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Abstract. Let (X, L) be a quasi-polarized variety defined over the complex
number field. Then there are several invariants of (X, L), for example, the sectional
genus and the ∆-genus. In this paper we introduce the i-th ∆-genus ∆i(X, L) for
every integer i with 0 ≤ i ≤ n = dim X. This is a generalization of the ∆-genus. Fur-
thermore we study some properties of ∆i(X, L) and we will propose some problems.

Introduction.

Let X be a projective variety of dimension n defined over the complex number field
and let L be a line bundle on X. If L is ample (resp. nef and big), then (X, L) is called
a polarized (resp. quasi-polarized) variety. Furthermore if X is smooth and L is ample
(resp. nef and big), we say that (X, L) is a polarized (resp. quasi-polarized) manifold.
For this (X, L), there are some invariants, for example, the sectional genus g(L) and the
∆-genus ∆(L) (see [Fj1]). Fujita studied polarized varieties by using these invariants,
and he gave a beautiful theory (see [Fj3] in detail). But there is a limit to studying
polarized varieties by using these invariants. So in order to study polarized varieties
more deeply, the author thought that he wants to give a new invariant of (X, L) which
is a generalization of these invariants.

In [Fk], we defined the i-th sectional geometric genus gi(X, L) of (X, L) for every
integer i with 0 ≤ i ≤ n, which is a generalization of the degree Ln and the sectional
genus g(L) of (X, L). (We remark that g0(X, L) = Ln, g1(X, L) = g(L), and gn(X, L) =
hn(OX).) Some properties of the i-th sectional geometric genus which are obtained in
[Fk] also show that the i-th sectional geometric genus is a natural generalization of the
sectional genus. For example, in [Fk] we proved the following theorem which is analogous
to a theorem of Sommese ([So, Theorem 4.1]).

Theorem (See [Fk, Corollary 3.5]). Let (X, L) be a polarized manifold of dimen-
sion n ≥ 3. Assume that L is spanned. Then the following are equivalent :

(1) g2(X, L) = h2(OX).
(2) h0(KX + (n− 2)L) = 0.
(3) κ(KX + (n− 2)L) = −∞.
(4) KX′ +(n−2)L′ is not nef, where (X ′, L′) is a reduction of (X, L). (See Definition

1.4(2) below.)
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(5) (X, L) is one of the types from (1) to (7.4) in Theorem 1.7 below.

As the next step, we want to give a generalization of the ∆-genus.
In this paper, we will give a definition of the i-th ∆-genus ∆i(X, L) of (X, L) for

0 ≤ i ≤ n. If i = 1, then ∆1(X, L) is the ∆-genus ∆(L) of (X, L). (When we define the
i-th ∆-genus of (X, L), we need the sectional geometric genus of (X, L).)

Furthermore we will study some properties of ∆i(X, L). If Bs|L| = ∅, then some
properties of ∆i(X, L) is similar to that of the ∆-genus ∆(L) of (X, L) (see Section
3), and the i-th ∆-genus is useful in order to study polarized manifolds (X, L) with
Bs|L| =∅.

So we expect that the i-th ∆-genus has good properties for general polarized vari-
eties. For example, we expect that ∆i(X, L) ≥ 0 for 2 ≤ i ≤ n. But unfortunately there
exists an example of (X, L) with ∆i(X, L) < 0 (see Section 4). Hence it is important to
consider when the i-th ∆-genus is nonnegative. We treat this problem in a forthcoming
paper.

The contents of this paper are the following.
In Section 1, we propose some results which are used later.
In Section 2, we will give a definition of the i-th ∆-genus ∆i(X, L) of (X, L) (see

Definition 2.1), and we will prove some results under the condition that L has a k-ladder.
(For the definition of a k-ladder, see Definition 2.7.)

In Section 3, we consider the case where (X, L) is a (quasi-)polarized manifold with
Bs|L| = ∅, and we will get results similar to that of the ∆-genus ∆(L) of (X, L). In
particular we will prove ∆i(X, L) ≥ 0 for 1 ≤ i ≤ n (see Corollary 3.3) and we give a
classification of (X, L) such that L is base point free (resp. very ample) and ∆2(X, L) = 0
(resp. 1) (see Theorem 3.13 and Remark 3.13.1 (resp. Theorem 3.17)). (We will study
the i-th ∆-genus of (X, L) with dim Bs|L| ≥ 0 in a forthcoming paper.)

In Section 4, we propose some problems and we will give some examples of (X, L)
such that ∆i(X, L) < 0.

Our dream is to construct a classification theory of polarized manifolds by using the
i-th sectional geometric genus and the i-th ∆-genus. If i = 1, then this case has been
studied by Fujita, and a series of his studies is called Fujita’s ∆-genus theory (see [Fj3]).
So, as the next step, we want to study the case where i = 2 in detail. As the first step, in
a future paper, we will study a classification of (X, L) with 2 ≤ g2(X, L) − h2(OX) ≤ 5
and 2 ≤ ∆2(X, L) ≤ 5 when L is very ample.

The author would like to thank the referee for giving him useful comments and
suggestions, which made this paper more readable than in previous version.

Notation and Conventions.

In this paper, we work throughout over the complex number C. The words “line
bundles” and “Cartier divisors” are used interchangeably. The tensor products of line
bundles are denoted additively.

O(D): invertible sheaf associated with a Cartier divisor D on X.
OX : the structure sheaf of X.
χ(F ): the Euler-Poincaré characteristic of a coherent sheaf F .
χ(X) = χ(OX).
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hi(F ) = dimHi(X, F ) for a coherent sheaf F on X.
hi(D) = hi(O(D)) for a divisor D.
D|C : the restriction of D to C.
|D|: the complete linear system associated with a divisor D.
KX : the canonical divisor of X.
q(X) (or q): the irregularity h1(OX) of a smooth projective variety X.
κ(D): the Iitaka dimension of a Cartier divisor D on X.
κ(X): the Kodaira dimension of X.
P n: the projective space of dimension n.
Qn: a hyperquadric surface in P n+1.
PY (E ): the P r−1-bundle associated with a locally free sheaf E of rank r over Y .
H(E ): the tautological invertible sheaf of PY (E ).
∼ (or =): linear equivalence.
≡: numerical equivalence.

1. Preliminaries.

Notation 1.1. Let (X, L) be a quasi-polarized variety of dimension n and let
χ(tL) be the Euler-Poincaré characteristic of tL. Then we put

χ(tL) =
n∑

j=0

χj(X, L)
t[j]

j!
,

where t[j] = t(t + 1) · · · (t + j − 1) for j ≥ 1 and t[0] = 1.

Definition 1.2 ([Fk, Definition 2.1]). Let (X, L) be a quasi-polarized variety of
dimension n. Then, for every integer i with 0 ≤ i ≤ n, the i-th sectional geometric genus
gi(X, L) of (X, L) is defined by the following formula:

gi(X, L) = (−1)i(χn−i(X, L)− χ(OX)) +
n−i∑

j=0

(−1)n−i−jhn−j(OX).

Remark 1.2.1.

(1) If i = 0 (resp. i = 1), then gi(X, L) is equal to the degree (resp. the sectional
genus) of (X, L).

(2) If i = n, then gn(X, L) = hn(OX) and gn(X, L) is independent of L.

Theorem 1.3. (1) Let (X, L) be a quasi-polarized variety of dimension n. Let i

be an integer with 0 ≤ i ≤ n− 1. Then

gi(X, L) =
n−i−1∑

j=0

(−1)n−j

(
n− i

j

)
χ(−(n− i− j)L) +

n−i∑

k=0

(−1)n−i−khn−k(OX).

(2) If (X, L) is a quasi-polarized manifold of dimension n, then for every integer i with
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0 ≤ i ≤ n− 1

gi(X, L) =
n−i−1∑

j=0

(−1)j

(
n− i

j

)
h0(KX + (n− i− j)L) +

n−i∑

k=0

(−1)n−i−khn−k(OX).

Proof. (1) By [Fk, Theorem 2.2], we obtain

χn−i(X, L) =
n−i∑

j=0

(−1)n−i−j

(
n− i

j

)
χ(−(n− i− j)L)

=
n−i−1∑

j=0

(−1)n−i−j

(
n− i

j

)
χ(−(n− i− j)L) + χ(OX).

Hence by Definition 1.2, we get the assertion.
(2) By the Serre duality and the Kawamata-Viehweg vanishing theorem, we get the
assertion (See also [Fk, Theorem 2.3]). ¤

Remark 1.3.1. Let (X, L) be a quasi-polarized manifold of dimension n. Then
by Theorem 1.3(2) and the Serre duality, we get

gn−1(X, L) = h0(KX + L)− h0(KX) + hn−1(OX).

Definition 1.4. (1) Let X (resp. Y ) be an n-dimensional projective manifold,
and let L (resp. A) be an ample line bundle on X (resp. Y ). Then (X, L) is called a
simple blowing up of (Y, A) if there exists a birational morphism π : X → Y such that
π is a blowing up at a point of Y and L = π∗(A) − E, where E is the π-exceptional
effective reduced divisor.
(2) Let X (resp. Y ) be an n-dimensional projective manifold, and let L (resp. A) be
an ample line bundle on X (resp. Y ). Then we say that (Y, A) is a reduction of (X, L)
if there exists a birational morphism µ : X → Y such that µ is a composite of simple
blowing ups and (Y, A) is not obtained by a simple blowing up of any polarized manifold.
In this case the morphism µ is called the reduction map.

Remark 1.4.1. Let (X, L) be a polarized manifold and let (Y, A) be a reduction
of (X, L). Let µ : X → Y be the reduction map.

(1) We obtain gi(X, L) = gi(Y, A) for every integer i with 1 ≤ i ≤ n (see [Fk, Propo-
sition 2.6]).

(2) Assume that Bs|L| = ∅. Then for a general member D of |L|, D and µ(D) ∈ |A|
are smooth.

(3) If (X, L) is not obtained by a simple blowing up of another polarized manifold,
then (X, L) is a reduction of itself.

(4) A reduction of (X, L) always exists (see [Fj3, Chapter II, (11.11)]).

Definition 1.5. Let (X, L) be a polarized manifold of dimension n. We say that
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(X, L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety Y of
dimension m if there exists a surjective morphism with connected fibers f : X → Y such
that KX +(n−m+1)L = f∗A (resp. KX +(n−m)L = f∗A, KX +(n−m−1)L = f∗A)
for some ample line bundle A on Y .

Lemma 1.6. Let X (resp. Y ) be a smooth projective variety (resp. normal projective
variety) of dimension n (resp. m) with n > m ≥ 1 such that there exists a surjective
morphism f : X → Y with connected fibers. Let L be a nef and big line bundle on X

such that O(KX + tL) = f∗(A) for a line bundle A on Y , where t is a positive integer.
Then hi(L) = 0 and hi(OX) = 0 for i > m.

Proof. By assumption, we get O(KX +(t+1)L) = L⊗f∗(A). By the Kawamata-
Viehweg vanishing theorem ([KMM, Theorem 1-2-5]), we get Rif∗(L ⊗ f∗(A)) = 0 for
every integer i with i > 0. Since Rif∗(L⊗f∗(A)) = Rif∗(L)⊗A, we get Rif∗(L)⊗A = 0.
Hence Rif∗(L) = 0 for every i > 0. Therefore hi(L) = hi(f∗(L)). By [Ha, Theorem 2.7,
Chapter III], we obtain hi(f∗(L)) = 0 for every i > m. Hence hi(L) = 0 for every integer
i with i > m. Next we prove the second statement. Since O(KX + tL) = f∗(A), by the
Kawamata-Viehweg vanishing theorem ([KMM, Theorem 1-2-5]), we get Rif∗(f∗(A)) =
0 for every i > 0. Since Rif∗(f∗(A)) = Rif∗(OX) ⊗ A, we get Rif∗(OX) ⊗ A = 0, and
Rif∗(OX) = 0 for every i > 0. Therefore hi(OX) = hi(f∗(OX)) = hi(OY ). By [Ha,
Theorem 2.7, Chapter III], we obtain hi(OY ) = 0 for every i > m. Hence hi(OX) = 0
for every integer i with i > m. ¤

Theorem 1.7. Let (X, L) be a polarized manifold of dimension n ≥ 3. Then
(X, L) is one of the following types.

(1) (P n,OP n(1)).
(2) (Qn,OQn(1)).
(3) A scroll over a smooth curve.
(4) KX ∼ −(n− 1)L, that is, (X, L) is a Del Pezzo manifold.
(5) A quadric fibration over a smooth curve.
(6) A scroll over a smooth surface.
(7) Let (X ′, L′) be a reduction of (X, L).

(7.1) n = 4, (X ′, L′) = (P 4,OP 4(2)).
(7.2) n = 3, (X ′, L′) = (Q3,OQ3(2)).
(7.3) n = 3, (X ′, L′) = (P 3,OP 3(3)).
(7.4) n = 3, X ′ is a P 2-bundle over a smooth curve C with (F ′, L′|F ′) =
(P 2,OP 2(2)) for every fiber F ′ of it.
(7.5) KX′ + (n− 2)L′ is nef.

Proof. See [BeSo, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2, and Theorem
7.3.4]. ¤

Lemma 1.8. Let X be a complete normal variety of dimension n defined over
the complex number field, and let D1 and D2 be effective Weil divisors on X. Then
h0(D1 + D2) ≥ h0(D1) + h0(D2)− 1.

Proof (See also [I, Chapter 6, §6.2, b]). We put D1 =
∑s

j=1 njΓj and D2 =
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∑s
j=1 mjΓj , where Γj is a prime divisor on X for any integer j with 1 ≤ j ≤ s such that

Γk 6= Γl for k 6= l, and nj and mj are non-negative integers.
For a divisor B on X we put

L(B) := {φ ∈ R(X) | φ = 0 or B + div(φ) ≥ 0},

where R(X) is the rational function field of X. Then L(B) is a vector space, and we put
l(B) := dimL(B).

Let

D1 ∧D2 :=
s∑

j=1

min{nj ,mj}Γj ,

D1 ∨D2 :=
s∑

j=1

max{nj ,mj}Γj .

Then there are the following relations:

L(D1) ∩ L(D2) = L(D1 ∧D2)

and

L(D1) ∪ L(D2) ⊂ L(D1 ∨D2).

Here we note that by a theorem on vector spaces we get

l(B1) + l(B2) = dim(L(B1) ∩ L(B2)) + dim(L(B1) + L(B2))

≤ l(B1 ∧B2) + l(B1 ∨B2) (1.8.1)

for any effective divisors B1 and B2 on X.
Let Z be the fixed part of |D1|, and we put D′

1 = D1−Z. Then l(D1) = l(D′
1) and by

taking a general member of |D′
1|, we may assume that D′

1∧D2 = 0 and D′
1∨D2 = D′

1+D2.
By (1.8.1), we get

l(D1) + l(D2) = l(D′
1) + l(D2)

≤ l(0) + l(D′
1 + D2)

≤ 1 + l(D1 + D2 − Z)

≤ 1 + l(D1 + D2).

Since h0(D1 +D2) = l(D1 +D2) and h0(Di) = l(Di) for i = 1, 2, we get the assertion. ¤

Lemma 1.9. Let X be a smooth projective variety of dimension n ≥ 2 and let
L be a divisor on X such that Bs|L| = ∅. Let D be an effective divisor on X. Then
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h0(D|X1) > 0 for a general X1 ∈ |L|.
Proof. If O(D) = OX , then this is true.
So we may assume that D is a nonzero effective divisor.
We use the following exact sequence:

0 → O(D −X1) → O(D) → O(DX1) → 0.

By this exact sequence, we get

0 → H0(D −X1) → H0(D) → H0(D|X1).

Assume that h0(D|X1) = 0. Then h0(D − X1) = h0(D) > 0. Since h0(X1) = h0(L) ≥
n + 1, by Lemma 1.8 we get

h0(D) ≥ h0(D −X1) + h0(X1)− 1

≥ h0(D −X1) + n

> h0(D −X1)

and this is a contradiction. Hence h0(D|X1) 6= 0. ¤

Proposition 1.10. Let Y be a smooth projective variety of dimension 3 and let
E be an ample vector bundle of rank r ≥ 3 on Y . Assume that (Y, c1(E )) is a Del Pezzo
fibration over a smooth curve C. Let π : Y → C be its morphism. Then there exist
vector bundles F and G on C with rankF = 3 and rankG = 3 such that Y = PC(F )
and E ∼= H(F )⊗ π∗(G ).

Proof. Since rank(E ) = r ≥ 3 and E is ample, we have

c1(E )Z ≥ 3 (1.10.a)

for any rational curve Z on Y . Hence (F, c1(E )|F ) ∼= (P 2,OP 2(3)) for any general fiber
F of π because any general fiber of π is a Del Pezzo surface.

On the other hand, if π has a singular fiber F ′, then by [Fj4, (2.9), (2.12), (2.19)
and (2.20)] there exists a rational curve Z ′ on F ′ such that c1(E )Z ′ ≤ 2.

Therefore, by (1.10.a), π has no singular fibers, that is, any fiber of π is P 2. Hence
Y is a P 2-bundle on C and there exists a vector bundle F of rank 3 on C such that
Y ∼= PC(F ). Since rank(E ) ≥ 3 and c1(E )|F = OP 2(3), we get E |F ∼= OP 2(1)⊕3 for any
fiber F of π.

Therefore there exists a vector bundle G of rank 3 on C such that E ∼= H(F )⊗π∗(G ).
This completes the proof. ¤

Remark 1.10.1. Let (X, L) be a polarized manifold. Assume that (X, L) is of the
type (4.2) in [Fk, Theorem 3.6], that is, (X, L) is a scroll over a smooth projective 3-fold
Y and E is an ample vector bundle of rank 3 on Y such that X = PY (E ), L = H(E ),
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and (Y, c1(E )) is a Del Pezzo fibration over a smooth curve C. Let π : Y → C be its
morphism. Then by Proposition 1.10, there exist vector bundles F and G on C with
rankF = 3 and rankG = 3 such that Y = PC(F ) and E ∼= H(F )⊗ π∗(G ).

2. Definition and some general results.

In this section, first we give the definition of the i-th ∆-genus of quasi-polarized
varieties, which is a generalization of the ∆-genus of quasi-polarized varieties.

Definition 2.1. Let (X, L) be a quasi-polarized variety of dimension n. For every
integer i with 0 ≤ i ≤ n, the i-th ∆-genus ∆i(X, L) of (X, L) is defined by the following
formula:

∆i(X, L) =





0 if i = 0,

gi−1(X, L)−∆i−1(X, L)

+(n− i + 1)hi−1(OX)− hi−1(L) if 1 ≤ i ≤ n,

where gi−1(X, L) is the (i− 1)-th sectional geometric genus of (X, L).

Remark 2.2.

(1) If i = 1, then ∆1(X, L) is equal to the ∆-genus of (X, L) (See [Fj1]).
(2) In this section, we will give another reason why this invariant is a generalization

of the ∆-genus of quasi-polarized varieties (See Theorem 2.8).

Proposition 2.3. Let (X, L) be a quasi-polarized variety of dimension n. Then
for every integer i with 1 ≤ i ≤ n

∆i(X, L) = (−1)i−1
i−1∑

j=0

χn−j(X, L) + (n− i + 1)(−1)i−1

( i−1∑

k=0

(−1)khk(OX)
)

+ (−1)i

( i−1∑

k=0

(−1)khk(L)
)

.

Proof. We prove this proposition by induction.
If i = 1, then

∆1(X, L) = n + Ln − h0(L)

= χn(X, L) + nh0(OX)− h0(L).

This is true.
Assume that the assertion is true for i = t ≥ 1. We consider the case where i = t+1.

Then
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∆t+1(X, L) = gt(X, L)−∆t(X, L) + (n− t)ht(OX)− ht(L)

= gt(X, L)− (−1)t−1

{
t−1∑

j=0

χn−j(X, L) + (n− t + 1)
( t−1∑

k=0

(−1)khk(OX)
)

−
( t−1∑

k=0

(−1)khk(L)
)}

+ (n− t)ht(OX)− ht(L).

By the definition of the t-th sectional geometric genus of (X, L), we get

gt(X, L) = (−1)t(χn−t(X, L)− χ(OX)) +
n−t∑

j=0

(−1)n−t−jhn−j(OX).

Hence

∆t+1(X, L) = (−1)t(χn−t(X, L)− χ(OX)) +
n−t∑

j=0

(−1)n−t−jhn−j(OX)

+ (−1)t

{
t−1∑

j=0

χn−j(X, L) + (n− t + 1)
( t−1∑

k=0

(−1)khk(OX)
)

−
( t−1∑

k=0

(−1)khk(L)
)}

+ (n− t)ht(OX)− ht(L)

= (−1)t
t∑

j=0

χn−j(X, L)− (−1)t
t∑

k=0

(−1)khk(L)

+ (−1)t+1χ(OX) +
n−t∑

j=0

(−1)n−t−jhn−j(OX)

+ (−1)t(n− t + 1)
( t−1∑

k=0

(−1)khk(OX)
)

+ (n− t)ht(OX)

= (−1)t
t∑

j=0

χn−j(X, L) + (−1)t+1
t∑

k=0

(−1)khk(L)

+ (−1)t+1χ(OX)− (−1)t+1
n−t∑

j=0

(−1)n−jhn−j(OX)

+ (−1)t(n− t + 1)
( t−1∑

k=0

(−1)khk(OX)
)

+ (n− t)ht(OX).

On the other hand
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(−1)t+1χ(OX)− (−1)t+1
n−t∑

j=0

(−1)n−jhn−j(OX)

+ (−1)t(n− t + 1)
( t−1∑

k=0

(−1)khk(OX)
)

+ (n− t)ht(OX)

= (−1)t+1

( t−1∑

k=0

(−1)khk(OX)
)

+ (−1)t(n− t + 1)
t−1∑

k=0

(−1)khk(OX) + (n− t)ht(OX)

= (−1)t(n− t)
t−1∑

k=0

(−1)khk(OX) + (n− t)ht(OX)

= (−1)t(n− t)
t∑

k=0

(−1)khk(OX).

Therefore we get the assertion. ¤

Next we consider the case where i = n. This result is very useful to calculate the
i-th ∆-genus (see Example 2.12 below).

Proposition 2.4. Let (X, L) be a quasi-polarized variety of dimension n. Then

∆n(X, L) = hn(OX)− hn(L).

Proof. By definition of the n-th ∆-genus of (X, L), we get

∆n(X, L)

= gn−1(X, L)−∆n−1(X, L) + hn−1(OX)− hn−1(L)

= gn−1(X, L)− gn−2(X, L) + ∆n−2(X, L) +
(
hn−1(OX)− 2hn−2(OX)

)

− (
hn−1(L)− hn−2(L)

)

= · · ·

=
n−1∑

i=0

(−1)n−1−igi(X, L) +
n−1∑

i=0

(−1)n−1−i(n− i)hi(OX)−
n−1∑

i=0

(−1)n−1−ihi(L)

= (−1)n−1(χ1(X, L) + χ2(X, L) + · · ·+ χn(X, L)) + (−1)nnχ(OX)

+
n−1∑

i=0

n−i∑

j=0

(−1)−1−jhn−j(OX) +
n−1∑

i=0

(−1)n−1−i(n− i)hi(OX)−
n−1∑

i=0

(−1)n−1−ihi(L)

= (−1)n−1(χ(L)) + (−1)nχ(OX) + (−1)nnχ(OX)

+
n−1∑

i=0

n−i∑

j=0

(−1)−1−jhn−j(OX) +
n−1∑

i=0

(−1)n−1−i(n− i)hi(OX)−
n−1∑

i=0

(−1)n−1−ihi(L).
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Since

n−1∑

i=0

n−i∑

j=0

(−1)−1−jhn−j(OX)

= (−hn(OX) + · · ·+ (−1)n−1h0(OX)) + (−hn(OX) + · · ·+ (−1)n−2h1(OX))

+ · · ·+ (−hn(OX) + hn−1(OX))

= −nhn(OX) + nhn−1(OX)− (n− 1)hn−2(OX) + · · ·+ (−1)n−1h0(OX),

we get

n−1∑

i=0

n−i∑

j=0

(−1)−1−jhn−j(OX) +
n−1∑

i=0

(−1)n−1−i(n− i)hi(OX)

= hn(OX)− (−1)n(n + 1)χ(OX).

Therefore we obtain

∆n(X, L) = (−1)n−1(χ(L)) + (−1)nχ(OX) + (−1)nnχ(OX) + hn(OX)

− (−1)n(n + 1)χ(OX)−
n−1∑

i=0

(−1)n−1−ihi(L)

= hn(OX)− hn(L).

This completes the proof of Proposition 2.4. ¤

Corollary 2.5. Let (X, L) be a quasi-polarized manifold of dimension n. Assume
that κ(X) 6= dim X. Then ∆n(X, L) ≥ 0.

Proof. By the Serre duality, we get hn(L) = h0(KX − L). If hn(L) 6= 0, then
there exists an effective divisor D on X such that KX ∼ L+D. Since L is big, we obtain
that KX is big. But this is impossible. Hence hn(L) = 0. Therefore by Proposition 2.4,
∆n(X, L) = hn(OX)− hn(L) = hn(OX) ≥ 0. This completes the proof. ¤

Corollary 2.6. Let (X, L) be a quasi-polarized manifold of dimension n. Assume
that h0(L) > 0. Then ∆n(X, L) ≥ 0.

Proof. By Proposition 2.4, we have

∆n(X, L) = hn(OX)− hn(L).

By the Serre duality, we have

∆n(X, L) = h0(KX)− h0(KX − L).
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If h0(KX − L) = 0, then ∆n(X, L) = h0(KX) ≥ 0.
If h0(KX − L) 6= 0, then by Lemma 1.8 we get

∆n(X, L) = h0(KX)− h0(KX − L)

≥ h0(L)− 1

≥ 0.

This completes the proof. ¤

Definition 2.7. Let (X, L) be a quasi-polarized variety of dimension n. Then
L has a k-ladder if there exists an irreducible and reduced subvariety Xi of Xi−1 such
that Xi ∈ |Li−1| for every integer i with 1 ≤ i ≤ k, where X0 := X, L0 := L, and
Li := Li−1|Xi

.

Notation 2.7.1. Let (X, L) be a quasi-polarized variety of dimension n, and let
k be an integer with 1 ≤ k ≤ n−1. Assume that L has a k-ladder. We put X0 := X and
L0 := L. Let Xi ∈ |Li−1| be an irreducible and reduced member, and Li := Li−1|Xi

for
every integer i with 1 ≤ i ≤ k. Let rp,q : Hp(Xq, Lq) → Hp(Xq+1, Lq+1) be the natural
map. If h0(Lk) > 0, then we take an element Xk+1 ∈ |Lk| and we put Lk+1 = Lk|Xk+1 .

The following conditions are used in Theorem 2.8 and Corollary 2.9.

2.7.2. Let (X, L) be a quasi-polarized variety of dimension n. Let i and j be
integers with 1 ≤ i ≤ n and 1 ≤ j ≤ i. (We use notation in Notation 2.7.1.)

Condition A1(i): L has an (n− i)-ladder.
Condition A2(i): h0(Ln−i) > 0.
Condition B(i, j):

∑j−1
k=0(−1)khk(OX) = · · · = ∑j−1

k=0(−1)khk(OXn−i
).

In Theorem 2.8 and Corollary 2.9, we use Notation 2.7.1.

Theorem 2.8. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i and j be integers with 1 ≤ i ≤ n−1 and 1 ≤ j ≤ i. Assume that Condition A1(i)
and Condition B(i, j) in 2.7.2 are satisfied. Then for every integer s with 1 ≤ s ≤ n− i

∆j(X, L) = ∆j(Xs, Ls) +
s−1∑

k=0

dimCoker(rj−1,k).

(2) Let i be an integer with 1 ≤ i ≤ n. Assume that Condition A1(i), Condition A2(i),
and Condition B(i, i) in 2.7.2 are satisfied. Then

∆i(X, L) =
n−i∑

k=0

dimCoker(ri−1,k).

Proof. (1) Assume that 1 ≤ i ≤ n− 1. By Proposition 2.3 we have
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∆j(X, L) = (−1)j−1

j−1∑

k=0

χn−k(X, L) + (n− j + 1)(−1)j−1

( j−1∑

k=0

(−1)khk(OX)
)

+ (−1)j

( j−1∑

k=0

(−1)khk(L)
)

.

By the exact sequence

0 → OXt → Lt → Lt+1 → 0,

we get the following exact sequence

0 → H0(OXt
) → H0(Lt) → H0(Lt+1)

→ H1(OXt
) → H1(Lt) → H1(Lt+1)

→ · · ·
→ Hj−1(OXt) → Hj−1(Lt) → Hj−1(Lt+1)

→ · · · .

By this exact sequence, we have

(−1)j−1

j−1∑

k=0

(−1)khk(OXt
)− (−1)j−1

j−1∑

k=0

(−1)khk(Lt)

= (−1)j

j−1∑

k=0

(−1)khk(Lt+1) + dim Coker(rj−1,t)

for every integer t with 0 ≤ t ≤ n − i − 1. Furthermore we have χs(Xt, Lt) =
χs−1(Xt+1, Lt+1).

By Condition B(i, j) in 2.7.2, we have

j−1∑

k=0

(−1)khk(OX) =
j−1∑

k=0

(−1)khk(OX1) = · · · =
j−1∑

k=0

(−1)khk(OXn−i
).

Hence

∆j(X, L) = (−1)j−1

j−1∑

k=0

χn−k(X, L) + (n− j + 1)(−1)j−1

( j−1∑

k=0

(−1)khk(OX)
)

+ (−1)j

( j−1∑

k=0

(−1)khk(L)
)
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= (−1)j−1

j−1∑

k=0

χn−k−1(X1, L1) + (n− j)(−1)j−1

( j−1∑

k=0

(−1)khk(OX1)
)

+ (−1)j

( j−1∑

k=0

(−1)khk(L1)
)

+ dimCoker(rj−1,0)

...

= (−1)j−1

j−1∑

k=0

χi−k(Xn−i, Ln−i) + (i− j + 1)(−1)j−1

( j−1∑

k=0

(−1)khk(OXn−i)
)

+ (−1)j

( j−1∑

k=0

(−1)khk(Ln−i)
)

+
n−i−1∑

k=0

dimCoker(rj−1,k).

Namely

∆j(X, L) = ∆j(X1, L1) + dim Coker(rj−1,0)
...

= ∆j(Xn−i, Ln−i) +
n−i−1∑

k=0

dimCoker(rj−1,k).

(2) If i = n, then by Proposition 2.4 we have

∆n(X, L) = hn(OX)− hn(L).

By Condition A2(n) in 2.7.2, there exists the following exact sequence.

0 → OX → L → L1 → 0.

Hence we get the exact sequence

Hn−1(L) → Hn−1(L1) → Hn(OX) → Hn(L) → 0,

and we have hn(OX)−hn(L) = dim Coker(rn−1,0). Hence we get the assertion for i = n.
Assume that 1 ≤ i ≤ n− 1. Then by (1) above and Proposition 2.4, we get

∆i(X, L) = ∆i(Xn−i, Ln−i) +
n−i−1∑

j=0

dimCoker(ri−1,j)

= hi(OXn−i
)− hi(Ln−i) +

n−i−1∑

j=0

dimCoker(ri−1,j).

Here we use Condition A2(i) in 2.7.2. Then there is the following exact sequence:
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0 → OXn−i
→ Ln−i → Ln−i+1 → 0.

Since Hi−1(Ln−i) → Hi−1(Ln−i+1) → Hi(OXn−i
) → Hi(Ln−i) → 0 is exact, we get

hi(OXn−i
)− hi(Ln−i) = dim Coker(ri−1,n−i). Hence

∆i(X, L) =
n−i∑

j=0

dimCoker(ri−1,j).

This completes the proof. ¤

Remark 2.8.1. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i be an integer with 1 ≤ i ≤ n− 1. Assume that L has an (n− i)-ladder. We use
notation in Notation 2.7.1. If hr(−Ls) = 0 for every integers s and r with 0 ≤ s ≤ n−i−1
and 0 ≤ r ≤ i, we have hr(OX) = hr(OX1) = · · · = hr(OXn−i) for every integer r with
0 ≤ r ≤ i − 1. In particular, we get Condition B(i, j) in 2.7.2 for every integer j with
1 ≤ j ≤ i.

Hence, for example, if X is smooth and Bs|L| =∅, then, by the Kawamata-Viehweg
vanishing theorem, Condition B(i, j) in 2.7.2 holds for every integers i and j with 1 ≤
i ≤ n− 1 and 1 ≤ j ≤ i.
(2) If L has an (n− 1)-ladder, then Condition B(1, 1) in 2.7.2 always holds.

Corollary 2.9. Let (X, L) be a quasi-polarized variety of dimension n.
(1) Let i and j be integers with 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ i. Assume that Condition
A1(i) and Condition B(i, j) in 2.7.2 are satisfied. Then

∆j(X, L) ≥ ∆j(X1, L1) ≥ · · · ≥ ∆j(Xn−i, Ln−i).

(2) Let i be an integer with 1 ≤ i ≤ n. Assume that Condition A1(i), Condition A2(i),
and Condition B(i, i) in 2.7.2 are satisfied. Then

∆i(X, L) ≥ ∆i(X1, L1) ≥ · · · ≥ ∆i(Xn−i, Ln−i) ≥ 0.

Proposition 2.10. Let (X, L) be a polarized manifold of dimension n ≥ 3. As-
sume that there exists a polarized manifold (Y, A) such that π : X → Y is a one point
blowing up and L = π∗(A)− E, where E is the reduced exceptional divisor of π. Then

∆1(X, L) ≤ ∆1(Y, A)

and

∆j(X, L) = ∆j(Y, A)

for every integer j with 2 ≤ j ≤ n.

Proof. We consider the following exact sequence:
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0 → L → π∗(A) → OE → 0.

Here we remark that E ∼= P n−1. Then we get the following exact sequence:

0 → H0(L) → H0(π∗(A)) → H0(OE) (♣)

→ H1(L) → H1(π∗(A)) → 0

because h1(OE) = 0.
(A) The case of ∆1(X, L).

Then since h0(A) = h0(π∗(A)) ≤ h0(L) + h0(OE) = h0(L) + 1 and An = Ln + 1, we
get

∆1(X, L) = n + Ln − h0(L)

≤ n + An − 1− h0(A) + 1

= n + An − h0(A)

= ∆1(Y, A).

(B) The case of ∆2(X, L).
Then by definition

∆2(X, L) = g1(X, L)−∆1(X, L) + (n− 1)h1(OX)− h1(L).

Here we remark that g1(X, L) = g1(Y, A) by Remark 1.4.1(1) and h1(OX) = h1(OY ).
By the exact sequence (♣), we get

h0(L)− h0(A) + h0(OE)− h1(L) + h1(π∗(A)) = 0.

Hence h0(L)− h1(L) = h0(A)− h1(π∗(A))− 1. Therefore

∆1(X, L) + h1(L) = n + Ln − h0(L) + h1(L)

= n + An − h0(A) + h1(π∗(A))

= ∆1(Y, A) + h1(π∗(A)).

Since π is a one point blowing up, Riπ∗OX = 0 for every integer i with i ≥ 1. Hence
h1(A) = h1(π∗(A)). Therefore ∆1(X, L) + h1(L) = ∆1(Y, A) + h1(A) and

∆2(X, L) = g1(X, L)−∆1(X, L) + (n− 1)h1(OX)− h1(L)

= g1(Y, A)−∆1(Y, A) + (n− 1)h1(OY )− h1(A)

= ∆2(Y, A).
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(C) The case of ∆j(X, L) for j ≥ 3.
We remark that gi(X, L) = gi(Y, A) by Remark 1.4.1(1) and hi(OX) = hi(OY ) for

every integer i with i ≥ 1. Since Riπ∗(OX) = 0 and hi(OE) = 0 for every integer i with
i ≥ 1, we get hi(L) = hi(π∗(A)) = hi(A) for every integer i with i ≥ 1. Hence we get
the assertion by using induction. ¤

By using this we can prove the following:

Corollary 2.11. Let (X, L) be a polarized manifold of dimension n ≥ 3, and let
(X ′, L′) be a reduction of (X, L). Then

∆1(X, L) ≤ ∆1(X ′, L′)

and

∆j(X, L) = ∆j(X ′, L′)

for every integer j with 2 ≤ j ≤ n.

Next we calculate the i-th ∆-genus of some examples of polarized manifolds for an
integer i with i ≥ 2.

Example 2.12.

(1) If (X, L) is (P n,OP n(1)) or (Qn,OQn(1)), then L is very ample, hi(OX) = 0 and
hi(L) = 0 for 1 ≤ i, and g1(X, L) = 0 and ∆1(X, L) = 0. By Theorem 1.3(2), we have
gi(X, L) = 0 for every integer i with i ≥ 2 (see also [Fk, Example 2.10(1), (2)]). Hence
∆i(X, L) = 0 for i ≥ 2.
(2) Assume that (X, L) is a Del Pezzo manifold, that is, KX + (n − 1)L ∼ OX . Then
hi(L) = 0 and hi(OX) = hn−i(KX) = 0 for i ≥ 1. In this case, ∆1(X, L) = 1 and
g1(X, L) = 1. By Theorem 1.3(2), we have gi(X, L) = 0 for every integer i with i ≥ 2.
By the definition of the i-th ∆-genus, we have ∆i(X, L) = 0 for i ≥ 2.
(3.1) Assume that (X, L) is (P 4,OP 4(2)) (resp. (P 3,OP 3(3)) and (Q3,OQ3(2))). Here
we note that hi(OX) = 0 and hi(L) = 0 for every integer i with i ≥ 1. Since g1(X, L) = 5
(resp. 10, 5) and ∆1(X, L) = 5 (resp. 10, 5), we get ∆2(X, L) = 0. By the definition of
the i-th ∆-genus, ∆i(X, L) = 0 for every integer i with i ≥ 3 because gi(X, L) = 0 for
every integer i with i ≥ 2 by Theorem 1.3(2) (see also [Fk, Example 2.10, (4), (5), (6)]).
(3.2) Assume that (X, L) is a P 2-bundle over a smooth curve C with L|F ∼= OP 2(2) for
every fiber F . Let f : X → C be its fibration. Then Rif∗(L) = 0 for any i > 0 because
L|F ∼= OP 2(2) and F = P 2. Therefore hi(L) = hi(f∗(L)). In particular hi(L) = 0 for
every integer i with i ≥ 2 > dimC. By the Hirzebruch-Riemann-Roch theorem ([Hi,
Chapter IV]),

X (L) =
1
6
(L)3 − 1

4
KX(L)2 +

1
12

(
(KX)2 + c2(X)

)
L + χ(OX).

Since X (L) = h0(L)− h1(L) and χ(OX) = h0(OX)− h1(OX), we have
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h0(L)− h1(L) =
1
6
(L)3 − 1

4
KX(L)2 +

1
12

(
(KX)2 + c2(X)

)
L + 1− h1(OX). (†)

By the definition of the second ∆-genus and (†),

∆2(X, L) = g1(X, L)−∆1(X, L) + 2h1(OX)− h1(L)

= 1 +
1
2
(KX + 2L)(L)2 − (

3 + (L)3 − h0(L)
)

+ 2h1(OX)− h1(L)

= −2 +
1
2
KX(L)2 + 2h1(OX) + h0(L)− h1(L)

= −1 +
1
6
(L)3 +

1
4
KX(L)2 +

1
12

(
(KX)2 + c2(X)

)
L + h1(OX)

= −1 + h1(OX) +
1
12

(
(KX + 2L)(KX + L) + c2(X)

)
L

= g2(X, L).

On the other hand g2(X, L) = 0 by [Fk, Example 2.10(11)]. Hence ∆2(X, L) = 0. By the
definition of the i-th ∆-genus, we get ∆3(X, L) = 0 because h2(OX) = 0 and h2(L) = 0.
(4) Let (X, L) be a Mukai manifold of dimension n, that is, KX + (n− 2)L = OX . Then
h0(KX + (n − 1)L) = h0(L), h0(KX + (n − 2)L) = 1, and h0(KX + mL) = 0 for every
integer m with 1 ≤ m ≤ n − 3. Furthermore hi(OX) = 0 and hi(L) = 0 for i ≥ 1. We
note that by [Fk, Example 2.10(7)]

g1(X, L) = 1 +
1
2
Ln,

g2(X, L) = h0(KX + (n− 2)L) = 1,

and

gi(X, L) = 0 for i ≥ 3.

By the definition of the i-th ∆-genus, we get

∆2(X, L) = g1(X, L)−∆1(X, L) + (n− 1)h1(OX)− h1(L)

= 1− n− 1
2
Ln + h0(L),

∆3(X, L) = g2(X, L)−∆2(X, L)

= n +
1
2
Ln − h0(L),

and

∆j(X, L) = gj−1(X, L)−∆j−1(X, L) (])
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for every integer j with j ≥ 4. On the other hand, h0(L) = n + 1
2Ln (for example,

see [AGV, Corollary 2.1.14(ii)]). So we obtain ∆2(X, L) = 1 and ∆3(X, L) = 0. Since
gi(X, L) = 0 for every integer i with i ≥ 3, by (]) we get ∆i(X, L) = 0 for every integer
i with i ≥ 4.

Next we prove the following.

Lemma 2.12.1. Let (X, L) be a scroll (resp. a quadric fibration, a Del Pezzo fi-
bration) over a normal variety Y . Let n := dimX and m := dimY with n ≥ 3 and
n > m ≥ 1. Then ∆i(X, L) = 0 for every integer i with i ≥ m + 1 (resp. m + 1, m + 2).

Proof. Let π : X → Y be its morphism. In this case by Lemma 1.6 we get

hi(OX) = 0 and hi(L) = 0 for i ≥ m + 1. (2.12.1.1)

By [Fk, Example 2.10], we get

gi(X, L) = 0 for i ≥ m + 1 (resp. m + 1, m + 2). (2.12.1.2)

By the definition of the i-th ∆-genus, we have

∆i(X, L) = gi(X, L)−∆i+1(X, L) + (n− i)hi(OX)− hi(L) (2.12.1.3)

for 1 ≤ i ≤ n− 1. Since by Proposition 2.4, we have

∆n(X, L) = hn(OX)− hn(L) = 0. (2.12.1.4)

By (2.12.1.1), (2.12.1.2), (2.12.1.3), and (2.12.1.4), we have ∆i(X, L) = 0 for every integer
i with i ≥ m + 1 (resp. m + 1, m + 2). This completes the proof of Lemma 2.12.1. ¤

(5) Let (X, L) be a scroll over a smooth curve C, that is, there exists a surjective mor-
phism f : X → C such that KX +nL = f∗(A) for an ample line bundle A on C. If i ≥ 2,
then ∆i(X, L) = 0 by Lemma 2.12.1.
(6) Let (X, L) be a scroll over a normal surface S, that is, there exists a surjective mor-
phism f : X → S such that KX + (n − 1)L = f∗(A) for an ample line bundle A on
S.

If i ≥ 3, then ∆i(X, L) = 0 by Lemma 2.12.1.
Next we calculate ∆2(X, L). Here we note that g2(X, L) = h2(OX) by [Fk, Example

2.10(8)]. Since

∆2(X, L) = g2(X, L)−∆3(X, L) + (n− 2)h2(OX)− h2(L),

we get

∆2(X, L) = (n− 1)h2(OX)− h2(L).
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(7) Let (X, L) be a scroll over a normal projective variety Y of dimension 3, that is, there
exists a surjective morphism f : X → Y such that KX + (n− 2)L = f∗(A) for an ample
line bundle A on Y .

If i ≥ 4, then ∆i(X, L) = 0 by Lemma 2.12.1.
Next we calculate ∆2(X, L) and ∆3(X, L). Here we note that by [Fk, Example

2.10(8)]

(A) g3(X, L) = h3(OX),
(B) g2(X, L) = h0(KX + (n− 2)L) + h2(OX)− h3(OX).

Since

∆3(X, L) = g3(X, L)−∆4(X, L) + (n− 3)h3(OX)− h3(L),

we get

∆3(X, L) = (n− 2)h3(OX)− h3(L).

Since

∆2(X, L) = g2(X, L)−∆3(X, L) + (n− 2)h2(OX)− h2(L),

we get

∆2(X, L) = h0
(
KX + (n− 2)L

)− h2(L) + h3(L) + (n− 1)
(
h2(OX)− h3(OX)

)
.

(8) Let (X, L) be a quadric fibration over a smooth curve Y , that is, there exists a
surjective morphism f : X → Y such that KX + (n − 1)L = f∗(A) for an ample line
bundle A on Y .

By Lemma 2.12.1 we get ∆i(X, L) = 0 for every integer i with i ≥ 2.
(9) Let (X, L) be a quadric fibration over a normal surface Y , that is, there exists a
surjective morphism f : X → Y such that KX + (n − 2)L = f∗(A) for an ample line
bundle A on Y .

If i ≥ 3, then ∆i(X, L) = 0 by Lemma 2.12.1.
Next we calculate ∆2(X, L). Here we note that by [Fk, Example 2.10(9)] g2(X, L) =

h0(KX + (n− 2)L) + h2(OX). Since

∆2(X, L) = g2(X, L)−∆3(X, L) + (n− 2)h2(OX)− h2(L),

we get

∆2(X, L) = h0
(
KX + (n− 2)L

)
+ (n− 1)h2(OX)− h2(L).

(10) Let (X, L) be a Del Pezzo fibration over a smooth curve C, that is, there exists a
surjective morphism f : X → C such that KX + (n − 2)L = f∗(A) for an ample line
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bundle A on C.
If i ≥ 3, then ∆i(X, L) = 0 by Lemma 2.12.1.
Next we calculate ∆2(X, L). Here we note that by [Fk, Example 2.10(10)]

g2(X, L) = h0(KX + (n− 2)L). Hence

∆2(X, L) = g2(X, L)−∆3(X, L) + (n− 2)h2(OX)− h2(L)

= h0
(
KX + (n− 2)L

)
+ (n− 2)h2(OX)− h2(L).

Since hi(L) = 0 and hi(OX) = 0 for every integer i with i ≥ 2 by Lemma 1.6, we get

∆2(X, L) = h0
(
KX + (n− 2)L

)
+ (n− 2)h2(OX)− h2(L)

= h0
(
KX + (n− 2)L

)
.

3. The case where X is smooth and Bs|L| =∅.

In this section we mainly consider the case where X is smooth and Bs|L| =∅. First
we fix the notation.

Notation 3.0. Let (X, L) be a quasi-polarized manifold of dimension n ≥ 3 and
Bs|L| =∅.

(1) We put X0 := X and L0 := L. Let Xj ∈ |Lj−1| be a smooth member of |Lj−1|
and Lj = Lj−1|Xj

for every integer j with 1 ≤ j ≤ n− 1.
(2) Let rj,k : Hj(Xk, Lk) → Hj(Xk+1, Lk+1) be the natural map for every integers j

and k with 0 ≤ j ≤ n− k − 1 and 0 ≤ k ≤ n− 2.

First we state some results about the i-th sectional geometric genus which are used
in this section.

Theorem 3.1. Let (X, L) be a quasi-polarized manifold of dimension n and let i

be an integer with 0 ≤ i ≤ n. Assume that L is base point free. Then the following hold.
(1) Here we use Notation 3.0. For every integer k with 0 ≤ k ≤ n− i− 1,

gi(Xk, Lk) = gi(Xk+1, Lk+1).

In particular, by Remark 1.2.1(2) we get

gi(X, L) = gi(X1, L1) = · · · = gi(Xn−i, Ln−i) = hi(OXn−i).

(2) gi(X, L) ≥ hi(OX). (In particular gi(X, L) ≥ 0.) Furthermore if i = 2, then the
following are equivalent :

(a) g2(X, L) = h2(OX).
(b) h0(KX + (n− 2)L) = 0.
(c) κ(KX + (n− 2)L) = −∞.
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(d) KX′ + (n− 2)L′ is not nef, where (X ′, L′) is a reduction of (X, L).
(e) (X, L) is one of the types from (1) to (7.4) in Theorem 1.7.

Proof. (1) See in [Fk, Theorem 2.4].
(2) See in [Fk, Theorem 3.1 and Corollary 3.5]. ¤

(3.A) Some basic results.
Here we study some basic properties of the i-th ∆-genus. First we consider a lower

bound for ∆i(X, L). By Theorem 2.8(2), Corollary 2.9(2), and Remark 2.8.1, we get the
following two corollaries.

Corollary 3.2. Let (X, L) be a quasi-polarized manifold of dimension n. Assume
that Bs|L| =∅. Then

∆i(X, L) =
n−i∑

k=0

dimCoker(ri−1,k)

for every integer i with 1 ≤ i ≤ n.

Corollary 3.3. Let (X, L) be a quasi-polarized manifold of dimension n. Assume
that Bs|L| =∅. Then

∆i(X, L) ≥ ∆i(X1, L1) ≥ · · · ≥ ∆i(Xn−i, Ln−i) ≥ 0

for every integer i with 1 ≤ i ≤ n.

Next result is useful when we classify (X, L) by the value of the i-th ∆-genus.

Theorem 3.4. Let (X, L) be a quasi-polarized manifold of dimension n, and let i

be an integer with 1 ≤ i ≤ n. Assume that Bs|L| =∅ and h0(KXn−i
−Ln−i) > 0. Then

∆i(X, L) ≥ h0(L)− (n− i + 1).

Proof. By Corollary 3.3, we get

∆i(X, L) ≥ ∆i(X1, L1) ≥ · · · ≥ ∆i(Xn−i, Ln−i) ≥ 0.

By Proposition 2.4, we have

∆i(Xn−i, Ln−i) = hi(OXn−i
)− hi(Ln−i)

= h0(KXn−i
)− h0(KXn−i

− Ln−i).

Since h0(KXn−i − Ln−i) > 0, we have h0(KXn−i) ≥ h0(KXn−i − Ln−i) + h0(Ln−i) − 1
by Lemma 1.8. Hence



A generalization of the ∆-genus 1025

∆i(Xn−i, Ln−i) ≥ h0(Ln−i)− 1

≥ h0(Ln−i−1)− 2
...
≥ h0(L)− (n− i + 1).

This completes the proof of Theorem 3.4. ¤

Corollary 3.5. Let (X, L) be a quasi-polarized manifold of dimension n, and let
i be an integer with 1 ≤ i ≤ n. Assume that Bs|L| =∅ and h0(KX + (n− i− 1)L) > 0.
Then

∆i(X, L) ≥ h0(L)− (n− i + 1).

Proof. Since h0(KX+(n−i−1)L) > 0, by using Lemma 1.9 we can get h0(KXn−i
−

Ln−i) > 0. Hence by Theorem 3.4 we get the assertion. ¤

Corollary 3.6. Let (X, L) be a quasi-polarized manifold of dimension n, and let
i be an integer with 1 ≤ i ≤ n. Assume that Bs|L| =∅ and gi(X, L) > ∆i(X, L). Then

∆i(X, L) ≥ h0(L)− (n− i + 1).

Proof. If h0(KXn−i − Ln−i) = 0, then by Proposition 2.4 and Corollary 3.3, we
get

∆i(X, L) ≥ ∆i(Xn−i, Ln−i)

= hi(OXn−i
)− hi(Ln−i)

= hi(OXn−i)

= gi(X, L),

and this contradicts the assumption. Therefore we get h0(KXn−i
− Ln−i) > 0, and by

Theorem 3.4 we get the assertion. ¤

Next we consider some relations between the i-th sectional geometric genus and the
i-th ∆-genus.

Proposition 3.7. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with i ≥ 1. Assume that Bs|L| = ∅. If ∆i(X, L) ≤ i − 1, then
gi(X, L) ≤ ∆i(X, L).

Proof. If h0(KXn−i
− Ln−i) 6= 0, then by Theorem 3.4 we get

∆i(X, L) ≥ h0(L)− (n− i + 1)

≥ i.
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But this contradicts the assumption. Hence h0(KXn−i
− Ln−i) = 0 and

∆i(X, L) ≥ ∆i(Xn−i, Ln−i)

= hi(OXn−i)− hi(Ln−i)

= hi(OXn−i
)

= gi(X, L).

This completes the proof. ¤

Corollary 3.8. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with i ≥ 1. Assume that Bs|L| = ∅. If ∆i(X, L) ≤ i − 1 and
gi(X, L) ≥ ∆i(X, L), then gi(X, L) = ∆i(X, L).

Remark 3.8.1. By Proposition 3.7, we find that a classification of (X, L) with
∆i(X, L) = k for k ≤ i−1 can be obtained by a classification of (X, L) with gi(X, L) ≤ k.

Proposition 3.9. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with 1 ≤ i ≤ n− 1. Assume that Bs|L| =∅. If ∆i(X, L) ≤ i− 1, then
h0(KX + (n− i)L) ≤ ∆i(X, L) and gi+1(X, L) = ∆i+1(X, L) = 0.

Proof. By assumption, we get gi(X, L) ≤ ∆i(X, L) by Proposition 3.7. So by
Theorem 3.1 (1) and Remark 1.3.1, we have

∆i(X, L) ≥ gi(X, L) = gi(Xn−i−1, Ln−i−1)

= h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1) + hi(OXn−i−1)

≥ h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1).

If h0(KXn−i−1) 6= 0, then by Lemma 1.8

∆i(X, L) ≥ h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1)

≥ h0(Ln−i−1)− 1

≥ i + 1 ≥ ∆i(X, L) + 2,

and this is impossible. Therefore h0(KXn−i−1) = 0 and h0(KXn−i−1 + Ln−i−1) ≤
∆i(X, L). By using Lemma 1.9 we can get h0(KXk

+ (n − i − 1 − k)Lk) = 0 for ev-
ery integer k with 0 ≤ k ≤ n− i− 2.

By using the following exact sequence

0 → H0
(
KXj + (n− i− 1− j)Lj

) → H0
(
KXj + (n− i− j)Lj

)

→ H0
(
KXj+1 + (n− i− 1− j)Lj+1

) → 0

for every integer j with 0 ≤ j ≤ n− i−2, we get H0(KXj
+(n− i− j)Lj) = H0(KXj+1 +
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(n− i− 1− j)Lj+1). Hence

h0
(
KX + (n− i)L

)
= h0

(
KX1 + (n− i− 1)L1

)

= · · ·
= h0(KXn−i−1 + Ln−i−1)

≤ ∆i(X, L).

Since h0(KXn−i−1) = 0, by the Serre duality we get hi+1(OXn−i−1) = 0. Therefore

hi+1(OX) = hi+1(OX1) = · · · = hi+1(OXn−i−2) ≤ hi+1(OXn−i−1) = 0.

Hence dimCoker(ri,k) = 0 for every integer k with 0 ≤ k ≤ n− i− 1. By Corollary 3.2,
we get

∆i+1(X, L) = ∆i+1(X1, L1) = · · · = ∆i+1(Xn−i−1, Ln−i−1) = 0.

Furthermore gi+1(X, L) = hi+1(OXn−i−1) = 0 by Theorem 3.1(1). This completes the
proof. ¤

As a corollary of Proposition 3.9, we get a relation between ∆i(X, L) and ∆i+1(X, L).

Corollary 3.10. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with 1 ≤ i ≤ n. Assume that Bs|L| = ∅. If ∆i(X, L) = 0, then
∆i+1(X, L) = 0.

By using Corollary 3.10, we obtain the following theorem.

Theorem 3.11. Let (X, L) be a quasi-polarized manifold of dimension n, and let
i be an integer with 1 ≤ i ≤ n − 1. Assume that Bs|L| = ∅. If gi(X, L) − hi(OX) ≤ i,
then ∆k(X, L) = 0 for every integer k with k ≥ i + 1.

Proof. By assumption, the Lefschetz theorem, Remark 1.3.1, and Theorem 3.1
(1), we have

i ≥ gi(X, L)− hi(OX)

= gi(Xn−i−1, Ln−i−1)− hi(OXn−i−1)

= h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1).

If h0(KXn−i−1) 6= 0, then by Lemma 1.8

h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1)

≥ h0(Ln−i−1)− 1

≥ i + 1.
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But this is impossible. Hence h0(KXn−i−1) = 0. By the same argument as in the proof
of Proposition 3.9, we get ∆i+1(X, L) = 0. By Corollary 3.10 we have ∆k(X, L) = 0 for
every integer k with k ≥ i + 1. This completes the proof. ¤

Next we assume that (X, L) is a polarized manifold. Next result is useful in order
to classify polarized manifolds by using the i-th ∆-genus.

Proposition 3.12. Let (X, L) be a polarized manifold of dimension n, and let i

be an integer with 1 ≤ i ≤ n. Assume that Bs|L| = ∅ and ∆i(X, L) = i. Then either
gi(X, L) ≤ i or there exists a covering π : X → P n of degree Ln such that h0(L) = n + 1
and ∆i(X, L) = · · · = ∆i(Xn−i, Ln−i).

Proof. In this case by Proposition 2.4, Corollary 3.3, and the Serre duality, we
have

i = ∆i(X, L) ≥ ∆i(X1, L1)
...
≥ ∆i(Xn−i, Ln−i)

= hi(OXn−i
)− hi(Ln−i)

= h0(KXn−i
)− h0(KXn−i

− Ln−i).

If h0(KXn−i
−Ln−i) = 0, then i = ∆i(X, L) ≥ gi(X, L) by the same argument as in

the proof of Corollary 3.6.
If h0(KXn−i

− Ln−i) 6= 0, then by Lemma 1.8

h0(KXn−i)− h0(KXn−i − Ln−i) ≥ h0(Ln−i)− 1 (♠)

≥ h0(Ln−i−1)− 2
...

≥ h0(L)− (n− i + 1)

≥ n + 1− n + i− 1

= i.

Hence ∆i(Xj , Lj) = ∆i(Xj+1, Lj+1) = i and h0(Lj) = h0(Lj+1) + 1 for j = 0, · · · , n −
i − 1. Furthermore h0(L) = n + 1 by (♠). Since Bs|L| = ∅, there exists a morphism
Φ|L| : X → P n such that Φ|L| is finite of degree Ln. This completes the proof. ¤

(3.B) The case where ∆i(X, L) = 0.
Here we study (X, L) with ∆i(X, L) = 0.

Theorem 3.13. Let (X, L) be a quasi-polarized manifold of dimension n, and let
i be an integer with 1 ≤ i ≤ n. Assume that Bs|L| = ∅. Then ∆i(X, L) = 0 if and only
if gi(X, L) = 0.
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Proof. Assume that gi(X, L) = 0. Then hi(OXn−i
) = 0. Therefore hi(OX) =

hi(OX1) = · · · = hi(OXn−i−1) ≤ hi(OXn−i
) = 0. Hence Hi−1(Lj) → Hi−1(Lj+1) is

surjective for every integer j with 0 ≤ j ≤ n− i. Namely dim Coker(ri−1,j) = 0 for every
integer j with 0 ≤ j ≤ n− i. Therefore by Corollary 3.2,

∆i(X, L) =
n−i∑

k=0

dimCoker(ri−1,k) = 0.

Assume that ∆i(X, L) = 0. Then dimCoker(ri−1,k) = 0 for every integer k with 0 ≤ k ≤
n − i, and ∆i(X, L) = ∆i(X1, L1) = · · · = ∆i(Xn−i, Ln−i). We consider the following
exact sequence

Hi−1(Ln−i) → Hi−1(Ln−i+1) → Hi(OXn−i) → Hi(Ln−i) → 0.

Since Hi−1(Ln−i) → Hi−1(Ln−i+1) is surjective, we obtain hi(OXn−i
) = hi(Ln−i).

If hi(OXn−i
) 6= 0, then hi(Ln−i) 6= 0 and by Lemma 1.8 and the Serre duality, we

get

hi(OXn−i
) = h0(KXn−i

)

≥ h0(KXn−i
− Ln−i) + h0(Ln−i)− 1

= hi(Ln−i) + h0(Ln−i)− 1

≥ hi(Ln−i) + i

> hi(Ln−i).

But this is a contradiction. Hence hi(OXn−i
) = 0 and by Theorem 3.1(1) we get

gi(X, L) = gi(Xn−i, Ln−i) = hi(OXn−i) = 0.

This completes the proof of Theorem 3.13. ¤

Remark 3.13.1. If n ≥ 3, then by Theorem 3.1(2) and Theorem 3.13, we get
a classification of polarized manifolds (X, L) with ∆2(X, L) = 0 and Bs|L| = ∅. In
particular, if ∆2(X, L) = 0 and Bs|L| = ∅, then (X, L) is one of the types from (1) to
(7.4) in Theorem 1.7. (Here we remark that if (X, L) is a scroll over a smooth surface,
then h2(OX) = 0.)

Corollary 3.14. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with 1 ≤ i ≤ n− 1. Assume that Bs|L| =∅. If gi(X, L)−hi(OX) ≤ i,
then gk(X, L) = 0 for every integer k with k ≥ i + 1.

Proof. By Theorem 3.11 and Theorem 3.13, we get the assertion. ¤
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Next result is a vanishing theorem of cohomology of tL. This result is analogous to
[Fj3, (3.5) Theorem 3].

Theorem 3.15. Let (X, L) be a quasi-polarized manifold of dimension n, and let
i be an integer with 1 ≤ i ≤ n − 1. Assume that Bs|L| = ∅ and ∆i(X, L) = 0. Then
hk(tL) = 0 for every integers t and k with t ≥ 0 and i ≤ k ≤ n.

Proof. (A) Assume that t = 0. By ∆i(X, L) = 0, we have gi(X, L) = 0 and
hi(OX) = 0 by Theorem 3.1(2) and Theorem 3.13. Furthermore by Theorem 3.11 we
have ∆k(X, L) = 0 for every integer k with k ≥ i + 1. Hence by Theorem 3.1(2) and
Theorem 3.13, gk(X, L) = 0 and hk(OX) = 0 for every integer k with k ≥ i + 1.

Hence hk(OX) = 0 for every integer k with k ≥ i ≥ 1.
(B) Assume that t > 0. Since ∆i(X, L) = 0, we have 0 = ∆i(Xn−i, Ln−i). In particular
hi(OXn−i) − hi(Ln−i) = 0 by Proposition 2.4. By the same argument as the proof
of Theorem 3.13, we have hi(Ln−i) = 0. Since hi(tLn−i) = h0(KXn−i

− tLn−i) ≤
h0(KXn−i

− Ln−i) = hi(Ln−i), we have hi(tLn−i) = 0 for every integer t with t ≥ 1.
Assume that hk(tLm) = 0 for every integers t and k with t ≥ 1 and i ≤ k ≤ n−m.

We study the value of hk(tLm−1). Then

Hk
(
(s− 1)Lm−1

) → Hk(sLm−1)

is surjective for every integers s and k with s ≥ 1 and i ≤ k ≤ n − m + 1 because
hk(tLm) = 0 for every integer t with t ≥ 1. Therefore

hk(OXm−1) ≥ hk(Lm−1) ≥ · · · ≥ hk(sLm−1) ≥ · · ·

for every integer k with i ≤ k ≤ n−m + 1. We remark that

hk(OX) = hk(OX1) = · · · = hk(OXm−1)

for every integer k with i ≤ k ≤ n −m. By assumption, Corollary 3.10, and Theorem
3.13, we get gk(X, L) = 0 for every integer k with k ≥ i. Hence by Theorem 3.1(2) we
get 0 = gk(X, L) ≥ hk(OX), and hk(OXm−1) = 0 for every integer k with i ≤ k ≤ n−m.

If k = n−m + 1, then by Theorem 3.1(1) we get

0 = gk(X, L) = gk(Xm−1, Lm−1) = hk(OXm−1).

Hence hk(OXm−1) = 0. Therefore hk(tLm−1) = 0 for all integers t and k with t ≥ 1 and
i ≤ k ≤ n − m + 1. By induction hk(tL) = 0 for all integers t and k with t ≥ 1 and
i ≤ k ≤ n. This completes the proof. ¤

(3.C) The case where ∆i(X, L) = 1 with 2 ≤ i ≤ n.
Let i be an integer with 2 ≤ i ≤ n. Here we study (X, L) with ∆i(X, L) = 1. The follow-
ing result can be proved as a corollary of Corollary 3.8, Proposition 3.9, and Theorem
3.13.
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Theorem 3.16. Let (X, L) be a quasi-polarized manifold of dimension n, and
let i be an integer with 2 ≤ i ≤ n. Assume that Bs|L| = ∅. If ∆i(X, L) = 1, then
gi(X, L) = 1. Furthermore if ∆i(X, L) = 1 for an integer i with 2 ≤ i ≤ n − 1, then
gi+1(X, L) = ∆i+1(X, L) = 0.

Remark 3.16.1. Let (X, L) be a polarized manifold of dimension n. If g1(X, L) =
∆1(X, L) = 1, then (X, L) is a Del Pezzo manifold. (See [Fj3, (6.5) Corollary].)

If n ≥ 3, i = 2, and L is very ample, then we get a classification of (X, L) with
∆2(X, L) = 1 as follows.

Theorem 3.17. Let (X, L) be a polarized manifold of dimension n ≥ 3 and let
(M, A) be a reduction of (X, L). Assume that L is very ample. If ∆2(X, L) = 1, then
(X, L) is one of the following.

(1) (M, A) is a Mukai manifold.
(2) (M, A) is a Del Pezzo fibration over a smooth elliptic curve C. Let f : M → C be

its fibration. Then KM + (n − 2)A = f∗(H) for some ample line bundle H on C

with deg H = 1.
(3) (M, A) is a quadric fibration over a smooth surface S. Let f : M → S be its

fibration. Then KM + (n− 2)A = f∗(KS + H) for some ample line bundle H on
S.
(3.1) S is a P 1-bundle, p : S → B, over an elliptic curve B and H = 3C0 − F ,
where C0 (resp. F ) denotes the minimal section of S with C2

0 = 1 (resp. a fiber of
p).
(3.2) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1.

(4) (X, L) = (M, A), n = dimX ≥ 4, and (X, L) is a scroll over a normal 3-fold Y

with h2(OY ) = 0. If dimX ≥ 5, then Y is smooth and there exists an ample vector
bundle E of rank n−2 on Y such that X = PY (E ) and L = H(E ), where H(E ) is
the tautological line bundle on X. In this case (Y, c1(E )) is one of the following.
(4.1) (Y, c1(E )) is a Mukai manifold. In this case, (Y,E ) is one of the following.

(4.1.1) (Y,E ) ∼= (P 3,OP 3(1)⊕4).
(4.1.2) (Y,E ) ∼= (P 3,OP 3(2)⊕ OP 3(1)⊕2).
(4.1.3) (Y,E ) ∼= (P 3, TP 3), where TP 3 is the tangent bundle of P 3.
(4.1.4) (Y,E ) ∼= (Q3,OQ3(1)⊕3).

(4.2) (Y, c1(E )) is a Del Pezzo fibration over a smooth curve C such that (Y, c1(E ))
is of the type (2) above. In this case dimX = 5 and there exist vector bundles
F and G on C with rankF = 3 and rankG = 3 such that Y = PC(F ) and
E ∼= H(F )⊗ π∗(G ).

Furthermore if (X, L) is one of the types from (1) to (4) above unless (X, L) is a 4-
dimensional scroll over a normal 3-fold Y with h2(OY ) = 0, then ∆2(X, L) = 1.

Proof. By Theorem 3.16 we obtain g2(X, L) = 1. In particular, we get g2(X, L) ≤
h2(OX) + 1. Hence one of the following holds.

(A) g2(X, L) = 1 = h2(OX) + 1, that is, h2(OX) = 0.
(B) g2(X, L) = 1 = h2(OX).
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Here we note that by Corollary 2.11 we get ∆2(X, L) = ∆2(M, A).
(I) First we consider the case (A).

Then by [Fk, Theorem 3.6], one of the following holds. (Here we use the assumption
that L is very ample.)
(A.1) (M, A) is a Mukai manifold.
(A.2) (M, A) is a Del Pezzo fibration over a smooth curve C. Let f : M → C be its
morphism. Then there exists an ample line bundle H on C such that KM + (n− 2)A =
f∗(H). In this case (g(C),deg H) = (1, 1).
(A.3) (M, A) is a quadric fibration over a smooth surface S. Let f : M → S be its
morphism. Then there exists an ample line bundle H on S such that KM + (n− 2)A =
f∗(KS + H). In this case (S,H) is one of the following types:

(A.3.1) S is a P 1-bundle, p : S → B, over a smooth elliptic curve B, and H =
3C0−F , where C0 (resp. F ) denotes the minimal section of S with C2

0 = 1 (resp. a fiber
of p).

(A.3.2) S is an abelian surface, H2 = 2, and h0(H) = 1.
(A.3.3) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1.

(A.4) (M, A) = (X, L), n = dimX ≥ 4, and (X, L) is a scroll over a normal projective
variety Y of dimension 3. If dimX ≥ 5, then Y is smooth and there exists an ample
vector bundle E of rank n− 2 on Y such that X = PY (E ) and L = H(E ), where H(E )
is the tautological line bundle on X. In this case (Y, c1(E )) is one of the following.

(A.4.1) (Y, c1(E )) is a Mukai manifold. In this case, (Y,E ) is one of the following:
(A.4.1.1) (Y,E ) ∼= (P 3,OP 3(1)⊕4).
(A.4.1.2) (Y, E ) ∼= (P 3,OP 3(2)⊕ OP 3(1)⊕2).
(A.4.1.3) (Y, E ) ∼= (P 3, TP 3), where TP 3 is the tangent bundle of P 3.
(A.4.1.4) (Y, E ) ∼= (Q3,OQ3(1)⊕3).

(A.4.2) (Y, c1(E )) is a Del Pezzo fibration over a smooth curve such that (Y, c1(E ))
is of the type (A.2) above. In this case dimX = 5.

(I.1) If (M, A) is as in the case (A.1), then by Example 2.12(4) we have ∆2(X, L) =
∆2(M, A) = 1.
(I.2) If (M, A) is as in the case (A.2), then we obtain

h0(KM + (n− 2)A) = h0(f∗(H)) = h0(H) = 1.

Hence by Example 2.12(10), we obtain

∆2(M, A) = g2(M, A)−∆3(M, A) + (n− 2)h2(OM )− h2(A)

= h0(KM + (n− 2)A)

= 1.

(I.3) If (M, A) is as in the case (A.3), then KM + (n− 2)A = f∗(KS + H).
(I.3.1) The case (A.3.2) is impossible because h2(OS) = 0 under this situation.
(I.3.2) Next we consider the cases (A.3.1) and (A.3.3). Then h2(OM ) = h2(OS) = 0.
Hence by Example 2.12 (9) we get
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∆2(X, L) = ∆2(M, A)

= h0(KM + (n− 2)A)− h2(A)

= h0(KS + H)− h2(A).

Next we calculate h0(KS + H).
If (M, A) is as in the case (A.3.1), then KS + H = −2C0 + F + (3C0−F ) = C0. By

the Riemann-Roch theorem and the vanishing theorem, we get

h0(KS + H) = g(H)− q(S) + h2(OS)

= 2− 1 = 1,

where g(H) is the sectional genus of (S,H).
If (M, A) is as in the case (A.3.3), then by the Riemann-Roch theorem and the

vanishing theorem

h0(KS + H) = g(H)− q(S) + h2(OS)

= 2− 1 = 1.

In each case, we get h0(KS +H) = 1. Therefore ∆2(X, L) = ∆2(M, A) = 1−h2(A).
If ∆2(X, L) = 0, then g2(X, L) = 0 by Theorem 3.13. Hence g2(X, L) = h2(OX)

and this is a contradiction. Therefore ∆2(X, L) > 0. So we obtain h2(A) = 0 and
∆2(X, L) = 1.
(I.4) We consider the case (A.4). In this case, by Example 2.12 (7), we get

∆2(X, L) = h0(KX + (n− 2)L)− h2(L) + h3(L) (♥)

+ (n− 1)(h2(OX)− h3(OX)).

Here we assume that dim X ≥ 5. Then Y is smooth and there exists an ample vector
bundle E of rank n − 2 on Y such that X = PY (E ) and L = H(E ), where H(E ) is the
tautological line bundle of PY (E ). Let f : X → Y be its morphism. Here we note that

KX + (n− 2)L

= −(n− 2)H(E ) + f∗
(
KY + c1(E )

)
+ (n− 2)H(E )

= f∗(KY + c1(E )).

(I.4.1) We consider the case (A.4.1).
Then (Y,E ) is one of the cases (A.4.1.1), (A.4.1.2), (A.4.1.3), and (A.4.1.4). In these
cases, we get h2(OX) = 0 and h3(OX) = 0.

On the other hand KX + (n− 2)L = f∗(KY + c1(E )) = OX because (Y, c1(E )) is a
Mukai manifold. Hence h0(KX + (n− 2)L) = 1. Next we calculate h2(L) and h3(L).
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h2(L) = h2(H(E ))

= hn−2(KX −H(E ))

= hn−2(−(n− 1)H(E ))

= 0,

and

h3(L) = h3(H(E ))

= hn−3(KX −H(E ))

= hn−3(−(n− 1)H(E ))

= 0.

Hence by (♥) we have ∆2(X, L) = 1.
(I.4.2) We consider the case (A.4.2).
Then (Y, c1(E )) is a Del Pezzo fibration over a smooth elliptic curve. Let π : Y → C be
its morphism. Then by Proposition 1.10, there exist vector bundles F and G on C with
rankF = 3 and rankG = 3 such that Y = PC(F ) and E ∼= H(F )⊗ π∗(G ).

Next we calculate ∆2(X, L) in this case. Since KY + c1(E ) = π∗(H) for some ample
line bundle H on C, we get

h0
(
KX + (n− 2)L

)
= h0

(
f∗(KY + c1(E ))

)

= h0
(
f∗ ◦ π∗(H)

)

= h0(H) = 1

because g(C) = 1 and deg H = 1.
Next we calculate hj(L) for j = 2, 3. Here we note that by the Serre duality

hj(L) = hj(H(E ))

= hn−j
(
KX −H(E )

)

= hn−j
(− (n− 1)H(E ) + f∗ ◦ π∗(H)

)
.

Claim 3.17.1. hn−j(−tH(E )|F ) = 0 for any fiber F of π ◦ f if j ≥ 2 and t ≥ 0.

Proof. By the following exact sequence

0 → −tH(E )− F → −tH(E ) → −tH(E )|F → 0,

we get the following exact sequence
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Hn−j(−tH(E )− F ) → Hn−j(−tH(E ))

→ Hn−j(−tH(E )|F )

→ Hn−j+1(−tH(E )− F ).

Since tH(E ) and tH(E ) + F is ample for t > 0, we obtain hn−j(−tH(E ) − F ) = 0,
hn−j+1(−tH(E )− F ) = 0, and hn−j(−tH(E )) = 0 for j ≥ 2.

Hence hn−j(−tH(E )|F ) = 0. This completes the proof of Claim 3.17.1. ¤

Claim 3.17.2. hj(L) = 0 for j = 2, 3.

Proof. We consider the following exact sequence.

0 → −(n− 1)H(E ) → −(n− 1)H(E ) + f∗ ◦ π∗(H)

→ −(n− 1)H(E )|F → 0

because deg(H) = 1 and h0(H) = 1. On the other hand, hn−j(−(n− 1)H(E )) = 0, and
by Claim 3.17.1, we get hn−j(−(n− 1)H(E )|F ) = 0. Hence

hj(L) = hn−j(−(n− 1)H(E ) + f∗ ◦ π∗(H)) = 0.

This completes the proof of Claim 3.17.2. ¤

Since hj(OX) = hj(OY ) = 0 for j = 2, 3, we get

∆2(X, L) = h0
(
KX + (n− 2)L

)− h2(L) + h3(L) + (n− 1)
(
h2(OX)− h3(OX)

)

= 1.

(II) Next we consider the case (B). By Theorem 3.1(2), (X, L) is one of the types from
(1) to (7.4) in Theorem 1.7 because L is very ample. Since h2(OX) = 1 in this case,
(X, L) is a scroll over a smooth surface S with h2(OS) = 1.

Claim 3.17.3. In this case, ∆2(X, L) ≥ 2.

Proof. There exists an ample and spanned vector bundle E of rank n − 1 on S

such that X = PS(E ) and L = H(E ), where H(E ) is the tautological line bundle of
PS(E ). Let f : X → S be its morphism.
(a) The case where dim X = 3.

First we prove the following claim.

Claim 3.17.3.1. h2(L) = 0.

Proof. (i) First we consider the case where KS 6= OS .
Assume that h2(L) > 0. Here we remark that h2(L) = h2(f∗(L)) by the proof of

Lemma 1.6. Since
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h2(L) = h2(H(E ))

= h2
(
f∗(H(E ))

)

= h2(E )

= h0(KS ⊗ E ∨)

= dim Hom(E ,KS),

we get a nontrivial map µ : E → KS . Then there exists an exact sequence

0 → Kerµ → E → Imµ → 0.

Here we calculate rank(Imµ). If rank(Imµ) = 0, then dim Supp(Imµ) < dimS and
Imµ is a torsion sheaf. On the other hand since Imµ is a subsheaf of KS , Imµ is a torsion
free sheaf. Hence Imµ = 0 and this is a contradiction because µ : E → KS is a nontrivial
map. Hence rank(Imµ) > 0 and rank(Imµ) = 1 because Imµ is a subsheaf of KS .

Since Imµ is a torsion free sheaf, by [OSS, p. 148 Corollary] there exists an open set
U of S such that dim(S\U) ≤ 0 and (Imµ)|U is a locally free sheaf of rank 1.

Since dim(S\U) ≤ 0, h0(KS) = h2(OS) = 1, and KS 6= OS , there exists a point
x ∈ U such that t(x) = 0 for every t ∈ H0(S,KS). On the other hand, since Imµ is a
subsheaf of O(KS), we get u(x) = 0 for every u ∈ H0(S, Imµ).

Because

E → Imµ → 0

is exact and E is generated by its global sections, Imµ is generated by its global sections.
But this is a contradiction because (Imµ)|U is an invertible sheaf and there exists a point
x ∈ U such that u(x) = 0 for every u ∈ H0(S, Imµ). Therefore we get h2(L) = 0.
(ii) Next we consider the case where KS = OS .

Since rankE = 2 = dimS, by a Le Potier’s theorem [ShSo, p. 96 (5.17) Corollary],
we obtain

h2(L) = h2(E )

= h2(KS ⊗ E )

= 0.

These complete the proof of Claim 3.17.3.1. ¤

Therefore by Example 2.12(6) we have

∆2(X, L) = 2h2(OX)− h2(L)

= 2.
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(b) The case where dim X ≥ 4.
Since Bs|L| =∅, there exists a member X1 ∈ |L| such that X1 is a smooth projective

variety of dimension n− 1. On the other hand, since KX + (n− 1)L = f∗(B) for some
ample line bundle B ∈ Pic(S) by hypothesis, we get KX1 + (n − 2)L1 = (f1)∗(B),
where f1 := f |X1 : X1 → S. Because X1 is an ample divisor on X, f1 is a surjective
morphism with connected fibers. Therefore (X1, L1) is a scroll over a smooth surface S

with h2(OX1) = 1 and Bs|L1| = ∅. Hence by [BeSo, Theorem 11.1.1], E1 := (f1)∗(L1)
is a locally free sheaf, X1 = PS(E1), and L1 = H(E1). (Here we note that E1 is ample.)

By the same argument as above, there exists an (n− 3)-ladder Xn−3 ⊂ · · · ⊂ X1 ⊂
X0 = X such that for every integer j with 0 ≤ j ≤ n − 3, we put Lj = Lj−1|Xj

, and
(Xj , Lj) is a scroll over a smooth surface S with h2(OXj

) = 1 and Bs|Lj | = ∅. Let
fj : Xj → S be its morphism. By putting Ej := (fj)∗(Lj), Ej is a locally free sheaf,
Xj = PS(Ej), and Lj = H(Ej). (Here we note that Ej is ample.)

By Corollary 3.3, we get

∆2(X, L) ≥ · · · ≥ ∆2(Xn−3, Ln−3).

By the case (a) above, we obtain ∆2(Xn−3, Ln−3) ≥ 2 and ∆2(X, L) ≥ 2. These complete
the proof of Claim 3.17.3. ¤

Therefore we get the assertion of Theorem 3.17. ¤

Remark 3.17.4. Let X be a P n−m-bundle over a smooth projective variety Y

of dimension m with hm(OY ) ≥ 1 and let L be an ample and spanned line bundle on
X such that L|F = OP n−m(1) for every fiber F . Then by the same argument as in the
proof of Claim 3.17.3, we can prove that ∆m(X, L) ≥ 2. A proof is the following.

Proof. First we consider the case where dim X = m+1. We can prove hm(L) = 0
by the same argument as Claim 3.17.3.1.

By Lemma 2.12.1, we obtain ∆m+1(X, L) = 0. By [Fk, Example 2.10(8)] we get
gm(X, L) = hm(OX). By the definition of the i-th ∆-genus, we get

∆m(X, L) = gm(X, L)−∆m+1(X, L) + hm(OX)− hm(L)

= 2hm(OX)

≥ 2.

Next we consider the case where dim X = n ≥ m+2. Then there exists an (n−m−1)-
ladder Xn−m−1 ⊂ · · · ⊂ X1 ⊂ X0 = X such that for every integer j with 0 ≤ j ≤
n−m− 1, we put Lj = Lj−1|Xj

, and (Xj , Lj) is a scroll over Y with hm(OXj
) = 1 and

Bs|Lj | = ∅. Let fj : Xj → Y be its morphism. By putting Ej := (fj)∗(Lj), Ej is a
locally free sheaf, Xj = PY (Ej), and Lj = H(Ej). (Here we note that Ej is ample.)

By Corollary 3.3, we get

∆m(X, L) ≥ · · · ≥ ∆m(Xn−m−1, Ln−m−1).
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Since dimXn−m−1 = m + 1, by above we get ∆m(Xn−m−1, Ln−m−1) ≥ 2. Hence we get
the assertion. ¤

Here we study a polarized manifold (X, L) with g2(X, L) = 1 by using the second
∆-genus.

Proposition 3.18. Let (X, L) be a polarized manifold of dimension n ≥ 3. As-
sume that Bs|L| =∅. If ∆2(X, L) > g2(X, L) = 1, then (X, L) is a scroll over a smooth
surface S with h2(OS) = 1.

Proof. We use Notation 3.0. By Corollary 3.2, we get

∆2(X, L) =
n−2∑

k=0

dimCoker(r1,k).

By the Lefschetz theorem, we have

0 ≤ h2(OX) = h2(OX1) = · · · = h2(OXn−3) ≤ h2(OXn−2).

By Theorem 3.1(1) we obtain 1 = g2(X, L) = h2(OXn−2). Hence

0 ≤ h2(OX) = h2(OX1) = · · · = h2(OXn−3) ≤ h2(OXn−2) = 1.

If h2(OXn−3) = 0, then dimCoker(r1,i) = 0 for i = 0, · · · , n − 3. Hence ∆2(X, L) =
dimCoker(r1,n−2) ≤ h2(OXn−2) = 1 = g2(X, L) and this is impossible. Therefore
h2(OXn−3) = 1 = h2(OXn−2). In particular h2(OXn−2) = h2(OX) = 1.

Therefore, by Theorem 3.1(1), we obtain g2(X, L) = h2(OXn−2) = h2(OX) = 1. By
Theorem 3.1(2) and h2(OX) = 1, we get the assertion. ¤

Lemma 3.19. Let (X, L) be a quasi-polarized manifold of dimension n. Assume
that Bs|L| =∅. If ∆2(X, L) ≤ g2(X, L) = 1, then ∆2(X, L) = 1.

Proof. Since ∆2(X, L) ≥ 0, we get ∆2(X, L) = 0 or 1. If ∆2(X, L) = 0, then
g2(X, L) = 0 by Theorem 3.13. Hence we get the assertion. ¤

By using Proposition 3.18 and Lemma 3.19 we get the following.

Theorem 3.20. Let (X, L) be a polarized manifold of dimension n ≥ 3. Assume
that Bs|L| =∅. If g2(X, L) = 1, then (X, L) is one of the following.

(1) ∆2(X, L) = 1 and h2(OX) = 0.
(2) (X, L) is a scroll over a smooth surface with h2(OX) = 1.

Proof. (A) If ∆2(X, L) > g2(X, L) = 1, then (X, L) is of the type (2) by Propo-
sition 3.18.
(B) If ∆2(X, L) ≤ g2(X, L) = 1, then ∆2(X, L) = 1 by Lemma 3.19. By Theorem 3.1(2),
h2(OX) ≤ g2(X, L) = 1.
(B-1) If h2(OX) = 0, then (X, L) is of the type (1).
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(B-2) If h2(OX) = 1, then g2(X, L) = h2(OX) = 1. By Theorem 1.7 and Theorem 3.1
(2), (X, L) is a scroll over a smooth surface with h2(OX) = 1. This is of the type (2).
This completes the proof. ¤

(3.D) The case where ∆i(X, L) = 2 with 2 ≤ i ≤ n.
Let (X, L) be a quasi-polarized manifold of dimension n with Bs|L| = ∅. Assume

that i is an integer with n− 1 ≥ i ≥ 3. Then by Proposition 3.7 and Proposition 3.9, we
get gi(X, L) ≤ 2, and gi+1(X, L) = ∆i+1(X, L) = 0.

Assume that i = 2. Then by Proposition 3.12, one of the following holds.
(3.D.1) g2(X, L) ≤ 2.
(3.D.2) There exists a covering π : X → P n of degree Ln such that ∆2(X, L) =

· · · = ∆2(Xn−2, Ln−2).
In particular, if L is very ample, then g2(X, L) ≤ 2. We will study a polarized

manifold (X, L) such that dimX = n ≥ 4, L is very ample, and ∆2(X, L) = 2 in a future
paper.

4. Remark.

In this section, we propose some problems about the i-th ∆-genus. First we propose
the following problem.

Problem 4.1. Let (X, L) be a quasi-polarized variety of dimension n. Is it true
that ∆i(X, L) ≥ 0 for every integer i with 1 ≤ i ≤ n?

If i = 1, then this is true by Fujita’s result ([Fj1], [Fj2]). If X is smooth and
Bs|L| = ∅, then this is true by Corollary 3.3. But this problem is not true in general.
Here we give some examples of (X, L) such that ∆i(X, L) < 0.

Example 4.1.1. Let P n+1 be the projective space of dimension n+1 with n ≥ 4.
Let (ξ0 : ξ1 : · · · : ξn+1) be the homogeneous coordinate of it. Let k = n + 3 be a prime
number. Let G = Z/kZ be a cyclic group of order k generated by the primitive k-th
root of unity. Then ρ ∈ G acts on P n+1 as the following.

(ρ) · (ξ0 : ξ1 : · · · : ξn+1) = (ξ0 : ρξ1 : · · · : ρn+1ξn+1),

where ρ = exp(2πi/k). The fixed points of this action are the following.

(1 : 0 : · · · : 0), (0 : 1 : · · · : 0), · · · , (0 : 0 : · · · : 1). (4.1.1.1)

Let Y be a hypersurface in P n+1 which is defined by
∑n+1

i=0 ξi
k = 0. We note that the

above action of G on P n+1 induces the action of G on Y . All points in (4.1.1.1) are
not on Y . Hence X := Y/G is smooth and π : Y → X is an etale covering of degree
k = n + 3. Since KY = (O(−n − 2) + O(n + 3))|Y = OY (1), we get n + 3 = Kn

Y =
(π∗KX)n = (deg π)(KX)n = (n + 3)(KX)n. Namely (KX)n = 1. Here we remark that
π∗OY = OX ⊕ E , where E is a locally free sheaf of rank n + 2 on X. Since

Hi(OY ) = Hi(π∗OY ) = Hi(OX)⊕Hi(E )



1040 Y. Fukuma

and hi(OY ) = 0 for every integer i with 1 ≤ i ≤ n−1, we get hi(OX) = 0 for 1 ≤ i ≤ n−1.
In particular, h1(KX) = hn−1(OX) = 0.

Next we calculate h0(KX). Since n + 3 is prime, n is even. Hence

χ(OY ) = 1 + hn(OY ) = 1 + h0(KY ) = n + 3.

Since π is etale,

χ(OX) =
1

deg π
χ(OY ) = 1.

Hence hn(OX) = 0. By the Serre duality, we have h0(KX) = 0.
Here we remark that KX is ample. We calculate ∆2(X, KX). By definition

∆2(X, KX) = g1(X, KX)−∆1(X, KX) + (n− 1)h1(OX)− h1(KX)

= 1 +
1
2
(
KX + (n− 1)KX

)
KX

n−1 − (
n + KX

n − h0(KX)
)

= 1 +
n

2
− n− 1

= −n

2
< 0.

Here we remark that since k = n + 3 is a prime number, n = 2, 4, 8, · · · .
Example 4.1.2. Let P n+1 be the projective space of dimension n+1 with n ≥ 4.

Let (ξ0 : ξ1 : · · · : ξn+1) be the homogeneous coordinate of it. Let G = Z/kZ for a prime
number k = n + 3. We assume that the action of G on P n+1 is the same action as in
Example 4.1.1. Let Hj be a hyperplane ξj = 0. Let Y be a hypersurface of P n+1 which
is defined by

∑n+1
i=0 ξi

k = 0, X := Y/G, and π : Y → X be as in Example 4.1.1. Then

Yj := Y ∩Hj

is smooth for any j. The action of G on P n+1 induces the action of G on Yj , and Yj has
no fixed point. Here we consider Xj := π(Y ∩ Hj). Then Xj is smooth, Yj = π∗(Xj),
dimXj = n− 1, and KX |Xj

is ample. Here we remark that

(KY )n−i(Yj)i = OY (1)n = n + 3

for every integer i with 0 ≤ i ≤ n. On the other hand

(KY )n−i(Yj)i =
(
π∗(KX)

)n−i(
π∗(Xj)

)i

= (deg π)
(
(KX)n−i(Xj)i

)

= (n + 3)
(
(KX)n−i(Xj

)i).
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Hence (KX)n−i(Xj)i = 1 for every integer i with 0 ≤ i ≤ n.

Claim 4.1.2.1. hi(KX |Xj
) = 0 for every integer i with 0 ≤ i ≤ n− 2.

Proof. We consider the following exact sequence.

0 → KX −Xj → KX → KX |Xj
→ 0.

Then

Hi(KX) → Hi(KX |Xj ) → Hi+1(KX −Xj)

is exact. By Example 4.1.1, we get hi(KX) = 0 for every integer i with 0 ≤ i ≤ n − 1.
By the Serre duality we have hi+1(KX −Xj) = hn−i−1(Xj). Here we remark that

π∗
(
O(Yj)

)
= π∗π∗

(
O(Xj)

)

= O(Xj)⊕
(
E ⊗ O(Xj)

)

because π∗OY = OX ⊕ E , where E is a locally free sheaf of rank n + 2 on X. Since

Hn−i−1
(
O(Yj)

)
= Hn−i−1

(
π∗(O(Yj)

)

= Hn−i−1
(
O(Xj)

)⊕Hn−i−1
(
E ⊗ O(Xj)

)
,

and hn−i−1(O(Yj)) = 0 for 0 ≤ i ≤ n− 2, we have hn−i−1(O(Xj)) = 0 for 0 ≤ i ≤ n− 2.
Hence hi(KX |Xj ) = 0 for every integer i with 0 ≤ i ≤ n− 2. ¤

Here we remark that h1(OXj
) = 0. Actually, since Yj is ample and Yj = π∗(Xj), Xj

is ample on X. Since dimX = n ≥ 4, we get h1(−Xj) = h2(−Xj) = 0 by the Kodaira
vanishing theorem. By Example 4.1.1 we also get h1(OX) = 0. Hence h1(OXj

) = 0.
Here we calculate the second ∆-genus of (Xj ,KX |Xj ). By Claim 4.1.2.1 we get

h0(KX |Xj ) = 0 and h1(KX |Xj ) = 0. Hence

∆2(Xj ,KX |Xj
) = g1(Xj ,KX |Xj

)−∆1(Xj ,KX |Xj
) + (n− 2)h1(OXj

)− h1(KX |Xj
)

= 1 +
1
2
(
KXj + (n− 2)(KX |Xj )

)
(KX |Xj )

n−2

− (
n− 1 + (KX |Xj

)n−1 − h0(KX |Xj
)
)

= 1 +
1
2
(
(n− 1)KX + Xj

)
(KX)n−2Xj − n

= −n

2
+ 1.

If n ≥ 4, then ∆2(Xj ,KX |Xj
) < 0.

Example 4.1.3.
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(1) Let X be a smooth projective variety of dimension n ≥ 2. Assume that KX is ample
with h0(KX) = 0. (Here we remark that there exists an example of this type. For
example, there exists a minimal surface of general type S such that KS is ample and
h0(KS) = 0 (see [BaPeVa, Chapter V, 15]). Let Y ′ be a smooth projective manifold of
dimension n − 2 such that KY ′ is ample. We put Y = Y ′ × S. Then KY is ample and
h0(KY ) = h0(KY ′)h0(KS) = 0.)

Then by Proposition 2.4

∆n(X, KX) = hn(OX)− hn(KX)

= h0(KX)− h0(OX)

= −1 < 0.

(2) We fix a natural number n with n ≥ 3. For every natural number m, there exists an
example of (X, L) with ∆n(X, L) = −m and dimX = n. Let Y be a smooth projective
variety of dimension n − 1 ≥ 2 such that KY is ample with h0(KY ) = 0. Let C be a
smooth projective curve of genus m + 1 ≥ 2, where m is a natural number. Let A be a
divisor on C with deg A = 1 and h0(A) = 1. Here we remark that Bs|KC | = ∅. Hence
h0(KC −A) = g(C)− 1. We put X := Y ×C and L := p∗1(KY ) + p∗2(A), where pi is the
i-th projection for i = 1, 2. Then L is ample. Moreover we get

hn(OX) = h0(KX) = h0(KY )h0(KC) = 0,

and

hn(L) = hn(p∗1(KY ) + p∗2(A))

= hn−1(KY )h1(A)

= h0(OY )h0(KC −A)

= g(C)− 1.

Hence

∆n(X, L) = hn(OX)− hn(L)

= −(g(C)− 1)

= −m.

Example 4.1.4. (1) Let Y be a smooth projective variety of dimension m ≥ 2
such that KY is ample with h0(KY ) = 0. We put E = O(KY )⊕n−m+1, where n is
a natural number with n > m. Let X = PY (E ) and L = H(E ), where H(E ) is the
tautological line bundle on PY (E ). Then L is ample. Since gm(X, L) = hm(OX) and by
Lemma 2.12.1 ∆m+1(X, L) = 0 holds, we get
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∆m(X, L) = gm(X, L)−∆m+1(X, L) + (n−m)hm(OX)− hm(L)

= (n−m + 1)hm(OX)− hm(L).

Since hm(OX) = hm(OY ) = h0(KY ) = 0 and

hm(L) = hm(π∗(L))

= hm(E )

= hm
(
O(KY )⊕n−m+1

)

= (n−m + 1)hm
(
O(KY )

)

= n−m + 1,

we get

∆m(X, L) = (n−m + 1)hm(OX)− hm(L)

= −(n−m + 1) < 0.

(2) We fix a natural number n with n ≥ 3. For every natural number d, there exists a
polarized manifold (X, L) such that dimX = n, h0(L) ≥ d and ∆i(X, L) < 0 for every
integer i with 2 ≤ i ≤ n− 1 as follows.

Let (Y, KY ) be a polarized manifold of dimension m ≥ 2 such that h0(KY ) = 0. Let
A be an ample line bundle on Y such that h0(A) ≥ d and hm(A) = 0. (Here we remark
that this A does exist. Let L be an ample line bundle on Y . If t is sufficiently large,
h0(L⊗t) ≥ d holds. Furthermore by the Serre vanishing theorem, we get hm(L⊗t) = 0
for sufficiently large t. Here we put A = L⊗t.) We put E = O(KY )⊕n−m ⊕ A, where n

is a natural number with n > m. Let X = PY (E ) and L = H(E ), where H(E ) is the
tautological line bundle on PY (E ). Then L is ample with h0(L) = h0(E ) = h0(A) ≥ d.
By using Lemma 2.12.1, we get

∆m(X, L) = (n−m + 1)hm(OX)− hm(L).

Since hm(OX) = hm(OY ) = h0(KY ) = 0 and

hm(L) = hm
(
π∗(L)

)

= hm(E )

= hm
(
O(KY )⊕n−m ⊕A

)

= (n−m)hm
(
O(KY )

)
+ hm(A)

= n−m,

we get
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∆m(X, L) = (n−m + 1)hm(OX)− hm(L)

= −(n−m) < 0.

By considering these examples, we can propose the following problem.

Problem 4.2. List up types of quasi-polarized variety (X, L) with ∆i(X, L) < 0
for 2 ≤ i ≤ n = dim X.
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