A generalization of the Δ-genus of quasi-polarized varieties

By Yoshiaki Fukuma
(Received Nov. 12, 2003)
(Revised Nov. 29, 2004)

Abstract

Let (X, L) be a quasi-polarized variety defined over the complex number field. Then there are several invariants of (X, L), for example, the sectional genus and the Δ-genus. In this paper we introduce the i-th Δ-genus $\Delta_{i}(X, L)$ for every integer i with $0 \leq i \leq n=\operatorname{dim} X$. This is a generalization of the Δ-genus. Furthermore we study some properties of $\Delta_{i}(X, L)$ and we will propose some problems.

Introduction.

Let X be a projective variety of dimension n defined over the complex number field and let L be a line bundle on X. If L is ample (resp. nef and big), then (X, L) is called a polarized (resp. quasi-polarized) variety. Furthermore if X is smooth and L is ample (resp. nef and big), we say that (X, L) is a polarized (resp. quasi-polarized) manifold. For this (X, L), there are some invariants, for example, the sectional genus $g(L)$ and the Δ-genus $\Delta(L)$ (see $[\mathbf{F j} \mathbf{1}])$. Fujita studied polarized varieties by using these invariants, and he gave a beautiful theory (see $[\mathbf{F j} \mathbf{3}]$ in detail). But there is a limit to studying polarized varieties by using these invariants. So in order to study polarized varieties more deeply, the author thought that he wants to give a new invariant of (X, L) which is a generalization of these invariants.

In $[\mathbf{F k}]$, we defined the i-th sectional geometric genus $g_{i}(X, L)$ of (X, L) for every integer i with $0 \leq i \leq n$, which is a generalization of the degree L^{n} and the sectional genus $g(L)$ of (X, L). (We remark that $g_{0}(X, L)=L^{n}, g_{1}(X, L)=g(L)$, and $g_{n}(X, L)=$ $h^{n}\left(\mathscr{O}_{X}\right)$.) Some properties of the i-th sectional geometric genus which are obtained in [$\mathbf{F k}$] also show that the i-th sectional geometric genus is a natural generalization of the sectional genus. For example, in $[\mathbf{F k}]$ we proved the following theorem which is analogous to a theorem of Sommese ([So, Theorem 4.1]).

Theorem (See [Fk, Corollary 3.5]). Let (X, L) be a polarized manifold of dimension $n \geq 3$. Assume that L is spanned. Then the following are equivalent:
(1) $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X}\right)$.
(2) $h^{0}\left(K_{X}+(n-2) L\right)=0$.
(3) $\kappa\left(K_{X}+(n-2) L\right)=-\infty$.
(4) $K_{X^{\prime}}+(n-2) L^{\prime}$ is not nef, where $\left(X^{\prime}, L^{\prime}\right)$ is a reduction of (X, L). (See Definition 1.4(2) below.)

[^0](5) (X, L) is one of the types from (1) to (7.4) in Theorem 1.7 below.

As the next step, we want to give a generalization of the Δ-genus.
In this paper, we will give a definition of the i-th Δ-genus $\Delta_{i}(X, L)$ of (X, L) for $0 \leq i \leq n$. If $i=1$, then $\Delta_{1}(X, L)$ is the Δ-genus $\Delta(L)$ of (X, L). (When we define the i-th Δ-genus of (X, L), we need the sectional geometric genus of (X, L).)

Furthermore we will study some properties of $\Delta_{i}(X, L)$. If $\mathrm{Bs}|L|=\varnothing$, then some properties of $\Delta_{i}(X, L)$ is similar to that of the Δ-genus $\Delta(L)$ of (X, L) (see Section 3), and the i-th Δ-genus is useful in order to study polarized manifolds (X, L) with $\mathrm{Bs}|L|=\varnothing$.

So we expect that the i-th Δ-genus has good properties for general polarized varieties. For example, we expect that $\Delta_{i}(X, L) \geq 0$ for $2 \leq i \leq n$. But unfortunately there exists an example of (X, L) with $\Delta_{i}(X, L)<0$ (see Section 4). Hence it is important to consider when the i-th Δ-genus is nonnegative. We treat this problem in a forthcoming paper.

The contents of this paper are the following.
In Section 1, we propose some results which are used later.
In Section 2, we will give a definition of the i-th Δ-genus $\Delta_{i}(X, L)$ of (X, L) (see Definition 2.1), and we will prove some results under the condition that L has a k-ladder. (For the definition of a k-ladder, see Definition 2.7.)

In Section 3, we consider the case where (X, L) is a (quasi-)polarized manifold with $\mathrm{Bs}|L|=\varnothing$, and we will get results similar to that of the Δ-genus $\Delta(L)$ of (X, L). In particular we will prove $\Delta_{i}(X, L) \geq 0$ for $1 \leq i \leq n$ (see Corollary 3.3) and we give a classification of (X, L) such that L is base point free (resp. very ample) and $\Delta_{2}(X, L)=0$ (resp. 1) (see Theorem 3.13 and Remark 3.13 .1 (resp. Theorem 3.17)). (We will study the i-th Δ-genus of (X, L) with $\operatorname{dim} \mathrm{Bs}|L| \geq 0$ in a forthcoming paper.)

In Section 4, we propose some problems and we will give some examples of (X, L) such that $\Delta_{i}(X, L)<0$.

Our dream is to construct a classification theory of polarized manifolds by using the i-th sectional geometric genus and the i-th Δ-genus. If $i=1$, then this case has been studied by Fujita, and a series of his studies is called Fujita's Δ-genus theory (see $[\mathbf{F j} 3]$). So, as the next step, we want to study the case where $i=2$ in detail. As the first step, in a future paper, we will study a classification of (X, L) with $2 \leq g_{2}(X, L)-h^{2}\left(\mathscr{O}_{X}\right) \leq 5$ and $2 \leq \Delta_{2}(X, L) \leq 5$ when L is very ample.

The author would like to thank the referee for giving him useful comments and suggestions, which made this paper more readable than in previous version.

Notation and Conventions.

In this paper, we work throughout over the complex number \boldsymbol{C}. The words "line bundles" and "Cartier divisors" are used interchangeably. The tensor products of line bundles are denoted additively.
$\mathscr{O}(D)$: invertible sheaf associated with a Cartier divisor D on X.
\mathscr{O}_{X} : the structure sheaf of X.
$\chi(\mathscr{F})$: the Euler-Poincaré characteristic of a coherent sheaf \mathscr{F}.
$\chi(X)=\chi\left(\mathscr{O}_{X}\right)$.
$h^{i}(\mathscr{F})=\operatorname{dim} H^{i}(X, \mathscr{F})$ for a coherent sheaf \mathscr{F} on X.
$h^{i}(D)=h^{i}(\mathscr{O}(D))$ for a divisor D.
$\left.D\right|_{C}$: the restriction of D to C.
$|D|$: the complete linear system associated with a divisor D.
K_{X} : the canonical divisor of X.
$q(X)$ (or $q)$: the irregularity $h^{1}\left(\mathscr{O}_{X}\right)$ of a smooth projective variety X.
$\kappa(D)$: the Iitaka dimension of a Cartier divisor D on X.
$\kappa(X)$: the Kodaira dimension of X.
\boldsymbol{P}^{n} : the projective space of dimension n.
\boldsymbol{Q}^{n} : a hyperquadric surface in \boldsymbol{P}^{n+1}.
$\boldsymbol{P}_{Y}(\mathscr{E})$: the \boldsymbol{P}^{r-1}-bundle associated with a locally free sheaf \mathscr{E} of rank r over Y.
$H(\mathscr{E})$: the tautological invertible sheaf of $\boldsymbol{P}_{Y}(\mathscr{E})$.
\sim (or $=$): linear equivalence.
\equiv : numerical equivalence.

1. Preliminaries.

Notation 1.1. Let (X, L) be a quasi-polarized variety of dimension n and let $\chi(t L)$ be the Euler-Poincaré characteristic of $t L$. Then we put

$$
\chi(t L)=\sum_{j=0}^{n} \chi_{j}(X, L) \frac{t^{[j]}}{j!},
$$

where $t^{[j]}=t(t+1) \cdots(t+j-1)$ for $j \geq 1$ and $t^{[0]}=1$.
Definition 1.2 ([Fk, Definition 2.1]). Let (X, L) be a quasi-polarized variety of dimension n. Then, for every integer i with $0 \leq i \leq n$, the i-th sectional geometric genus $g_{i}(X, L)$ of (X, L) is defined by the following formula:

$$
g_{i}(X, L)=(-1)^{i}\left(\chi_{n-i}(X, L)-\chi\left(\mathscr{O}_{X}\right)\right)+\sum_{j=0}^{n-i}(-1)^{n-i-j} h^{n-j}\left(\mathscr{O}_{X}\right)
$$

Remark 1.2.1.
(1) If $i=0$ (resp. $i=1$), then $g_{i}(X, L)$ is equal to the degree (resp. the sectional genus) of (X, L).
(2) If $i=n$, then $g_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)$ and $g_{n}(X, L)$ is independent of L.

Theorem 1.3. (1) Let (X, L) be a quasi-polarized variety of dimension n. Let i be an integer with $0 \leq i \leq n-1$. Then

$$
g_{i}(X, L)=\sum_{j=0}^{n-i-1}(-1)^{n-j}\binom{n-i}{j} \chi(-(n-i-j) L)+\sum_{k=0}^{n-i}(-1)^{n-i-k} h^{n-k}\left(\mathscr{O}_{X}\right) .
$$

(2) If (X, L) is a quasi-polarized manifold of dimension n, then for every integer i with
$0 \leq i \leq n-1$

$$
g_{i}(X, L)=\sum_{j=0}^{n-i-1}(-1)^{j}\binom{n-i}{j} h^{0}\left(K_{X}+(n-i-j) L\right)+\sum_{k=0}^{n-i}(-1)^{n-i-k} h^{n-k}\left(\mathscr{O}_{X}\right)
$$

Proof. (1) By [Fk, Theorem 2.2], we obtain

$$
\begin{aligned}
\chi_{n-i}(X, L) & =\sum_{j=0}^{n-i}(-1)^{n-i-j}\binom{n-i}{j} \chi(-(n-i-j) L) \\
& =\sum_{j=0}^{n-i-1}(-1)^{n-i-j}\binom{n-i}{j} \chi(-(n-i-j) L)+\chi\left(\mathscr{O}_{X}\right) .
\end{aligned}
$$

Hence by Definition 1.2, we get the assertion.
(2) By the Serre duality and the Kawamata-Viehweg vanishing theorem, we get the assertion (See also [Fk, Theorem 2.3]).

Remark 1.3.1. Let (X, L) be a quasi-polarized manifold of dimension n. Then by Theorem 1.3(2) and the Serre duality, we get

$$
g_{n-1}(X, L)=h^{0}\left(K_{X}+L\right)-h^{0}\left(K_{X}\right)+h^{n-1}\left(\mathscr{O}_{X}\right)
$$

Definition 1.4. (1) Let X (resp. Y) be an n-dimensional projective manifold, and let L (resp. A) be an ample line bundle on X (resp. Y). Then (X, L) is called a simple blowing up of (Y, A) if there exists a birational morphism $\pi: X \rightarrow Y$ such that π is a blowing up at a point of Y and $L=\pi^{*}(A)-E$, where E is the π-exceptional effective reduced divisor.
(2) Let X (resp. Y) be an n-dimensional projective manifold, and let L (resp. A) be an ample line bundle on X (resp. Y). Then we say that (Y, A) is a reduction of (X, L) if there exists a birational morphism $\mu: X \rightarrow Y$ such that μ is a composite of simple blowing ups and (Y, A) is not obtained by a simple blowing up of any polarized manifold. In this case the morphism μ is called the reduction map.

Remark 1.4.1. Let (X, L) be a polarized manifold and let (Y, A) be a reduction of (X, L). Let $\mu: X \rightarrow Y$ be the reduction map.
(1) We obtain $g_{i}(X, L)=g_{i}(Y, A)$ for every integer i with $1 \leq i \leq n$ (see [$\mathbf{F k}$, Proposition 2.6]).
(2) Assume that $\mathrm{Bs}|L|=\varnothing$. Then for a general member D of $|L|, D$ and $\mu(D) \in|A|$ are smooth.
(3) If (X, L) is not obtained by a simple blowing up of another polarized manifold, then (X, L) is a reduction of itself.
(4) A reduction of (X, L) always exists (see $[\mathbf{F j} 3$, Chapter II, (11.11)]).

Definition 1.5. Let (X, L) be a polarized manifold of dimension n. We say that
(X, L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety Y of dimension m if there exists a surjective morphism with connected fibers $f: X \rightarrow Y$ such that $K_{X}+(n-m+1) L=f^{*} A$ (resp. $K_{X}+(n-m) L=f^{*} A, K_{X}+(n-m-1) L=f^{*} A$) for some ample line bundle A on Y.

Lemma 1.6. Let X (resp. Y) be a smooth projective variety (resp. normal projective variety) of dimension n (resp. m) with $n>m \geq 1$ such that there exists a surjective morphism $f: X \rightarrow Y$ with connected fibers. Let L be a nef and big line bundle on X such that $\mathscr{O}\left(K_{X}+t L\right)=f^{*}(A)$ for a line bundle A on Y, where t is a positive integer. Then $h^{i}(L)=0$ and $h^{i}\left(\mathscr{O}_{X}\right)=0$ for $i>m$.

Proof. By assumption, we get $\mathscr{O}\left(K_{X}+(t+1) L\right)=L \otimes f^{*}(A)$. By the KawamataViehweg vanishing theorem ([KMM, Theorem 1-2-5]), we get $R^{i} f_{*}\left(L \otimes f^{*}(A)\right)=0$ for every integer i with $i>0$. Since $R^{i} f_{*}\left(L \otimes f^{*}(A)\right)=R^{i} f_{*}(L) \otimes A$, we get $R^{i} f_{*}(L) \otimes A=0$. Hence $R^{i} f_{*}(L)=0$ for every $i>0$. Therefore $h^{i}(L)=h^{i}\left(f_{*}(L)\right)$. By [Ha, Theorem 2.7, Chapter III], we obtain $h^{i}\left(f_{*}(L)\right)=0$ for every $i>m$. Hence $h^{i}(L)=0$ for every integer i with $i>m$. Next we prove the second statement. Since $\mathscr{O}\left(K_{X}+t L\right)=f^{*}(A)$, by the Kawamata-Viehweg vanishing theorem ([KMM, Theorem 1-2-5]), we get $R^{i} f_{*}\left(f^{*}(A)\right)=$ 0 for every $i>0$. Since $R^{i} f_{*}\left(f^{*}(A)\right)=R^{i} f_{*}\left(\mathscr{O}_{X}\right) \otimes A$, we get $R^{i} f_{*}\left(\mathscr{O}_{X}\right) \otimes A=0$, and $R^{i} f_{*}\left(\mathscr{O}_{X}\right)=0$ for every $i>0$. Therefore $h^{i}\left(\mathscr{O}_{X}\right)=h^{i}\left(f_{*}\left(\mathscr{O}_{X}\right)\right)=h^{i}\left(\mathscr{O}_{Y}\right)$. By [Ha, Theorem 2.7, Chapter III], we obtain $h^{i}\left(\mathscr{O}_{Y}\right)=0$ for every $i>m$. Hence $h^{i}\left(\mathscr{O}_{X}\right)=0$ for every integer i with $i>m$.

Theorem 1.7. Let (X, L) be a polarized manifold of dimension $n \geq 3$. Then (X, L) is one of the following types.
(1) $\left(\boldsymbol{P}^{n}, \mathscr{O}_{\boldsymbol{P}^{n}}(1)\right)$.
(2) $\left(\boldsymbol{Q}^{n}, \mathscr{O}_{\boldsymbol{Q}^{n}}(1)\right)$.
(3) A scroll over a smooth curve.
(4) $K_{X} \sim-(n-1) L$, that is, (X, L) is a Del Pezzo manifold.
(5) A quadric fibration over a smooth curve.
(6) A scroll over a smooth surface.
(7) Let $\left(X^{\prime}, L^{\prime}\right)$ be a reduction of (X, L).
(7.1) $n=4,\left(X^{\prime}, L^{\prime}\right)=\left(\boldsymbol{P}^{4}, \mathscr{O}_{\boldsymbol{P}^{4}}(2)\right)$.
(7.2) $n=3,\left(X^{\prime}, L^{\prime}\right)=\left(\boldsymbol{Q}^{3}, \mathscr{O}_{\boldsymbol{Q}^{3}}(2)\right)$.
(7.3) $n=3,\left(X^{\prime}, L^{\prime}\right)=\left(\boldsymbol{P}^{3}, \mathscr{O}_{\boldsymbol{P}^{3}}(3)\right)$.
(7.4) $n=3, X^{\prime}$ is a \boldsymbol{P}^{2}-bundle over a smooth curve C with $\left(F^{\prime},\left.L^{\prime}\right|_{F^{\prime}}\right)=$ $\left(\boldsymbol{P}^{2}, \mathscr{O}_{\boldsymbol{P}^{2}}(2)\right)$ for every fiber F^{\prime} of it.
(7.5) $K_{X^{\prime}}+(n-2) L^{\prime}$ is nef.

Proof. See [BeSo, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2, and Theorem 7.3.4].

Lemma 1.8. Let X be a complete normal variety of dimension n defined over the complex number field, and let D_{1} and D_{2} be effective Weil divisors on X. Then $h^{0}\left(D_{1}+D_{2}\right) \geq h^{0}\left(D_{1}\right)+h^{0}\left(D_{2}\right)-1$.

Proof (See also [I, Chapter 6, $\S 6.2$, b]). We put $D_{1}=\sum_{j=1}^{s} n_{j} \Gamma_{j}$ and $D_{2}=$
$\sum_{j=1}^{s} m_{j} \Gamma_{j}$, where Γ_{j} is a prime divisor on X for any integer j with $1 \leq j \leq s$ such that $\Gamma_{k} \neq \Gamma_{l}$ for $k \neq l$, and n_{j} and m_{j} are non-negative integers.

For a divisor B on X we put

$$
L(B):=\{\phi \in R(X) \mid \phi=0 \text { or } B+\operatorname{div}(\phi) \geq 0\}
$$

where $R(X)$ is the rational function field of X. Then $L(B)$ is a vector space, and we put $l(B):=\operatorname{dim} L(B)$.

Let

$$
\begin{aligned}
& D_{1} \wedge D_{2}:=\sum_{j=1}^{s} \min \left\{n_{j}, m_{j}\right\} \Gamma_{j}, \\
& D_{1} \vee D_{2}:=\sum_{j=1}^{s} \max \left\{n_{j}, m_{j}\right\} \Gamma_{j} .
\end{aligned}
$$

Then there are the following relations:

$$
L\left(D_{1}\right) \cap L\left(D_{2}\right)=L\left(D_{1} \wedge D_{2}\right)
$$

and

$$
L\left(D_{1}\right) \cup L\left(D_{2}\right) \subset L\left(D_{1} \vee D_{2}\right)
$$

Here we note that by a theorem on vector spaces we get

$$
\begin{align*}
l\left(B_{1}\right)+l\left(B_{2}\right) & =\operatorname{dim}\left(L\left(B_{1}\right) \cap L\left(B_{2}\right)\right)+\operatorname{dim}\left(L\left(B_{1}\right)+L\left(B_{2}\right)\right) \\
& \leq l\left(B_{1} \wedge B_{2}\right)+l\left(B_{1} \vee B_{2}\right) \tag{1.8.1}
\end{align*}
$$

for any effective divisors B_{1} and B_{2} on X.
Let Z be the fixed part of $\left|D_{1}\right|$, and we put $D_{1}^{\prime}=D_{1}-Z$. Then $l\left(D_{1}\right)=l\left(D_{1}^{\prime}\right)$ and by taking a general member of $\left|D_{1}^{\prime}\right|$, we may assume that $D_{1}^{\prime} \wedge D_{2}=0$ and $D_{1}^{\prime} \vee D_{2}=D_{1}^{\prime}+D_{2}$. By (1.8.1), we get

$$
\begin{aligned}
l\left(D_{1}\right)+l\left(D_{2}\right) & =l\left(D_{1}^{\prime}\right)+l\left(D_{2}\right) \\
& \leq l(0)+l\left(D_{1}^{\prime}+D_{2}\right) \\
& \leq 1+l\left(D_{1}+D_{2}-Z\right) \\
& \leq 1+l\left(D_{1}+D_{2}\right) .
\end{aligned}
$$

Since $h^{0}\left(D_{1}+D_{2}\right)=l\left(D_{1}+D_{2}\right)$ and $h^{0}\left(D_{i}\right)=l\left(D_{i}\right)$ for $i=1,2$, we get the assertion.
Lemma 1.9. Let X be a smooth projective variety of dimension $n \geq 2$ and let L be a divisor on X such that $\mathrm{Bs}|L|=\varnothing$. Let D be an effective divisor on X. Then
$h^{0}\left(\left.D\right|_{X_{1}}\right)>0$ for a general $X_{1} \in|L|$.
Proof. If $\mathscr{O}(D)=\mathscr{O}_{X}$, then this is true.
So we may assume that D is a nonzero effective divisor.
We use the following exact sequence:

$$
0 \rightarrow \mathscr{O}\left(D-X_{1}\right) \rightarrow \mathscr{O}(D) \rightarrow \mathscr{O}\left(D_{X_{1}}\right) \rightarrow 0
$$

By this exact sequence, we get

$$
0 \rightarrow H^{0}\left(D-X_{1}\right) \rightarrow H^{0}(D) \rightarrow H^{0}\left(\left.D\right|_{X_{1}}\right)
$$

Assume that $h^{0}\left(\left.D\right|_{X_{1}}\right)=0$. Then $h^{0}\left(D-X_{1}\right)=h^{0}(D)>0$. Since $h^{0}\left(X_{1}\right)=h^{0}(L) \geq$ $n+1$, by Lemma 1.8 we get

$$
\begin{aligned}
h^{0}(D) & \geq h^{0}\left(D-X_{1}\right)+h^{0}\left(X_{1}\right)-1 \\
& \geq h^{0}\left(D-X_{1}\right)+n \\
& >h^{0}\left(D-X_{1}\right)
\end{aligned}
$$

and this is a contradiction. Hence $h^{0}\left(\left.D\right|_{X_{1}}\right) \neq 0$.
Proposition 1.10. Let Y be a smooth projective variety of dimension 3 and let \mathscr{E} be an ample vector bundle of rank $r \geq 3$ on Y. Assume that $\left(Y, c_{1}(\mathscr{E})\right)$ is a Del Pezzo fibration over a smooth curve C. Let $\pi: Y \rightarrow C$ be its morphism. Then there exist vector bundles \mathscr{F} and \mathscr{G} on C with $\operatorname{rank} \mathscr{F}=3$ and $\operatorname{rank} \mathscr{G}=3$ such that $Y=\boldsymbol{P}_{C}(\mathscr{F})$ and $\mathscr{E} \cong H(\mathscr{F}) \otimes \pi^{*}(\mathscr{G})$.

Proof. Since $\operatorname{rank}(\mathscr{E})=r \geq 3$ and \mathscr{E} is ample, we have

$$
\begin{equation*}
c_{1}(\mathscr{E}) Z \geq 3 \tag{1.10.a}
\end{equation*}
$$

for any rational curve Z on Y. Hence $\left(F,\left.c_{1}(\mathscr{E})\right|_{F}\right) \cong\left(\boldsymbol{P}^{2}, \mathscr{O}_{\boldsymbol{P}^{2}}(3)\right)$ for any general fiber F of π because any general fiber of π is a Del Pezzo surface.

On the other hand, if π has a singular fiber F^{\prime}, then by $[\mathbf{F j 4} 4,(2.9),(2.12),(2.19)$ and $(2.20)]$ there exists a rational curve Z^{\prime} on F^{\prime} such that $c_{1}(\mathscr{E}) Z^{\prime} \leq 2$.

Therefore, by (1.10.a), π has no singular fibers, that is, any fiber of π is \boldsymbol{P}^{2}. Hence Y is a P^{2}-bundle on C and there exists a vector bundle \mathscr{F} of rank 3 on C such that $Y \cong \boldsymbol{P}_{C}(\mathscr{F})$. Since $\operatorname{rank}(\mathscr{E}) \geq 3$ and $\left.c_{1}(\mathscr{E})\right|_{F}=\mathscr{O}_{\boldsymbol{P}^{2}}(3)$, we get $\left.\mathscr{E}\right|_{F} \cong \mathscr{O}_{\boldsymbol{P}^{2}}(1)^{\oplus 3}$ for any fiber F of π.

Therefore there exists a vector bundle \mathscr{G} of rank 3 on C such that $\mathscr{E} \cong H(\mathscr{F}) \otimes \pi^{*}(\mathscr{G})$. This completes the proof.

Remark 1.10.1. Let (X, L) be a polarized manifold. Assume that (X, L) is of the type (4.2) in [$\mathbf{F k}$, Theorem 3.6], that is, (X, L) is a scroll over a smooth projective 3 -fold Y and \mathscr{E} is an ample vector bundle of rank 3 on Y such that $X=\boldsymbol{P}_{Y}(\mathscr{E}), L=H(\mathscr{E})$,
and $\left(Y, c_{1}(\mathscr{E})\right)$ is a Del Pezzo fibration over a smooth curve C. Let $\pi: Y \rightarrow C$ be its morphism. Then by Proposition 1.10, there exist vector bundles \mathscr{F} and \mathscr{G} on C with $\operatorname{rank} \mathscr{F}=3$ and $\operatorname{rank} \mathscr{G}=3$ such that $Y=\boldsymbol{P}_{C}(\mathscr{F})$ and $\mathscr{E} \cong H(\mathscr{F}) \otimes \pi^{*}(\mathscr{G})$.

2. Definition and some general results.

In this section, first we give the definition of the i-th Δ-genus of quasi-polarized varieties, which is a generalization of the Δ-genus of quasi-polarized varieties.

Definition 2.1. Let (X, L) be a quasi-polarized variety of dimension n. For every integer i with $0 \leq i \leq n$, the i-th Δ-genus $\Delta_{i}(X, L)$ of (X, L) is defined by the following formula:

$$
\Delta_{i}(X, L)= \begin{cases}0 & \text { if } i=0 \\ g_{i-1}(X, L)-\Delta_{i-1}(X, L) & \text { if } 1 \leq i \leq n \\ +(n-i+1) h^{i-1}\left(\mathscr{O}_{X}\right)-h^{i-1}(L)\end{cases}
$$

where $g_{i-1}(X, L)$ is the $(i-1)$-th sectional geometric genus of (X, L).

Remark 2.2.

(1) If $i=1$, then $\Delta_{1}(X, L)$ is equal to the Δ-genus of $(X, L)(\operatorname{See}[\mathbf{F j} 1])$.
(2) In this section, we will give another reason why this invariant is a generalization of the Δ-genus of quasi-polarized varieties (See Theorem 2.8).

Proposition 2.3. Let (X, L) be a quasi-polarized variety of dimension n. Then for every integer i with $1 \leq i \leq n$

$$
\begin{aligned}
\Delta_{i}(X, L)= & (-1)^{i-1} \sum_{j=0}^{i-1} \chi_{n-j}(X, L)+(n-i+1)(-1)^{i-1}\left(\sum_{k=0}^{i-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right) \\
& +(-1)^{i}\left(\sum_{k=0}^{i-1}(-1)^{k} h^{k}(L)\right)
\end{aligned}
$$

Proof. We prove this proposition by induction.
If $i=1$, then

$$
\begin{aligned}
\Delta_{1}(X, L) & =n+L^{n}-h^{0}(L) \\
& =\chi_{n}(X, L)+n h^{0}\left(\mathscr{O}_{X}\right)-h^{0}(L)
\end{aligned}
$$

This is true.
Assume that the assertion is true for $i=t \geq 1$. We consider the case where $i=t+1$. Then

$$
\begin{aligned}
\Delta_{t+1}(X, L)=g_{t}(X, L)-\Delta_{t}(X, L) & +(n-t) h^{t}\left(\mathscr{O}_{X}\right)-h^{t}(L) \\
=g_{t}(X, L)-(-1)^{t-1}\{ & \sum_{j=0}^{t-1} \chi_{n-j}(X, L)+(n-t+1)\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right) \\
& \left.-\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}(L)\right)\right\}+(n-t) h^{t}\left(\mathscr{O}_{X}\right)-h^{t}(L) .
\end{aligned}
$$

By the definition of the t-th sectional geometric genus of (X, L), we get

$$
g_{t}(X, L)=(-1)^{t}\left(\chi_{n-t}(X, L)-\chi\left(\mathscr{O}_{X}\right)\right)+\sum_{j=0}^{n-t}(-1)^{n-t-j} h^{n-j}\left(\mathscr{O}_{X}\right) .
$$

Hence

$$
\begin{aligned}
\Delta_{t+1}(X, L)= & (-1)^{t}\left(\chi_{n-t}(X, L)-\chi\left(\mathscr{O}_{X}\right)\right)+\sum_{j=0}^{n-t}(-1)^{n-t-j} h^{n-j}\left(\mathscr{O}_{X}\right) \\
& +(-1)^{t}\left\{\sum_{j=0}^{t-1} \chi_{n-j}(X, L)+(n-t+1)\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right)\right. \\
& \left.-\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}(L)\right)\right\}+(n-t) h^{t}\left(\mathscr{O}_{X}\right)-h^{t}(L) \\
= & (-1)^{t} \sum_{j=0}^{t} \chi_{n-j}(X, L)-(-1)^{t} \sum_{k=0}^{t}(-1)^{k} h^{k}(L) \\
& +(-1)^{t+1} \chi\left(\mathscr{O}_{X}\right)+\sum_{j=0}^{n-t}(-1)^{n-t-j} h^{n-j}\left(\mathscr{O}_{X}\right) \\
& +(-1)^{t}(n-t+1)\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right)+(n-t) h^{t}\left(\mathscr{O}_{X}\right) \\
= & (-1)^{t} \sum_{j=0}^{t} \chi_{n-j}(X, L)+(-1)^{t+1} \sum_{k=0}^{t}(-1)^{k} h^{k}(L) \\
& +(-1)^{t+1} \chi\left(\mathscr{O}_{X}\right)-(-1)^{t+1} \sum_{j=0}^{n-t}(-1)^{n-j} h^{n-j}\left(\mathscr{O}_{X}\right) \\
& +(-1)^{t}(n-t+1)\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right)+(n-t) h^{t}\left(\mathscr{O}_{X}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
&(-1)^{t+1} \chi\left(\mathscr{O}_{X}\right)-(-1)^{t+1} \sum_{j=0}^{n-t}(-1)^{n-j} h^{n-j}\left(\mathscr{O}_{X}\right) \\
&+(-1)^{t}(n-t+1)\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right)+(n-t) h^{t}\left(\mathscr{O}_{X}\right) \\
&=(-1)^{t+1}\left(\sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right)+(-1)^{t}(n-t+1) \sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)+(n-t) h^{t}\left(\mathscr{O}_{X}\right) \\
&=(-1)^{t}(n-t) \sum_{k=0}^{t-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)+(n-t) h^{t}\left(\mathscr{O}_{X}\right) \\
&=(-1)^{t}(n-t) \sum_{k=0}^{t}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right) .
\end{aligned}
$$

Therefore we get the assertion.
Next we consider the case where $i=n$. This result is very useful to calculate the i-th Δ-genus (see Example 2.12 below).

Proposition 2.4. Let (X, L) be a quasi-polarized variety of dimension n. Then

$$
\Delta_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L) .
$$

Proof. By definition of the n-th Δ-genus of (X, L), we get

$$
\begin{aligned}
& \Delta_{n}(X, L) \\
&= g_{n-1}(X, L)-\Delta_{n-1}(X, L)+h^{n-1}\left(\mathscr{O}_{X}\right)-h^{n-1}(L) \\
&= g_{n-1}(X, L)-g_{n-2}(X, L)+\Delta_{n-2}(X, L)+\left(h^{n-1}\left(\mathscr{O}_{X}\right)-2 h^{n-2}\left(\mathscr{O}_{X}\right)\right) \\
&-\left(h^{n-1}(L)-h^{n-2}(L)\right) \\
&= \cdots \\
&= \sum_{i=0}^{n-1}(-1)^{n-1-i} g_{i}(X, L)+\sum_{i=0}^{n-1}(-1)^{n-1-i}(n-i) h^{i}\left(\mathscr{O}_{X}\right)-\sum_{i=0}^{n-1}(-1)^{n-1-i} h^{i}(L) \\
&=(-1)^{n-1}\left(\chi_{1}(X, L)+\chi_{2}(X, L)+\cdots+\chi_{n}(X, L)\right)+(-1)^{n} n \chi\left(\mathscr{O}_{X}\right) \\
&+\sum_{i=0}^{n-1} \sum_{j=0}^{n-i}(-1)^{-1-j} h^{n-j}\left(\mathscr{O}_{X}\right)+\sum_{i=0}^{n-1}(-1)^{n-1-i}(n-i) h^{i}\left(\mathscr{O}_{X}\right)-\sum_{i=0}^{n-1}(-1)^{n-1-i} h^{i}(L) \\
&=(-1)^{n-1}(\chi(L))+(-1)^{n} \chi\left(\mathscr{O}_{X}\right)+(-1)^{n} n \chi\left(\mathscr{O}_{X}\right) \\
&+\sum_{i=0}^{n-1} \sum_{j=0}^{n-i}(-1)^{-1-j} h^{n-j}\left(\mathscr{O}_{X}\right)+\sum_{i=0}^{n-1}(-1)^{n-1-i}(n-i) h^{i}\left(\mathscr{O}_{X}\right)-\sum_{i=0}^{n-1}(-1)^{n-1-i} h^{i}(L) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{i=0}^{n-1} & \sum_{j=0}^{n-i}(-1)^{-1-j} h^{n-j}\left(\mathscr{O}_{X}\right) \\
= & \left(-h^{n}\left(\mathscr{O}_{X}\right)+\cdots+(-1)^{n-1} h^{0}\left(\mathscr{O}_{X}\right)\right)+\left(-h^{n}\left(\mathscr{O}_{X}\right)+\cdots+(-1)^{n-2} h^{1}\left(\mathscr{O}_{X}\right)\right) \\
& +\cdots+\left(-h^{n}\left(\mathscr{O}_{X}\right)+h^{n-1}\left(\mathscr{O}_{X}\right)\right) \\
= & -n h^{n}\left(\mathscr{O}_{X}\right)+n h^{n-1}\left(\mathscr{O}_{X}\right)-(n-1) h^{n-2}\left(\mathscr{O}_{X}\right)+\cdots+(-1)^{n-1} h^{0}\left(\mathscr{O}_{X}\right),
\end{aligned}
$$

we get

$$
\begin{aligned}
& \sum_{i=0}^{n-1} \sum_{j=0}^{n-i}(-1)^{-1-j} h^{n-j}\left(\mathscr{O}_{X}\right)+\sum_{i=0}^{n-1}(-1)^{n-1-i}(n-i) h^{i}\left(\mathscr{O}_{X}\right) \\
& \quad=h^{n}\left(\mathscr{O}_{X}\right)-(-1)^{n}(n+1) \chi\left(\mathscr{O}_{X}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
\Delta_{n}(X, L)= & (-1)^{n-1}(\chi(L))+(-1)^{n} \chi\left(\mathscr{O}_{X}\right)+(-1)^{n} n \chi\left(\mathscr{O}_{X}\right)+h^{n}\left(\mathscr{O}_{X}\right) \\
& -(-1)^{n}(n+1) \chi\left(\mathscr{O}_{X}\right)-\sum_{i=0}^{n-1}(-1)^{n-1-i} h^{i}(L) \\
= & h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L) .
\end{aligned}
$$

This completes the proof of Proposition 2.4.
Corollary 2.5. Let (X, L) be a quasi-polarized manifold of dimension n. Assume that $\kappa(X) \neq \operatorname{dim} X$. Then $\Delta_{n}(X, L) \geq 0$.

Proof. By the Serre duality, we get $h^{n}(L)=h^{0}\left(K_{X}-L\right)$. If $h^{n}(L) \neq 0$, then there exists an effective divisor D on X such that $K_{X} \sim L+D$. Since L is big, we obtain that K_{X} is big. But this is impossible. Hence $h^{n}(L)=0$. Therefore by Proposition 2.4, $\Delta_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L)=h^{n}\left(\mathscr{O}_{X}\right) \geq 0$. This completes the proof.

Corollary 2.6. Let (X, L) be a quasi-polarized manifold of dimension n. Assume that $h^{0}(L)>0$. Then $\Delta_{n}(X, L) \geq 0$.

Proof. By Proposition 2.4, we have

$$
\Delta_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L)
$$

By the Serre duality, we have

$$
\Delta_{n}(X, L)=h^{0}\left(K_{X}\right)-h^{0}\left(K_{X}-L\right)
$$

If $h^{0}\left(K_{X}-L\right)=0$, then $\Delta_{n}(X, L)=h^{0}\left(K_{X}\right) \geq 0$.
If $h^{0}\left(K_{X}-L\right) \neq 0$, then by Lemma 1.8 we get

$$
\begin{aligned}
\Delta_{n}(X, L) & =h^{0}\left(K_{X}\right)-h^{0}\left(K_{X}-L\right) \\
& \geq h^{0}(L)-1 \\
& \geq 0
\end{aligned}
$$

This completes the proof.
Definition 2.7. Let (X, L) be a quasi-polarized variety of dimension n. Then L has a k-ladder if there exists an irreducible and reduced subvariety X_{i} of X_{i-1} such that $X_{i} \in\left|L_{i-1}\right|$ for every integer i with $1 \leq i \leq k$, where $X_{0}:=X, L_{0}:=L$, and $L_{i}:=\left.L_{i-1}\right|_{X_{i}}$.

Notation 2.7.1. Let (X, L) be a quasi-polarized variety of dimension n, and let k be an integer with $1 \leq k \leq n-1$. Assume that L has a k-ladder. We put $X_{0}:=X$ and $L_{0}:=L$. Let $X_{i} \in\left|L_{i-1}\right|$ be an irreducible and reduced member, and $L_{i}:=\left.L_{i-1}\right|_{X_{i}}$ for every integer i with $1 \leq i \leq k$. Let $r_{p, q}: H^{p}\left(X_{q}, L_{q}\right) \rightarrow H^{p}\left(X_{q+1}, L_{q+1}\right)$ be the natural map. If $h^{0}\left(L_{k}\right)>0$, then we take an element $X_{k+1} \in\left|L_{k}\right|$ and we put $L_{k+1}=\left.L_{k}\right|_{X_{k+1}}$.

The following conditions are used in Theorem 2.8 and Corollary 2.9.
2.7.2. Let (X, L) be a quasi-polarized variety of dimension n. Let i and j be integers with $1 \leq i \leq n$ and $1 \leq j \leq i$. (We use notation in Notation 2.7.1.)

Condition $A_{1}(i): L$ has an $(n-i)$-ladder.
Condition $A_{2}(i): h^{0}\left(L_{n-i}\right)>0$.
Condition $B(i, j): \sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)=\cdots=\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{n-i}}\right)$.
In Theorem 2.8 and Corollary 2.9, we use Notation 2.7.1.
ThEOREM 2.8. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i and j be integers with $1 \leq i \leq n-1$ and $1 \leq j \leq i$. Assume that Condition $A_{1}(i)$ and Condition $B(i, j)$ in 2.7.2 are satisfied. Then for every integer s with $1 \leq s \leq n-i$

$$
\Delta_{j}(X, L)=\Delta_{j}\left(X_{s}, L_{s}\right)+\sum_{k=0}^{s-1} \operatorname{dim} \operatorname{Coker}\left(r_{j-1, k}\right)
$$

(2) Let i be an integer with $1 \leq i \leq n$. Assume that Condition $A_{1}(i)$, Condition $A_{2}(i)$, and Condition $B(i, i)$ in 2.7.2 are satisfied. Then

$$
\Delta_{i}(X, L)=\sum_{k=0}^{n-i} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, k}\right)
$$

Proof. (1) Assume that $1 \leq i \leq n-1$. By Proposition 2.3 we have

$$
\begin{aligned}
\Delta_{j}(X, L)= & (-1)^{j-1} \sum_{k=0}^{j-1} \chi_{n-k}(X, L)+(n-j+1)(-1)^{j-1}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right) \\
& +(-1)^{j}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}(L)\right) .
\end{aligned}
$$

By the exact sequence

$$
0 \rightarrow \mathscr{O}_{X_{t}} \rightarrow L_{t} \rightarrow L_{t+1} \rightarrow 0
$$

we get the following exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(\mathscr{O}_{X_{t}}\right) \rightarrow H^{0}\left(L_{t}\right) \rightarrow H^{0}\left(L_{t+1}\right) \\
& \rightarrow H^{1}\left(\mathscr{O}_{X_{t}}\right) \rightarrow H^{1}\left(L_{t}\right) \rightarrow H^{1}\left(L_{t+1}\right) \\
& \rightarrow \cdots \\
& \rightarrow H^{j-1}\left(\mathscr{O}_{X_{t}}\right) \rightarrow H^{j-1}\left(L_{t}\right) \rightarrow H^{j-1}\left(L_{t+1}\right)
\end{aligned}
$$

$$
\rightarrow \cdots
$$

By this exact sequence, we have

$$
\begin{gathered}
(-1)^{j-1} \sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{t}}\right)-(-1)^{j-1} \sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(L_{t}\right) \\
=(-1)^{j} \sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(L_{t+1}\right)+\operatorname{dim} \operatorname{Coker}\left(r_{j-1, t}\right)
\end{gathered}
$$

for every integer t with $0 \leq t \leq n-i-1$. Furthermore we have $\chi_{s}\left(X_{t}, L_{t}\right)=$ $\chi_{s-1}\left(X_{t+1}, L_{t+1}\right)$.

By Condition $B(i, j)$ in 2.7.2, we have

$$
\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)=\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{1}}\right)=\cdots=\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{n-i}}\right)
$$

Hence

$$
\begin{aligned}
\Delta_{j}(X, L)= & (-1)^{j-1} \sum_{k=0}^{j-1} \chi_{n-k}(X, L)+(n-j+1)(-1)^{j-1}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X}\right)\right) \\
& +(-1)^{j}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}(L)\right)
\end{aligned}
$$

$$
\begin{aligned}
&=(-1)^{j-1} \sum_{k=0}^{j-1} \chi_{n-k-1}\left(X_{1}, L_{1}\right)+(n-j)(-1)^{j-1}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{1}}\right)\right) \\
&+(-1)^{j}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(L_{1}\right)\right)+\operatorname{dim} \operatorname{Coker}\left(r_{j-1,0}\right) \\
& \vdots \\
&=(-1)^{j-1} \sum_{k=0}^{j-1} \chi_{i-k}\left(X_{n-i}, L_{n-i}\right)+(i-j+1)(-1)^{j-1}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(\mathscr{O}_{X_{n-i}}\right)\right) \\
&+(-1)^{j}\left(\sum_{k=0}^{j-1}(-1)^{k} h^{k}\left(L_{n-i}\right)\right)+\sum_{k=0}^{n-i-1} \operatorname{dim} \operatorname{Coker}\left(r_{j-1, k}\right) .
\end{aligned}
$$

Namely

$$
\begin{aligned}
\Delta_{j}(X, L) & =\Delta_{j}\left(X_{1}, L_{1}\right)+\operatorname{dim} \operatorname{Coker}\left(r_{j-1,0}\right) \\
& \vdots \\
& =\Delta_{j}\left(X_{n-i}, L_{n-i}\right)+\sum_{k=0}^{n-i-1} \operatorname{dim} \operatorname{Coker}\left(r_{j-1, k}\right)
\end{aligned}
$$

(2) If $i=n$, then by Proposition 2.4 we have

$$
\Delta_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L) .
$$

By Condition $A_{2}(n)$ in 2.7.2, there exists the following exact sequence.

$$
0 \rightarrow \mathscr{O}_{X} \rightarrow L \rightarrow L_{1} \rightarrow 0
$$

Hence we get the exact sequence

$$
H^{n-1}(L) \rightarrow H^{n-1}\left(L_{1}\right) \rightarrow H^{n}\left(\mathscr{O}_{X}\right) \rightarrow H^{n}(L) \rightarrow 0
$$

and we have $h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L)=\operatorname{dim} \operatorname{Coker}\left(r_{n-1,0}\right)$. Hence we get the assertion for $i=n$.
Assume that $1 \leq i \leq n-1$. Then by (1) above and Proposition 2.4, we get

$$
\begin{aligned}
\Delta_{i}(X, L) & =\Delta_{i}\left(X_{n-i}, L_{n-i}\right)+\sum_{j=0}^{n-i-1} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, j}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right)+\sum_{j=0}^{n-i-1} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, j}\right) .
\end{aligned}
$$

Here we use Condition $A_{2}(i)$ in 2.7.2. Then there is the following exact sequence:

$$
0 \rightarrow \mathscr{O}_{X_{n-i}} \rightarrow L_{n-i} \rightarrow L_{n-i+1} \rightarrow 0
$$

Since $H^{i-1}\left(L_{n-i}\right) \rightarrow H^{i-1}\left(L_{n-i+1}\right) \rightarrow H^{i}\left(\mathscr{O}_{X_{n-i}}\right) \rightarrow H^{i}\left(L_{n-i}\right) \rightarrow 0$ is exact, we get $h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right)=\operatorname{dim} \operatorname{Coker}\left(r_{i-1, n-i}\right)$. Hence

$$
\Delta_{i}(X, L)=\sum_{j=0}^{n-i} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, j}\right) .
$$

This completes the proof.
Remark 2.8.1. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i be an integer with $1 \leq i \leq n-1$. Assume that L has an $(n-i)$-ladder. We use notation in Notation 2.7.1. If $h^{r}\left(-L_{s}\right)=0$ for every integers s and r with $0 \leq s \leq n-i-1$ and $0 \leq r \leq i$, we have $h^{r}\left(\mathscr{O}_{X}\right)=h^{r}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{r}\left(\mathscr{O}_{X_{n-i}}\right)$ for every integer r with $0 \leq r \leq i-1$. In particular, we get Condition $B(i, j)$ in 2.7 .2 for every integer j with $1 \leq j \leq i$.

Hence, for example, if X is smooth and $\mathrm{Bs}|L|=\varnothing$, then, by the Kawamata-Viehweg vanishing theorem, Condition $B(i, j)$ in 2.7.2 holds for every integers i and j with $1 \leq$ $i \leq n-1$ and $1 \leq j \leq i$.
(2) If L has an $(n-1)$-ladder, then Condition $B(1,1)$ in 2.7.2 always holds.

Corollary 2.9. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i and j be integers with $1 \leq i \leq n-1$ and $1 \leq j \leq i$. Assume that Condition $A_{1}(i)$ and Condition $B(i, j)$ in 2.7.2 are satisfied. Then

$$
\Delta_{j}(X, L) \geq \Delta_{j}\left(X_{1}, L_{1}\right) \geq \cdots \geq \Delta_{j}\left(X_{n-i}, L_{n-i}\right)
$$

(2) Let i be an integer with $1 \leq i \leq n$. Assume that Condition $A_{1}(i)$, Condition $A_{2}(i)$, and Condition $B(i, i)$ in 2.7.2 are satisfied. Then

$$
\Delta_{i}(X, L) \geq \Delta_{i}\left(X_{1}, L_{1}\right) \geq \cdots \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \geq 0
$$

Proposition 2.10. Let (X, L) be a polarized manifold of dimension $n \geq 3$. Assume that there exists a polarized manifold (Y, A) such that $\pi: X \rightarrow Y$ is a one point blowing up and $L=\pi^{*}(A)-E$, where E is the reduced exceptional divisor of π. Then

$$
\Delta_{1}(X, L) \leq \Delta_{1}(Y, A)
$$

and

$$
\Delta_{j}(X, L)=\Delta_{j}(Y, A)
$$

for every integer j with $2 \leq j \leq n$.
Proof. We consider the following exact sequence:

$$
0 \rightarrow L \rightarrow \pi^{*}(A) \rightarrow \mathscr{O}_{E} \rightarrow 0
$$

Here we remark that $E \cong \boldsymbol{P}^{n-1}$. Then we get the following exact sequence:

$$
\begin{aligned}
& 0 \rightarrow H^{0}(L) \\
& \rightarrow H^{0}\left(\pi^{*}(A)\right) \rightarrow H^{0}\left(\mathscr{O}_{E}\right) \\
& \rightarrow H^{1}(L)
\end{aligned} \rightarrow H^{1}\left(\pi^{*}(A)\right) \rightarrow 0
$$

because $h^{1}\left(\mathscr{O}_{E}\right)=0$.
(A) The case of $\Delta_{1}(X, L)$.

Then since $h^{0}(A)=h^{0}\left(\pi^{*}(A)\right) \leq h^{0}(L)+h^{0}\left(\mathscr{O}_{E}\right)=h^{0}(L)+1$ and $A^{n}=L^{n}+1$, we get

$$
\begin{aligned}
\Delta_{1}(X, L) & =n+L^{n}-h^{0}(L) \\
& \leq n+A^{n}-1-h^{0}(A)+1 \\
& =n+A^{n}-h^{0}(A) \\
& =\Delta_{1}(Y, A) .
\end{aligned}
$$

(B) The case of $\Delta_{2}(X, L)$.

Then by definition

$$
\Delta_{2}(X, L)=g_{1}(X, L)-\Delta_{1}(X, L)+(n-1) h^{1}\left(\mathscr{O}_{X}\right)-h^{1}(L) .
$$

Here we remark that $g_{1}(X, L)=g_{1}(Y, A)$ by Remark 1.4.1(1) and $h^{1}\left(\mathscr{O}_{X}\right)=h^{1}\left(\mathscr{O}_{Y}\right)$. By the exact sequence ($\boldsymbol{\&}$), we get

$$
h^{0}(L)-h^{0}(A)+h^{0}\left(\mathscr{O}_{E}\right)-h^{1}(L)+h^{1}\left(\pi^{*}(A)\right)=0
$$

Hence $h^{0}(L)-h^{1}(L)=h^{0}(A)-h^{1}\left(\pi^{*}(A)\right)-1$. Therefore

$$
\begin{aligned}
\Delta_{1}(X, L)+h^{1}(L) & =n+L^{n}-h^{0}(L)+h^{1}(L) \\
& =n+A^{n}-h^{0}(A)+h^{1}\left(\pi^{*}(A)\right) \\
& =\Delta_{1}(Y, A)+h^{1}\left(\pi^{*}(A)\right) .
\end{aligned}
$$

Since π is a one point blowing up, $R^{i} \pi_{*} \mathscr{O}_{X}=0$ for every integer i with $i \geq 1$. Hence $h^{1}(A)=h^{1}\left(\pi^{*}(A)\right)$. Therefore $\Delta_{1}(X, L)+h^{1}(L)=\Delta_{1}(Y, A)+h^{1}(A)$ and

$$
\begin{aligned}
\Delta_{2}(X, L) & =g_{1}(X, L)-\Delta_{1}(X, L)+(n-1) h^{1}\left(\mathscr{O}_{X}\right)-h^{1}(L) \\
& =g_{1}(Y, A)-\Delta_{1}(Y, A)+(n-1) h^{1}\left(\mathscr{O}_{Y}\right)-h^{1}(A) \\
& =\Delta_{2}(Y, A) .
\end{aligned}
$$

(C) The case of $\Delta_{j}(X, L)$ for $j \geq 3$.

We remark that $g_{i}(X, L)=g_{i}(Y, A)$ by Remark 1.4.1(1) and $h^{i}\left(\mathscr{O}_{X}\right)=h^{i}\left(\mathscr{O}_{Y}\right)$ for every integer i with $i \geq 1$. Since $R^{i} \pi_{*}\left(\mathscr{O}_{X}\right)=0$ and $h^{i}\left(\mathscr{O}_{E}\right)=0$ for every integer i with $i \geq 1$, we get $h^{i}(L)=h^{i}\left(\pi^{*}(A)\right)=h^{i}(A)$ for every integer i with $i \geq 1$. Hence we get the assertion by using induction.

By using this we can prove the following:
Corollary 2.11. Let (X, L) be a polarized manifold of dimension $n \geq 3$, and let $\left(X^{\prime}, L^{\prime}\right)$ be a reduction of (X, L). Then

$$
\Delta_{1}(X, L) \leq \Delta_{1}\left(X^{\prime}, L^{\prime}\right)
$$

and

$$
\Delta_{j}(X, L)=\Delta_{j}\left(X^{\prime}, L^{\prime}\right)
$$

for every integer j with $2 \leq j \leq n$.
Next we calculate the i-th Δ-genus of some examples of polarized manifolds for an integer i with $i \geq 2$.

Example 2.12.

(1) If (X, L) is $\left(\boldsymbol{P}^{n}, \mathscr{O}_{\boldsymbol{P}^{n}}(1)\right)$ or $\left(\boldsymbol{Q}^{n}, \mathscr{O}_{Q^{n}}(1)\right)$, then L is very ample, $h^{i}\left(\mathscr{O}_{X}\right)=0$ and $h^{i}(L)=0$ for $1 \leq i$, and $g_{1}(X, L)=0$ and $\Delta_{1}(X, L)=0$. By Theorem 1.3(2), we have $g_{i}(X, L)=0$ for every integer i with $i \geq 2$ (see also [Fk, Example 2.10(1), (2)]). Hence $\Delta_{i}(X, L)=0$ for $i \geq 2$.
(2) Assume that (X, L) is a Del Pezzo manifold, that is, $K_{X}+(n-1) L \sim \mathscr{O}_{X}$. Then $h^{i}(L)=0$ and $h^{i}\left(\mathscr{O}_{X}\right)=h^{n-i}\left(K_{X}\right)=0$ for $i \geq 1$. In this case, $\Delta_{1}(X, L)=1$ and $g_{1}(X, L)=1$. By Theorem 1.3(2), we have $g_{i}(X, L)=0$ for every integer i with $i \geq 2$. By the definition of the i-th Δ-genus, we have $\Delta_{i}(X, L)=0$ for $i \geq 2$.
(3.1) Assume that (X, L) is $\left(\boldsymbol{P}^{4}, \mathscr{O}_{\boldsymbol{P}^{4}}(2)\right)$ (resp. $\left(\boldsymbol{P}^{3}, \mathscr{O}_{\boldsymbol{P}^{3}}(3)\right)$ and $\left.\left(\boldsymbol{Q}^{3}, \mathscr{O}_{\boldsymbol{Q}^{3}}(2)\right)\right)$. Here we note that $h^{i}\left(\mathscr{O}_{X}\right)=0$ and $h^{i}(L)=0$ for every integer i with $i \geq 1$. Since $g_{1}(X, L)=5$ (resp. 10,5) and $\Delta_{1}(X, L)=5$ (resp. 10, 5), we get $\Delta_{2}(X, L)=0$. By the definition of the i-th Δ-genus, $\Delta_{i}(X, L)=0$ for every integer i with $i \geq 3$ because $g_{i}(X, L)=0$ for every integer i with $i \geq 2$ by Theorem 1.3(2) (see also [Fk, Example 2.10, (4), (5), (6)]). (3.2) Assume that (X, L) is a \boldsymbol{P}^{2}-bundle over a smooth curve C with $\left.L\right|_{F} \cong \mathscr{O}_{\boldsymbol{P}^{2}}(2)$ for every fiber F. Let $f: X \rightarrow C$ be its fibration. Then $R^{i} f_{*}(L)=0$ for any $i>0$ because $\left.L\right|_{F} \cong \mathscr{O}_{\boldsymbol{P}^{2}}(2)$ and $F=\boldsymbol{P}^{2}$. Therefore $h^{i}(L)=h^{i}\left(f_{*}(L)\right)$. In particular $h^{i}(L)=0$ for every integer i with $i \geq 2>\operatorname{dim} C$. By the Hirzebruch-Riemann-Roch theorem ([Hi, Chapter IV]),

$$
\mathscr{X}(L)=\frac{1}{6}(L)^{3}-\frac{1}{4} K_{X}(L)^{2}+\frac{1}{12}\left(\left(K_{X}\right)^{2}+c_{2}(X)\right) L+\chi\left(\mathscr{O}_{X}\right) .
$$

Since $\mathscr{X}(L)=h^{0}(L)-h^{1}(L)$ and $\chi\left(\mathscr{O}_{X}\right)=h^{0}\left(\mathscr{O}_{X}\right)-h^{1}\left(\mathscr{O}_{X}\right)$, we have

$$
h^{0}(L)-h^{1}(L)=\frac{1}{6}(L)^{3}-\frac{1}{4} K_{X}(L)^{2}+\frac{1}{12}\left(\left(K_{X}\right)^{2}+c_{2}(X)\right) L+1-h^{1}\left(\mathscr{O}_{X}\right) .
$$

By the definition of the second Δ-genus and (\dagger),

$$
\begin{aligned}
\Delta_{2}(X, L) & =g_{1}(X, L)-\Delta_{1}(X, L)+2 h^{1}\left(\mathscr{O}_{X}\right)-h^{1}(L) \\
& =1+\frac{1}{2}\left(K_{X}+2 L\right)(L)^{2}-\left(3+(L)^{3}-h^{0}(L)\right)+2 h^{1}\left(\mathscr{O}_{X}\right)-h^{1}(L) \\
& =-2+\frac{1}{2} K_{X}(L)^{2}+2 h^{1}\left(\mathscr{O}_{X}\right)+h^{0}(L)-h^{1}(L) \\
& =-1+\frac{1}{6}(L)^{3}+\frac{1}{4} K_{X}(L)^{2}+\frac{1}{12}\left(\left(K_{X}\right)^{2}+c_{2}(X)\right) L+h^{1}\left(\mathscr{O}_{X}\right) \\
& =-1+h^{1}\left(\mathscr{O}_{X}\right)+\frac{1}{12}\left(\left(K_{X}+2 L\right)\left(K_{X}+L\right)+c_{2}(X)\right) L \\
& =g_{2}(X, L) .
\end{aligned}
$$

On the other hand $g_{2}(X, L)=0$ by $\left[\mathbf{F k}\right.$, Example 2.10(11)]. Hence $\Delta_{2}(X, L)=0$. By the definition of the i-th Δ-genus, we get $\Delta_{3}(X, L)=0$ because $h^{2}\left(\mathscr{O}_{X}\right)=0$ and $h^{2}(L)=0$. (4) Let (X, L) be a Mukai manifold of dimension n, that is, $K_{X}+(n-2) L=\mathscr{O}_{X}$. Then $h^{0}\left(K_{X}+(n-1) L\right)=h^{0}(L), h^{0}\left(K_{X}+(n-2) L\right)=1$, and $h^{0}\left(K_{X}+m L\right)=0$ for every integer m with $1 \leq m \leq n-3$. Furthermore $h^{i}\left(\mathscr{O}_{X}\right)=0$ and $h^{i}(L)=0$ for $i \geq 1$. We note that by $[\mathbf{F k}$, Example 2.10(7)]

$$
\begin{aligned}
& g_{1}(X, L)=1+\frac{1}{2} L^{n} \\
& g_{2}(X, L)=h^{0}\left(K_{X}+(n-2) L\right)=1
\end{aligned}
$$

and

$$
g_{i}(X, L)=0 \text { for } i \geq 3
$$

By the definition of the i-th Δ-genus, we get

$$
\begin{aligned}
\Delta_{2}(X, L) & =g_{1}(X, L)-\Delta_{1}(X, L)+(n-1) h^{1}\left(\mathscr{O}_{X}\right)-h^{1}(L) \\
& =1-n-\frac{1}{2} L^{n}+h^{0}(L), \\
\Delta_{3}(X, L) & =g_{2}(X, L)-\Delta_{2}(X, L) \\
& =n+\frac{1}{2} L^{n}-h^{0}(L),
\end{aligned}
$$

and

$$
\Delta_{j}(X, L)=g_{j-1}(X, L)-\Delta_{j-1}(X, L)
$$

for every integer j with $j \geq 4$. On the other hand, $h^{0}(L)=n+\frac{1}{2} L^{n}$ (for example, see [AGV, Corollary 2.1.14(ii)]). So we obtain $\Delta_{2}(X, L)=1$ and $\Delta_{3}(X, L)=0$. Since $g_{i}(X, L)=0$ for every integer i with $i \geq 3$, by (\sharp) we get $\Delta_{i}(X, L)=0$ for every integer i with $i \geq 4$.

Next we prove the following.
Lemma 2.12.1. Let (X, L) be a scroll (resp. a quadric fibration, a Del Pezzo fibration) over a normal variety Y. Let $n:=\operatorname{dim} X$ and $m:=\operatorname{dim} Y$ with $n \geq 3$ and $n>m \geq 1$. Then $\Delta_{i}(X, L)=0$ for every integer i with $i \geq m+1$ (resp. $\left.m+1, m+2\right)$.

Proof. Let $\pi: X \rightarrow Y$ be its morphism. In this case by Lemma 1.6 we get

$$
\begin{equation*}
h^{i}\left(\mathscr{O}_{X}\right)=0 \text { and } h^{i}(L)=0 \text { for } i \geq m+1 . \tag{2.12.1.1}
\end{equation*}
$$

By [Fk, Example 2.10], we get

$$
\begin{equation*}
\left.g_{i}(X, L)=0 \text { for } i \geq m+1 \text { (resp. } m+1, m+2\right) \tag{2.12.1.2}
\end{equation*}
$$

By the definition of the i-th Δ-genus, we have

$$
\begin{equation*}
\Delta_{i}(X, L)=g_{i}(X, L)-\Delta_{i+1}(X, L)+(n-i) h^{i}\left(\mathscr{O}_{X}\right)-h^{i}(L) \tag{2.12.1.3}
\end{equation*}
$$

for $1 \leq i \leq n-1$. Since by Proposition 2.4, we have

$$
\begin{equation*}
\Delta_{n}(X, L)=h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L)=0 . \tag{2.12.1.4}
\end{equation*}
$$

By (2.12.1.1), (2.12.1.2), (2.12.1.3), and (2.12.1.4), we have $\Delta_{i}(X, L)=0$ for every integer i with $i \geq m+1$ (resp. $m+1, m+2$). This completes the proof of Lemma 2.12.1.
(5) Let (X, L) be a scroll over a smooth curve C, that is, there exists a surjective morphism $f: X \rightarrow C$ such that $K_{X}+n L=f^{*}(A)$ for an ample line bundle A on C. If $i \geq 2$, then $\Delta_{i}(X, L)=0$ by Lemma 2.12.1.
(6) Let (X, L) be a scroll over a normal surface S, that is, there exists a surjective morphism $f: X \rightarrow S$ such that $K_{X}+(n-1) L=f^{*}(A)$ for an ample line bundle A on S.

If $i \geq 3$, then $\Delta_{i}(X, L)=0$ by Lemma 2.12.1.
Next we calculate $\Delta_{2}(X, L)$. Here we note that $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X}\right)$ by [Fk, Example 2.10(8)]. Since

$$
\Delta_{2}(X, L)=g_{2}(X, L)-\Delta_{3}(X, L)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L),
$$

we get

$$
\Delta_{2}(X, L)=(n-1) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) .
$$

(7) Let (X, L) be a scroll over a normal projective variety Y of dimension 3, that is, there exists a surjective morphism $f: X \rightarrow Y$ such that $K_{X}+(n-2) L=f^{*}(A)$ for an ample line bundle A on Y.

If $i \geq 4$, then $\Delta_{i}(X, L)=0$ by Lemma 2.12.1.
Next we calculate $\Delta_{2}(X, L)$ and $\Delta_{3}(X, L)$. Here we note that by [Fk, Example 2.10(8)]
(A) $g_{3}(X, L)=h^{3}\left(\mathscr{O}_{X}\right)$,
(B) $g_{2}(X, L)=h^{0}\left(K_{X}+(n-2) L\right)+h^{2}\left(\mathscr{O}_{X}\right)-h^{3}\left(\mathscr{O}_{X}\right)$.

Since

$$
\Delta_{3}(X, L)=g_{3}(X, L)-\Delta_{4}(X, L)+(n-3) h^{3}\left(\mathscr{O}_{X}\right)-h^{3}(L)
$$

we get

$$
\Delta_{3}(X, L)=(n-2) h^{3}\left(\mathscr{O}_{X}\right)-h^{3}(L) .
$$

Since

$$
\Delta_{2}(X, L)=g_{2}(X, L)-\Delta_{3}(X, L)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L)
$$

we get

$$
\Delta_{2}(X, L)=h^{0}\left(K_{X}+(n-2) L\right)-h^{2}(L)+h^{3}(L)+(n-1)\left(h^{2}\left(\mathscr{O}_{X}\right)-h^{3}\left(\mathscr{O}_{X}\right)\right)
$$

(8) Let (X, L) be a quadric fibration over a smooth curve Y, that is, there exists a surjective morphism $f: X \rightarrow Y$ such that $K_{X}+(n-1) L=f^{*}(A)$ for an ample line bundle A on Y.

By Lemma 2.12.1 we get $\Delta_{i}(X, L)=0$ for every integer i with $i \geq 2$.
(9) Let (X, L) be a quadric fibration over a normal surface Y, that is, there exists a surjective morphism $f: X \rightarrow Y$ such that $K_{X}+(n-2) L=f^{*}(A)$ for an ample line bundle A on Y.

If $i \geq 3$, then $\Delta_{i}(X, L)=0$ by Lemma 2.12.1.
Next we calculate $\Delta_{2}(X, L)$. Here we note that by $[\mathbf{F k}$, Example $2.10(9)] g_{2}(X, L)=$ $h^{0}\left(K_{X}+(n-2) L\right)+h^{2}\left(\mathscr{O}_{X}\right)$. Since

$$
\Delta_{2}(X, L)=g_{2}(X, L)-\Delta_{3}(X, L)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L),
$$

we get

$$
\Delta_{2}(X, L)=h^{0}\left(K_{X}+(n-2) L\right)+(n-1) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) .
$$

(10) Let (X, L) be a Del Pezzo fibration over a smooth curve C, that is, there exists a surjective morphism $f: X \rightarrow C$ such that $K_{X}+(n-2) L=f^{*}(A)$ for an ample line
bundle A on C.
If $i \geq 3$, then $\Delta_{i}(X, L)=0$ by Lemma 2.12.1.
Next we calculate $\Delta_{2}(X, L)$. Here we note that by [Fk, Example 2.10(10)] $g_{2}(X, L)=h^{0}\left(K_{X}+(n-2) L\right)$. Hence

$$
\begin{aligned}
\Delta_{2}(X, L) & =g_{2}(X, L)-\Delta_{3}(X, L)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) \\
& =h^{0}\left(K_{X}+(n-2) L\right)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) .
\end{aligned}
$$

Since $h^{i}(L)=0$ and $h^{i}\left(\mathscr{O}_{X}\right)=0$ for every integer i with $i \geq 2$ by Lemma 1.6, we get

$$
\begin{aligned}
\Delta_{2}(X, L) & =h^{0}\left(K_{X}+(n-2) L\right)+(n-2) h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) \\
& =h^{0}\left(K_{X}+(n-2) L\right) .
\end{aligned}
$$

3. The case where X is smooth and $\mathrm{Bs}|L|=\varnothing$.

In this section we mainly consider the case where X is smooth and $\mathrm{Bs}|L|=\varnothing$. First we fix the notation.

Notation 3.0. Let (X, L) be a quasi-polarized manifold of dimension $n \geq 3$ and $\mathrm{Bs}|L|=\varnothing$.
(1) We put $X_{0}:=X$ and $L_{0}:=L$. Let $X_{j} \in\left|L_{j-1}\right|$ be a smooth member of $\left|L_{j-1}\right|$ and $L_{j}=\left.L_{j-1}\right|_{X_{j}}$ for every integer j with $1 \leq j \leq n-1$.
(2) Let $r_{j, k}: H^{j}\left(X_{k}, L_{k}\right) \rightarrow H^{j}\left(X_{k+1}, L_{k+1}\right)$ be the natural map for every integers j and k with $0 \leq j \leq n-k-1$ and $0 \leq k \leq n-2$.

First we state some results about the i-th sectional geometric genus which are used in this section.

Theorem 3.1. Let (X, L) be a quasi-polarized manifold of dimension n and let i be an integer with $0 \leq i \leq n$. Assume that L is base point free. Then the following hold. (1) Here we use Notation 3.0. For every integer k with $0 \leq k \leq n-i-1$,

$$
g_{i}\left(X_{k}, L_{k}\right)=g_{i}\left(X_{k+1}, L_{k+1}\right) .
$$

In particular, by Remark 1.2.1(2) we get

$$
g_{i}(X, L)=g_{i}\left(X_{1}, L_{1}\right)=\cdots=g_{i}\left(X_{n-i}, L_{n-i}\right)=h^{i}\left(\mathscr{O}_{X_{n-i}}\right) .
$$

(2) $g_{i}(X, L) \geq h^{i}\left(\mathscr{O}_{X}\right)$. (In particular $g_{i}(X, L) \geq 0$.) Furthermore if $i=2$, then the following are equivalent:
(a) $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X}\right)$.
(b) $h^{0}\left(K_{X}+(n-2) L\right)=0$.
(c) $\kappa\left(K_{X}+(n-2) L\right)=-\infty$.
(d) $K_{X^{\prime}}+(n-2) L^{\prime}$ is not nef, where $\left(X^{\prime}, L^{\prime}\right)$ is a reduction of (X, L).
(e) (X, L) is one of the types from (1) to (7.4) in Theorem 1.7.

Proof. (1) See in [Fk, Theorem 2.4].
(2) See in [Fk, Theorem 3.1 and Corollary 3.5].
(3.A) Some basic results.

Here we study some basic properties of the i-th Δ-genus. First we consider a lower bound for $\Delta_{i}(X, L)$. By Theorem 2.8(2), Corollary 2.9(2), and Remark 2.8.1, we get the following two corollaries.

Corollary 3.2. Let (X, L) be a quasi-polarized manifold of dimension n. Assume that $\mathrm{Bs}|L|=\varnothing$. Then

$$
\Delta_{i}(X, L)=\sum_{k=0}^{n-i} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, k}\right)
$$

for every integer i with $1 \leq i \leq n$.
Corollary 3.3. Let (X, L) be a quasi-polarized manifold of dimension n. Assume that $\mathrm{Bs}|L|=\varnothing$. Then

$$
\Delta_{i}(X, L) \geq \Delta_{i}\left(X_{1}, L_{1}\right) \geq \cdots \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \geq 0
$$

for every integer i with $1 \leq i \leq n$.
Next result is useful when we classify (X, L) by the value of the i-th Δ-genus.
Theorem 3.4. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$ and $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)>0$. Then

$$
\Delta_{i}(X, L) \geq h^{0}(L)-(n-i+1)
$$

Proof. By Corollary 3.3, we get

$$
\Delta_{i}(X, L) \geq \Delta_{i}\left(X_{1}, L_{1}\right) \geq \cdots \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \geq 0
$$

By Proposition 2.4, we have

$$
\begin{aligned}
\Delta_{i}\left(X_{n-i}, L_{n-i}\right) & =h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right) \\
& =h^{0}\left(K_{X_{n-i}}\right)-h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)
\end{aligned}
$$

Since $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)>0$, we have $h^{0}\left(K_{X_{n-i}}\right) \geq h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)+h^{0}\left(L_{n-i}\right)-1$ by Lemma 1.8. Hence

$$
\begin{aligned}
\Delta_{i}\left(X_{n-i}, L_{n-i}\right) & \geq h^{0}\left(L_{n-i}\right)-1 \\
& \geq h^{0}\left(L_{n-i-1}\right)-2 \\
& \vdots \\
& \geq h^{0}(L)-(n-i+1) .
\end{aligned}
$$

This completes the proof of Theorem 3.4.
Corollary 3.5. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$ and $h^{0}\left(K_{X}+(n-i-1) L\right)>0$. Then

$$
\Delta_{i}(X, L) \geq h^{0}(L)-(n-i+1)
$$

Proof. Since $h^{0}\left(K_{X}+(n-i-1) L\right)>0$, by using Lemma 1.9 we can get $h^{0}\left(K_{X_{n-i}}-\right.$ $\left.L_{n-i}\right)>0$. Hence by Theorem 3.4 we get the assertion.

Corollary 3.6. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$ and $g_{i}(X, L)>\Delta_{i}(X, L)$. Then

$$
\Delta_{i}(X, L) \geq h^{0}(L)-(n-i+1)
$$

Proof. If $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)=0$, then by Proposition 2.4 and Corollary 3.3, we get

$$
\begin{aligned}
\Delta_{i}(X, L) & \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right) \\
& =g_{i}(X, L),
\end{aligned}
$$

and this contradicts the assumption. Therefore we get $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)>0$, and by Theorem 3.4 we get the assertion.

Next we consider some relations between the i-th sectional geometric genus and the i-th Δ-genus.

Proposition 3.7. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $i \geq 1$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{i}(X, L) \leq i-1$, then $g_{i}(X, L) \leq \Delta_{i}(X, L)$.

Proof. If $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right) \neq 0$, then by Theorem 3.4 we get

$$
\begin{aligned}
\Delta_{i}(X, L) & \geq h^{0}(L)-(n-i+1) \\
& \geq i .
\end{aligned}
$$

But this contradicts the assumption. Hence $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)=0$ and

$$
\begin{aligned}
\Delta_{i}(X, L) & \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right) \\
& =g_{i}(X, L) .
\end{aligned}
$$

This completes the proof.
Corollary 3.8. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $i \geq 1$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{i}(X, L) \leq i-1$ and $g_{i}(X, L) \geq \Delta_{i}(X, L)$, then $g_{i}(X, L)=\Delta_{i}(X, L)$.

Remark 3.8.1. By Proposition 3.7, we find that a classification of (X, L) with $\Delta_{i}(X, L)=k$ for $k \leq i-1$ can be obtained by a classification of (X, L) with $g_{i}(X, L) \leq k$.

Proposition 3.9. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n-1$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{i}(X, L) \leq i-1$, then $h^{0}\left(K_{X}+(n-i) L\right) \leq \Delta_{i}(X, L)$ and $g_{i+1}(X, L)=\Delta_{i+1}(X, L)=0$.

Proof. By assumption, we get $g_{i}(X, L) \leq \Delta_{i}(X, L)$ by Proposition 3.7. So by Theorem 3.1 (1) and Remark 1.3.1, we have

$$
\begin{aligned}
\Delta_{i}(X, L) \geq g_{i}(X, L) & =g_{i}\left(X_{n-i-1}, L_{n-i-1}\right) \\
& =h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right)-h^{0}\left(K_{X_{n-i-1}}\right)+h^{i}\left(\mathscr{O}_{X_{n-i-1}}\right) \\
& \geq h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right)-h^{0}\left(K_{X_{n-i-1}}\right) .
\end{aligned}
$$

If $h^{0}\left(K_{X_{n-i-1}}\right) \neq 0$, then by Lemma 1.8

$$
\begin{aligned}
\Delta_{i}(X, L) & \geq h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right)-h^{0}\left(K_{X_{n-i-1}}\right) \\
& \geq h^{0}\left(L_{n-i-1}\right)-1 \\
& \geq i+1 \geq \Delta_{i}(X, L)+2
\end{aligned}
$$

and this is impossible. Therefore $h^{0}\left(K_{X_{n-i-1}}\right)=0$ and $h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right) \leq$ $\Delta_{i}(X, L)$. By using Lemma 1.9 we can get $h^{0}\left(K_{X_{k}}+(n-i-1-k) L_{k}\right)=0$ for every integer k with $0 \leq k \leq n-i-2$.

By using the following exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(K_{X_{j}}+(n-i-1-j) L_{j}\right) \rightarrow H^{0}\left(K_{X_{j}}+(n-i-j) L_{j}\right) \\
& \rightarrow H^{0}\left(K_{X_{j+1}}+(n-i-1-j) L_{j+1}\right) \rightarrow 0
\end{aligned}
$$

for every integer j with $0 \leq j \leq n-i-2$, we get $H^{0}\left(K_{X_{j}}+(n-i-j) L_{j}\right)=H^{0}\left(K_{X_{j+1}}+\right.$
$\left.(n-i-1-j) L_{j+1}\right)$. Hence

$$
\begin{aligned}
h^{0}\left(K_{X}+(n-i) L\right) & =h^{0}\left(K_{X_{1}}+(n-i-1) L_{1}\right) \\
& =\cdots \\
& =h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right) \\
& \leq \Delta_{i}(X, L) .
\end{aligned}
$$

Since $h^{0}\left(K_{X_{n-i-1}}\right)=0$, by the Serre duality we get $h^{i+1}\left(\mathscr{O}_{X_{n-i-1}}\right)=0$. Therefore

$$
h^{i+1}\left(\mathscr{O}_{X}\right)=h^{i+1}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{i+1}\left(\mathscr{O}_{X_{n-i-2}}\right) \leq h^{i+1}\left(\mathscr{O}_{X_{n-i-1}}\right)=0 .
$$

Hence $\operatorname{dim} \operatorname{Coker}\left(r_{i, k}\right)=0$ for every integer k with $0 \leq k \leq n-i-1$. By Corollary 3.2, we get

$$
\Delta_{i+1}(X, L)=\Delta_{i+1}\left(X_{1}, L_{1}\right)=\cdots=\Delta_{i+1}\left(X_{n-i-1}, L_{n-i-1}\right)=0 .
$$

Furthermore $g_{i+1}(X, L)=h^{i+1}\left(\mathscr{O}_{X_{n-i-1}}\right)=0$ by Theorem 3.1(1). This completes the proof.

As a corollary of Proposition 3.9, we get a relation between $\Delta_{i}(X, L)$ and $\Delta_{i+1}(X, L)$.
Corollary 3.10. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{i}(X, L)=0$, then $\Delta_{i+1}(X, L)=0$.

By using Corollary 3.10, we obtain the following theorem.
Theorem 3.11. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n-1$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $g_{i}(X, L)-h^{i}\left(\mathscr{O}_{X}\right) \leq i$, then $\Delta_{k}(X, L)=0$ for every integer k with $k \geq i+1$.

Proof. By assumption, the Lefschetz theorem, Remark 1.3.1, and Theorem 3.1 (1), we have

$$
\begin{aligned}
i & \geq g_{i}(X, L)-h^{i}\left(\mathscr{O}_{X}\right) \\
& =g_{i}\left(X_{n-i-1}, L_{n-i-1}\right)-h^{i}\left(\mathscr{O}_{X_{n-i-1}}\right) \\
& =h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right)-h^{0}\left(K_{X_{n-i-1}}\right) .
\end{aligned}
$$

If $h^{0}\left(K_{X_{n-i-1}}\right) \neq 0$, then by Lemma 1.8

$$
\begin{aligned}
& h^{0}\left(K_{X_{n-i-1}}+L_{n-i-1}\right)-h^{0}\left(K_{X_{n-i-1}}\right) \\
& \geq h^{0}\left(L_{n-i-1}\right)-1 \\
& \geq i+1
\end{aligned}
$$

But this is impossible. Hence $h^{0}\left(K_{X_{n-i-1}}\right)=0$. By the same argument as in the proof of Proposition 3.9, we get $\Delta_{i+1}(X, L)=0$. By Corollary 3.10 we have $\Delta_{k}(X, L)=0$ for every integer k with $k \geq i+1$. This completes the proof.

Next we assume that (X, L) is a polarized manifold. Next result is useful in order to classify polarized manifolds by using the i-th Δ-genus.

Proposition 3.12. Let (X, L) be a polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$ and $\Delta_{i}(X, L)=i$. Then either $g_{i}(X, L) \leq i$ or there exists a covering $\pi: X \rightarrow \boldsymbol{P}^{n}$ of degree L^{n} such that $h^{0}(L)=n+1$ and $\Delta_{i}(X, L)=\cdots=\Delta_{i}\left(X_{n-i}, L_{n-i}\right)$.

Proof. In this case by Proposition 2.4, Corollary 3.3, and the Serre duality, we have

$$
\begin{aligned}
i=\Delta_{i}(X, L) & \geq \Delta_{i}\left(X_{1}, L_{1}\right) \\
& \vdots \\
& \geq \Delta_{i}\left(X_{n-i}, L_{n-i}\right) \\
& =h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right) \\
& =h^{0}\left(K_{X_{n-i}}\right)-h^{0}\left(K_{X_{n-i}}-L_{n-i}\right) .
\end{aligned}
$$

If $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)=0$, then $i=\Delta_{i}(X, L) \geq g_{i}(X, L)$ by the same argument as in the proof of Corollary 3.6.

If $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right) \neq 0$, then by Lemma 1.8

$$
\begin{aligned}
h^{0}\left(K_{X_{n-i}}\right)-h^{0}\left(K_{X_{n-i}}-L_{n-i}\right) & \geq h^{0}\left(L_{n-i}\right)-1 \\
& \geq h^{0}\left(L_{n-i-1}\right)-2 \\
& \vdots \\
& \geq h^{0}(L)-(n-i+1) \\
& \geq n+1-n+i-1 \\
& =i .
\end{aligned}
$$

Hence $\Delta_{i}\left(X_{j}, L_{j}\right)=\Delta_{i}\left(X_{j+1}, L_{j+1}\right)=i$ and $h^{0}\left(L_{j}\right)=h^{0}\left(L_{j+1}\right)+1$ for $j=0, \cdots, n-$ $i-1$. Furthermore $h^{0}(L)=n+1$ by $(\boldsymbol{\oplus})$. Since $\operatorname{Bs}|L|=\varnothing$, there exists a morphism $\Phi_{|L|}: X \rightarrow \boldsymbol{P}^{n}$ such that $\Phi_{|L|}$ is finite of degree L^{n}. This completes the proof.
(3.B) The case where $\Delta_{i}(X, L)=0$.

Here we study (X, L) with $\Delta_{i}(X, L)=0$.
Theorem 3.13. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$. Then $\Delta_{i}(X, L)=0$ if and only if $g_{i}(X, L)=0$.

Proof. Assume that $g_{i}(X, L)=0$. Then $h^{i}\left(\mathscr{O}_{X_{n-i}}\right)=0$. Therefore $h^{i}\left(\mathscr{O}_{X}\right)=$ $h^{i}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{i}\left(\mathscr{O}_{X_{n-i-1}}\right) \leq h^{i}\left(\mathscr{O}_{X_{n-i}}\right)=0$. Hence $H^{i-1}\left(L_{j}\right) \rightarrow H^{i-1}\left(L_{j+1}\right)$ is surjective for every integer j with $0 \leq j \leq n-i$. Namely $\operatorname{dim} \operatorname{Coker}\left(r_{i-1, j}\right)=0$ for every integer j with $0 \leq j \leq n-i$. Therefore by Corollary 3.2,

$$
\Delta_{i}(X, L)=\sum_{k=0}^{n-i} \operatorname{dim} \operatorname{Coker}\left(r_{i-1, k}\right)=0 .
$$

Assume that $\Delta_{i}(X, L)=0$. Then $\operatorname{dim} \operatorname{Coker}\left(r_{i-1, k}\right)=0$ for every integer k with $0 \leq k \leq$ $n-i$, and $\Delta_{i}(X, L)=\Delta_{i}\left(X_{1}, L_{1}\right)=\cdots=\Delta_{i}\left(X_{n-i}, L_{n-i}\right)$. We consider the following exact sequence

$$
H^{i-1}\left(L_{n-i}\right) \rightarrow H^{i-1}\left(L_{n-i+1}\right) \rightarrow H^{i}\left(\mathscr{O}_{X_{n-i}}\right) \rightarrow H^{i}\left(L_{n-i}\right) \rightarrow 0 .
$$

Since $H^{i-1}\left(L_{n-i}\right) \rightarrow H^{i-1}\left(L_{n-i+1}\right)$ is surjective, we obtain $h^{i}\left(\mathscr{O}_{X_{n-i}}\right)=h^{i}\left(L_{n-i}\right)$.
If $h^{i}\left(\mathscr{O}_{X_{n-i}}\right) \neq 0$, then $h^{i}\left(L_{n-i}\right) \neq 0$ and by Lemma 1.8 and the Serre duality, we get

$$
\begin{aligned}
h^{i}\left(\mathscr{O}_{X_{n-i}}\right) & =h^{0}\left(K_{X_{n-i}}\right) \\
& \geq h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)+h^{0}\left(L_{n-i}\right)-1 \\
& =h^{i}\left(L_{n-i}\right)+h^{0}\left(L_{n-i}\right)-1 \\
& \geq h^{i}\left(L_{n-i}\right)+i \\
& >h^{i}\left(L_{n-i}\right) .
\end{aligned}
$$

But this is a contradiction. Hence $h^{i}\left(\mathscr{O}_{X_{n-i}}\right)=0$ and by Theorem 3.1(1) we get

$$
g_{i}(X, L)=g_{i}\left(X_{n-i}, L_{n-i}\right)=h^{i}\left(\mathscr{O}_{X_{n-i}}\right)=0
$$

This completes the proof of Theorem 3.13.
Remark 3.13.1. If $n \geq 3$, then by Theorem 3.1(2) and Theorem 3.13, we get a classification of polarized manifolds (X, L) with $\Delta_{2}(X, L)=0$ and $\mathrm{Bs}|L|=\varnothing$. In particular, if $\Delta_{2}(X, L)=0$ and $\mathrm{Bs}|L|=\varnothing$, then (X, L) is one of the types from (1) to (7.4) in Theorem 1.7. (Here we remark that if (X, L) is a scroll over a smooth surface, then $h^{2}\left(\mathscr{O}_{X}\right)=0$.)

Corollary 3.14. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n-1$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $g_{i}(X, L)-h^{i}\left(\mathscr{O}_{X}\right) \leq i$, then $g_{k}(X, L)=0$ for every integer k with $k \geq i+1$.

Proof. By Theorem 3.11 and Theorem 3.13, we get the assertion.

Next result is a vanishing theorem of cohomology of $t L$. This result is analogous to [Fj3, (3.5) Theorem 3].

Theorem 3.15. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $1 \leq i \leq n-1$. Assume that $\mathrm{Bs}|L|=\varnothing$ and $\Delta_{i}(X, L)=0$. Then $h^{k}(t L)=0$ for every integers t and k with $t \geq 0$ and $i \leq k \leq n$.

Proof. (A) Assume that $t=0$. By $\Delta_{i}(X, L)=0$, we have $g_{i}(X, L)=0$ and $h^{i}\left(\mathscr{O}_{X}\right)=0$ by Theorem 3.1(2) and Theorem 3.13. Furthermore by Theorem 3.11 we have $\Delta_{k}(X, L)=0$ for every integer k with $k \geq i+1$. Hence by Theorem 3.1(2) and Theorem 3.13, $g_{k}(X, L)=0$ and $h^{k}\left(\mathscr{O}_{X}\right)=0$ for every integer k with $k \geq i+1$.

Hence $h^{k}\left(\mathscr{O}_{X}\right)=0$ for every integer k with $k \geq i \geq 1$.
(B) Assume that $t>0$. Since $\Delta_{i}(X, L)=0$, we have $0=\Delta_{i}\left(X_{n-i}, L_{n-i}\right)$. In particular $h^{i}\left(\mathscr{O}_{X_{n-i}}\right)-h^{i}\left(L_{n-i}\right)=0$ by Proposition 2.4. By the same argument as the proof of Theorem 3.13, we have $h^{i}\left(L_{n-i}\right)=0$. Since $h^{i}\left(t L_{n-i}\right)=h^{0}\left(K_{X_{n-i}}-t L_{n-i}\right) \leq$ $h^{0}\left(K_{X_{n-i}}-L_{n-i}\right)=h^{i}\left(L_{n-i}\right)$, we have $h^{i}\left(t L_{n-i}\right)=0$ for every integer t with $t \geq 1$.

Assume that $h^{k}\left(t L_{m}\right)=0$ for every integers t and k with $t \geq 1$ and $i \leq k \leq n-m$. We study the value of $h^{k}\left(t L_{m-1}\right)$. Then

$$
H^{k}\left((s-1) L_{m-1}\right) \rightarrow H^{k}\left(s L_{m-1}\right)
$$

is surjective for every integers s and k with $s \geq 1$ and $i \leq k \leq n-m+1$ because $h^{k}\left(t L_{m}\right)=0$ for every integer t with $t \geq 1$. Therefore

$$
h^{k}\left(\mathscr{O}_{X_{m-1}}\right) \geq h^{k}\left(L_{m-1}\right) \geq \cdots \geq h^{k}\left(s L_{m-1}\right) \geq \cdots
$$

for every integer k with $i \leq k \leq n-m+1$. We remark that

$$
h^{k}\left(\mathscr{O}_{X}\right)=h^{k}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{k}\left(\mathscr{O}_{X_{m-1}}\right)
$$

for every integer k with $i \leq k \leq n-m$. By assumption, Corollary 3.10, and Theorem 3.13, we get $g_{k}(X, L)=0$ for every integer k with $k \geq i$. Hence by Theorem 3.1(2) we get $0=g_{k}(X, L) \geq h^{k}\left(\mathscr{O}_{X}\right)$, and $h^{k}\left(\mathscr{O}_{X_{m-1}}\right)=0$ for every integer k with $i \leq k \leq n-m$.

If $k=n-m+1$, then by Theorem 3.1(1) we get

$$
0=g_{k}(X, L)=g_{k}\left(X_{m-1}, L_{m-1}\right)=h^{k}\left(\mathscr{O}_{X_{m-1}}\right)
$$

Hence $h^{k}\left(\mathscr{O}_{X_{m-1}}\right)=0$. Therefore $h^{k}\left(t L_{m-1}\right)=0$ for all integers t and k with $t \geq 1$ and $i \leq k \leq n-m+1$. By induction $h^{k}(t L)=0$ for all integers t and k with $t \geq 1$ and $i \leq k \leq n$. This completes the proof.
(3.C) The case where $\Delta_{i}(X, L)=1$ with $2 \leq i \leq n$.

Let i be an integer with $2 \leq i \leq n$. Here we study (X, L) with $\Delta_{i}(X, L)=1$. The following result can be proved as a corollary of Corollary 3.8, Proposition 3.9, and Theorem 3.13 .

Theorem 3.16. Let (X, L) be a quasi-polarized manifold of dimension n, and let i be an integer with $2 \leq i \leq n$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{i}(X, L)=1$, then $g_{i}(X, L)=1$. Furthermore if $\Delta_{i}(X, L)=1$ for an integer i with $2 \leq i \leq n-1$, then $g_{i+1}(X, L)=\Delta_{i+1}(X, L)=0$.

Remark 3.16.1. Let (X, L) be a polarized manifold of dimension n. If $g_{1}(X, L)=$ $\Delta_{1}(X, L)=1$, then (X, L) is a Del Pezzo manifold. (See [Fj3, (6.5) Corollary].)

If $n \geq 3, i=2$, and L is very ample, then we get a classification of (X, L) with $\Delta_{2}(X, L)=1$ as follows.

Theorem 3.17. Let (X, L) be a polarized manifold of dimension $n \geq 3$ and let (M, A) be a reduction of (X, L). Assume that L is very ample. If $\Delta_{2}(X, L)=1$, then (X, L) is one of the following.
(1) (M, A) is a Mukai manifold.
(2) (M, A) is a Del Pezzo fibration over a smooth elliptic curve C. Let $f: M \rightarrow C$ be its fibration. Then $K_{M}+(n-2) A=f^{*}(H)$ for some ample line bundle H on C with $\operatorname{deg} H=1$.
(3) (M, A) is a quadric fibration over a smooth surface S. Let $f: M \rightarrow S$ be its fibration. Then $K_{M}+(n-2) A=f^{*}\left(K_{S}+H\right)$ for some ample line bundle H on S.
(3.1) S is a \boldsymbol{P}^{1}-bundle, $p: S \rightarrow B$, over an elliptic curve B and $H=3 C_{0}-F$, where C_{0} (resp. F) denotes the minimal section of S with $C_{0}^{2}=1$ (resp. a fiber of p).
(3.2) S is a hyperelliptic surface, $H^{2}=2$, and $h^{0}(H)=1$.
(4) $(X, L)=(M, A), n=\operatorname{dim} X \geq 4$, and (X, L) is a scroll over a normal 3 -fold Y with $h^{2}\left(\mathscr{O}_{Y}\right)=0$. If $\operatorname{dim} X \geq 5$, then Y is smooth and there exists an ample vector bundle \mathscr{E} of rank $n-2$ on Y such that $X=\boldsymbol{P}_{Y}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle on X. In this case $\left(Y, c_{1}(\mathscr{E})\right)$ is one of the following. (4.1) $\left(Y, c_{1}(\mathscr{E})\right)$ is a Mukai manifold. In this case, (Y, \mathscr{E}) is one of the following.
(4.1.1) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, \mathscr{O}_{P^{3}}(1)^{\oplus 4}\right)$.
(4.1.2) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, \mathscr{O}_{P^{3}}(2) \oplus \mathscr{O}_{P^{3}}(1)^{\oplus 2}\right)$.
(4.1.3) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, T_{\boldsymbol{P}^{3}}\right)$, where $T_{\boldsymbol{P}^{3}}$ is the tangent bundle of \boldsymbol{P}^{3}.
(4.1.4) $(Y, \mathscr{E}) \cong\left(\boldsymbol{Q}^{3}, \mathscr{O}_{\boldsymbol{Q}^{3}}(1)^{\oplus 3}\right)$.
(4.2) $\left(Y, c_{1}(\mathscr{E})\right)$ is a Del Pezzo fibration over a smooth curve C such that $\left(Y, c_{1}(\mathscr{E})\right)$ is of the type (2) above. In this case $\operatorname{dim} X=5$ and there exist vector bundles \mathscr{F} and \mathscr{G} on C with $\operatorname{rank} \mathscr{F}=3$ and $\operatorname{rank} \mathscr{G}=3$ such that $Y=\boldsymbol{P}_{C}(\mathscr{F})$ and $\mathscr{E} \cong H(\mathscr{F}) \otimes \pi^{*}(\mathscr{G})$.

Furthermore if (X, L) is one of the types from (1) to (4) above unless (X, L) is a 4dimensional scroll over a normal 3 -fold Y with $h^{2}\left(\mathscr{O}_{Y}\right)=0$, then $\Delta_{2}(X, L)=1$.

Proof. By Theorem 3.16 we obtain $g_{2}(X, L)=1$. In particular, we get $g_{2}(X, L) \leq$ $h^{2}\left(\mathscr{O}_{X}\right)+1$. Hence one of the following holds.
(A) $g_{2}(X, L)=1=h^{2}\left(\mathscr{O}_{X}\right)+1$, that is, $h^{2}\left(\mathscr{O}_{X}\right)=0$.
(B) $g_{2}(X, L)=1=h^{2}\left(\mathscr{O}_{X}\right)$.

Here we note that by Corollary 2.11 we get $\Delta_{2}(X, L)=\Delta_{2}(M, A)$.
(I) First we consider the case (A).

Then by [$\mathbf{F k}$, Theorem 3.6], one of the following holds. (Here we use the assumption that L is very ample.)
(A.1) (M, A) is a Mukai manifold.
(A.2) (M, A) is a Del Pezzo fibration over a smooth curve C. Let $f: M \rightarrow C$ be its morphism. Then there exists an ample line bundle H on C such that $K_{M}+(n-2) A=$ $f^{*}(H)$. In this case $(g(C), \operatorname{deg} H)=(1,1)$.
(A.3) (M, A) is a quadric fibration over a smooth surface S. Let $f: M \rightarrow S$ be its morphism. Then there exists an ample line bundle H on S such that $K_{M}+(n-2) A=$ $f^{*}\left(K_{S}+H\right)$. In this case (S, H) is one of the following types:
(A.3.1) S is a \boldsymbol{P}^{1}-bundle, $p: S \rightarrow B$, over a smooth elliptic curve B, and $H=$ $3 C_{0}-F$, where C_{0} (resp. F) denotes the minimal section of S with $C_{0}^{2}=1$ (resp. a fiber of p).
(A.3.2) S is an abelian surface, $H^{2}=2$, and $h^{0}(H)=1$.
(A.3.3) S is a hyperelliptic surface, $H^{2}=2$, and $h^{0}(H)=1$.
(A.4) $(M, A)=(X, L), n=\operatorname{dim} X \geq 4$, and (X, L) is a scroll over a normal projective variety Y of dimension 3 . If $\operatorname{dim} X \geq 5$, then Y is smooth and there exists an ample vector bundle \mathscr{E} of rank $n-2$ on Y such that $X=\boldsymbol{P}_{Y}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle on X. In this case $\left(Y, c_{1}(\mathscr{E})\right)$ is one of the following.
(A.4.1) $\left(Y, c_{1}(\mathscr{E})\right)$ is a Mukai manifold. In this case, (Y, \mathscr{E}) is one of the following:
(A.4.1.1) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, \mathscr{O}_{P^{3}}(1)^{\oplus 4}\right)$.
$\left(\right.$ A.4.1.2) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, \mathscr{O}_{\boldsymbol{P}^{3}}(2) \oplus \mathscr{O}_{\boldsymbol{P}^{3}}(1)^{\oplus 2}\right)$.
(A.4.1.3) $(Y, \mathscr{E}) \cong\left(\boldsymbol{P}^{3}, T_{\boldsymbol{P}^{3}}\right)$, where $T_{\boldsymbol{P}^{3}}$ is the tangent bundle of \boldsymbol{P}^{3}.
$\left(\right.$ A.4.1.4) $(Y, \mathscr{E}) \cong\left(\boldsymbol{Q}^{3}, \mathscr{O}_{Q^{3}}(1)^{\oplus 3}\right)$.
(A.4.2) $\left(Y, c_{1}(\mathscr{E})\right)$ is a Del Pezzo fibration over a smooth curve such that $\left(Y, c_{1}(\mathscr{E})\right)$ is of the type (A.2) above. In this case $\operatorname{dim} X=5$.
(I.1) If (M, A) is as in the case (A.1), then by Example 2.12(4) we have $\Delta_{2}(X, L)=$ $\Delta_{2}(M, A)=1$.
(I.2) If (M, A) is as in the case (A.2), then we obtain

$$
h^{0}\left(K_{M}+(n-2) A\right)=h^{0}\left(f^{*}(H)\right)=h^{0}(H)=1
$$

Hence by Example 2.12(10), we obtain

$$
\begin{aligned}
\Delta_{2}(M, A) & =g_{2}(M, A)-\Delta_{3}(M, A)+(n-2) h^{2}\left(\mathscr{O}_{M}\right)-h^{2}(A) \\
& =h^{0}\left(K_{M}+(n-2) A\right) \\
& =1 .
\end{aligned}
$$

(I.3) If (M, A) is as in the case (A.3), then $K_{M}+(n-2) A=f^{*}\left(K_{S}+H\right)$.
(I.3.1) The case (A.3.2) is impossible because $h^{2}\left(\mathscr{O}_{S}\right)=0$ under this situation.
(I.3.2) Next we consider the cases (A.3.1) and (A.3.3). Then $h^{2}\left(\mathscr{O}_{M}\right)=h^{2}\left(\mathscr{O}_{S}\right)=0$.

Hence by Example 2.12 (9) we get

$$
\begin{aligned}
\Delta_{2}(X, L) & =\Delta_{2}(M, A) \\
& =h^{0}\left(K_{M}+(n-2) A\right)-h^{2}(A) \\
& =h^{0}\left(K_{S}+H\right)-h^{2}(A) .
\end{aligned}
$$

Next we calculate $h^{0}\left(K_{S}+H\right)$.
If (M, A) is as in the case (A.3.1), then $K_{S}+H=-2 C_{0}+F+\left(3 C_{0}-F\right)=C_{0}$. By the Riemann-Roch theorem and the vanishing theorem, we get

$$
\begin{aligned}
h^{0}\left(K_{S}+H\right) & =g(H)-q(S)+h^{2}\left(\mathscr{O}_{S}\right) \\
& =2-1=1,
\end{aligned}
$$

where $g(H)$ is the sectional genus of (S, H).
If (M, A) is as in the case (A.3.3), then by the Riemann-Roch theorem and the vanishing theorem

$$
\begin{aligned}
h^{0}\left(K_{S}+H\right) & =g(H)-q(S)+h^{2}\left(\mathscr{O}_{S}\right) \\
& =2-1=1 .
\end{aligned}
$$

In each case, we get $h^{0}\left(K_{S}+H\right)=1$. Therefore $\Delta_{2}(X, L)=\Delta_{2}(M, A)=1-h^{2}(A)$.
If $\Delta_{2}(X, L)=0$, then $g_{2}(X, L)=0$ by Theorem 3.13. Hence $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X}\right)$ and this is a contradiction. Therefore $\Delta_{2}(X, L)>0$. So we obtain $h^{2}(A)=0$ and $\Delta_{2}(X, L)=1$.
(I.4) We consider the case (A.4). In this case, by Example 2.12 (7), we get

$$
\begin{align*}
\Delta_{2}(X, L)= & h^{0}\left(K_{X}+(n-2) L\right)-h^{2}(L)+h^{3}(L) \tag{९}\\
& +(n-1)\left(h^{2}\left(\mathscr{O}_{X}\right)-h^{3}\left(\mathscr{O}_{X}\right)\right) .
\end{align*}
$$

Here we assume that $\operatorname{dim} X \geq 5$. Then Y is smooth and there exists an ample vector bundle \mathscr{E} of rank $n-2$ on Y such that $X=\boldsymbol{P}_{Y}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle of $\boldsymbol{P}_{Y}(\mathscr{E})$. Let $f: X \rightarrow Y$ be its morphism. Here we note that

$$
\begin{aligned}
K_{X} & +(n-2) L \\
& =-(n-2) H(\mathscr{E})+f^{*}\left(K_{Y}+c_{1}(\mathscr{E})\right)+(n-2) H(\mathscr{E}) \\
& =f^{*}\left(K_{Y}+c_{1}(\mathscr{E})\right) .
\end{aligned}
$$

(I.4.1) We consider the case (A.4.1).

Then (Y, \mathscr{E}) is one of the cases (A.4.1.1), (A.4.1.2), (A.4.1.3), and (A.4.1.4). In these cases, we get $h^{2}\left(\mathscr{O}_{X}\right)=0$ and $h^{3}\left(\mathscr{O}_{X}\right)=0$.

On the other hand $K_{X}+(n-2) L=f^{*}\left(K_{Y}+c_{1}(\mathscr{E})\right)=\mathscr{O}_{X}$ because $\left(Y, c_{1}(\mathscr{E})\right)$ is a Mukai manifold. Hence $h^{0}\left(K_{X}+(n-2) L\right)=1$. Next we calculate $h^{2}(L)$ and $h^{3}(L)$.

$$
\begin{aligned}
h^{2}(L) & =h^{2}(H(\mathscr{E})) \\
& =h^{n-2}\left(K_{X}-H(\mathscr{E})\right) \\
& =h^{n-2}(-(n-1) H(\mathscr{E})) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
h^{3}(L) & =h^{3}(H(\mathscr{E})) \\
& =h^{n-3}\left(K_{X}-H(\mathscr{E})\right) \\
& =h^{n-3}(-(n-1) H(\mathscr{E})) \\
& =0
\end{aligned}
$$

Hence by (Ω) we have $\Delta_{2}(X, L)=1$.
(I.4.2) We consider the case (A.4.2).

Then $\left(Y, c_{1}(\mathscr{E})\right)$ is a Del Pezzo fibration over a smooth elliptic curve. Let $\pi: Y \rightarrow C$ be its morphism. Then by Proposition 1.10, there exist vector bundles \mathscr{F} and \mathscr{G} on C with $\operatorname{rank} \mathscr{F}=3$ and $\operatorname{rank} \mathscr{G}=3$ such that $Y=\boldsymbol{P}_{C}(\mathscr{F})$ and $\mathscr{E} \cong H(\mathscr{F}) \otimes \pi^{*}(\mathscr{G})$.

Next we calculate $\Delta_{2}(X, L)$ in this case. Since $K_{Y}+c_{1}(\mathscr{E})=\pi^{*}(H)$ for some ample line bundle H on C, we get

$$
\begin{aligned}
h^{0}\left(K_{X}+(n-2) L\right) & =h^{0}\left(f^{*}\left(K_{Y}+c_{1}(\mathscr{E})\right)\right) \\
& =h^{0}\left(f^{*} \circ \pi^{*}(H)\right) \\
& =h^{0}(H)=1
\end{aligned}
$$

because $g(C)=1$ and $\operatorname{deg} H=1$.
Next we calculate $h^{j}(L)$ for $j=2,3$. Here we note that by the Serre duality

$$
\begin{aligned}
h^{j}(L) & =h^{j}(H(\mathscr{E})) \\
& =h^{n-j}\left(K_{X}-H(\mathscr{E})\right) \\
& =h^{n-j}\left(-(n-1) H(\mathscr{E})+f^{*} \circ \pi^{*}(H)\right)
\end{aligned}
$$

CLAIm 3.17.1. $\quad h^{n-j}\left(-\left.t H(\mathscr{E})\right|_{F}\right)=0$ for any fiber F of $\pi \circ f$ if $j \geq 2$ and $t \geq 0$.
Proof. By the following exact sequence

$$
0 \rightarrow-t H(\mathscr{E})-F \rightarrow-t H(\mathscr{E}) \rightarrow-\left.t H(\mathscr{E})\right|_{F} \rightarrow 0
$$

we get the following exact sequence

$$
\begin{aligned}
H^{n-j}(-t H(\mathscr{E})-F) & \rightarrow H^{n-j}(-t H(\mathscr{E})) \\
& \rightarrow H^{n-j}\left(-\left.t H(\mathscr{E})\right|_{F}\right) \\
& \rightarrow H^{n-j+1}(-t H(\mathscr{E})-F) .
\end{aligned}
$$

Since $t H(\mathscr{E})$ and $t H(\mathscr{E})+F$ is ample for $t>0$, we obtain $h^{n-j}(-t H(\mathscr{E})-F)=0$, $h^{n-j+1}(-t H(\mathscr{E})-F)=0$, and $h^{n-j}(-t H(\mathscr{E}))=0$ for $j \geq 2$.

Hence $h^{n-j}\left(-\left.t H(\mathscr{E})\right|_{F}\right)=0$. This completes the proof of Claim 3.17.1.
Claim 3.17.2. $\quad h^{j}(L)=0$ for $j=2,3$.
Proof. We consider the following exact sequence.

$$
\begin{aligned}
0 & \rightarrow-(n-1) H(\mathscr{E}) \rightarrow-(n-1) H(\mathscr{E})+f^{*} \circ \pi^{*}(H) \\
& \rightarrow-\left.(n-1) H(\mathscr{E})\right|_{F} \rightarrow 0
\end{aligned}
$$

because $\operatorname{deg}(H)=1$ and $h^{0}(H)=1$. On the other hand, $h^{n-j}(-(n-1) H(\mathscr{E}))=0$, and by Claim 3.17.1, we get $h^{n-j}\left(-\left.(n-1) H(\mathscr{E})\right|_{F}\right)=0$. Hence

$$
h^{j}(L)=h^{n-j}\left(-(n-1) H(\mathscr{E})+f^{*} \circ \pi^{*}(H)\right)=0 .
$$

This completes the proof of Claim 3.17.2.
Since $h^{j}\left(\mathscr{O}_{X}\right)=h^{j}\left(\mathscr{O}_{Y}\right)=0$ for $j=2,3$, we get

$$
\begin{aligned}
\Delta_{2}(X, L) & =h^{0}\left(K_{X}+(n-2) L\right)-h^{2}(L)+h^{3}(L)+(n-1)\left(h^{2}\left(\mathscr{O}_{X}\right)-h^{3}\left(\mathscr{O}_{X}\right)\right) \\
& =1
\end{aligned}
$$

(II) Next we consider the case (B). By Theorem 3.1(2), (X, L) is one of the types from (1) to (7.4) in Theorem 1.7 because L is very ample. Since $h^{2}\left(\mathscr{O}_{X}\right)=1$ in this case, (X, L) is a scroll over a smooth surface S with $h^{2}\left(\mathscr{O}_{S}\right)=1$.

Claim 3.17.3. In this case, $\Delta_{2}(X, L) \geq 2$.
Proof. There exists an ample and spanned vector bundle \mathscr{E} of rank $n-1$ on S such that $X=\boldsymbol{P}_{S}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle of $\boldsymbol{P}_{S}(\mathscr{E})$. Let $f: X \rightarrow S$ be its morphism.
(a) The case where $\operatorname{dim} X=3$.

First we prove the following claim.
Claim 3.17.3.1. $\quad h^{2}(L)=0$.
Proof. (i) First we consider the case where $K_{S} \neq \mathscr{O}_{S}$.
Assume that $h^{2}(L)>0$. Here we remark that $h^{2}(L)=h^{2}\left(f_{*}(L)\right)$ by the proof of Lemma 1.6. Since

$$
\begin{aligned}
h^{2}(L) & =h^{2}(H(\mathscr{E})) \\
& =h^{2}\left(f_{*}(H(\mathscr{E}))\right) \\
& =h^{2}(\mathscr{E}) \\
& =h^{0}\left(K_{S} \otimes \mathscr{E}^{\vee}\right) \\
& =\operatorname{dim} \operatorname{Hom}\left(\mathscr{E}, K_{S}\right),
\end{aligned}
$$

we get a nontrivial map $\mu: \mathscr{E} \rightarrow K_{S}$. Then there exists an exact sequence

$$
0 \rightarrow \operatorname{Ker} \mu \rightarrow \mathscr{E} \rightarrow \operatorname{Im} \mu \rightarrow 0
$$

Here we calculate $\operatorname{rank}(\operatorname{Im} \mu)$. If $\operatorname{rank}(\operatorname{Im} \mu)=0$, then $\operatorname{dim} \operatorname{Supp}(\operatorname{Im} \mu)<\operatorname{dim} S$ and $\operatorname{Im} \mu$ is a torsion sheaf. On the other hand since $\operatorname{Im} \mu$ is a subsheaf of $K_{S}, \operatorname{Im} \mu$ is a torsion free sheaf. Hence $\operatorname{Im} \mu=0$ and this is a contradiction because $\mu: \mathscr{E} \rightarrow K_{S}$ is a nontrivial map. Hence $\operatorname{rank}(\operatorname{Im} \mu)>0$ and $\operatorname{rank}(\operatorname{Im} \mu)=1$ because $\operatorname{Im} \mu$ is a subsheaf of K_{S}.

Since $\operatorname{Im} \mu$ is a torsion free sheaf, by [OSS, p. 148 Corollary] there exists an open set U of S such that $\operatorname{dim}(S \backslash U) \leq 0$ and $\left.(\operatorname{Im} \mu)\right|_{U}$ is a locally free sheaf of rank 1 .

Since $\operatorname{dim}(S \backslash U) \leq 0, h^{0}\left(K_{S}\right)=h^{2}\left(\mathscr{O}_{S}\right)=1$, and $K_{S} \neq \mathscr{O}_{S}$, there exists a point $x \in U$ such that $t(x)=0$ for every $t \in H^{0}\left(S, K_{S}\right)$. On the other hand, since $\operatorname{Im} \mu$ is a subsheaf of $\mathscr{O}\left(K_{S}\right)$, we get $u(x)=0$ for every $u \in H^{0}(S, \operatorname{Im} \mu)$.

Because

$$
\mathscr{E} \rightarrow \operatorname{Im} \mu \rightarrow 0
$$

is exact and \mathscr{E} is generated by its global sections, $\operatorname{Im} \mu$ is generated by its global sections. But this is a contradiction because $\left.(\operatorname{Im} \mu)\right|_{U}$ is an invertible sheaf and there exists a point $x \in U$ such that $u(x)=0$ for every $u \in H^{0}(S, \operatorname{Im} \mu)$. Therefore we get $h^{2}(L)=0$.
(ii) Next we consider the case where $K_{S}=\mathscr{O}_{S}$.

Since $\operatorname{rank} \mathscr{E}=2=\operatorname{dim} S$, by a Le Potier's theorem [ShSo, p. 96 (5.17) Corollary], we obtain

$$
\begin{aligned}
h^{2}(L) & =h^{2}(\mathscr{E}) \\
& =h^{2}\left(K_{S} \otimes \mathscr{E}\right) \\
& =0 .
\end{aligned}
$$

These complete the proof of Claim 3.17.3.1.
Therefore by Example 2.12(6) we have

$$
\begin{aligned}
\Delta_{2}(X, L) & =2 h^{2}\left(\mathscr{O}_{X}\right)-h^{2}(L) \\
& =2 .
\end{aligned}
$$

(b) The case where $\operatorname{dim} X \geq 4$.

Since $\operatorname{Bs}|L|=\varnothing$, there exists a member $X_{1} \in|L|$ such that X_{1} is a smooth projective variety of dimension $n-1$. On the other hand, since $K_{X}+(n-1) L=f^{*}(B)$ for some ample line bundle $B \in \operatorname{Pic}(S)$ by hypothesis, we get $K_{X_{1}}+(n-2) L_{1}=\left(f_{1}\right)^{*}(B)$, where $f_{1}:=\left.f\right|_{X_{1}}: X_{1} \rightarrow S$. Because X_{1} is an ample divisor on X, f_{1} is a surjective morphism with connected fibers. Therefore $\left(X_{1}, L_{1}\right)$ is a scroll over a smooth surface S with $h^{2}\left(\mathscr{O}_{X_{1}}\right)=1$ and $\operatorname{Bs}\left|L_{1}\right|=\varnothing$. Hence by $\left[\mathbf{B e S o}\right.$, Theorem 11.1.1], $\mathscr{E}_{1}:=\left(f_{1}\right)_{*}\left(L_{1}\right)$ is a locally free sheaf, $X_{1}=\boldsymbol{P}_{S}\left(\mathscr{E}_{1}\right)$, and $L_{1}=H\left(\mathscr{E}_{1}\right)$. (Here we note that \mathscr{E}_{1} is ample.)

By the same argument as above, there exists an $(n-3)$-ladder $X_{n-3} \subset \cdots \subset X_{1} \subset$ $X_{0}=X$ such that for every integer j with $0 \leq j \leq n-3$, we put $L_{j}=\left.L_{j-1}\right|_{X_{j}}$, and $\left(X_{j}, L_{j}\right)$ is a scroll over a smooth surface S with $h^{2}\left(\mathscr{O}_{X_{j}}\right)=1$ and $\mathrm{Bs}\left|L_{j}\right|=\varnothing$. Let $f_{j}: X_{j} \rightarrow S$ be its morphism. By putting $\mathscr{E}_{j}:=\left(f_{j}\right)_{*}\left(L_{j}\right), \mathscr{E}_{j}$ is a locally free sheaf, $X_{j}=\boldsymbol{P}_{S}\left(\mathscr{E}_{j}\right)$, and $L_{j}=H\left(\mathscr{E}_{j}\right)$. (Here we note that \mathscr{E}_{j} is ample.)

By Corollary 3.3, we get

$$
\Delta_{2}(X, L) \geq \cdots \geq \Delta_{2}\left(X_{n-3}, L_{n-3}\right)
$$

By the case (a) above, we obtain $\Delta_{2}\left(X_{n-3}, L_{n-3}\right) \geq 2$ and $\Delta_{2}(X, L) \geq 2$. These complete the proof of Claim 3.17.3.

Therefore we get the assertion of Theorem 3.17.
Remark 3.17.4. Let X be a P^{n-m}-bundle over a smooth projective variety Y of dimension m with $h^{m}\left(\mathscr{O}_{Y}\right) \geq 1$ and let L be an ample and spanned line bundle on X such that $\left.L\right|_{F}=\mathscr{O}_{P^{n-m}}(1)$ for every fiber F. Then by the same argument as in the proof of Claim 3.17.3, we can prove that $\Delta_{m}(X, L) \geq 2$. A proof is the following.

Proof. First we consider the case where $\operatorname{dim} X=m+1$. We can prove $h^{m}(L)=0$ by the same argument as Claim 3.17.3.1.

By Lemma 2.12.1, we obtain $\Delta_{m+1}(X, L)=0$. By [Fk, Example 2.10(8)] we get $g_{m}(X, L)=h^{m}\left(\mathscr{O}_{X}\right)$. By the definition of the i-th Δ-genus, we get

$$
\begin{aligned}
\Delta_{m}(X, L) & =g_{m}(X, L)-\Delta_{m+1}(X, L)+h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) \\
& =2 h^{m}\left(\mathscr{O}_{X}\right) \\
& \geq 2 .
\end{aligned}
$$

Next we consider the case where $\operatorname{dim} X=n \geq m+2$. Then there exists an $(n-m-1)$ ladder $X_{n-m-1} \subset \cdots \subset X_{1} \subset X_{0}=X$ such that for every integer j with $0 \leq j \leq$ $n-m-1$, we put $L_{j}=\left.L_{j-1}\right|_{X_{j}}$, and $\left(X_{j}, L_{j}\right)$ is a scroll over Y with $h^{m}\left(\mathscr{O}_{X_{j}}\right)=1$ and $\mathrm{Bs}\left|L_{j}\right|=\varnothing$. Let $f_{j}: X_{j} \rightarrow Y$ be its morphism. By putting $\mathscr{E}_{j}:=\left(f_{j}\right)_{*}\left(L_{j}\right), \mathscr{E}_{j}$ is a locally free sheaf, $X_{j}=\boldsymbol{P}_{Y}\left(\mathscr{E}_{j}\right)$, and $L_{j}=H\left(\mathscr{E}_{j}\right)$. (Here we note that \mathscr{E}_{j} is ample.)

By Corollary 3.3, we get

$$
\Delta_{m}(X, L) \geq \cdots \geq \Delta_{m}\left(X_{n-m-1}, L_{n-m-1}\right)
$$

Since $\operatorname{dim} X_{n-m-1}=m+1$, by above we get $\Delta_{m}\left(X_{n-m-1}, L_{n-m-1}\right) \geq 2$. Hence we get the assertion.

Here we study a polarized manifold (X, L) with $g_{2}(X, L)=1$ by using the second Δ-genus.

Proposition 3.18. Let (X, L) be a polarized manifold of dimension $n \geq 3$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{2}(X, L)>g_{2}(X, L)=1$, then (X, L) is a scroll over a smooth surface S with $h^{2}\left(\mathscr{O}_{S}\right)=1$.

Proof. We use Notation 3.0. By Corollary 3.2, we get

$$
\Delta_{2}(X, L)=\sum_{k=0}^{n-2} \operatorname{dim} \operatorname{Coker}\left(r_{1, k}\right)
$$

By the Lefschetz theorem, we have

$$
0 \leq h^{2}\left(\mathscr{O}_{X}\right)=h^{2}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{2}\left(\mathscr{O}_{X_{n-3}}\right) \leq h^{2}\left(\mathscr{O}_{X_{n-2}}\right) .
$$

By Theorem 3.1(1) we obtain $1=g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X_{n-2}}\right)$. Hence

$$
0 \leq h^{2}\left(\mathscr{O}_{X}\right)=h^{2}\left(\mathscr{O}_{X_{1}}\right)=\cdots=h^{2}\left(\mathscr{O}_{X_{n-3}}\right) \leq h^{2}\left(\mathscr{O}_{X_{n-2}}\right)=1 .
$$

If $h^{2}\left(\mathscr{O}_{X_{n-3}}\right)=0$, then $\operatorname{dim} \operatorname{Coker}\left(r_{1, i}\right)=0$ for $i=0, \cdots, n-3$. Hence $\Delta_{2}(X, L)=$ $\operatorname{dim} \operatorname{Coker}\left(r_{1, n-2}\right) \leq h^{2}\left(\mathscr{O}_{X_{n-2}}\right)=1=g_{2}(X, L)$ and this is impossible. Therefore $h^{2}\left(\mathscr{O}_{X_{n-3}}\right)=1=h^{2}\left(\mathscr{O}_{X_{n-2}}\right)$. In particular $h^{2}\left(\mathscr{O}_{X_{n-2}}\right)=h^{2}\left(\mathscr{O}_{X}\right)=1$.

Therefore, by Theorem 3.1(1), we obtain $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X_{n-2}}\right)=h^{2}\left(\mathscr{O}_{X}\right)=1$. By Theorem 3.1(2) and $h^{2}\left(\mathscr{O}_{X}\right)=1$, we get the assertion.

Lemma 3.19. Let (X, L) be a quasi-polarized manifold of dimension n. Assume that $\mathrm{Bs}|L|=\varnothing$. If $\Delta_{2}(X, L) \leq g_{2}(X, L)=1$, then $\Delta_{2}(X, L)=1$.

Proof. Since $\Delta_{2}(X, L) \geq 0$, we get $\Delta_{2}(X, L)=0$ or 1 . If $\Delta_{2}(X, L)=0$, then $g_{2}(X, L)=0$ by Theorem 3.13. Hence we get the assertion.

By using Proposition 3.18 and Lemma 3.19 we get the following.
Theorem 3.20. Let (X, L) be a polarized manifold of dimension $n \geq 3$. Assume that $\mathrm{Bs}|L|=\varnothing$. If $g_{2}(X, L)=1$, then (X, L) is one of the following.
(1) $\Delta_{2}(X, L)=1$ and $h^{2}\left(\mathscr{O}_{X}\right)=0$.
(2) (X, L) is a scroll over a smooth surface with $h^{2}\left(\mathscr{O}_{X}\right)=1$.

Proof. (A) If $\Delta_{2}(X, L)>g_{2}(X, L)=1$, then (X, L) is of the type (2) by Proposition 3.18.
(B) If $\Delta_{2}(X, L) \leq g_{2}(X, L)=1$, then $\Delta_{2}(X, L)=1$ by Lemma 3.19. By Theorem 3.1(2), $h^{2}\left(\mathscr{O}_{X}\right) \leq g_{2}(X, L)=1$.
(B-1) If $h^{2}\left(\mathscr{O}_{X}\right)=0$, then (X, L) is of the type (1).
(B-2) If $h^{2}\left(\mathscr{O}_{X}\right)=1$, then $g_{2}(X, L)=h^{2}\left(\mathscr{O}_{X}\right)=1$. By Theorem 1.7 and Theorem 3.1 $(2),(X, L)$ is a scroll over a smooth surface with $h^{2}\left(\mathscr{O}_{X}\right)=1$. This is of the type (2). This completes the proof.
(3.D) The case where $\Delta_{i}(X, L)=2$ with $2 \leq i \leq n$.

Let (X, L) be a quasi-polarized manifold of dimension n with $\operatorname{Bs}|L|=\varnothing$. Assume that i is an integer with $n-1 \geq i \geq 3$. Then by Proposition 3.7 and Proposition 3.9, we get $g_{i}(X, L) \leq 2$, and $g_{i+1}(X, L)=\Delta_{i+1}(X, L)=0$.

Assume that $i=2$. Then by Proposition 3.12, one of the following holds.
(3.D.1) $g_{2}(X, L) \leq 2$.
(3.D.2) There exists a covering $\pi: X \rightarrow \boldsymbol{P}^{n}$ of degree L^{n} such that $\Delta_{2}(X, L)=$ $\cdots=\Delta_{2}\left(X_{n-2}, L_{n-2}\right)$.

In particular, if L is very ample, then $g_{2}(X, L) \leq 2$. We will study a polarized manifold (X, L) such that $\operatorname{dim} X=n \geq 4, L$ is very ample, and $\Delta_{2}(X, L)=2$ in a future paper.

4. Remark.

In this section, we propose some problems about the i-th Δ-genus. First we propose the following problem.

Problem 4.1. Let (X, L) be a quasi-polarized variety of dimension n. Is it true that $\Delta_{i}(X, L) \geq 0$ for every integer i with $1 \leq i \leq n$?

If $i=1$, then this is true by Fujita's result $([\mathbf{F} \mathbf{j} \mathbf{1}],[\mathbf{F} \mathbf{j} \mathbf{2}])$. If X is smooth and $\operatorname{Bs}|L|=\varnothing$, then this is true by Corollary 3.3. But this problem is not true in general. Here we give some examples of (X, L) such that $\Delta_{i}(X, L)<0$.

EXAMPLE 4.1.1. Let \boldsymbol{P}^{n+1} be the projective space of dimension $n+1$ with $n \geq 4$. Let $\left(\xi_{0}: \xi_{1}: \cdots: \xi_{n+1}\right)$ be the homogeneous coordinate of it. Let $k=n+3$ be a prime number. Let $G=\boldsymbol{Z} / k \boldsymbol{Z}$ be a cyclic group of order k generated by the primitive k-th root of unity. Then $\rho \in G$ acts on \boldsymbol{P}^{n+1} as the following.

$$
(\rho) \cdot\left(\xi_{0}: \xi_{1}: \cdots: \xi_{n+1}\right)=\left(\xi_{0}: \rho \xi_{1}: \cdots: \rho^{n+1} \xi_{n+1}\right)
$$

where $\rho=\exp (2 \pi i / k)$. The fixed points of this action are the following.

$$
\begin{equation*}
(1: 0: \cdots: 0),(0: 1: \cdots: 0), \cdots,(0: 0: \cdots: 1) \tag{4.1.1.1}
\end{equation*}
$$

Let Y be a hypersurface in \boldsymbol{P}^{n+1} which is defined by $\sum_{i=0}^{n+1} \xi_{i}{ }^{k}=0$. We note that the above action of G on \boldsymbol{P}^{n+1} induces the action of G on Y. All points in (4.1.1.1) are not on Y. Hence $X:=Y / G$ is smooth and $\pi: Y \rightarrow X$ is an etale covering of degree $k=n+3$. Since $K_{Y}=\left.(\mathscr{O}(-n-2)+\mathscr{O}(n+3))\right|_{Y}=\mathscr{O}_{Y}(1)$, we get $n+3=K_{Y}^{n}=$ $\left(\pi^{*} K_{X}\right)^{n}=(\operatorname{deg} \pi)\left(K_{X}\right)^{n}=(n+3)\left(K_{X}\right)^{n}$. Namely $\left(K_{X}\right)^{n}=1$. Here we remark that $\pi_{*} \mathscr{O}_{Y}=\mathscr{O}_{X} \oplus \mathscr{E}$, where \mathscr{E} is a locally free sheaf of rank $n+2$ on X. Since

$$
H^{i}\left(\mathscr{O}_{Y}\right)=H^{i}\left(\pi_{*} \mathscr{O}_{Y}\right)=H^{i}\left(\mathscr{O}_{X}\right) \oplus H^{i}(\mathscr{E})
$$

and $h^{i}\left(\mathscr{O}_{Y}\right)=0$ for every integer i with $1 \leq i \leq n-1$, we get $h^{i}\left(\mathscr{O}_{X}\right)=0$ for $1 \leq i \leq n-1$. In particular, $h^{1}\left(K_{X}\right)=h^{n-1}\left(\mathscr{O}_{X}\right)=0$.

Next we calculate $h^{0}\left(K_{X}\right)$. Since $n+3$ is prime, n is even. Hence

$$
\chi\left(\mathscr{O}_{Y}\right)=1+h^{n}\left(\mathscr{O}_{Y}\right)=1+h^{0}\left(K_{Y}\right)=n+3 .
$$

Since π is etale,

$$
\chi\left(\mathscr{O}_{X}\right)=\frac{1}{\operatorname{deg} \pi} \chi\left(\mathscr{O}_{Y}\right)=1 .
$$

Hence $h^{n}\left(\mathscr{O}_{X}\right)=0$. By the Serre duality, we have $h^{0}\left(K_{X}\right)=0$.
Here we remark that K_{X} is ample. We calculate $\Delta_{2}\left(X, K_{X}\right)$. By definition

$$
\begin{aligned}
\Delta_{2}\left(X, K_{X}\right) & =g_{1}\left(X, K_{X}\right)-\Delta_{1}\left(X, K_{X}\right)+(n-1) h^{1}\left(\mathscr{O}_{X}\right)-h^{1}\left(K_{X}\right) \\
& =1+\frac{1}{2}\left(K_{X}+(n-1) K_{X}\right) K_{X}^{n-1}-\left(n+K_{X}^{n}-h^{0}\left(K_{X}\right)\right) \\
& =1+\frac{n}{2}-n-1 \\
& =-\frac{n}{2}<0
\end{aligned}
$$

Here we remark that since $k=n+3$ is a prime number, $n=2,4,8, \cdots$.
Example 4.1.2. Let \boldsymbol{P}^{n+1} be the projective space of dimension $n+1$ with $n \geq 4$. Let $\left(\xi_{0}: \xi_{1}: \cdots: \xi_{n+1}\right)$ be the homogeneous coordinate of it. Let $G=\boldsymbol{Z} / k \boldsymbol{Z}$ for a prime number $k=n+3$. We assume that the action of G on \boldsymbol{P}^{n+1} is the same action as in Example 4.1.1. Let H_{j} be a hyperplane $\xi_{j}=0$. Let Y be a hypersurface of \boldsymbol{P}^{n+1} which is defined by $\sum_{i=0}^{n+1} \xi_{i}{ }^{k}=0, X:=Y / G$, and $\pi: Y \rightarrow X$ be as in Example 4.1.1. Then

$$
Y_{j}:=Y \cap H_{j}
$$

is smooth for any j. The action of G on \boldsymbol{P}^{n+1} induces the action of G on Y_{j}, and Y_{j} has no fixed point. Here we consider $X_{j}:=\pi\left(Y \cap H_{j}\right)$. Then X_{j} is smooth, $Y_{j}=\pi^{*}\left(X_{j}\right)$, $\operatorname{dim} X_{j}=n-1$, and $\left.K_{X}\right|_{X_{j}}$ is ample. Here we remark that

$$
\left(K_{Y}\right)^{n-i}\left(Y_{j}\right)^{i}=\mathscr{O}_{Y}(1)^{n}=n+3
$$

for every integer i with $0 \leq i \leq n$. On the other hand

$$
\begin{aligned}
\left(K_{Y}\right)^{n-i}\left(Y_{j}\right)^{i} & =\left(\pi^{*}\left(K_{X}\right)\right)^{n-i}\left(\pi^{*}\left(X_{j}\right)\right)^{i} \\
& =(\operatorname{deg} \pi)\left(\left(K_{X}\right)^{n-i}\left(X_{j}\right)^{i}\right) \\
& =(n+3)\left(\left(K_{X}\right)^{n-i}\left(X_{j}\right)^{i}\right) .
\end{aligned}
$$

Hence $\left(K_{X}\right)^{n-i}\left(X_{j}\right)^{i}=1$ for every integer i with $0 \leq i \leq n$.
Claim 4.1.2.1. $\quad h^{i}\left(\left.K_{X}\right|_{X_{j}}\right)=0$ for every integer i with $0 \leq i \leq n-2$.
Proof. We consider the following exact sequence.

$$
0 \rightarrow K_{X}-\left.X_{j} \rightarrow K_{X} \rightarrow K_{X}\right|_{X_{j}} \rightarrow 0
$$

Then

$$
H^{i}\left(K_{X}\right) \rightarrow H^{i}\left(\left.K_{X}\right|_{X_{j}}\right) \rightarrow H^{i+1}\left(K_{X}-X_{j}\right)
$$

is exact. By Example 4.1.1, we get $h^{i}\left(K_{X}\right)=0$ for every integer i with $0 \leq i \leq n-1$. By the Serre duality we have $h^{i+1}\left(K_{X}-X_{j}\right)=h^{n-i-1}\left(X_{j}\right)$. Here we remark that

$$
\begin{aligned}
\pi_{*}\left(\mathscr{O}\left(Y_{j}\right)\right) & =\pi_{*} \pi^{*}\left(\mathscr{O}\left(X_{j}\right)\right) \\
& =\mathscr{O}\left(X_{j}\right) \oplus\left(\mathscr{E} \otimes \mathscr{O}\left(X_{j}\right)\right)
\end{aligned}
$$

because $\pi_{*} \mathscr{O}_{Y}=\mathscr{O}_{X} \oplus \mathscr{E}$, where \mathscr{E} is a locally free sheaf of rank $n+2$ on X. Since

$$
\begin{aligned}
H^{n-i-1}\left(\mathscr{O}\left(Y_{j}\right)\right) & =H^{n-i-1}\left(\pi_{*}\left(\mathscr{O}\left(Y_{j}\right)\right)\right. \\
& =H^{n-i-1}\left(\mathscr{O}\left(X_{j}\right)\right) \oplus H^{n-i-1}\left(\mathscr{E} \otimes \mathscr{O}\left(X_{j}\right)\right),
\end{aligned}
$$

and $h^{n-i-1}\left(\mathscr{O}\left(Y_{j}\right)\right)=0$ for $0 \leq i \leq n-2$, we have $h^{n-i-1}\left(\mathscr{O}\left(X_{j}\right)\right)=0$ for $0 \leq i \leq n-2$. Hence $h^{i}\left(\left.K_{X}\right|_{X_{j}}\right)=0$ for every integer i with $0 \leq i \leq n-2$.

Here we remark that $h^{1}\left(\mathscr{O}_{X_{j}}\right)=0$. Actually, since Y_{j} is ample and $Y_{j}=\pi^{*}\left(X_{j}\right), X_{j}$ is ample on X. Since $\operatorname{dim} X=n \geq 4$, we get $h^{1}\left(-X_{j}\right)=h^{2}\left(-X_{j}\right)=0$ by the Kodaira vanishing theorem. By Example 4.1.1 we also get $h^{1}\left(\mathscr{O}_{X}\right)=0$. Hence $h^{1}\left(\mathscr{O}_{X_{j}}\right)=0$.

Here we calculate the second Δ-genus of $\left(X_{j}, K_{X} \mid X_{j}\right)$. By Claim 4.1.2.1 we get $h^{0}\left(\left.K_{X}\right|_{X_{j}}\right)=0$ and $h^{1}\left(\left.K_{X}\right|_{X_{j}}\right)=0$. Hence

$$
\begin{aligned}
\Delta_{2}\left(X_{j},\left.K_{X}\right|_{X_{j}}\right)= & g_{1}\left(X_{j},\left.K_{X}\right|_{X_{j}}\right)-\Delta_{1}\left(X_{j},\left.K_{X}\right|_{X_{j}}\right)+(n-2) h^{1}\left(\mathscr{O}_{X_{j}}\right)-h^{1}\left(\left.K_{X}\right|_{X_{j}}\right) \\
= & 1+\frac{1}{2}\left(K_{X_{j}}+(n-2)\left(\left.K_{X}\right|_{X_{j}}\right)\right)\left(\left.K_{X}\right|_{X_{j}}\right)^{n-2} \\
& -\left(n-1+\left(\left.K_{X}\right|_{X_{j}}\right)^{n-1}-h^{0}\left(\left.K_{X}\right|_{X_{j}}\right)\right) \\
= & 1+\frac{1}{2}\left((n-1) K_{X}+X_{j}\right)\left(K_{X}\right)^{n-2} X_{j}-n \\
= & -\frac{n}{2}+1 .
\end{aligned}
$$

If $n \geq 4$, then $\Delta_{2}\left(X_{j},\left.K_{X}\right|_{X_{j}}\right)<0$.
Example 4.1.3.
(1) Let X be a smooth projective variety of dimension $n \geq 2$. Assume that K_{X} is ample with $h^{0}\left(K_{X}\right)=0$. (Here we remark that there exists an example of this type. For example, there exists a minimal surface of general type S such that K_{S} is ample and $h^{0}\left(K_{S}\right)=0($ see $[\mathbf{B a P e V a}$, Chapter $\mathrm{V}, 15])$. Let Y^{\prime} be a smooth projective manifold of dimension $n-2$ such that $K_{Y^{\prime}}$ is ample. We put $Y=Y^{\prime} \times S$. Then K_{Y} is ample and $h^{0}\left(K_{Y}\right)=h^{0}\left(K_{Y^{\prime}}\right) h^{0}\left(K_{S}\right)=0$.)

Then by Proposition 2.4

$$
\begin{aligned}
\Delta_{n}\left(X, K_{X}\right) & =h^{n}\left(\mathscr{O}_{X}\right)-h^{n}\left(K_{X}\right) \\
& =h^{0}\left(K_{X}\right)-h^{0}\left(\mathscr{O}_{X}\right) \\
& =-1<0 .
\end{aligned}
$$

(2) We fix a natural number n with $n \geq 3$. For every natural number m, there exists an example of (X, L) with $\Delta_{n}(X, L)=-m$ and $\operatorname{dim} X=n$. Let Y be a smooth projective variety of dimension $n-1 \geq 2$ such that K_{Y} is ample with $h^{0}\left(K_{Y}\right)=0$. Let C be a smooth projective curve of genus $m+1 \geq 2$, where m is a natural number. Let A be a divisor on C with $\operatorname{deg} A=1$ and $h^{0}(A)=1$. Here we remark that $\operatorname{Bs}\left|K_{C}\right|=\varnothing$. Hence $h^{0}\left(K_{C}-A\right)=g(C)-1$. We put $X:=Y \times C$ and $L:=p_{1}^{*}\left(K_{Y}\right)+p_{2}^{*}(A)$, where p_{i} is the i-th projection for $i=1,2$. Then L is ample. Moreover we get

$$
h^{n}\left(\mathscr{O}_{X}\right)=h^{0}\left(K_{X}\right)=h^{0}\left(K_{Y}\right) h^{0}\left(K_{C}\right)=0
$$

and

$$
\begin{aligned}
h^{n}(L) & =h^{n}\left(p_{1}^{*}\left(K_{Y}\right)+p_{2}^{*}(A)\right) \\
& =h^{n-1}\left(K_{Y}\right) h^{1}(A) \\
& =h^{0}\left(\mathscr{O}_{Y}\right) h^{0}\left(K_{C}-A\right) \\
& =g(C)-1 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Delta_{n}(X, L) & =h^{n}\left(\mathscr{O}_{X}\right)-h^{n}(L) \\
& =-(g(C)-1) \\
& =-m .
\end{aligned}
$$

Example 4.1.4. (1) Let Y be a smooth projective variety of dimension $m \geq 2$ such that K_{Y} is ample with $h^{0}\left(K_{Y}\right)=0$. We put $\mathscr{E}=\mathscr{O}\left(K_{Y}\right)^{\oplus n-m+1}$, where n is a natural number with $n>m$. Let $X=\boldsymbol{P}_{Y}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle on $\boldsymbol{P}_{Y}(\mathscr{E})$. Then L is ample. Since $g_{m}(X, L)=h^{m}\left(\mathscr{O}_{X}\right)$ and by Lemma 2.12.1 $\Delta_{m+1}(X, L)=0$ holds, we get

$$
\begin{aligned}
\Delta_{m}(X, L) & =g_{m}(X, L)-\Delta_{m+1}(X, L)+(n-m) h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) \\
& =(n-m+1) h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) .
\end{aligned}
$$

Since $h^{m}\left(\mathscr{O}_{X}\right)=h^{m}\left(\mathscr{O}_{Y}\right)=h^{0}\left(K_{Y}\right)=0$ and

$$
\begin{aligned}
h^{m}(L) & =h^{m}\left(\pi_{*}(L)\right) \\
& =h^{m}(\mathscr{E}) \\
& =h^{m}\left(\mathscr{O}\left(K_{Y}\right)^{\oplus n-m+1}\right) \\
& =(n-m+1) h^{m}\left(\mathscr{O}\left(K_{Y}\right)\right) \\
& =n-m+1,
\end{aligned}
$$

we get

$$
\begin{aligned}
\Delta_{m}(X, L) & =(n-m+1) h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) \\
& =-(n-m+1)<0 .
\end{aligned}
$$

(2) We fix a natural number n with $n \geq 3$. For every natural number d, there exists a polarized manifold (X, L) such that $\operatorname{dim} X=n, h^{0}(L) \geq d$ and $\Delta_{i}(X, L)<0$ for every integer i with $2 \leq i \leq n-1$ as follows.

Let $\left(Y, K_{Y}\right)$ be a polarized manifold of dimension $m \geq 2$ such that $h^{0}\left(K_{Y}\right)=0$. Let A be an ample line bundle on Y such that $h^{0}(A) \geq d$ and $h^{m}(A)=0$. (Here we remark that this A does exist. Let L be an ample line bundle on Y. If t is sufficiently large, $h^{0}\left(L^{\otimes t}\right) \geq d$ holds. Furthermore by the Serre vanishing theorem, we get $h^{m}\left(L^{\otimes t}\right)=0$ for sufficiently large t. Here we put $A=L^{\otimes t}$.) We put $\mathscr{E}=\mathscr{O}\left(K_{Y}\right)^{\oplus n-m} \oplus A$, where n is a natural number with $n>m$. Let $X=\boldsymbol{P}_{Y}(\mathscr{E})$ and $L=H(\mathscr{E})$, where $H(\mathscr{E})$ is the tautological line bundle on $\boldsymbol{P}_{Y}(\mathscr{E})$. Then L is ample with $h^{0}(L)=h^{0}(\mathscr{E})=h^{0}(A) \geq d$. By using Lemma 2.12.1, we get

$$
\Delta_{m}(X, L)=(n-m+1) h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) .
$$

Since $h^{m}\left(\mathscr{O}_{X}\right)=h^{m}\left(\mathscr{O}_{Y}\right)=h^{0}\left(K_{Y}\right)=0$ and

$$
\begin{aligned}
h^{m}(L) & =h^{m}\left(\pi_{*}(L)\right) \\
& =h^{m}(\mathscr{E}) \\
& =h^{m}\left(\mathscr{O}\left(K_{Y}\right)^{\oplus n-m} \oplus A\right) \\
& =(n-m) h^{m}\left(\mathscr{O}\left(K_{Y}\right)\right)+h^{m}(A) \\
& =n-m,
\end{aligned}
$$

we get

$$
\begin{aligned}
\Delta_{m}(X, L) & =(n-m+1) h^{m}\left(\mathscr{O}_{X}\right)-h^{m}(L) \\
& =-(n-m)<0
\end{aligned}
$$

By considering these examples, we can propose the following problem.
Problem 4.2. List up types of quasi-polarized variety (X, L) with $\Delta_{i}(X, L)<0$ for $2 \leq i \leq n=\operatorname{dim} X$.

References

[AGV] A. N. Parshin and I. R. Shafarevich, Algebraic Geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin-Heidelberg, 1999.
[BaPeVa] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzge. (3), 4, Springer, Berlin, 1984.
[BeSo] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Exp. Math., 16, Walter de Gruyter, Berlin, NewYork, 1995.
[Fj1] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. of Tokyo, 22 (1975), 103-115.
[Fj2] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J., 115 (1989), 105-123.
[Fj3] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, Cambridge, 1990.
[Fj4] T. Fujita, On del Pezzo fibrations over curves, Osaka J. Math., 27 (1990), 229-245.
[Fk] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Algebra, 32 (2004), 1069-1100.
[Ha] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York, 1978.
[Hi] F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, Springer, New York, 1966.
[I] S. Iitaka, Algebraic Geometry, Grad. Texts in Math., 76, Springer, 1982.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math., 10 (1987), 283-360.
[OSS] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980
[ShSo] B. Shiffman and A. J. Sommese, Vanishing theorems on complex manifolds, Progr. Math., 56, Birkhäuser, Boston, 1985.
[So] A. J. Sommese, On the adjunction theoretic structure of projective varieties, Proc. Complex Analysis and Algebraic Geometry Conf., 1985, Lecture Notes in Math., 1194, Springer, 1986, pp. 175-213.

Yoshiaki Fukuma
Department of Mathematics, Faculty of Science Kochi University
Akebono-cho, Kochi 780-8520
Japan
E-mail: fukuma@math.kochi-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14C20; Secondary 14J25, 14J30, 14J40.
 Key Words and Phrases. quasi-polarized variety, Δ-genus, sectional geometric genus.
 This research was partially supported by Grant-in-Aid for Young Scientists (B) (No. 14740018) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

