the assumption of Proposition 4.2, S : V1 ← V2 is an
isotropic (resp. a coisotropic) subspaces if and only if L1◦S†◦D†

2 ⊃ (resp. ⊂) D1◦S◦L2.

The identity (E-2) implies that the following diagram is commutative.

V ∗
1

L1

~~}}
}}

}}
}}
L1

oo S†
V ∗

2

L2

oo D†2
V ∗

2

L2~~||
||

||
||

V1
oo

D1
V1

oo
S

V2

(20)

We notice here that L1 ◦ S† = S ◦ L2 does not necessarily hold. Next lemma plays an
important role in the next section to define compositions without using D.

Corollary 4.5. Under the assumption of Proposition 4.2, if L1 ◦S† ⊂ (resp. ⊃)
S ◦ L2 then S : V1 ← V2 is coisotropic (resp. isotropic). Thus if L1 ◦ S† = S ◦ L2 then
S : V1 ← V2 is lagrangian.

Proof. We assume L1 ◦ S† ⊂ S ◦ L2. Then applying D†
2 and D1 from the right

hand side and the left hand side respectively, we have

D1 ◦ L1 ◦ S† ◦D†
2 ⊂ D1 ◦ S ◦ L2 ◦D†

2.

From L2 = L2 ◦ D†
2, L1 = D1 ◦ L1 by Lemma 2.6(d) and Proposition 4.4, we have the

desired result. In a similar way, the isotropic case is shown. ¤

Now we consider the composition of these subspaces. As is mentioned in the introduction,
compositions A ◦ B of isotropic (resp. coisotropic, resp. lagrangian) subspaces are not
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necessarily isotropic (resp. coisotropic, resp. lagrangian) in general. However, the next
theorem show that ◦D◦-composition is well defined. Indeed, this is the first main theorem
of this paper.

Theorem 0. Let V1, V2 and V3 be Dirac vector spaces and let S : V1 ← V2 and
T : V2 ← V3 be isotropic (resp. coisotropic). Then S ◦D2 ◦T : V1 ← V3 is isotropic (resp.
coisotropic). Thus, if S and T are lagrangian, then S ◦D2 ◦ T is also lagrangian.

Proof. First, we consider the coisotropic case and we show that S ◦ D2 ◦ T is
coisotropic. Although the proof is given by a direct calculation by using Proposition
4.2(E-2) and Lemma 2.3(f), (see for the isotropic case below), we give a “geometric”
proof, through which one can see why the space D2 naturally comes in.

We put S′ := S ∩ ρ(L1 × (−L2)) and T ′ := T ∩ ρ(L2 × (−L3)) where the canonical
projection pi : ρ(Li) → c(Li), (i = 1, 2, 3). By the assumption and Corollary 3.2, S′ and
T ′ are coisotropic in ρ(L1)×(ρ(L2))− and ρ(L2)×(ρ(L3))−, respectively. Also p1×p2(S′)
and p2× p3(T ′) are coisotropic in c(L1)× c(L2)− and c(L2)× c(L3)−, respectively. Here
ρ(Li)− and c(Li)− are anti-presymplectic and anti-symplectic vector spaces for ρ(Li)
and c(Li), respectively. Since c(Li) is a symplectic vector space, p1× p2(S′) ◦ p2× p3(T ′)
is coisotropic in c(L1) × c(L3)− ([14], [1]). We put Pi := {(x, pi(x))|x ∈ ρ(Li)}. Then
p1 × p2(S′) ◦ p2 × p3(T ′) is equal to

P−1
1 × P−1

2 (S′) ◦ P−1
2 × P−1

3 (T ′) = P−1
1 ◦ S′ ◦ P2 ◦ P−1

2 ◦ T ′ ◦ P3

= P−1
1 × P−1

3 (S′ ◦ P2 ◦ P−1
2 ◦ T ′).

Hence p1 × p3(S′ ◦ P2 ◦ P−1
2 ◦ T ′) is coisotropic in c(L1) × c(L3)−. By Corollary 3.2,

S′ ◦ P−1
2 ◦ P2 ◦ T ′ is coisotropic in ρ(L1) × (ρ(L3))−, and again by Corollary 3.2 it is

coisotropic in V1 × V −
3 too. By the definition of D, we obtain P2 ◦ P−1

2 = D2. Hence
we have that S′ ◦D2 ◦ T ′ is coisotropic in V1 × V −

3 . Since S′ ⊂ S and T ′ ⊂ T , we have
S′ ◦D2 ◦ T ′ ⊂ S ◦D2 ◦ T . By Corollary 3.6, we obtain that S ◦D2 ◦ T is coisotropic.

Next, for the isotropic case we show directly that S ◦ D2 ◦ T is isotropic by the
diagram (20). Since S and T are isotropic, by Proposition 4.4 we have

D1 ◦ S ◦ L2 ⊂ L1 ◦ S† ◦D†
2, D2 ◦ T ◦ L3 ⊂ L2 ◦ T † ◦D†

3. (21)

Then we have

D1 ◦ S ◦D2 ◦ T ◦ L3 ⊂ D1 ◦ S ◦ L2 ◦ T † ◦D†
3 ⊂ L1 ◦ S† ◦D†

2 ◦ T † ◦D†
3.

By Lemma 2.3(f), S† ◦D†
2 ◦ T † = (S ◦D2 ◦ T )†. Hence we obtain

D1 ◦ (S ◦D2 ◦ T ) ◦ L3 ⊂ L1 ◦ (S ◦D2 ◦ T )† ◦D†
3,

which gives the desired result by Proposition 4.4. ¤

Let [S] be the equivalence class of S by the equivalence relation of Definition 3.9. Propo-
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sition 3.11 yields

[S] 3 S′ ⇐⇒ D1 ◦ S ◦D2 = D1 ◦ S′ ◦D2.

By Theorem 0 we obtain the following:

Theorem 4.6. Let V1, V2 and V3 be Dirac vector spaces and let S : V1 ← V2 and
T : V2 ← V3 be lagrangian subspaces. Let [S] and [T ] denote equivalence classes of S

and T respectively. Then the composition [S]◦̄[T ] given by [S]◦̄[T ] := [S ◦D2 ◦T ] is well-
defined. The product ◦̄ among the equivalence classes gives a category on Dirac vector
spaces such that identity morphism is [D].

Proof. We show the product [S]◦̄[T ] := [S ◦D2 ◦ T ] is well-defined. Let S ∼ S′

and T ∼ T ′. Then by Proposition 3.11 we have

D1 ◦ S ◦D2 = D1 ◦ S′ ◦D2, D2 ◦ T ◦D3 = D2 ◦ T ′ ◦D3.

Since D = D ◦D, we have

D1 ◦ S ◦D2 ◦ T ◦D3 = D1 ◦ S ◦D2 ◦D2 ◦ T ◦D3

= D1 ◦ S′ ◦D2 ◦D2 ◦ T ′ ◦D3

= D1 ◦ S′ ◦D2 ◦ T ′ ◦D3.

By definition, we obtain S ◦ D2 ◦ T ∼ S′ ◦ D2 ◦ T ′. Thus [S]◦̄[T ] = [S′]◦̄[T ′]. Since
D1 ◦ S ◦D2 = D1 ◦ S ◦D2 ◦D2, we can easily see [S]◦̄[D2] = [S] and [D2]◦̄[T ] = [T ]. ¤

Remark 4.7. We obtain categories [Dir] and Sym, where objects, morphisms
of [Dir] (resp. Sym) are Dirac vector spaces and equivalence classes [S] of lagrangian
subspaces (resp. symplectic vector spaces and canonical relations) respectively. Recall
Proposition 3.10, we obtain a full and faithful functor C : [Dir] → Sym.

Let [S], [T ] be equivalence classes in Theorem 4.6. We define C by C([S]) := p1 ×
p2(S ∩ ρ(L1 ×L2)) and C(Vi) = c(Li), i.e., the symplectic core, where pi : ρ(Li) → c(Li)
is the canonical projection. We can easily show that C([S]◦̄[T ]) = C([S]) ◦ C([T ]) and
C([Di]) is a diagonal subspace of c(Li)× c(Li).

Theorem 0 implies that the space D naturally appears when we consider the com-
position of lagrangian subspaces and also shows that the lagrangian subspaces are closed
under ◦D◦-product. In general, we do not know the characterization of class of lagrangian
subspaces which are closed under the ◦-product. However, if the intermediate space is
a “good” space, lagrangian subspaces are closed under the ◦-product as it will be seen
below.

In Theorem 0, if (V2, L2) is a Dirac vector space given by a presymplectic (resp.
Poisson) structure, then it holds that δV2 ⊂ D2 (resp. δV2 ⊃ D2), where δV2 is the
diagonal subspace of V2×V2. Hence we have the following by Corollary 3.6 and Theorem
0.
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Corollary 4.8. Let M2 be a symplectic (resp. presymplectic, resp. Poisson)
manifold and M1, M3 be any Dirac manifolds. Suppose S : M1 ← M2 and T : M2 ← M3

be lagrangian (resp. isotropic, resp. coisotropic) such that (S, T ) is a very clean pair
([14]). Then S ◦ T : M1 ← M3 is a lagrangian (resp. isotropic, resp. coisotropic).

In the next section we will give a certain class of lagrangian submanifolds which are
closed under ◦-product without using D.

4.3. Dirac relations and Dirac maps.
In this section, we give definitions of Dirac relations and Dirac maps which are

essential to main results (A), (B). We recall the diagram (20) and Corollary 4.5. Let
(V1, π1) and (V2, π2) be any Poisson vector spaces and let S ⊂ V1 × V2 be a subspace.
Since Lπi

◦ (Lπi
)−1 ⊂ δVi

, Proposition 4.4 and Lemma 2.6(d) yield that the following
conditions (22) and (23) are mutually equivalent and gives a criterion of that S is a
Poisson relation ([14]).

L1 ◦ S† ◦D†
2 ⊂ D1 ◦ S ◦ L2, (22)

L1 ◦ S† ⊂ S ◦ L2, (23)

where Li = Lπi
. However, these conditions are not equivalent in our Dirac case, but (23)

induces (22) (cf. Proposition 4.4 and Corollary 4.5). The condition (22) implies that S is
coisotropic, and the condition (23) implies the commutativity of the following diagram:

V ∗
1

L1

²²

oo S†
V ∗

2

L2

²²
V1

oo
S

V2
.

The condition (23) is useful for the construction of our calculus.

Definition 4.9.

(1) Let (V1, L1), (V2, L2) be Dirac vector spaces and let S be a subspace of V1×V2. S

is called an isotropic (resp. coisotropic) Dirac relation when

L1 ◦ S† ⊂ S ◦ L2 (24)

(resp. L1 ◦ S† ⊃ S ◦ L2). (25)

In particular, S is called a canonical relation when it is both an isotropic and a
coisotropic Dirac relation.

(2) Let (M1, L1), (M2, L2) be Dirac manifolds and let N be a submanifold of M1×M2.
N is called an isotopic (resp. coisotropic) Dirac relation when every tangent space
satisfies (25) (resp. (24)). In particular, N is called a canonical relation when it
is an isotropic and a coisotropic Dirac relation, i.e.,
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L1 ◦ TN † = TN ◦ L2. (26)

Remark 4.10. From Corollary 4.5, an isotropic (coisotropic) Dirac relation is
an isotropic (resp. a coisotropic) subspace. Thus a canonical relation is a lagrangian
subspace. However it is to be remarked that in Dirac case, a lagrangian subspace of
V1 × V −

2 is not necessary a canonical relation since (22) and (23) are not equivalent.

We can see a geometrical meaning of an isotropic (resp. a coisotropic) Dirac relation
in Corollary 4.13 below.

Theorem 0 means that the compositions of lagrangian subspaces are “closed” under
the ◦D◦-product. However, for this product ◦D◦, lagrangian subspaces have no identity
element in general and hence this system does not form a category. However such a weak
point is covered by the next theorem where the Dirac relations are used:

Theorem 4.11. Let V1, V2 and V3 be Dirac vector spaces and let S ⊂ V1 × V2,
T ⊂ V2×V3 be canonical (resp. isotropic Dirac, resp. coisotropic Dirac) relations. Then
S ◦ T ⊂ V1 × V3 is a canonical (resp. isotropic Dirac, resp. coisotropic Dirac) relation.

Proof. By the assumption and Definition 4.9, we have

L1 ◦ S† = S ◦ L2, L2 ◦ T † = T ◦ L3. (27)

Then by Lemma 2.3(f) we have

L1 ◦ (S ◦ T )† = L1 ◦ S† ◦ T † = S ◦ L2 ◦ T † = S ◦ T ◦ L3,

which shows that S ◦ T is a canonical relation. ¤

In a similar way, we obtain a more general result.

Proposition 4.12. Let V1, V2 and V3 be Dirac vector spaces, and let S ⊂ V1 × V2

be a canonical relation (resp. a lagrangian subspace) and T : V2 ← V3 be a lagrangian
subspace (resp. canonical relation). Then S ◦ T : V1 ← V3 is a lagrangian subspace.

Proof. By the assumption, we have

L1 ◦ S† = S ◦ L2, (28)

L2 ◦ T † ◦D†
3 = D2 ◦ T ◦ L3. (29)

It follows that

L1 ◦ S† ◦ T † ◦D†
3 = S ◦ L2 ◦ T † ◦D†

3 = S ◦D2 ◦ T ◦ L3. (30)

Apply L−1
2 from the right to (28) and from the left to (29). Then we have L1 ◦S† ◦L−1

2 =
S ◦D2 and D†

2 ◦ T † ◦D†
3 = L−1

2 ◦ T ◦ L3 respectively. The equation (30) then becomes
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L1 ◦ S† ◦ T † ◦D†
3 = L1 ◦ S† ◦ L−1

2 ◦ T ◦ L3 = L1 ◦ S† ◦D†
2 ◦ T † ◦D†

3.

This implies D†
1 ◦ S† ◦ T † ◦D†

3 = D†
1 ◦ S† ◦D†

2 ◦ T † ◦D†
3. Applying † to the both sides,

we have

D1 ◦ S ◦ T ◦D3 = D1 ◦ S ◦D2 ◦ T ◦D3. (31)

Here S ◦D2◦T is lagrangian. By Proposition 4.2, the right hand side above is lagrangian,
and thus the left hand side is lagrangian also. Again from Proposition 4.2, we obtain
S ◦ T is lagrangian. ¤

The condition (31) in Proposition 4.12 implies that

Corollary 4.13. If S ⊂ V1 × V2 is a canonical relation and T : V2 ← V3 is
lagrangian then S ◦ T ∼ S ◦D2 ◦ T , i.e, [S]◦̄[T ] = [S ◦ T ].

Remark 4.14. For a vector space case, we have easily an example of canonical
relations. If S : V1 ← V2 is a lagrangian subspace then (E-3) and Lemma 2.6(d) show
that D1 ◦ S ◦D2 is a canonical relation.

Now we have (B) in the introduction:

Theorem B. Let S ⊂ M1 × M2 be a canonical relation (resp. a lagrangian
submanifold) and T : M2 ← M3 be a lagrangian submanifold (resp. canonical relation)
respectively. If (S, T ) is a very clean pair then S ◦T : M1 ← M3 is a lagrangian subman-
ifold. In particular if S, T are canonical relations then S ◦ T is a canonical relation.

Remark 4.15. Proposition 4.12 and Theorem B are valid for isotropic, coisotropic
cases: if S is an isotropic Dirac relation (resp. isotropic submanifold) and T is an isotropic
submanifold (resp. isotropic Dirac relation) of very clean pair then S ◦ T is an isotropic
submanifold. In particular if S, T are isotropic Dirac relations of very clean pair then
S ◦ T is an isotropic Dirac relation. In a coisotropic case, we obtain the similar results.

Remark 4.16. From Theorem 4.11 and Remark 4.15, we obtain that the set of
canonical relations, the set of isotropic Dirac relations and the set of coisotropic Dirac
relations are closed under the ◦-product respectively. The identity morphism is the di-
agonal set for these objects. Thus we have three categories of Dirac manifolds whose
morphisms are canonical relations, isotropic Dirac relations and coisotropic Dirac rela-
tions respectively.

We recall Remark 4.7. Here, in term of category theory, we give again the following
remark:

Remark 4.17. We obtain a category Dir whose objects and morphisms are Dirac
vector spaces and canonical relations respectively. We notice the identity morphisms of
Dir are diagonal subspaces δV for Dirac vector spaces V . Recalling Corollary 4.13, we
have a functor [C] : Dir → [Dir] such that [C](V ) := V , [C](S) := [S] (see a diagram (32)
below). In fact, by Corollary 4.13, we obtain that if [C](S) = [C](T ) then [C](S ◦ T ) =
[C](S)◦̄[C](T ), and further [C](δV ) = [D].
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Dir 3 S
[C]−−−−→ [Dir] 3 [S] C−−−−→ Sym 3 p1 × p2(S ∩ ρ(L1 × L2)). (32)

Now we define the notion of Dirac map. First we consider a Poisson map. Let
(M1, π1), (M2, π2) be Poisson manifolds. A map f : M1 → M2 is a Poisson map if and
only if the following diagram commutes

T ∗M1
oo
(Tf)∗

π̃1

²²

T ∗M2

π̃2

²²
TM1

Tf // TM2.

If we rewrite this diagram in terms of the graph of f , we obtain the identity similar to
(34) below. For presymplectic manifolds and a presymplectic map, we also obtain the
identity similar to (33) below. We generalize these identities directly to Dirac manifolds
and we give the following definitions.

Definition 4.18. Let (M1, L1), (M2, L2) be any Dirac manifolds and let f : M1 →
M2 be a C∞ map. We call f an isotropic (resp. coisotropic) Dirac map if the graph of
f satisfies the following condition (33) (resp. (34)) at each point. In particular, we call
f a Dirac map if f is an isotropic and a coisotropic Dirac map.

L1 = TF ◦ L2 ◦ (TF †)−1 (33)

(resp. L2 = TF−1 ◦ L1 ◦ TF †), (34)

where F := {(x, f(x))|x ∈ M1} and TF is the tangent bundle of F . We give analogous
definitions for the case of vector spaces.

Similarly to the property (a) of introduction, we can characterize the isotropic Dirac
maps and the coisotropic Dirac maps by the graphs as follows.

Proposition 4.19. Let (V1, L1) and (V2, L2) be any Dirac vector spaces and f :
V1 → V2 be a linear map. We put F := {(x, f(x))|x ∈ V1}. Then the following conditions
are equivalent:

(G-1) F ◦ L2 ⊂ L1 ◦ F †, i.e., F is an isotropic Dirac relation.
(G-2) L1 = F ◦ L2 ◦ (F †)−1, i.e., f is an isotropic Dirac map.

Similarly, the following conditions are equivalent.

(H-1) L1 ◦ F † ⊂ F ◦ L2, i.e., F is a coisotropic Dirac relation.
(H-2) L2 = F−1 ◦ L1 ◦ F †, i.e., f is a coisotropic Dirac map.

Proof. First we show the equivalence of (H-1) and (H-2). We assume (H-1). Then
applying F−1 to (H-1), we have F−1 ◦ L1 ◦ F † ⊂ F−1 ◦ F ◦ L2. Since F−1 ◦ F ⊂ δV2 ,
we have F−1 ◦ L1 ◦ F † ⊂ L2. From Lemma 2.7, dim(F−1 ◦ L1 ◦ F †) = dim L2 and
then we obtain (H-2). Conversely, we assume (H-2). We apply F to (H-2) and we have
F ◦ L2 = F ◦ F−1 ◦ L1 ◦ F †. Since δV1 ⊂ F ◦ F−1, we have (H-1). The equivalence of
(G-1) and (G-2) is proved by a similar manner. ¤
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From Proposition 4.19, we have (A) in the introduction:

Theorem A. Let f be a map between Dirac manifolds. Then f is a Dirac (resp.
isotropic Dirac, resp. coisotropic Dirac) map if and only if its graph is a canonical (resp.
isotropic Dirac, resp. coisotropic Dirac) relation.

Remark 4.20. The Definition 4.18 is essentially the same as the definition in
Bursztyn-Radko [2], Liu, Weinstein and Xu [9]. In [2], a Dirac map is defined as a
map between Dirac vector spaces which induces the correspondence between two Dirac
structures given as follows:

Let (V, Lv) and (W,Lw) be any Dirac vector spaces and φ : V → W be a linear map.
Consider the subspaces

Fφ := {(φ(x), η, x, φ∗η)|x ∈ V, η ∈ W ∗}, Bφ := {(x, φ∗η, φ(x), η)|x ∈ V, η ∈ W ∗}.

Then we have the two maps given by composition Fφ(Lv) and Bφ(Lw) such that

Lv 7→ Fφ(Lv), Lw 7→ Bφ(Lw).

If Fφ(Lv) = Lw (resp. Bφ(Lw) = Lv), φ is called a forward (resp. backward) Dirac
map. Since Fφ(Lv) = Φ−1 ◦Lv ◦Φ† and Bφ(Lw) = Φ◦Lw ◦ (Φ†)−1, our coisotropic (resp.
isotropic) Dirac map is the same as the forward (resp. backward) Dirac map. See [2]
and [4] for the fundamental properties of Dirac maps.

5. Examples.

In this last section we give several examples of lagrangian submanifolds, canonical
relations and Dirac maps. These objects are naturally seen in Poisson geometry.

Example 5.1. It is well known that the quotient space V/ ker Ω̃L of a Dirac vector
space (V, L) has a Poisson structure πL induced from L ([5]). Here we obtain two relations
between L and LπL

, which is similar to (4).

LπL
= Pr−1 ◦ L ◦ Pr†, L = Pr ◦ LπL

◦ (Pr†)−1,

where Pr is the graph of the canonical projection pr : V → V/ ker Ω̃L. Thus the projec-
tion pr is a Dirac map. In general, we consider a quotient space V/W for an arbitrary sub-
space W ⊂ V . By Lemma 2.7, we define a Dirac structure on V/W : Lw := P−1

w ◦L◦P †w,
where pw : V → V/W is the canonical projection and Pw is the graph of the map. From
the definition it is easy to see that the map pw is a coisotropic Dirac map. If W ⊂ ker Ω̃L

then pw is a Dirac map. In fact, since Pw ◦ P−1
w = δV + (W, 0), when the condition is

satisfied we obtain Pw ◦ Lw = Pw ◦ P−1
w ◦ L ◦ P †w = L ◦ P †w. Conversely if pw is a Dirac

map then the condition W ⊂ ker Ω̃L is satisfied, since (W, 0) ⊂ Pw.

Example 5.2. Let M be a foliated manifold with involutive subbundle H. On M ,
a Dirac structure is defined by L := H⊕H⊥. Then every submanifold of M is lagrangian.
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Hence such a Dirac structure can be regarded as the “zero” Dirac structure. Similarly,
we have the notion of the zero Poisson structure or the zero presymplectic structure.

Let (Vi, Li), (i = 1, 2) be any Dirac vector spaces such that Li = Hi ⊕ H⊥
i . Here

Hi be a subspace of Vi. We consider Dirac maps between these Dirac vector spaces. Let
f : V1 → V2 be a linear map. From the assumption, we obtain L1◦F † = H1⊕(F †)−1(H⊥

1 ),
F ◦ L2 = F (H2) ⊕H⊥

2 , where F is the graph of the map f . From Proposition 4.19, we
obtain the following:

(I) the map f is an isotropic Dirac map if and only if H1 ⊃ F (H2) and (F †)−1(H⊥
1 ) ⊃

H⊥
2 . These two conditions are simplified by H1 = F (H2), or equivalently H1 =

f−1(H2).
(C) the map f is an coisotropic Dirac map if and only if H1 ⊂ F (H2) and

(F †)−1(H⊥
1 ) ⊂ H⊥

2 . In a similar way, these two conditions are simplified by
F−1(H1) = H2, or equivalently f(H1) = H2.

Thus we obtain the following: Let f be a diffeomorphism between foliated manifolds. If,
by the map f , a foliation is transformed to the other foliation then the map is a Dirac
map.

Example 5.3. Let (M, L) be a Dirac manifold with an isotropic submanifold
N , and let B be a closed 2-form. Assume that N is isotropic under the 2-form B, i.e.,
B̃(TN) ⊂ TN⊥. By (A-3) of Proposition 3.4, we have ρ(TN⊕TN⊥∩L) = TN∩ρ(L). We
remember the gauge transformation τB : (x, a) 7→ (x, a+B̃(x)) on the bundle TM⊕T ∗M
(see [10]). From the assumption, we obtain τB(TN ⊕ TN⊥) = TN ⊕ TN⊥. Since
τ−1
B = τ−B and ρ ◦ τ±B = ρ, we have

ρ(TN ⊕ TN⊥ ∩ L) = ρ ◦ τ−B ◦ τB(TN ⊕ TN⊥ ∩ L)

= ρ ◦ τ−B(TN ⊕ TN⊥ ∩ τBL)

= ρ(TN ⊕ TN⊥ ∩ τBL) = TN ∩ ρ(τBL).

It is well-known that τBL is also a Dirac structure. Thus N is an isotropic submanifold
of the Dirac manifold (M, τBL).

Let W be a subspace of a Dirac vector space (V, L). Then W becomes a Dirac vector
space with the induced Dirac structure isomorphic to (L ∩ (W ⊕ V ∗))/(L ∩ (0 ⊕W⊥))
([5]).

Example 5.4. Let W be a subspace of a Dirac vector space (V, L). Then LW :=
I ◦L ◦ (I†)−1 gives a Dirac structure on W induced by L, where I := {(x, i(x))|x ∈ W}.
An inclusion map i : W → V gives an isotropic Dirac map. We can easily see that

LW = I ◦ L ◦ (I†)−1 ∼= L ∩ (W ⊕ V ∗)
L ∩ (0⊕W⊥)

. (35)

Especially, the map i is a Dirac map if and only if a condition ρ(L) ⊂ W is satisfied. Since
ker i∗ = W⊥, we have (I†)−1◦I† = δV ∗+(W⊥, 0). The condition ρ(L) ⊂ W is equivalent
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to (0,W⊥) ⊂ L. We assume the condition ρ(L) ⊂ W . We have LW ◦I† = I◦L◦(I†)−1◦I†.
Since (0,W⊥) ⊂ I ◦ L, we obtain I ◦ L ◦ (I†)−1 ◦ I† = I ◦ L. This implies that i is a
Dirac map. The converse is easily checked. When the condition satisfied, we can see
LW

∼= L/W⊥ by (35).
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