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Abstract. In [BG], it is proved that the Whitehead length of a space Z is less
than or equal to the nilpotency of ΩZ. As for rational spaces, those two invariants are
equal. We show this for a 1-connected rational space Z by giving a way to calculate
those invariants from a minimal model for Z. This also gives a way to calculate the
nilpotency of an homotopy associative rational H-space.

1. Introduction.

We assume that all spaces in this paper are connected based spaces with the homo-
topy types of CW-complexes and all maps are based maps.

In [Ark], the generalized Whitehead product [f, g] : Σ(X ∧ Y ) → Z was defined,
where f : ΣX → Z, g : ΣY → Z. Moreover Arkowitz showed that for given space Z, the
following three conditions are equivalent.

(i) ΩZ is homotopy commutative.
(ii) For any spaces X, Y , all the generalized Whitehead products vanish.
(iii) For any spaces X, Y and any maps f, g, there exists a map H which gives the

following homotopy commutative diagram:

ΣX ∨ΣY
f∨g

//

incl.

²²

Z

ΣX ×ΣY.

H

99tttttttttt

As for rational spaces, suspension spaces decompose to wedges of spheres. Therefore
the third is equivalent to the condition that all (ordinary) Whitehead products of Z

vanish. In other words, for a rational space Z, WL(Z) = 0 if and only if nil(ΩZ) = 0.
Here WL(Z) and nil(ΩZ) stand for the Whitehead length of Z and the nilpotency of
ΩZ, respectively (see Definitions 4.2 and 4.10).

In this paper, we prove that WL(Z) is equal to nil(ΩZ) for a simply connected
rational space Z by comparing these invariants with another numerical one, which is
called the d1-depth of a space. We note that the fact WL(Z) is equal to nil(ΩZ) is
proved in [Sal] without assuming the 1-connectedness of Z.

In the rest of this paper, we assume that all spaces are nilpotent connected based
spaces with the homotopy types of rational CW-complexes whose homologies are of finite
type, and all maps are based maps. We also assume that all vector spaces and algebras
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are defined over the rational field Q.
An outline for the paper is as follows. We prove some facts on H-spaces in §2

using the correspondence between homotopy types of rational H-spaces and isomorphism
classes of the Sullivan models whose differentials vanish. In §3, we construct a minimal
KS-model for a path space fibration and investigate some properties of it for the following
sections. In §4, we investigate the nilpotency of the loop space ΩX for a space X. To this
end, we define a rational homotopy invariant d1-depth(X) for a minimal model for X.
We prove that this invariant is equal to the Whitehead length of X and the nilpotency
of ΩX. Note that d1-depth(X) = WL(X) is also proved in [KY, Appendix]. The
nilpotency of homotopy associative H-spaces is given in §5.

2. Definitions and basic results.

Definition 2.1. A Sullivan model (
∧

V, d) is a differential graded algebra(DGA)
with the following properties [FHT].

• ∧
V is the free graded commutative algebra on a graded vector space V = {V i}i≥1.

• V admits a filtration V =
⋃∞

i=0 Vi, where 0 = V−1 ⊂ V0 ⊂ V1 ⊂ · · · such that
d : Vi →

∧
Vi−1.

A Sullivan model is called a minimal model if its differential maps into decomposables.
We say that an element x ∈ ∧

V has the word length n if x ∈ ∧n
V , and that an element

x ∈ ∧
V has the degree i if x ∈ (

∧
V )i. We denote by |x| the degree of x.

Definition 2.2. Let (
∧

V, d) be a Sullivan model with d = d0 + d1 + · · · where
di : V → ∧i+1

V . We call d0 the linear part of d, and d1 the quadratic part of d. We say
that (

∧
V, d) is coformal if d = d1.

Definition 2.3. An H-space (X, µ) is a based space X with a homotopy class of
map µ : X ×X → X which is homotopic to the identity when restricted to each factor.
We call µ a multiplication.

Let X be a connected rational H-space. It is known that X has a minimal Sullivan
model whose differential vanishes. Since H∗(X, Q) is free, its minimal model is isomor-
phic to H∗(X, Q). Hence the Sullivan representative of a map f between connected
rational H-spaces is uniquely determined. We denote the Sullivan representative of f

by f∗. Note that f∗ ∼= H∗(f). Let (
∧

V, 0) be a minimal model for X and x1, x2, . . .

be a basis of V such that 0 < |x1| ≤ |x2| ≤ · · · . Homotopy classes of multiplications
correspond bijectively to maps of graded algebras µ∗ :

∧
V → ∧

V ⊗∧
V of the form

µ∗(xi) = xi ⊗ 1 + 1⊗ xi +
∑

j

Pij ⊗Qij , µ∗(1) = 1⊗ 1,

where Pij , Qij are polynomials in xk(k < i) having positive degrees. For a Sullivan
model, a map in the above form is also called a multiplication. We call xi is primitive
when µ∗(xi) = xi ⊗ 1 + 1⊗ xi.

We derive bijective correspondence between the homotopy category of connected
rational H-spaces and isomorphism classes of connected augmented graded commutative
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Hopf algebras with finite generators in each degree. In the rest of this section, we prove
some properties on inverses of H-spaces using this correspondence.

Definition 2.4. A left inverse λ : X → X and a right inverse ρ : X → X of an
H-space (X, µ) are maps such that the compositions

X
∆−−−−→ X ×X

λ×1−−−−→ X ×X
µ−−−−→ X,

and

X
∆−−−−→ X ×X

1×ρ−−−−→ X ×X
µ−−−−→ X

are null homotopic, where ∆ : X → X ×X is the diagonal map.

Theorem 2.5 ([Jam]). An H-space (X, µ) has a left inverse λ and a right inverse
ρ unique up to homotopy.

Proof. A proof of general case is found in [Jam]. In rational case, we can calculate
a Sullivan representative of inverses from a Sullivan representative of the multiplication.

By the definition of the left inverse, we have

∆∗(λ∗ ⊗ 1)µ∗(xi) = λ∗(xi) + xi +
∑

j

λ∗(Pij)Qij = 0.

Since Pij is a polynomial in xk(k < i), by induction on i we have λ∗(xi) = −xi −∑
j λ∗(Pij)Qij and ρ∗(xi) = −xi −

∑
j Pijρ

∗(Qij). ¤

Corollary 2.6. λρ and ρλ are homotopic to the identity.

Proof. By induction on i, we have

ρ∗λ∗(xi) = xi +
∑

j

Pijρ
∗(Qij)−

∑

j

ρ∗λ∗(Pij)ρ∗(Qij) = xi. ¤

Corollary 2.7. The following three conditions are equivalent.

(i) λ2 ' 1.
(ii) λ ' ρ.
(iii) ρ2 ' 1.

Proof. It is clear from the previous Corollary that λ ' ρ when λ2 ' 1.
We show λ2 ' 1 when λ ' ρ by induction on i.
Applying λ∗ to both sides of the equality

λ∗(xi) = −xi −
∑

j

λ∗(Pij)Qij ,

we have
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(λ∗)2(xi) = −λ∗(xi)−
∑

j

(λ∗)2(Pij)λ∗(Qij)

= −ρ∗(xi)−
∑

j

Pijρ
∗(Qij)

= xi.

This completes the proof. ¤

In [AOS], an H-space with the left inverse having finite order other than two is
given. Next Proposition states there is no such a rational H-space.

Proposition 2.8. For any positive integer n, λn 6' 1 when λ 6' ρ.

Proof. When n is odd, the term of λ∗(x) having word length one is −x. Hence
λn 6' 1.

We assume n is even. Let i be the least number such that (λ∗)2(xi) 6= xi. We write

(λ∗)2(xi) = xi + P,

where P is a polynomial in xk(k < i). Then we have

(λ∗)4(xi) = xi + P + (λ∗)2(P ) = xi + 2P,

and

(λ∗)2n(xi) = xi +
n

2
P. ¤

Definition 2.9. An H-space (X, µ) is homotopy associative if µ(µ×1) = µ(1×µ) ∈
[X ×X ×X, X].

An Hopf algebra (
∧

V, µ∗) is associative if (µ∗×1)µ∗ = (1×µ∗)µ∗. We use the term
“associative” after the manner in [AOS] so that homotopy associativity of H-spaces
corresponds to associativity of Hopf algebras.

Proposition 2.10. Homotopy associativity implies λ ' ρ.

Proof. Since ∆∗(λ∗ ⊗ 1)µ∗(Pij) = 0 and ∆∗(λ∗ ⊗ 1)µ∗(xi) = 0, it follows that

∆∗(∆∗ ⊗ 1)(λ∗ ⊗ 1⊗ ρ∗)(µ∗ ⊗ 1)µ∗(xi)

= ∆∗(∆∗ ⊗ 1)(λ∗ ⊗ 1⊗ ρ∗)(µ∗ ⊗ 1)
(
xi ⊗ 1 +

∑
Pij ⊗Qij + 1⊗ xi

)

= ∆∗(∆∗ ⊗ 1)(λ∗ ⊗ 1⊗ ρ∗)(1⊗ 1⊗ xi)

= ρ∗(xi).

On the other hand, we have
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∆∗(∆∗ ⊗ 1)(λ∗ ⊗ 1⊗ ρ∗)(1⊗ µ∗)µ∗(xi) = λ∗(xi).

Since (1⊗ µ∗)µ∗ = (µ∗ ⊗ 1)µ∗, it follows that λ∗(xi) = ρ∗(xi). ¤

Remark 2.11. The converse of Proposition 2.10 doesn’t hold. We give a finite
H-space that λ ' ρ while it is not homotopy associative.

We consider the following Hopf algebra which is not associative:

∧
(x, y, z), |x| = 11, |y| = 3, |z| = 5,

where the elements y and z are primitive and µ∗(x) = x ⊗ 1 + 1 ⊗ x + y ⊗ yz. We see
λ∗(x) = ρ∗(x) = −x.

Proposition 2.12. If H∗(X) is finite dimensional, then the following two condi-
tions are equivalent.

(i) λ∗(xi) = −xi.
(ii) λ ' ρ.

Proof. From Corollary 2.7, we have λ ' ρ when λ∗(xi) = −xi.
Assume that λ ' ρ. Since H∗(X) is finite dimensional, |xi| must be odd. Let i be

the least integer such that λ∗(xi) 6= −xi. We write

µ∗(xi) = xi ⊗ 1 + 1⊗ xi + Q1 ⊗Q2,

where Q1, Q2 are polynomials in xj(j < i) having positive degrees. Then we have

λ∗(xi) = −xi − P,

where we denote λ∗(Q1)Q2 by P . For dimensional reasons, P has degree greater than 3
and odd word length. Since P is a polynomial in xj(j < i), it follows that λ∗(P ) = −P .
Therefore

(λ∗)2(xi) = λ∗(−xi + P ) = xi − 2P.

The statement follows from Corollary 2.7. ¤

Remark 2.13. Proposition 2.12 does not always hold if H∗(X) is infinite dimen-
sional. Consider the Sullivan model (

∧
(x, y), 0), where |x| = 4 and |y| = 2. Define its

multiplication µ∗ such that µ∗(x) = x⊗ 1 + 1⊗ x + y⊗ y and µ∗(y) = y⊗ 1 + 1⊗ y. We
see that λ∗(x) = ρ∗(x) = −x + y2.

3. Model for the path space fibration.

Let X be a 1-connected space. In order to investigate the multiplication of ΩX by
means of a minimal model for X, we first recall a KS-model for the path space fibration
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ΩX → PX → X (see [TO, Remark 5.5]).
Let (

∧
V, d) be a minimal model for X. Then the following is a (not minimal)

Sullivan model for the free path space of X:

( ∧
(V ⊕ V ′ ⊕ δV ′), d

)
, dv′ = δv′, dδv′ = 0,

where V ′ = {v′|v ∈ V }(|v′| = |v| − 1) and δV ′ = {δv′|v ∈ V }. We define a derivation I

on the Sullivan model by I(v) = v′, I(v′) = 0 = I(δv′). Then the automorphism eI◦d+d◦I

of the model for XI is defined by

eI◦d+d◦I = 1 + d ◦ I +
∑
n=1

(I ◦ d)n

n!
.

We denote
∑

n=1
(I◦d)n

n! v by Ω(v).
Let v̂ = eI◦d+d◦Iv and V̂ = {v̂|v ∈ V } then there exists a DGA (

∧
(V ⊕ V ′ ⊕ V̂ ), d)

such that

( ∧
(V ⊕ V ′ ⊕ δV ′), d

) ∼=
( ∧

(V ⊕ V ′ ⊕ V̂ ), d
)
.

Lemma 3.1. We define a DGA as follows:

( ∧
V ⊗

∧
V ′, D

)
, Dv = dv, Dv′ = v − τΩ(v),

where τ : (
∧

(V ⊕ V ′ ⊕ V̂ ), d) → (
∧

V ⊗ ∧
V ′, D) is a DGA map defined by τ(v) =

0, τ(v̂) = v, τ(v′) = v′. Then this DGA has the following properties.

(i) D2 = 0. (D is actually differential.)
(ii) Im(D) ⊂ ∧≥1

V ⊗∧
V ′.

(iii) τΩ(v) ≡ τ(
∑

n
1
n! (I ◦ d1)nv), where ‘≡’ means the components in V ⊗ ∧

V ′ are
equal.

Proof.

(i) We see D2(v) = D2(v′) = 0 for v ∈ V, v′ ∈ V ′.

D2(v) = d2(v) = 0

D2(v′) = dv −DτΩ(v)

= τd(v̂ −Ω(v))

= τd(v + δv′) = 0.

(ii) First we observe Ω(v) ∈ ∧
(V <|v| ⊕ V ′<|v′| ⊕ δV ′<|δv′|). By induction on |v|, we

show τΩ(v) ∈ ∧≥1
V ⊗∧

V ′, which is equivalent to Ω(v) ∈ ∧≥1(V ⊕ V̂ )⊗∧
V ′.
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Since δv′ = v̂ − v − Ω(v), by induction, it is enough to show Ω(v) ∈ ∧≥1(V ⊕
δV ′) ⊗ ∧

V ′. Since d :
∧n(V ⊕ δV ′) ⊗ ∧

V ′ → ∧≥n+1(V ⊕ δV ′) ⊗ ∧
V ′ and

I :
∧n(V ⊕ δV ′)⊗∧

V ′ → ∧≥n−1(V ⊕ δV ′)⊗∧
V ′, it follows that

(I ◦ d)n :
n∧

(V ⊕ δV ′)⊗
∧

V ′ →
≥n∧

(V ⊕ δV ′)⊗
∧

V ′.

Therefore we get Ω(v) ∈ ∧≥1(V ⊕ δV ′)⊗∧
V ′.

(iii) We observe τ−1(V ⊗∧
V ′) ⊂ δV ′ ⊗∧

V ′ ⊂ (
∧1(V ⊕ δV ′)⊗∧

V ′, d). We extend
the derivation d1 of (

∧
V, d) to a derivation of

∧
(V ⊕ V ′ ⊕ δV ′) by the canonical

way. Since I ◦ d− I ◦ d1 :
∧n(V ⊕∧

δV ′)⊗∧
V ′ → ∧≥n+1(V ⊗∧

δV ′)⊗∧
V ′, it

follows

(I ◦ d)n − (I ◦ d1)n :
1∧ (

V ⊕
∧

δV ′
)
⊗

∧
V ′ →

≥2∧ (
V ⊗

∧
δV ′

)
⊗

∧
V ′.

Therefore, Ω(v) ≡ ∑
n

1
n! (I ◦d1)nv, where ‘≡’ means the components in δV ′⊗∧

V ′

are equal. This completes the proof. ¤

Proposition 3.2. The following is a minimal model for the path space fibration
X ← PX ← ΩX:

(
∧

V, d) i−−−−→ (
∧

V ⊗∧
V ′, D) ε⊗1−−−−→ (

∧
V ′, 0),

where i is the inclusion and ε is the augmentation.

Proof. Minimality follows from previous Lemma. We have to show H≥1(
∧

V ⊗∧
V ′, D) = 0. We consider the spectral sequence associated to the word length filtration.

The E1-term has the form H∗(
∧

(V ⊕V ′), D0), and the cochain complex (
∧

(V ⊕V ′), D0)
is obviously acyclic. ¤

4. Nilpotency of loop spaces.

Definition 4.1. The commutator ϕ of an associative H-space (X, µ) is the com-
position of the following maps:

X×X
∆×∆−−−−→ X×X×X×X

1×t×1−−−−→ X×X×X×X
λ×λ×1×1−−−−−−→ X×X×X×X

µ×µ−−−−→ X×X
µ−−−−→ X,

where t : X × X → X × X is the map defined by t(x, y) = (y, x). Thus the Sullivan
representative ϕ∗ is expressed as the composition

(
∧

V, 0)
µ∗−−−−→ (

∧
V, 0)⊗ (

∧
V, 0)

µ∗⊗µ∗−−−−→ (
∧

V, 0)⊗4 λ∗⊗λ∗⊗1⊗1−−−−−−−−→ (
∧

V, 0)⊗4

1⊗t∗⊗1−−−−−→ (
∧

V, 0)⊗4 ∆∗⊗∆∗−−−−−→ (
∧

V, 0)⊗ (
∧

V, 0),
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where t∗ : v1 ⊗ v2 7→ (−1)|v1||v2|v2 ⊗ v1.
As for the definition of the n-fold commutator, ϕ0 = 1, ϕ1 = ϕ and ϕn = ϕ ◦ (1 ×

ϕn−1) (n ≥ 2).

Definition 4.2. The nilpotency of an associative H-space (X, µ) is the least n

such that ϕn+1 is null homotopic. We denote it by nilX.
For an Hopf algebra

∧
V with an associative multiplication µ∗, nil(

∧
V, µ∗) is defined

by the least n such that ϕ∗n+1 is 0.

We investigate the nilpotency of the loop space ΩX for a 1-connected space X. To
this end, we consider the path space fibration ΩX → PX

p−→ X. The following is also a
fibration:

ΩX ×ΩX −−−−→ PX ×ΩX
p◦pL−−−−→ X,

where pL is the projection onto the left factor.
We constructed in the previous section a minimal model for the path space fibration.

( ∧
V, d

)
→

(( ∧
V ⊗

∧
V ′

)
, D

)
→

( ∧
V ′, 0

)
,

where Dv = dv, Dv′ = v − τΩ(v). We regard (
∧

V ′, 0) as an associative Hopf algebra
with the multiplication µ∗ induced from the multiplication of ΩX.

The action φ : PX ×ΩX → PX gives the following commutative diagram:

X
p←−−−− PX ←−−−− ΩX

id

x φ

x µ

x
X

p·pL←−−−− PX ×ΩX ←−−−− ΩX ×ΩX.

Then we can choose a Sullivan representative for φ which makes the following diagram
commutative:

(
∧

V, d) incl−−−−→ (
∧

V ⊗∧
V ′, D) ε⊗1−−−−→ (

∧
V ′, 0)

id

y φ∗
y µ∗

y
(
∧

V, d) incl−−−−→ (
∧

V ⊗∧
V ′, D)⊗ (

∧
V ′, 0) ε⊗1⊗1−−−−→ (

∧
V ′, 0)⊗ (

∧
V ′, 0).

For x′ ∈ V ′, we write

µ∗(x′) = x′ ⊗ 1 + 1⊗ x′ +
∑

i

Φi ⊗ Ψi

and

φ∗(x′) = 1⊗ µ∗(x′) +
∑

i

Ai ⊗Bi ⊗ Ci,
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where Φi, Ψi ∈
∧≥1

V ′, Ai ∈
∧≥1

V, Bi, Ci ∈
∧

V ′. Then we obtain

φ∗Dx′ = x⊗ 1⊗ 1− φ∗τΩ(x)

and

(D ⊗ 1)φ∗x′ = Dx′ ⊗ 1 +
∑

i

DΦi ⊗ Ψi

+
∑

i

(DAi ⊗Bi ⊗ Ci + (−1)|Ai|Ai ∧DBi ⊗ Ci).

From above commutative diagram, φ∗Dx′ = (D ⊗ 1)φ∗x′. This equation is the key to
the rest of this section.

Suppose that the graded vector space V has a filtration {Vi} such that

V =
⋃

Vi, V0 ⊂ V1 ⊂ · · · , d1 : Vi →
∧

Vi−1.

This gives a filtration of the graded vector space V ′ by (V ′)n = (Vn)′. Then we have the
following Lemma.

Lemma 4.3.

µ∗(x′)− x′ ⊗ 1− 1⊗ x′ ∈
∧

V ′
n ⊗

∧
V ′

n, x′ ∈ V ′
n+1.

Proof. It follows from Lemma 3.1 that the components of φ∗Dx′ in Vn+1⊗
∧

V ′⊗∧
V ′ is x⊗ 1⊗ 1. On the other hand, components of (D⊗ 1)φ∗x′ in Vn+1⊗

∧
V ′⊗∧

V ′

lies in x⊗ 1⊗ 1 +
∑

i D0Φi ⊗ Ψi. Hence
∑

i D0Φi ⊗ Ψi doesn’t contain terms in Vn+1 ⊗∧
V ′ ⊗∧

V ′, that is, Φi does not contain an element of V ′
n+1 as its factor.

Considering the other path space fibration with converse start point and end point,
we get Ψi does not contain an element of V ′

n+1 as its factor. ¤

Corollary 4.4. If (
∧

V, 0) is a minimal model for an H-space (X, µ), then all
elements of V ′ are primitive.

Proof. We can choose a filtration of V so that V0 = V . ¤

Remark 4.5. The converse of Corollary 4.4 is not true. Consider a minimal model
for CP 2:

( ∧
(x, y), dx = 0, dy = x3

)
, |x| = 2, |y| = 5.

For dimensional reasons, we see that the elements x′ and y′ are primitive in H∗(ΩCP 2).

We give an upper bound of nilΩX.

Lemma 4.6. For a minimal model (
∧

V, 0) for an associative H-space (X, µ),
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Imϕ∗ ∈
≥1∧

V ⊗
≥1∧

V.

Proof. For v ∈ V we write µ∗(v) = v ⊗ 1 + 1 ⊗ v +
∑

i Pi ⊗ Qi. Then the
components of ϕ∗(v) in

∧
V ⊗ 1 is λ∗(v) ⊗ 1 + v ⊗ 1 +

∑
i λ∗(Pi)Qi ⊗ 1 = 0. Similarly

we have that the components of ϕ∗(v) in 1⊗∧
V is zero. ¤

Proposition 4.7. If X has a minimal model (
∧

V, d) with a filtration {Vi}i≤n

of V such that V =
⋃

i≤n Vi, 0 = V−1 ⊂ V0 ⊂ V1 ⊂ · · · and d1 : Vi →
∧

Vi−1, then
nilΩX ≤ n.

Proof. We show that ϕ∗i+1x
′ = 0 in

∧
V ′
≤i by induction on i. We only have to

show this for the generators.
When i = 0, by Corollary 4.4 we have ϕ∗ = 0. Suppose that ϕ∗i+1x

′ = 0 if x′ ∈ V ′
<i.

For x′ ∈ V ′
i , by Lemma 4.6, we can write ϕ∗x′ = A ⊗ B, where A,B ∈ ∧≥1

V ′. By
Lemma 4.3, if ϕ∗x′ would contain generators in V≥i, it must be x′. However this is
impossible for the dimensional reasons. ¤

Next we investigate a lower bound of nilΩX.

Proposition 4.8. If d1x =
∑

i ui ∧ vi, x, ui, vi ∈ V , we have

∑

i

π(Φi)⊗ π(Ψi) = −
∑

i

(
(−1)|ui|u′i ⊗ v′i + (−1)(|ui|+1)|vi|v′i ⊗ u′i

)
,

where π :
∧≥1

V ′ → V ′ is the quotient.

Proof. We compare the components in V ⊗ 1 ⊗ V ′ of the equation φ∗(Dx′) =
(D ⊗ 1)φ∗(x′). From the proof of Lemma 3.1,

φ∗(Dx′) ≡ φ∗
(
− 1

2

∑

i

((−1)|ui|ui ∧ v′i + u′i ∧ vi)
)

≡ −1
2

∑

i

(
(−1)|ui|ui ∧ φ∗(v′i) + (−1)(|ui|+1)|vi|vi ∧ φ∗(u′i)

)

≡ −1
2

∑

i

(
(−1)|ui|ui ⊗ 1⊗ v′i + (−1)(|ui|+1)|vi|vi ⊗ 1⊗ u′i

)
,

where ‘≡’ means the components in V ⊗ 1 ⊗ V ′ are equal. On the other hand, since
DAi ⊗Bi ⊗Ci, Ai ∧DBi ⊗Ci ∈

∧≥2
V ⊗∧

V ′ ⊗∧
V ′, the component of (D⊗ 1)φ∗(x′)

in V ⊗ 1⊗ V ′ is
∑

D0π(Φi)⊗ 1⊗ π(Ψi).
Comparing these completes the proof. ¤

We calculate the first terms of the commutator of ΩX from the quadratic part of
the differential of a minimal model for X.

Proposition 4.9. If d1x =
∑

i ui ∧ vi then we have
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ϕ∗x′ ≡ −
∑

i

(
(−1)|ui|(u′i ⊗ v′i + (−1)(|ui|+1)|vi|v′i ⊗ u′i)

)
,

where ‘≡’ means the components in V ′ ⊗ V ′ are equal.

Proof. Word length argument gives the component of ϕ∗x′ in V ′ ⊗ V ′ is deter-
mined by the component of µ∗ in V ′⊗V ′. Direct calculation using the result of previous
Proposition completes the proof. ¤

Definition 4.10. The Whitehead length of X, written WL(X), is the least integer
n such that all (n + 1)-fold Whitehead products vanish.

Now we consider a lower bound of the nilpotency.

Lemma 4.11. Let (
∧

V, d) be a minimal model for X. The least number n such
that the component of ϕ∗n+1(x

′) in V ′⊗n+2 vanishes, equals WL(X).

Proof. Let (
∧

Wi, d)(1 ≤ i ≤ n + 2) be a minimal model for Smi(mi ≥ 1). We
observe that the natural quasi-isomorphisms (

∧
Wi, d) → H∗(Smi) define the bijection

[Sm1 × · · · × Smn+2 , ΩX]0 ∼=
[( ∧

V ′, 0
)
,
( ∧

W1, d
)
⊗ · · · ⊗

( ∧
Wn+2, d

)]

∼=
[ ∧

V ′,H∗(Sm1)⊗ · · · ⊗H∗(Smn+2)
]

f 7→ H∗(f).

Since Imϕ∗n+1 ⊂
∧>n+1

V ′, we have ϕ∗n+1 ≡ 0 in V ′⊗n+2 if and only if H∗(f1) ⊗ · · · ⊗
H∗(fn+2)ϕ∗n+1 ≡ 0 in [

∧
V ′,H∗(Sm1)⊗ · · · ⊗H∗(Smn+2)] for any maps fi : Smi → ΩX.

By the bijection above, this is equivalent to the Lemma. ¤

Definition 4.12. d1-depth of a minimal model (
∧

V, d) is the least number n such
that Vn = Vn+1, where

V−1 = 0, Vn =
{

v ∈ V |d1v ∈
∧

Vn−1

}
, V =

⋃

i

Vi.

If such an integer doesn’t exist, we define d1-depth(
∧

V, d) = ∞.

Remark 4.13. d1-depth is a rational homotopy invariant. Indeed, any DGA map
between minimal models f∗ : (

∧
V, d) → (

∧
W,d) preserves the filtration mentioned

above, that is, f∗ :
∧

Vn → ∧
Wn. Hence, if f∗ is an isomorphism, then f∗ :

∧
(Vn \

Vn−1) →
∧

(Wn \Wn−1). Therefore we define d1-depth of a space X by d1-depth of its
minimal model.

Remark 4.14. There is a coformal space Xcf such that π∗(ΩX) is isomorphic to
π∗(ΩXcf ) as a Lie algebra. Such a space is called the associated coformal space of X.
Topologically, d1-depth(X) can be considered as the height of the generalized Postnikov
tower of Xcf .
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Theorem 4.15. For a 1-connected space X we have WL(X) = nil(ΩX) =
d1-depth(X).

Proof. By Lemma 4.11, we have WL(X) ≤ nil(ΩX). By Proposition 4.7, we
have nil(ΩX) ≤ d1-depth(X). We show WL(X) ≥ d1-depth(X).

Let (
∧

V, d) be a Sullivan model for X and V = {Vi}i≤n be the filtration which gives
d1-depth. We denote the component of ϕ∗i in V ⊗i+1 by ϕ̄∗i . We show that ϕ̄∗i (x

′) 6= 0
for x′ ∈ Vi+1 \ Vi by induction on i. Let {vj} be a basis of V . We can write ϕ̄∗(x′) =∑

j vj ⊗Uj , where Uj ∈ V . It follows from Proposition 4.9 that there exists an integer j

such that Uj ∈ Vi \Vi−1. By induction hypothesis, ϕ̄∗i (x
′) =

∑
j vj ⊗ ϕ̄∗i−1(Uj) 6= 0. This

completes the proof. ¤

Example 4.16. We give a space X with nil(ΩX) = n.
Define a Sullivan model (

∧{Vi}i≤n, d) as follows.

Vi = {xαi
}, V0 = {xα0 , x0}

d : Vi →
∧

Vi−1

xαi
7→ xαi−1 ∧ x0, (1 ≤ i ≤ n)

xα0 7→ 0

x0 7→ 0,

where |x0| is odd. By Theorem 4.15, nil(
∧

V ′) = n.

5. Nilpotency of homotopy associative H-spaces.

In this section, we investigate the nilpotency of a connected homotopy associative
H-space G.

Let L be a connected graded Lie algebra. We regard L as a differential graded Lie
algebra(DGL) with zero differential. First, we recall the functor C ∗ [FHT, §23], which
sends L to a minimal model for a coformal space Z such that π∗(ΩZ) ∼= L as a graded
Lie algebra. We denote the functor DGA → DGL taking the primitive space by P. By
Theorem 4.5 of [Qui, Appendix B], C ∗PH∗(G) is a minimal model for a coformal space
Z such that π∗(ΩZ) ∼= π∗(G). Taking the universal enveloping algebra and the dual, we
have an isomorphism of Hopf algebras H∗(G) ∼= H∗(ΩZ). Therefore by Theorem 4.15,
we have

Theorem 5.1.

nil(G) = d1-depth(C ∗PH∗(G)).

In other words,

nilG = nilπ∗(G),



On the nilpotency of rational H-spaces 1165

where π∗(G) is considered as a Lie algebra equipped with the Samelson product.

Remark 5.2. If G is homotopy commutative, then PH∗(G) is abelian. Therefore,
C ∗PH∗(G) has zero differential. This implies that there is an H-equivalence G ' Ω2Y

for some space Y .
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