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Abstract. Let p be an odd prime number and F a number field. Let K = F (ζp)
and ∆ = Gal(K/F ). Let S∆ be the Stickelberger ideal of the group ring Z[∆] defined
in the previous paper [8]. As a consequence of a p-integer version of a theorem of
McCulloh [15], [16], it follows that F has the Hilbert-Speiser type property for the
rings of p-integers of elementary abelian extensions over F of exponent p if and only
if the ideal S∆ annihilates the p-ideal class group of K. In this paper, we study some
properties of the ideal S∆, and check whether or not a subfield of Q(ζp) satisfies the
above property.

1. Introduction.

Let p ≥ 3 be a fixed odd prime number. Let Fpr be the finite field with pr elements,
and let Γr = F +

pr and Gr = F×
pr be the additive group and the multiplicative group of

Fpr , respectively. For a number field F , denote by Cl = Cl(OF [Γr]) and R = R(OF [Γr])
the locally free class group of the group ring OF [Γr] and the subset of classes realized
by rings of integers of tame Γr-Galois extensions over F , respectively. Here, OF is
the ring of integers of F . As Gr naturally acts on Γr, the group ring Z[Gr] acts on
Cl. McCulloh [15], [16] characterized the realizable classes R by the action on Cl of a
naturally defined Stickelberger ideal Sr of Z[Gr]. On the other hand, we defined in [8]
another Stickelberger ideal SH of Z[H] for each subgroup H of the multiplicative group
F×

p in connection with a normal integral basis problem (for the definition, see Section 2).
The Stickelberger ideal SH is a “H-part” of McCulloh’s S1, and when H = F×

p , it equals
S1 and the classical one for the extension Q(ζp)/Q. For the ideal SH , the following
assertion (Theorem 1) holds as a consequence of a p-integer version of the above theorem
of McCulloh. For details, see Section 7. A direct and simpler proof is given in [8].

Let F be a number field, OF the ring of integers, and O ′
F = OF [1/p] the ring of

p-integers. Let ClF and Cl′F be the ideal class groups of the Dedekind domains OF and
O ′

F , respectively. Letting P be the subgroup of ClF generated by the classes containing
a prime ideal of OF over p, we naturally have Cl′F ∼= ClF /P . A finite Galois extension
N/F with group Γ has a normal p-integral basis (p-NIB for short) when O ′

N is cyclic
over the group ring O ′

F [Γ]. We say that F satisfies the condition (H ′
p) when any cyclic

extension N/F of degree p has a p-NIB, and that it satisfies (H ′
p,∞) when any abelian

extension N/F of exponent p has a p-NIB. It is known that when F = Q, these conditions

2000 Mathematics Subject Classification. 11R18, 11R33.

Key Words and Phrases. Stickelberger ideal, normal integral basis.

The first author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 16540033),

the Ministry of Education, Culture, Sports, Science and Technology of Japan.

The second author was partially supported by Grant-in-Aid for Encouragement of Young Scientists,

(No. 16740019), the Ministry of Education, Culture, Sports, Science and Technology of Japan.



886 H. Ichimura and H. Sumida-Takahashi

are satisfied for any p. This is shown similarly to the classical theorem of Hilbert and
Speiser. Let K = F (ζp) and ∆ = Gal(K/F ). For an integer i ∈ Z, let ī denote the class
in Fp = Z/pZ represented by i. We have a natural embedding

ι : ∆ → F×
p , σ → ī

with ζσ
p = ζi

p, and we identify ∆ with the image H = HF = ι(∆). Then, the Stickelberger
ideal S∆ = SH naturally acts on the class group Cl′K .

Theorem 1. Let F be a number field. Let K = F (ζp) and ∆ = Gal(K/F ). Then,
the following three conditions are equivalent.

(I) F satisfies (H ′
p).

(II) F satisfies (H ′
p,∞).

(III) The Stickelberger ideal S∆ annihilates the class group Cl′K .

For p ≤ 19, it is known that the class number of Q(ζp) is one (cf. Washington [19,
Theorem11.1]), and hence it follows from Theorem 1 that any subfield F of Q(ζp) satisfies
(H ′

p).
The purposes of this paper are (a) to study some properties of the ideal SH , and as

an application, (b) to check whether or not a subfield of Q(ζp) satisfies the condition (H ′
p)

for 23 ≤ p ≤ 499. As a consequence of our results, we propose the following conjecture
in Section 3.

Conjecture. Let p be a prime number with p ≥ 23 and F a subfield of Q(ζp)
with F 6= Q. If [F : Q] > 2 or p ≡ 1 mod 4, then F does not satisfy (H ′

p) except for the
case where p = 29 and [F : Q] = 2 or 7.

When 23 ≤ p ≤ 499, this assertion is valid for any F . It is also valid for any p ≥ 23
if [Q(ζp) : F ] ≤ 4 or [Q(ζp) : F ] = 6. When p ≡ 3 mod 4 and F is the quadratic subfield
of Q(ζp), the matters seem to be more complicated. For these, see Proposition 4 and
Remark 2 in Section 3.

Remark 1. (1) A relation between Stickelberger ideals and Galois module struc-
ture of rings of integers was observed first by Hilbert [6, Theorem 136] in his alternative
proof of the classical Stickelberger theorem for the ideal class group of Q(ζp). After
Hilbert, this connection was pursued by Fröhlich [3], McCulloh [15], [16], Childs [1], etc.
For details, see Fröhlich [4, Chapter IV]. (2) For the rings of integers in the usual sense,
a result corresponding to (but weaker than) Theorem 1 is given in [9, Theorem 5]. It is
obtained from the above mentioned theorem of McCulloh.

This paper is organized as follows. In Section 2, we recall the definition of the ideal
SH , and give several properties of SH . In Section 3, we derive corollaries on the property
(H ′

p) from Theorem 1 and the results in Section 2. In Sections 3-6, we prove the results
in Section 2. In the final section, we give the p-integer version of McCulloh’s theorem,
and derive a part of Theorem 1 from this.
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2. Results.

Let us first recall the definition of the Stickelberger ideal associated with a subgroup
of F×

p . Let H be a subgroup of F×
p . For an integer i ∈ Z with ī ∈ F×

p , we often write
σi = ī. For an integer r ∈ Z, let

θr = θH,r =
∑

i

′
[
ri

p

]
σ−1

i ∈ Z[H].

Here, in the sum
∑

i
′, i runs over the integers with 1 ≤ i ≤ p − 1 and ī ∈ H, and for a

real number x, [x] denotes the largest integer ≤ x. Let SH be the submodule of Z[H]
generated by θr for all integers r over Z:

SH = 〈θr

∣∣ r ∈ Z〉Z .

This is an ideal of Z[H] as σsθr = θsr − rθs for s̄ ∈ H ([8, Section 2]).
Let ρ be a generator of the cyclic group H. We put

NH = 1 + ρ + ρ2 + · · ·+ ρ|H|−1,

and

nH =

{
1, if |H| is odd

1 + ρ + ρ2 + · · ·+ ρ|H|/2−1, if |H| is even.

For an element x ∈ Z[H], let 〈x〉 = xZ[H] for simplicity. We see that the ideal 〈nH〉
does not depend on the choice of ρ since for integers n, k > 1 with (n, k) = 1, we have

1 + X + · · ·+ Xn−1
∣∣1 + Xk + · · ·+ (Xk)n−1

in the polynomial ring Z[X].

Lemma 1. We have 〈NH〉 ⊆ SH ⊆ 〈nH〉.
Let h(F ) be the class number of a number field F , and let h−p be the relative class number
of Q(ζp). For groups A and B, we write A ≤ B when A is a subgroup of B.

Theorem 2. For any subgroup H of F×
p , the quotient 〈nH〉/SH is a finite abelian

group, and the following assertions hold.
(I) When H = F×

p , |〈nH〉/SH | = h−p .
(II) Let A and B be subgroups of F×

p with A ≤ B. Then, the finite abelian group
〈nA〉/SA is isomorphic to a subquotient of 〈nB〉/SB. In particular, the order and the
exponent of 〈nA〉/SA divide those of 〈nB〉/SB, respectively.

(III) When |H| = 1, 2, 3, 4 or 6, we have SH = 〈nH〉.
Theorem 3. Let p ≡ 3 mod 4, and let H be the subgroup of F×

p of order (p−1)/2.
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A prime number q divides the order of Z[H]/SH = 〈nH〉/SH if and only if one of the
following conditions is satisfied :

(i) q divides the quotient h−p /h(Q(
√−p)),

(ii) q divides both p− 1 and h(Q(
√−p)).

It is known that h−p = 1 if and only if p ≤ 19. For this, confer Uchida [17] or [19,
Corollary 11.18]. Hence, we obtain the following corollary from Theorem 2.

Corollary 1. When p ≤ 19, SH = 〈nH〉 for any H ≤ F×
p .

We obtain the following numerical result from Theorem 3 using the table of Wada
and Saito [18] on the class numbers of imaginary quadratic fields and the tables in [19,
pp. 412–420] and Lehmer-Masley [14] on the values of h−p .

Proposition 1. Let p be a prime number with 23 ≤ p ≤ 499 and p ≡ 3 mod 4,
and let H be the subgroup of F×

p of order (p− 1)/2.
(I) For p = 23, SH = 〈nH〉.
(II) We have (〈nH〉/SH) ⊗ Fq 6= {0} for all prime numbers q dividing h−p when

p = 31, 43, 67, 71, 131, 139, 163, 199, 211, 283, 307, 331, 367, 379, 463, 499.
(III) For any p not in (I) nor in (II), (〈nH〉/SH)⊗Fq = {0} for some prime number

q dividing h−p , and it is nontrivial for some other q.

Using Theorem 3 and Proposition 1, we can show the following:

Proposition 2. Let p and H be as in Theorem 3. Then, we have SH $ 〈nH〉
when p ≥ 31.

For those p (≤ 499) and H not dealt with in Proposition 1, we practiced some
computer calculation on 〈nH〉/SH , and obtain the following numerical result.

Proposition 3. Let p be a prime number with 23 ≤ p ≤ 499, and let H be a proper
subgroup of F×

p . Assume that |H| < (p − 1)/2 or p ≡ 1 mod 4. Then (〈nH〉/SH) ⊗ Fq

is nontrivial if and only if the triple (p, (p− 1)/|H|, q) is one of the following :

(149, 2, 3), (277, 2, 2), (277, 4, 2), (293, 2, 3), (313, 2, 37), (337, 2, 17), (349, 2, 2),
(349, 4, 2), (397, 2, 2), (397, 4, 2), (401, 2, 41), (409, 2, 5), (331, 5, 3), (331, 10, 3).

In particular, we have (〈nH〉/SH)⊗ Fq = {0} for some odd prime factor q of h−p except
for the case p = 29 where h−p = 8 and SH = 〈nH〉 for any H (6= F×

p ). Further, we have
SH = 〈nH〉 for p and H not contained in the above list.

From Proposition 3, it is natural to propose the following conjecture.

Conjecture A. Let p be a prime number with p ≥ 23 and H a proper subgroup
of F×

p . If |H| < (p − 1)/2 or p ≡ 1 mod 4, then (〈nH〉/SH) ⊗ Fq = {0} for some odd
prime number q dividing h−p , except for the case p = 29.

We obtained Proposition 3 as follows. First, we calculated whether or not
(〈nH〉/SH) ⊗ Fq is trivial for each prime number q up to 216, and observed that (1)
for each prime p in Proposition 3, (〈nH〉/SH) ⊗ Fq 6= {0} happens quite rarely (and
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hence SH is very large in 〈nH〉) and that (2) for primes p in Proposition 1, the opposite
phenomenon occurs. A part of Theorem 2 and Theorem 3 were obtained after these
computation and observation.

Let us briefly explain the computation. For simplicity, we restrict ourselves to the
case where h = |H| is odd. Then, Z[H]/SH is a finite abelian group by Theorem 2.
Hence, as an abelian group, SH is freely generated by h elements. Further, these h

elements generate Q[H] over Q. For a finite number of elements α, β, ∗ ∗ ∗ in Z[H], let
〈α, β, ∗ ∗ ∗〉Z be the submodule of Z[H] generated by these elements over Z. From the
definition, we can show that

SH = 〈θr, NH

∣∣ 1 ≤ r ≤ p− 1〉Z
= 〈θr, NH , h−p

∣∣ 1 ≤ r ≤ p− 1〉Z . (1)

For the first equality, see Remark 3 in Section 4. The second equality holds by Theorem
2. Therefore, there exist polynomials fr ∈ Z[T ] (1 ≤ r ≤ p) with indeterminate T such
that deg fr ≤ h− 1 and

SH = 〈fr(ρ), h−p
∣∣ 1 ≤ r ≤ p〉Z .

As h−p ∈ SH , the polynomials satisfying these two conditions are determined modulo
h−p . Starting from these polynomials fr(T ) (or the above expression for SH), we can
inductively calculate a basis {en}0≤n≤h−1 of SH over Z such that

en =
n∑

i=0

ai,nρi and an,n|a`,`

for n ≥ `. From this, it follows that

[〈nH〉 : SH ] = [Z[H] : SH ] =
h−1∏
n=0

an,n.

To calculate en, we used a version of the Gaussian elimination method over Z (cf. Knuth
[13, 4.6]).

Since h−p is contained in SH by virtue of Theorem 2, all the polynomials which
appear in the calculation (such as fr) are determined modulo h−p . Hence, we can choose
them so that their coefficients are non-negative and less than h−p . Namely, their coef-
ficients do not become too large. This is a reason that we were able to complete the
calculation.

For example, we obtained when (p, |H|) = (331, 33),

SH = 〈ρi(ρ + 2), 3
∣∣ 0 ≤ i ≤ 31〉Z

with ρ = σ283 (= σ
(1−p)/|H|
3 ), and when (p, |H|) = (349, 87),
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SH = 〈ρi(ρ2 + ρ + 1), 2ρ, 2
∣∣ 0 ≤ i ≤ 84〉Z

with ρ = σ240 (= σ
(1−p)/|H|
2 ). Here, 3 (resp. 2) is a primitive root modulo 331 (resp.

349).

3. Corollaries.

Let F , K and ∆ be as in Theorem 1. As in Section 1, we identify ∆ with a subgroup
H = HF of F×

p through the Galois action on ζp. As the conditions (H ′
p) and (H ′

p,∞) are
equivalent, we refer only to (H ′

p) in what follows. The following assertion is an immediate
consequence of Theorems 1 and 2, and contains [8, Corollaries 1, 2].

Corollary 2. Under the above setting, the following conditions are equivalent if
[K : F ] ≤ 3.

(i) F satisfies (H ′
p).

(ii) K satisfies (H ′
p).

(iii) h′K = 1.

When [K : F ] is even, let J ∈ ∆ be the automorphism of order 2. For an odd prime
number q, let Cl′K(q)− = Cl′K(q)J−1 be the odd part of the Sylow q-subgroup Cl′K(q).

Corollary 3. Let the notation be as above. When [K : F ] is odd, F does not
satisfy (H ′

p) if there exists a prime number q with q|h′K and q - h−p . When [K : F ] is
even, F does not satisfy (H ′

p) if there exists an odd prime number q with Cl′K(q)− 6= {0}
and q - h−p .

Proof. Because of Theorem 2, the condition q - h−p implies that S∆ ⊗ Fq =
n∆Fq[∆]. Therefore, the first assertion follows from Theorem 1 as n∆ = 1. Let us deal
with the case where [K : F ] is even, assuming the existence of an odd prime number q

with Cl′K(q)− 6= {0} and q - h−p . Let c be a nontrivial class in Cl′K(q)− of order q. Then,
cJ = c−1. On the other hand, J − 1 is an element of S∆ ⊗ Fq = n∆Fq[∆] as J − 1 is
a multiple of n∆. Therefore, if F satisfies (H ′

p), then cJ = c by Theorem 1, and hence
c2 = 1. This is a contradiction as c is of order q. ¤

In the following, let K = Q(ζp) and let F be a subfield of K. In this case, we have
Cl′F = ClF as the unique prime ideal of F over p is principal. As we mentioned in Section
1, the condition (H ′

p) is satisfied for F = Q. So, we deal with the case F 6= Q in what
follows. Let ∆ = H = Gal(K/F ). The following is shown similarly to Corollary 3.

Corollary 4. Let the notation be as above. When [K : F ] is odd, F does not
satisfy (H ′

p) if there exists a prime number q with q|hp and S∆ ⊗ Fq = Fq[∆]. When
[K : F ] is even, F does not satisfy (H ′

p) if there exists an odd prime number q with q|h−p
and S∆ ⊗ Fq = n∆Fq[∆].

Let K+ = Q(cos(2π/p)) and let Cl−K be the kernel of the norm map ClK → ClK+ .
Let hp = |ClK | and h+

p = |ClK+ |. Then, we have hp = h+
p h−p .

Corollary 5. Let the notation be as above, and let G = Gal(K/Q) = F×
p .
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Assume that h+
p = 1 and that h−p is odd and square free. If the exponents of the abelian

groups 〈n∆〉/S∆ and 〈nG〉/SG are equal, then F satisfies (H ′
p).

Proof. By the assumptions and Lemma 5 (in Section 5), we see that

S∆Z[G] ∩ 〈nG〉 = SG.

Further, we have ClK = Cl−K as h+
p = 1. By the classical Stickelberger theorem (cf. [19,

Theorem 6.10]), SG annihilates ClK . Let J be the complex conjugation in G. We have
2S∆ ⊂ (1 + J)S∆ + (1 − J)S∆ in Z[G]. Clearly, (1 + J)S∆ annihilates Cl−K = ClK .
On the other hand, (1 − J)S∆ annihilates ClK since (1 − J)S∆ ⊆ S∆Z[G] ∩ 〈nG〉.
Therefore, 2S∆ annihilates ClK . As hp is odd, it follows that S∆ annihilates ClK .
Hence, F satisfies (H ′

p) by Theorem 1. ¤

From the corollaries and Propositions 1 and 3, we obtain the following:

Proposition 4. (I) Let p be a prime number with 23 ≤ p ≤ 499 and let F be a
subfield of K = Q(ζp) with F 6= Q. If [F : Q] > 2 or p ≡ 1 mod 4, then F does not
satisfy (H ′

p) except for the case where p = 29 and [F : Q] = 2 or 7.
(II) When p = 29 and [F : Q] = 2 or 7, F satisfies (H ′

p).
(III) For any p ≥ 23 and any subfield F of K = Q(ζp) with [K : F ] = 1, 2, 3, 4 or

6, F does not satisfy (H ′
p) except for the case where p = 29 and [K : F ] = 4.

(VI) Let F be the quadratic subfield of Q(ζp). For p = 23 and any prime number p

in the third assertion of Proposition 1, F does not satisfy (H ′
p).

Proof. First, we show the assertion (I). When [K : F ] ≤ 2, it is an immediate
consequence of Corollary 2 as hp > 1. When p 6= 29 (and [K : F ] > 2), the assertion
follows from Proposition 3 and Corollary 4. When p = 29 and [F : Q] = 4, we have
h−p = 8 and SH = 〈nH〉 = Z[H] by Proposition 3 where H = Gal(K/F ). Hence, the
condition (H ′

p) is not satisfied for this case by Corollary 4. Thus, the assertion (I) holds
in all cases. The assertion (III) follows from Theorem 2 (III), Corollaries 2, 4 and the
assertion (I) for the case p = 29. This is because h−p is a power of 2 if and only if p ≤ 19
or p = 29 by Horie [7]. The assertion (VI) follows from Corollary 4.

Let us show the assertion (II). Let p = 29, K = Q(ζp) and G = Gal(K/Q) = 〈ρ〉.
For each positive divisor i of p− 1, let Fi be the subfield of K with [Fi : Q] = i, and let
Hi = Gal(K/Fi) = 〈ρi〉. It is known that hp = 8 and h+

p = 1. In particular, ClK = Cl−K .
Further, it is known that

ClK = (Z/2)⊕3 (2)

(see Iwasawa [11, page 244] or [19, page 412]). First, let us show the assertion for
F = F7. We have SH7 = 〈nH7〉 by Theorem 2 (III) or Proposition 3. We show that
nH7 annihilates ClK . For this purpose, we first regard ClK as a module over Z2[H4].
There are six nontrivial Q̄2-valued characters of the cyclic group H4 of order 7, and they
are divided into two Q2-equivalent classes. Here, Q2 is the field of 2-adic rationals, and
Q̄2 is an algebraic closure of Q2. Let χ1 and χ2 be representatives of the two classes,
respectively. Let χ0 be the trivial character of H4. We can canonically decompose the
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Z2[H4]-module ClK as

ClK = Cl−K = ClK(χ0)⊕ ClK(χ1)⊕ ClK(χ2).

Here, ClK(χ) is the χ-part of the Z2[H4]-module ClK . We have ClK(χ0) = {0} as the
class number of the subfield F4 of K corresponding to H4 is one (cf. Hasse [5, Tafel II]).
For a nontrivial character χ of H4, let Oχ = Z2[χ] be the subring of Q̄2 generated by
the values of χ over Z2, where Z2 is the ring of 2-adic integers. We can naturally regard
ClK(χ) as a module over Oχ. Then, since |Oχ/2| = 8 = hp, we see that

ClK = Cl−K = ClK(χ) ∼= Oχ/2 (∼= (Z/2)⊕3)

for χ = χ1 or χ2. (This assertion is essentially contained in [11]. Actually, Iwasawa ob-
tained (2) in a similar way.) From this, it follows that H7 acts trivially on the (Oχ/2)[H7]-
module ClK = ClK(χ). Therefore, nH7 = 1 + ρ7 annihilates ClK = (Z/2)⊕3. Hence,
SH7 annihilates ClK , and F7 satisfies (H ′

p) by Theorem 1.
Next, we show the assertion (II) for F = F2. We have SH2 = 〈nH2〉 by Proposition

3. The elements NH4 and NH14 of Z[G] annihilate ClK since the class groups of F4 and
F14 = K+ are trivial. We see however that

nH2 = NH4 + (ρ2 + ρ6 + ρ10)(2−NH14).

Hence, SH2 annihilates ClK , and F2 satisfies (H ′
p) by Theorem 1. ¤

In view of Conjecture A and Proposition 4, we can propose the following:

Conjecture B. Let p be a prime number with p ≥ 23, and let F be a subfield of
Q(ζp) with F 6= Q. If [F : Q] > 2 or p ≡ 1 mod 4, then F does not satisfy (H ′

p) except
for the case where p = 29 and [F : Q] = 2 or 7.

Remark 2. For the primes in Proposition 1 (II), h−p is square free only when
p = 43, 67 (see the tables in [19, pp. 412–420] and [14], or the table of Yamamura
[20]). For p = 43, 67, h+

p = 1 and h−p is square free and odd. Therefore, we see that
F = Q(

√−p) satisfies (H ′
p) for p = 43, 67 by Proposition 1 (II) and Corollary 5. For

the other primes p in Proposition 1 (II), we did not check whether or not the quadratic
subfield satisfy (H ′

p) mainly because we have, at present, no exact data for the class
group of K+ (cf. [19, pp. 420–421]).

4. Proof of Theorem 2 (I).

For x ∈ Z and α ∈ Q, we easily see that

[x + α] = x + [α], (3)

and
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[x− α] =

{
x− 1− [α], if α 6∈ Z

x− [α], if α ∈ Z.
(4)

For x ∈ Z, let (x)p be the unique integer satisfying 0 ≤ (x)p ≤ p−1 and (x)p ≡ x mod p.
Clearly, we have

x =
[
x

p

]
p + (x)p.

Using this and (3), we easily show the following simple formulas.

(−x)p = p− (x)p when p - x. (5)
[
xy(z)p

p

]
=

[
x(yz)p

p

]
+ x

[
y(z)p

p

]
for y, z ∈ Z. (6)

Let H = 〈ḡ〉 be a subgroup of F×
p of order h, and let ρ = σg. By definition,

θr = θH,r =
h−1∑

i=0

[
r(gi)p

p

]
ρ−i. (7)

When |H| = 2` is even, let

XH,r = (ρ− 1)
`−1∑

i=0

[
r(g`−1−i)p

p

]
ρi

and put

θ̃r = θ̃H,r =

{
XH,r + (r − 1), if p - r

XH,r + r, if p|r.

We see that NH = −θ−1 ∈ SH . Therefore, Lemma 1 is obtained immediately from the
following:

Lemma 2. When |H| is even, we have θr = ρnH θ̃r.

Proof. By (7), we see that

θr =
`−1∑

i=0

[
r(gi)p

p

]
ρ2`−i +

2`−1∑

i=`

[
r(gi)p

p

]
ρ2`−i

= ρ`
∑̀

j=1

[
r(g`−j)p

p

]
ρj +

∑̀

j=1

[
r(g2`−j)p

p

]
ρj .
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Noting that g` ≡ −1 mod p in the last term, we obtain the assertion using (4) and (5).
¤

Proof of Theorem 2 (I). Let ` = (p − 1)/2, H = F×
p = 〈ρ〉, and J = ρ`. Let

R = Z[H], S = SH , R− = (J − 1)R, and S − = S ∩R−. In [10], Iwasawa proved that

|R−/S −| = h−p

(cf. [19, Theorem 6.19]). Let n = nH and A = 〈n〉. We see that R− ⊆ A as J − 1
= (ρ − 1)n. We show that there exists a submodule R′ of A with R′ ∩ R− = {0} such
that

A = θ2Z + (R′ ⊕R−) and S k R′. (8)

Using this, we easily see that R−/S − ∼= A/S considering the natural homomorphism
R− → A/S , and we obtain Theorem 2 (I).

Let us show the assertion (8). Let Z[T ] be the polynomial ring with indeterminate
T . An element α of A can be written in the form α = nf(ρ) for some f ∈ Z[T ]. Using
the relation n(ρ − 1)(ρ` + 1) = 0, we see that the polynomial f is uniquely determined
by α modulo (T − 1)(T ` + 1) and that α = nf(ρ) = 0 if and only if f is a multiple of
(T − 1)(T ` + 1). Thus, the map

nf(ρ) → f(T ) modulo (T − 1)(T ` + 1)

is a well defined isomorphism between the Z[H]-module A and the Z[T ]-module
Z[T ]/((T − 1)(T ` + 1)). We identify these two modules by this isomorphism. Consider
the following homomorphism over Z[T ].

ϕ : A −→ B :=
Z[T ]

(T − 1)
⊕ Z[T ]

(T ` + 1)
,

nf(ρ) → (f mod (T − 1), f mod (T ` + 1)).

We easily see that ϕ is injective. Define submodules R1 and R2 of B by

R1 = ϕ(〈(ρ` + 1)n〉) = (2, T − 1)/(T − 1)⊕ {0}
R2 = ϕ(R−) = ϕ(〈(ρ− 1)n〉) = {0} ⊕ (T − 1, 2, T ` + 1)/(T ` + 1).

Then, it follows that

ϕ(A) ⊇ R1 ⊕R2 and B/(R1 ⊕R2) ∼= Z/2⊕Z/2.

By Lemma 2 and the definition of θ̃r, we see that

ϕ(θ2) = (1, ∗) 6∈ R1 ⊕R2 and ϕ((ρ` + 1)θ2) = (2, 0).
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The latter implies that R1 ⊆ ϕ(S ). On the other hand, we see that ϕ(A) 6= B since A

is cyclic over Z[H] but B is not cyclic over Z[T ]. From the above, we see that

ϕ(A) = ϕ(θ2)Z + (R1 ⊕R2) and R1 ⊆ ϕ(S ).

We obtain the assertion (8) from this. ¤

Remark 3. We can show the first equality in (1) using (3) and θ−1 = θH,−1

= −NH .

5. Proofs of Theorem 2 (II) and (III).

In this section, we prove the finiteness of 〈nH〉/SH for general H and Theorem 2
(II), (III). In the following, A and B are subgroups of F×

p with A ≤ B.

Lemma 3. SB ⊆ SAZ[B] ∩ 〈nB〉.
Proof. In view of Lemma 1, it suffices to show that SB ⊆ SAZ[B]. Let |A| = a,

|B| = at, B = 〈ḡ〉, and ρ = σg. By (6) and (7), we see that

θB,r =
t−1∑

λ=0

ρ−λ
a−1∑

i=0

[
r(gti+λ)p

p

]
ρ−ti

=
t−1∑

λ=0

ρ−λ
a−1∑

i=0

{[
rgλ(gti)p

p

]
− r

[
gλ(gti)p

p

]}
ρ−ti

=
t−1∑

λ=0

ρ−λ
(
θA,rgλ − rθA,gλ

)
. (9)

The assertion follows immediately from this. ¤

Lemma 4. There is a natural injective homomorphism

ϕ̄ : 〈nA〉/SA −→ 〈nB〉
SAZ[B] ∩ 〈nB〉 .

Proof. Let B = 〈ρ〉 and t = |B/A|. Then, as A = 〈ρt〉, an element of
〈nA〉 = nAZ[A] is of the form nAf(ρt) for some polynomial f(T ) ∈ Z[T ]. Consider
the homomorphism

ϕ : 〈nA〉 −→ 〈nB〉
SAZ[B] ∩ 〈nB〉 ; nAf(ρt) → [nBf(ρt)].

Here, [nBf(ρt)] is the class containing nBf(ρt). As nA|nB in Z[B], it is clear that ϕ is
well defined and that SA ⊆ kerϕ. Let us show that kerϕ ⊆ SA. There are three cases;
(i) |B| is odd, (ii) |A| is even, and (iii) |A| is odd and |B| is even.
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The case (i). In this case, nA = nB = 1. Assume that f(ρt) ∈ SAZ[B]. Then, it
follows that

f(ρt) =
t−1∑

λ=0

αλρλ

with some αλ ∈ SA for 0 ≤ λ ≤ t− 1. This implies that f(ρt) = α0 ∈ SA.
The case (ii). In this case, we have nB = (1 + ρ + · · · + ρt−1)nA. Assume that

f(ρt)nB ∈ SAZ[B]. Then, it follows that

f(ρt)nB = f(ρt)nA(1 + ρ + · · ·+ ρt−1) =
t−1∑

λ=0

αλρλ

with some αλ ∈ SA for 0 ≤ λ ≤ t− 1. This implies that f(ρt)nA = α0 ∈ SA.
The case (iii). Let t = 2s and |A| = a. Assume that f(ρ2s)nB ∈ SAZ[B]. Then, it

follows that

f(ρ2s)nB = f(ρ2s)(1 + ρ + · · ·+ ρas−1) =
2s−1∑

λ=0

αλρλ

with some αλ ∈ SA for 0 ≤ λ ≤ 2s − 1. Let ` = (a − 1)/2 + 1 and τ = ρ2s ∈ A. From
the above, we see that

f(ρ2s)(1 + τ + · · ·+ τ `−1) = f(ρ2s) · 1− τ `

1− τ
= α0 ∈ SA.

Let k be the least integer with `k ≡ 1 mod a, and write `k = 1 + aX for some X ∈ Z. It
follows that

f(ρ2s) · 1− τ `

1− τ
× · · · × 1− τ `k

1− τ `k−1 ∈ SA.

The left hand side equals

f(ρ2s) · (1 + τ + τ2 + · · ·+ τaX) = f(ρ2s) · {τaX + NA(1 + τa + · · ·+ τa(X−1))
}

≡ f(ρ2s) mod SA.

The last congruence holds as NA ∈ SA (Lemma 1). Therefore, we obtain f(ρ2s)
= f(ρ2s)nA ∈ SA. ¤

Proof of the finiteness of 〈nH〉/SH and Theorem 2 (II). The assertions
follow from Theorem 2 (I) and Lemmas 3 and 4. ¤
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Lemma 5. Assume that h−p is square free. If the exponents of the abelian groups
〈nA〉/SA and 〈nB〉/SB are equal, then SB = SAZ[B] ∩ 〈nB〉.

Proof. This assertion follows immediately from Lemmas 3 and 4. ¤

Proof of Theorem 2 (III). By Theorem 2 (II), it suffices to deal with the cases
where |H| = 4 or 6. Let H = 〈ḡ〉 and ρ = σg.

The case |H| = 4. Let r = (g)p. As r2 ≡ −1 mod p, we see that (g3)p = (−g)p

= p − r. Hence, it follows that 2(g)p < p ⇔ 2(g3)p > p. Therefore, we may as well
assume that (g)p < p/2 replacing g with g3 if necessary. Then, it follows that θ̃2 = 1,
and hence SH = 〈nH〉 by Lemmas 1 and 2.

The case |H| = 6. Let r = (g)p. We show that if 2r < p, then 2(g2)p < p, and
that if 2r > p, then 2(g5)p < p. As r̄ is a primitive 6-th root of unity in F×

p , we have
r2 ≡ r−1 mod p. From this, we see that 2r 6≡ 1 mod p. It also follows that (g2)p = r−1.
From this, the first assertion follows. Next, assume that 2r > p. Then, as 2r ≥ p + 1,

2(g2)p = 2(r − 1) ≥ p− 1.

However, the last equality does not hold as 2r 6≡ 1 mod p. Hence, we obtain 2(g2)p > p.
As g5 ≡ −g2 mod p, it follows that (g5)p = p− (g2)p < p/2.

When 2r < p, it follows from the above that θ̃2 = 1, and hence SH = 〈nH〉. When
2r > p, we see from the above that SH = 〈nH〉 replacing g with g5. ¤

6. Proofs of Theorem 3 and Proposition 2.

Let p be a prime number with p ≡ 3 mod 4. Let G = F×
p , and let H be the subgroup

of G of order (p−1)/2. Let G = 〈ḡ〉 and ρ = σg. Let χ be an odd character of G. Namely,
χ(ρ(p−1)/2) = −1. We naturally regard χ as a homomorphism Z[G] → Z[µp−1]. Let χ0

be the trivial character of G. Let δr = 0 or 1 according to whether p|r or p - r.

Lemma 6. Let χ be an odd character of G. For any r ∈ Z, we have

χ(θG,r) =

{
2χ(θH,r), if χ2 6= χ0,

2χ(θH,r)− (r − δr)(p− 1)/2, if χ2 = χ0.

Proof. Let ` = (p− 1)/2. From (7), it follows that

χ(θG,r) =
`−1∑

i=0

[
r(g2i)p

p

]
χ(ρ−2i) +

`−1∑

i=0

[
r(g2i+1)p

p

]
χ(ρ−(2i+1)).

By (7) and H = 〈ρ2〉, the first term of the right hand side equals χ(θH,r). Since `

= (p− 1)/2 is odd and χ is odd, the second term of the right hand side equals

`−1∑

i=0

[
r(g`+2i)p

p

]
χ(ρ−(`+2i)) =

`−1∑

i=0

[
r(−g2i)p

p

]
χ(ρ−2i)(−1).
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We see from (4) and (5) that the last term equals

−
`−1∑

i=0

(
r − δr −

[
r(g2i)p

p

])
χ(ρ−2i) = χ(θH,r)− (r − δr)

`−1∑

i=0

χ(ρ−2i).

Now, the assertion follows from the above. ¤

Proof of Theorem 3. For a character χ of G, we easily observe that

χ(θG,r) =
p−1∑

i=1

[
ri

p

]
χ(i)−1 =

p−1∑

i=1

1
p
(ri− (ri)p)χ(i)−1

= (r − χ(r))B1,χ−1 , (10)

where

B1,χ−1 =
1
p

p−1∑

i=1

iχ(i)−1

is the first Bernoulli number. For a prime number q, let Qq be the field of q-adic
rationals, Zq the ring of q-adic integers, and Q̄q an algebraic closure of Qq. For a Q̄q-
valued character χ of G or H, let Qχ be the maximal ideal of the integer ring of the
subfield of Q̄q generated by the values of χ over Qq.

Let us show the “if part” of the assertion. Let q be a prime number satisfying the
condition (i) of Theorem 3. By the classical class number formula, we have

h−p /h(Q(
√−p)) = p ·

∏

χ2 6=χ0

(
− 1

2
B1,χ−1

)
,

where χ runs over the odd characters of G with χ2 6= χ0 (cf. [19, Theorem 4.17]). Hence,
we see that B1,χ−1 ≡ 0 mod 2Qχ for some odd Q̄q-valued character χ of G with χ2 6= χ0.
Then, it follows from (10) and Lemma 6 that χ(θH,r) ≡ 0 mod Qχ for all r. Hence, we
obtain the assertion. Let q be a prime number satisfying the condition (ii). Then, q is
odd as p ≡ 3 mod 4. By the class number formula, we have B1,χ−1 ≡ 0 mod q for the
quadratic character χ associated with Q(

√−p). Hence, noting that q is odd and q|p− 1,
we obtain the assertion from (10) and Lemma 6 similarly to the above.

Let us show the “only if part”. Assume that a prime number q divides the order
of Z[H]/SH . First, we deal with the case q - p − 1. In this case, we have the direct
decomposition

(Z[H]/SH)⊗Zq =
⊕

ψ

((Z[H]/SH)⊗Zq)(ψ).

Here, ψ runs over a complete set of representatives of the Qq-equivalent classes of the
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Q̄q-valued characters of H, and (∗)(ψ) denotes the ψ-component. Therefore, by the
assumption, there exists a Q̄q-valued character ψ of H such that ψ(θH,r) ≡ 0 mod Qψ

for all r. Let χ be an odd character of G with χ|H = ψ. Then, from Lemma 3 it follows
that χ(θG,r) ≡ 0 modulo Qψ = Qχ for all r, and hence B1,χ−1 ≡ 0 mod Qχ by (10).
We see from Lemma 6 that χ2 6= χ0 since q - p− 1 and χ(θG,r) ≡ ψ(θH,r) ≡ 0 mod Qχ.
Therefore, we see that q divides h−p /h(Q(

√−p)) by the class number formula. Next, we
deal with the case q|p− 1. From the assumption, we have q|h−p by Theorem 2. Hence, q

divides either h−p /h(Q(
√−p)) or h(Q(

√−p)). The assertion follows from this. ¤

Proof of Proposition 2. Let p be a prime number with p ≡ 3 mod 4. By
Theorem 3 and Proposition 1, it suffices to show that h−p /h(Q(

√−p)) > 1 for p > 500.
It is known that

log h−p ≥ 1
4
(p− 2) log p− 1.08× (p− 1)

for p ≥ 221 (cf. [19, Proposition 11.16]). On the other hand, it is classically known
that h(Q(

√−p)) < p. This is an immediate consequence of the class number formula
for imaginary quadratic fields (cf. [19, Theorem 4.17] or [6, Theorem 114]). Hence, it
follows that

log
(
h−p /h(Q(

√−p))
)

> g(p)

with the function

g(x) =
1
4
x log x− 3

2
log x− 1.08× (x− 1).

We easily see that g(x) > 1 for all real numbers x > 500. The assertion follows from
this. ¤

7. Appendix.

In this section, we give the p-integer version of McCulloh’s theorem mentioned in
Section 1, and derive a part of Theorem 1 from this. We add this appendix for the
convenience of the reader following a suggestion of the referee.

Let p be a prime number and F a number field. Let K = F (ζp). Let G = F×
p

and Γ = F +
p be the multiplicative group and the additive group of the finite field Fp,

respectively. We write elements of G as σi = ī. We naturally regard H = Gal(K/F ) as
a subgroup of G through its Galois action on ζp. In this section, we simply write O ′

F Γ
(resp. FΓ) for the group ring O ′

F [Γ] (resp. F [Γ]). Denote by Cl(O ′
F Γ) and R(O ′

F Γ) the
locally free class group of the group ring O ′

F Γ and the subset of classes realized by rings
of p-integers of Γ-extensions over F , respectively. For the precise definition of Cl(O ′

F Γ),
see [4]. Later, we give a convenient description of Cl(O ′

F Γ) following McCulloh’s paper.
Let Cl0(O ′

F Γ) be the kernel of the projection Cl(O ′
F Γ) → Cl′F . It is known and easily

shown that R(O ′
F Γ) is contained in Cl0(O ′

F Γ). The multiplicative group G naturally
acts on Γ by
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āσi = ia (11)

for σi ∈ G and ā ∈ Γ. Through this action, the group ring Z[G] acts on the class group
Cl(O ′

F Γ). The following is the p-integer version of the main theorem of [16].

Theorem 4 (McCulloh). Under the above setting, we have

R(O ′
F Γ) = Cl0(O ′

F Γ)SG .

To prove this theorem, all one has to do is to replace OF with O ′
F in McCulloh’s

argument. From Theorem 4, it follows that R(O ′
F Γ) is a subgroup of Cl(O ′

F Γ). A number
field F satisfies the condition (H ′

p) if and only if the group R(O ′
F Γ) is trivial because of

the cancellation theorem (Jacobinski [12], Fröhlich [2, page 117]).
In the following, we derive the equivalence (I) ⇔ (III) in Theorem 1 from Theorem 4.

(For the other equivalences, see [8].) For this purpose, we give a convenient description of
the class group Cl(O ′

F Γ) following [16, page 113]. Let I(O ′
F Γ) be the group of fractional

ideals of O ′
F Γ in FΓ, and let PF,Γ be the subgroup consisting of principal ideals αO ′

F Γ
for units α of FΓ. The group G acts on I(O ′

F Γ) and the quotient I(O ′
F Γ)/PF,Γ through

its action (11) on Γ. Then, we have the following natural isomorphism compatible with
the G-action.

ι : Cl(O ′
F Γ) ∼= I(O ′

F Γ)/PF,Γ. (12)

Let N/F be a Γ-extension. As is well known, we have N = FΓ · v for some element
v ∈ N . We see that O ′

N = AN · v for some fractional ideal AN of O ′
F Γ. The class [AN ]

in I(O ′
F Γ)/PF,Γ represented by AN depends only on the Γ-extension N/F . The image

ι(R(O ′
F Γ)) is the subset of classes [AN ] for all Γ-extensions N/F .

Let us look at the group I(O ′
F Γ) more explicitly. Let χ0 be the trivial character

of Γ. We fix a nontrivial character χ of Γ with values in K = F (ζp). Let ρ = σg be a
generator of G, where g is a primitive root modulo p. Let t = [G : H]. Then, ρt is a
generator of H = Gal(K/F ) sending ζp to ζgt

p . For a character ψ of Γ and an element
α =

∑
γ aγγ of FΓ, let

ψ(α) =
∑

γ

aγψ(γ),

where γ runs over Γ. We easily see that χ, χg, · · · , χgt−1
form a complete set of repre-

sentatives of the F -equivalent classes of nontrivial K-valued characters of Γ. From this,
we see that the homomorphism

ϕ : FΓ → F ⊕K ⊕K ⊕ · · · ⊕K

with

ϕ(α) =
(
χ0(α), χ(α), χg(α), · · · , χgt−1

(α)
)
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is an isomorphism of F -algebras. We easily see that

ϕ(O ′
F Γ) = O ′

F ⊕ O ′
K ⊕ O ′

K ⊕ · · · ⊕ O ′
K .

Via the isomorphism ϕ, a fractional ideal of O ′
F Γ corresponds to the direct sum of frac-

tional ideals of the components of ϕ(O ′
F Γ). The image ι(Cl0(O ′

F Γ)) equals the subgroup
of I(O ′

F Γ)/PF,Γ consisting of classes containing fractional ideals A of O ′
F Γ for which the

first component of ϕ(A) is O ′
F . From the definition of ψ(α), we easily see that

ϕ(αρλ

) =
(
χ0(α), χgλ

(α), · · · , χgt−1
(α), χ(α)ρt

, · · · , χgλ−1
(α)ρt)

(13)

for 0 ≤ λ ≤ t− 1, and that

ϕ(αδ) =
(
χ0(α), χ(α)δ, χg(α)δ, · · · , χgt−1

(α)δ
)

(14)

for δ ∈ H. Here, χgλ

(α)δ denotes the Galois action of δ ∈ H on the element χgλ

(α)
of K. Namely, for 0 ≤ λ ≤ t − 1, the element ρλ acts on the components of ϕ(α) as a
“cyclic permutation”, and δ ∈ H acts on them by Galois action.

Proof of (I) ⇔ (III) in Theorem 1. First, assume that F satisfies (H ′
p). Then,

by Theorem 4, the Stickelberger ideal SG annihilates the class group Cl0(O ′
F Γ). Let

r ∈ Z be an arbitrary integer. By (9), we see that

θG,r = θH,r +
t−1∑

λ=1

ρλsλ (15)

with some sλ ∈ SH for 1 ≤ λ ≤ t− 1. Let A be an arbitrary ideal of O ′
K , and let A be

the ideal of O ′
F Γ such that

ϕ(A) = O ′
F ⊕ A⊕ O ′

K ⊕ · · · ⊕ O ′
K .

From (13), (14) and (15), we see that

ϕ(AθG,r ) = O ′
F ⊕ AθH,r ⊕ · · · . (16)

On the other hand, it follows from the assumption and the isomorphism (12) that

AθG,r = αO ′
F Γ

for some unit α ∈ (FΓ)×. From this and (16), we see that AθH,r = χ(α)O ′
K . Therefore,

the Stickelberger ideal SH annihilates the class group Cl′K .
Conversely, assume that SH annihilates Cl′K . Then, we see from (13), (14) and (15)

that θG,r annihilates the ideal of O ′
F Γ corresponding to
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O ′
F ⊕ A0 ⊕ · · · ⊕ At−1

via ϕ. Here, Ai denotes an arbitrary ideal of O ′
K . Therefore, R(O ′

F Γ) = {0} by Theorem
4 and (12), and hence F satisfies (H ′

p). ¤
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