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Abstract. Popa proved that strongly amenable subfactors of type III1 with the
same type II and type III principal graphs are completely classified by their standard
invariants. In this paper, we present a different proof of this classification theorem
based on Connes and Haagerup’s arguments on the uniqueness of the injective factor
of type III1.

1. Introduction.

One of main problems in subfactor theory, initiated by V. F. R. Jones ([18]), is
classification of subfactors, and significant contribution to this problem has been made
by S. Popa from an analytic viewpoint. The main theorem in [32] says that strongly
amenable subfactors of type II1 possess the generating property, showing especially that
such subfactors are completely classified by their standard invariants. Furthermore,
in [31], [33], he considered notions of approximate innerness and central freeness for
subfactors to obtain classification from a different viewpoint and indeed showed that
strongly amenable subfactors with these two properties can be classified by the same
invariant (see [31] for the type II1 case and [33] for the type III case).

The most important application of the main result in [33] is classification of strongly
amenable subfactors of type III1. In fact, Popa proved the approximate innerness and
central freeness for inclusions of approximately finite dimensional (AFD) type III1 sub-
factors with the identical type II and type III principal graphs. We remark that the
assumption on the graphs here is automatic for subfactors of finite depth as was shown
in [16] for example.

The main purpose of this paper is to present an alternative proof for the above-
mentioned classification result for subfactors of type III1 by a different approach (al-
though Popa’s classification of strongly amenable subfactors of type II1 in [32] also plays
a crucial role in our arguments). Our approach is based on [6] and [11] instead, where the
uniqueness of an injective factor of type III1 is shown. More precisely, in [6] A. Connes
showed that an injective factor of type III1 with the trivial bicentralizer is necessarily
isomorphic to the Araki-Woods factor of type III1. Then, in [11] U. Haagerup proved
the triviality of the bicentralizer for every injective factor of type III1 (and hence the
desired uniqueness). Roughly speaking, this property means the existence of states with
large centralizers. Also see [41], or [37, Chapter XVIII] for their theory.
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To be able to employ the arguments in [6], [11] in the subfactor setting, we have to
begin by formulating a “relative bicentralizer” and its triviality. In [33] as a crucial step
Popa proved the existence of states with large centralizer for a certain class of subfactors
of type III1. His method is similar to that in [11], and this result corresponds to the
triviality of the relative bicentralizer in the current approach.

In [6], after reducing the uniqueness problem to the approximate innerness of modu-
lar automorphisms, Connes established the latter (under the triviality assumption of the
bicentralizer). In our classification problem (for subfactors of type III1) it is also possible
to reduce the problem to the approximate innerness (in the subfactor sense) of modular
automorphisms (see the last part of §3).

The key fact for the proof for the above-mentioned approximate innerness in [6] is
the equivalence between the semi-discreteness introduced by Effros and Lance ([8]) and
the injectivity ([5], see also [38]). Though a notion of semi-discreteness is missing in the
subfactor setting, the Effros-Lance type characterization of amenability for subfactors
of type II1 was worked out by Popa. His characterization is in terms of symmetric
enveloping algebra ([35]) and was used to study various aspects of amenability and
rigidity results for subfactors. What we need here is a similar characterization in the
type III1 subfactor setting, and the so-called Longo-Rehren construction ([26]) as well as
symmetric enveloping algebras will be used. These will be used to show the approximate
innerness of modular automorphisms in the subfactor setting.

The paper is organized as follows: In §2 basic facts on classification results on
subfactors and their automorphisms are collected. In §3 our classification problem (for
subfactors of type III1) is reduced to that for torus actions on subfactors of type IIIλ (0 <

λ < 1). More precisely, we observe: what is really needed is the approximate innerness of
modular automorphisms. In §4 we consider a relative version of the bicentralizer together
with its fundamental properties. In §5 construction of symmetric enveloping algebras for
type III1 subfactors is discussed, where the relationship to the Longo-Rehren construction
has to be clarified. In §6 a (type III1) analogue of the Effros-Lance type characterization
for strongly amenable subfactors is obtained in terms of symmetric enveloping algebras.
In §7 the desired approximate innerness of modular automorphisms is established based
on this characterization and hence the main result (Theorem 2.2) is proved.
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Kawahigashi, Professor Kosaki and Professor Ueda for helpful suggestions on this work.
He is also grateful to the editor and the referee for various comments on this paper.
The author is supported by Grant-Aid for Scientific Research, Japan Society for the
Promotion of Science.

2. Preliminaries and notations.

Let R0, Rλ, R∞ be the injective factors of type II1, type IIIλ (0 < λ < 1) and type
III1 respectively. (However we remark that we never use the uniqueness of an injective
factor of type III1 in our argument.) Our standard reference for general theory of von
Neumann algebras is [37], for subfactor theory, [9] and [22], and for sector theory, [15]
and [25].
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2.1. Main theorem.
First we recall Popa’s classification results on strongly amenable subfactors in [32],

[31] and [33].
Let N ⊂ M be an inclusion of factors with [M : N ] < ∞, E0 the minimal

conditional expectation for N ⊂ M , and N ⊂ M (=: M0) ⊂ M1 ⊂ M2 ⊂ · · · the
Jones tower for N ⊂ M with the k-th Jones projection ek ∈ Mk. (Throughout this
paper, we only deal with minimal conditional expectations in the sense of [13], and
inclusions of type II factors are always extremal in the sense of [32] by either assumptions
or constructions.) By definition, the standard invariant for N ⊂ M is the lattice of its
relative commutants {M ′

i ∩Mj}i≤j .
Take a tunnel · · · ⊂ Nk ⊂ · · · ⊂ N1 := N ⊂ M for N ⊂ M . We define

N st ⊂ M st :=
∨

k(N ′
k ∩N ) ⊂ ∨

k(N ′
k ∩M ), and call it the model inclusion.

Popa introduced several properties related to amenability of subfactors. In this
paper, we say the standard invariant of N ⊂ M is amenable if its principal graph
satisfies the Følner type condition in [31, Definition 3.1], ergodic if N st and M st are
factors, and strongly amenable if it is amenable and ergodic.

Let N ⊂ M be an inclusion of AFD factors of type II1 with a strongly amenable
standard invariant. In [32], Popa showed that N ⊂ M has the generating property,
i.e, there exists a choice of a tunnel · · · ⊂ Nk ⊂ · · · ⊂ N1 := N ⊂ M such that
N st ⊂ M st = N ⊂ M . Especially, this means that strongly amenable inclusions of
AFD factors of type II1 can be classified by their standard invariants.

In [31] and [33], Popa gave another classification theorem as follows.

Theorem 2.1 ([31, Theorem 4.1], [33, Theorem 5.1]). Let N ⊂ M be an ap-
proximately inner, centrally free, strongly amenable subfactor with N ∼= N ⊗R0. Then
N ⊂ M is isomorphic to (N st ⊂ M st)⊗N .

When N and M are AFD factors of type II1, the above theorem gives an alternative
proof of the main theorem in [32]. (In fact, it is easily shown that N st ⊂ M st has the
generating property (see [32, Remark 1.4.4]), and N st ⊂ M st ∼= N st⊗R0 ⊂ M st⊗R0

by the relative McDuff type theorem [2].) In the rest of this paper, if we say a strongly
amenable subfactor, we always assume involved factors are injective (hence AFD).

If N ⊂ M is an inclusion of AFD type III1 factors with identical type II and type
III principal graphs, then N ⊂ M is shown to be approximately inner and centrally free
in [33]. These facts imply

Theorem 2.2. Let N ⊂ M be a strongly amenable subfactor of type III1 with
the identical type II and type III principal graphs. Then N ⊂ M is isomorphic to
N st ⊗R∞ ⊂ M st ⊗R∞.

As explained in Introduction, the aim of this paper is to show Theorem 2.2 based
on the arguments in [6] and [11] instead.

2.2. Automorphism groups of subfactors.
Let Aut(M ,N ) be the set of automorphisms of M preserving the inclusion globally.

Every α ∈ Aut(M ,N ) can be extended to Aut(Mk) canonically by setting α(ek) = ek.
The inner automorphism group of N ⊂ M is defined by Int(M ,N ) := {Adu|u ∈
U(N )}. It is easy to see that the extension of Ad u ∈ Int(M ,N ) to Mk is also given by
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the same unitary Adu. We denote by Ñ ⊂ M̃ := N oσϕ R ⊂ M oσϕ◦E0 R the common
continuous crossed product of a subfactor N ⊂ M of type III. For α ∈ Aut(M ), we
denote by α̃ the canonical extension of α in the sense of [12].

Definition 2.3 ([24, Section 5]). Define Φ(α) := {α|M ′∩Mk
}∞k=0. We call Φ(α)

the Loi invariant for α.

Definition 2.4 ([3, Definition 1], [30, Definition 1.5.1]). For α ∈ Aut(M ,N ),
we say α is strongly outer if α satisfies the following property; if a ∈ ⋃

k Mk satisfies
α(x)a = ax for every x ∈ M , then we have a = 0.

The strong outerness of automorphisms can be characterized by the language of
sector theory as follows.

Theorem 2.5 ([3, Theorem 2], [20, Theorem 3]). Let N ⊂ M be an inclusion of
factors of type III, and γ Longo’s canonical endomorphism. Then α is non-strongly outer
if and only if α appears as an irreducible component of γk for some k ≥ 1.

Definition 2.6 ([39, Definition 3.1]). Let N ⊂ M be a subfactor of type III.
For α ∈ Aut(M ,N ), we say α is strongly free if α satisfies the following property; if
a ∈ ⋃

k M̃k satisfies α̃(x)a = ax for every x ∈ M̃ , then we have a = 0.

We denote by Cnto(M ,N ) (resp. Cntf(M ,N )) be the set of all non-strongly outer
(resp. non-strongly free) automorphisms. Both sets are normal subgroups in Aut(M ,N ).

When N = M , we have Cnto(M ,M ) = Int(M ) and Cntf(M ,M ) = Cntr(M ). It
is well-known that every element in Cntr(M ) is expressed as the composition of an inner
automorphism and an (extended) modular automorphism. A subfactor analogue of this
fact has been obtained by Kosaki as the following theorem.

Theorem 2.7 ([21, Theorem 19]). Let N ⊂ M be a subfactor of type IIIλ, λ 6= 0,
and α a non-strongly free automorphism for N ⊂ M . Then α = β ◦ σϕ

t for some non-
strongly outer automorphism β.

We recall several important definitions. The approximately inner automorphism
group Int(M ,N ) is the closure of Int(M ,N ) in Aut(M ) equipped with the usual
u-topology. Define C(M ,N ) := {{xn} ∈ `2(N ,N )| limn→∞ ‖[ψ, xn]‖ = 0 for every
ψ ∈ M∗}. By definition, an automorphism α ∈ Aut(M ,N ) is centrally trivial if and
only if {α(xn)−xn} converges to 0 σ-strongly* for any {xn} ∈ C(M ,N ). We denote by
Cnt(M ,N ) the set of all centrally trivial automorphisms. Note that for a II1 subfactor
N ⊂ M , {xn} is in C(M ,N ) if and only if {‖[xn, a]‖2} converges to 0 for every a ∈ M .

2.3. Automorphism groups of strongly amenable subfactors of type II.
In the study of automorphism groups of operator algebras, the most important

classes of automorphisms are approximately inner ones and centrally trivial ones. For
strongly amenable subfactors of type II, these two classes are characterized in the terms
of the Loi invariant and non-strong outerness.

Theorem 2.8 ([24, Theorem 5.4]). Let N ⊂ M be a strongly amenable subfactor
of type II1. Then Ker Φ = Int(M ,N ).
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Corollary 2.9 ([40, Theorem 4.6]). Let N ⊂ M be a strongly amenable sub-
factor of type II∞. Then KerΦ ∩Kermod = Int(M ,N ).

Theorem 2.10 ([30, Theorem 1.6]). Let N ⊂ M be a subfactor of type II1. Then
we have Cnto(M ,N ) ⊂ Cnt(M ,N ). Moreover if N ⊂ M is strongly amenable, then
we also have Cnto(M ,N ) = Cnt(M ,N ).

Here we give a proof of Theorem 2.10 for reader’s convenience, which is different
from one in [30]. First we prepare

Lemma 2.11. Let M ⊃ N ⊃ · · · ⊃ Nk ⊃ · · · be a tunnel, and α ∈ Aut(M ,N ).
If sup{‖α(u)− u‖2|u ∈ U(Nk)} < 1 for some k, then α is non-strongly outer.

Proof. Set K := conv{α(u)u∗|u ∈ U(Nk)}, where the closure is taken in the σ-
weak topology. Then K is a σ-weakly compact set. By the lower semicontinuity of ‖ · ‖2
in the σ-weak topology, there exists a unique a ∈ K such that ‖a‖2 := min{‖b‖2|b ∈ K}.
Moreover by the assumption, 0 6∈ K, and hence a 6= 0. Since ‖α(v)av∗‖2 = ‖a‖2,
α(v)a = av holds for every v ∈ U(Nk) by the uniqueness of a. This implies that α is
non-strongly outer. ¤

Proof of Theorem 2.10. First assume that σ ∈ Aut(M ,N ) is non-strongly
outer. Then we can find a non-zero a ∈ Mk such that σ(x)a = ax holds for every
x ∈ M . Take {xn} ∈ `∞(N ,N ) which is central in M . Then ‖[xn, a]‖2 → 0 as n goes
to infinity. Then {σ(xn)a − xna} = {axn − xna} converges to 0 strongly, and so does
{σ(xn)aa∗− xnaa∗}. Since aa∗ ∈ M ′ ∩Mk, EM (aa∗) is a non-zero scalar, where EM is
the minimal conditional expectation. Hence we get limn→∞ σ(xn)− xn = 0 strongly.

Next we assume that N ⊂ M is strongly amenable. We fix a tunnel · · · ⊂ Nk ⊂
· · · ⊂ N1 := N ⊂ M with the generating property.

Let σ be a strongly outer automorphism. For every k, we can choose uk ∈ U(Nk)
such that ‖σ(uk) − uk‖2 ≥ 1/2 by Lemma 2.11. By the generating property, {uk} is
central in M . Then lim inf ‖σ(uk)− uk‖2 ≥ 1/2, showing that σ is not centrally trivial.

¤

Corollary 2.12 ([39, Theorem 3.4]). Let N ⊂ M be a strongly amenable sub-
factor of type II∞. Then Cnto(M ,N ) = Cnt(M ,N ).

2.4. Inclusions of factors of type IIIλ, λ 6= 0.
Let Q ⊂ P be an inclusion of factors of type IIIλ, λ 6= 0. When 0 < λ < 1,

we assume that Q ⊂ P has the common discrete decomposition, i.e., there exists an
inclusion of factors B ⊂ A of type II∞, and an automorphism θ ∈ Aut(A,B) with
mod (θ) = λ such that Q ⊂ P is isomorphic to B oθ Z ⊂ A oθ Z. We refer to GP,Q

(resp. GB,A) as the type III standard invariant (resp. type II standard invariant) for
Q ⊂ P. We also use the notation G̃P,Q to denote the type II standard invariant for
Q ⊂ P. For subfactors of type III1, we use similar notations by considering the common
continuous decomposition.

We need to clarify the relationship between GP,Q and G̃P,Q.

Proposition 2.13. We have Q′ ∩ Pk = (B′ ∩ Ak)θ for every k ≥ 0. Hence
GP,Q = GA,B holds if and only if θ acts trivially on B′ ∩Ak for every k ≥ 0.
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See [24, Proposition 3.1] for 0 < λ < 1 case and [23, Corollary 6] for λ = 1 case.

Remark. The type II standard invariant and the type III one coincide if and only
if Q ⊂ P has the same type II principal graph and type III principal graph.

The coincidence of the type II principal graph and type III one is characterized by
Longo’s canonical endomorphism γ for Q ⊂ P.

Theorem 2.14 ([16, Theorem 3.5]). The type II principal graph and type III prin-
cipal graph of P ⊂ P1 coincide if and only if σϕ

t never appears as an irreducible com-
ponent of γk for any k ≥ 1 and t 6∈ T (P).

By combining the above theorem with Theorem 2.5, we get

Corollary 2.15. The type II principal graph and type III principal graph of
P ⊂ P1 coincide if and only if σϕ

t is strongly outer for every t 6∈ T (P).

By Corollary 2.9 and Corollary 2.12, we get the following classification result for
strongly amenable subfactors of type IIIλ, 0 < λ < 1.

Theorem 2.16 ([24, Theorem 6.1]). Let Q ⊂ P be a strongly amenable subfactor
of type IIIλ, 0 < λ < 1, with GP,Q = G̃P,Q. Then Q ⊂ P is isomorphic to Qst ⊗Rλ ⊂
Pst ⊗Rλ.

We have the following characterization of Int(P,Q) and Cnt(P,Q).

Theorem 2.17 ([39, Theorem 3.8], [40, Theorem 4.6]). Let Q ⊂ P be as in The-
orem 2.16. Then we have Int(P,Q) = Ker Φ∩Kermod and Cnt(P,Q) = Cntf(P,Q).

2.5. Longo-Rehren construction.
The Longo-Rehren construction was introduced originally in [26], but we need the

crossed product type approach worked out in [27].
Here we collect basic definitions. Define Sect (M ) := End(M )/ ∼, where ∼ is the

usual unitary equivalence. We denote by [ρ] the equivalence class of ρ. The statistical
dimension d(ρ) is defined by

√
[M : ρ(M )]. Then d(ρ) is additive and multiplicative. For

ρ, σ ∈ End(M ), the intertwiner space (ρ, σ) is defined by {a ∈ M |σ(x)a = aρ(x), x ∈
M }. If ρ is irreducible, i.e., ρ(M )′ ∩ M = C1, then (ρ, σ) has an inner product by
〈v, w〉 = w∗v1(∈ C1). Let [ρ̄] be the conjugate sector of [ρ]. Then there exist two
isometries v ∈ (id, ρρ̄) and v̄ ∈ (id, ρ̄ρ) such that v∗ρ(v̄) = 1/d(ρ) and v̄∗ρ̄(v) = 1/d(ρ).
The standard left inverse φρ of ρ is given by φρ(x) = v̄∗ρ̄(x)v̄.

Let ∆ = {[ρi]}i∈I be a set of irreducible sectors of M closed under conjugation
and irreducible decomposition of multiplication. We assume that I is at most countable.
The index set I is a fusion algebra in the sense of [14, Definition 1.1]. Let jM be the
canonical conjugate linear isomorphism from M onto M opp. Put ρ̂ := ρ⊗ jM ◦ρ◦ j−1

M ∈
End(M ⊗M opp).

Set Nk
i,j = dim(ρk, ρiρj), and d(i) := d(ρi). Let {v(k

i,j)
e}Nk

i,j

e=1 ∈ (ρk, ρiρj) be an
orthonormal basis, and define the canonical intertwiner v̂k

i,j ∈ (ρ̂k, ρ̂iρ̂j) as follows.
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v̂k
i,j :=

√
d(i)d(j)

d(k)

Nk
i,j∑

e=1

v(k
i,j)

e ⊗ jM (v(k
i,j)

e).

The canonical intertwiner v̂k
i,j is independent from the choice of an orthonormal basis.

Lemma 2.18. The canonical intertwiners satisfy the following relations.
(1)

∑
m v̂m

i,j v̂
l
m,k =

∑
m ρ̂i(v̂m

j,k)v̂l
i,m (∈ (ρ̂l, ρ̂iρ̂j ρ̂k)).

(2)
∑

m v̂m
i,j v̂

m∗
k,l =

∑
m ρ̂i(v̂

j∗
m,l)v̂

k
i,m (∈ (ρ̂kρ̂l, ρ̂iρ̂j)).

(3) v̂k∗
i,j v̂

l
i,j = δk,l

d(i)d(j)
d(k) Nk

i,j.

See [26] for proof.

Corollary 2.19. We have v̂i∗
k,l = ρ̂i(v̂0∗

l̄,l
)v̂k

i,l̄
and v̂l∗

i,j = v̂0∗
i,̄i

ρ̂i(v̂
j
ī,l

).

Proof. If we put j = 0 in Lemma 2.18(2), we get the first equation. In a similar
way, we get the second one by putting k = 0. ¤

In what follows, we use Lemma 2.18 and Corollary 2.19 frequently.
Set A := M ⊗ M opp, Hj := L2(A), j ∈ I, and define an action π of A and an

operator Vi on H :=
⊕

j∈I Hj as follows.

(π(x)ξ)(i) : = ρ̂i(x)ξ(i), x ∈ A,

(Viξ)(j) : =
∑

k

v̂k
j,iξ(k).

By using Lemma 2.18 and Corollary 2.19, we get the following relations.

Lemma 2.20. We have the following relations.
(1) ViVj =

∑
k π(v̂k

i,j)Vk.
(2) Viπ(a) = π(ρ̂i(a))Vi, a ∈ A.
(3) V ∗

i = π(v̂0∗
ı̄,i)Vı̄.

Definition 2.21. Let A(∆) be the von Neumann algebra generated by π(A) and
{Vi}i∈I . We call π(A) ⊂ A(∆) the Longo-Rehren inclusion associated with ∆.

In fact, A(∆) is a factor. In what follows, we identify π(A) with A, and often
omit π. When ∆ is arising from the irreducible decomposition of γn, n ≥ 1, where
γ is Longo’s canonical endomorphism for a subfactor N ⊂ M , we say A ⊂ A(∆) as
the Longo-Rehren inclusion for N ⊂ M . By Lemma 2.20, {∑π(ai)Vi|ai ∈ A, ai =
0 except for finitely many i} is a dense ∗-subalgebra in A(∆).

Let P be the projection from H onto H0, and define EA(x) := PxP ∗ for x ∈ A(∆).
Then EA is a conditional expectation from A(∆) onto A as in the case of usual crossed
product construction. Set ai := EA(aV ∗

i ), a ∈ A(∆). Then we have the formal expansion
formula a =

∑
i∈I π(ai)Vi.

Next we discuss on an operator valued weight from A ⊗ B(`2(I)) to A(∆). (Note
A(∆) is a subalgebra of A ⊗ B(`2(I)).) To do so, it is convenient to express π(a)Vi in
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the “matrix form”. Let {eij}i,j∈I be the matrix units for B(`2(I)). Then it is easy to
see π(a) =

∑
i∈I ρ̂i(a)⊗ eii, and Vi =

∑
j,k∈I v̂k

j,i ⊗ ej,k by the definition of π(a) and Vi.
Then we have the expression π(a)Vi =

∑
j,k ρ̂j(a)v̂k

j,i ⊗ ejk.
Let M be a ∗-subalgebra of A ⊗ B(`2(I)) generated by {x ⊗ eij |x ∈ A}. Set V̄i :=∑

j,k v̂k∗
i,j ⊗ ek,j , and define FA(∆) as follows.

FA(∆)(x) :=
∑

i

V̄iρ̂i ⊗ id(x)V̄ ∗
i , x ∈ M.

Then FA(∆) is a normal operator valued weight from A ⊗ B(`2(I)) to A(∆) with the
domain M. For example, we have the following for y ⊗ eij ∈ M.

FA(∆)(y ⊗ eij) =
∑

k

V̄k(ρ̂k(y)⊗ eij)V̄ ∗
k

=
∑

k,l,m

vl∗
k,iρ̂k(y)vm

k,j ⊗ elm

=
∑

k,l,m

ρl(v̂0∗
ı̄,i)v

k
l,̄iρ̂k(y)vm

k,j ⊗ elm

=
∑

l,m

ρl(v̂0∗
ı̄,i)ρlρ̂ı̄(y)

( ∑

k

vk
l,̄iv

m
k,j

)
⊗ elm

=
∑

l,m

ρl(v̂0∗
ı̄,i)ρlρ̂ı̄(y)

( ∑

k

ρl(v̂k
ı̄,j)v̂

m
lk

)
⊗ elm

=
∑

k,l,m

ρl(v̂0∗
ı̄,i ρ̂ı̄(y)v̂k

ı̄,j)v̂
m
lk ⊗ elm

=
∑

k

π(v̂0∗
ı̄,i ρ̂ı̄(y)v̂k

ı̄,j)Vk.

It is not difficult to show FA(∆)(a(y ⊗ eij)b) = aFA(∆)(y ⊗ eij)b for a, b ∈ A(∆). The
special case y = 1, i = j implies FA(∆)(1⊗ eii) = d(i)2. In fact A⊗B(`2(I)) is the basic
construction for π(A) ⊂ A(∆), and FA(∆) is the dual operator valued weight for EA.

We will construct a common Jones projection eN for N ⊂ M and N opp ⊂ M opp

inside of A(∆). Let ι be the inclusion map N ↪→ M . Let I0 := {i ∈ I|ρi ≺ γ},
{ae

i} ⊂ (ι, ρiι) an orthonormal bases, and ãi :=
∑

e ae
i ⊗ jM (ae

i ). Then eN is expressed
as eN = [M : N ]−1

∑
i∈I0

√
d(i)ã∗i Vi. See [27], or Appendix A.

Conversely, let {we
i } ⊂ (ρi, γ) be an orthonormal basis, and set w̃i :=

∑
e we

i ⊗
jM (we

i ). Then we have Vi = Cw̃i
∗eN w̃0 for some 0 6= C ∈ C. These relations show

Alg(M ,M opp, {Vi}) = Alg(M ,M opp, eN ).
Next we recall the extension of automorphisms of a subfactor to the Longo-Rehren

inclusion discussed in [28]. Let α ∈ KerΦ. Then we can find a half braiding u(α, ρ) ∈
U(M ) in the sense of [17]. Namely u(α, ρ) satisfies the following.
(i) α ◦ ρ ◦ α−1 = Ad u(α, ρ)ρ,
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(ii) u(αβ, ρ) = α(u(β, ρ))u(α, ρ),
(iii) For v ∈ (ρ3, ρ1ρ2), u(α, ρ1)ρ1(u(α, ρ2))v = α(v)u(α, ρ3).

We briefly sketch how to find u(α, ρ). Fix isometries R ∈ (idM , γ) and R̄ ∈
(idN , γ|N ) such that R∗R̄ = [M ,N ]−

1
2 and R̄∗γ(R) = [M ,N ]−

1
2 . Next we fix

u ∈ U(N ) such that α ◦ γ ◦ α−1 = Aduγ and u∗α(R) = R. Then u∗α(R̄) = R̄

holds automatically. Set uk := uγ(u) · · · γk−1(u). Then α ◦ γk ◦ α−1 = Ad ukγ holds.
Take an isometry v ∈ (ρ, γk), and define u(α, ρ) by u(α, ρ) = α(v∗)ukv. Then

α ∈ KerΦ assures that u(α, ρ) is well-defined. We can verify u(α, ρ) satisfy the above
conditions (i), (ii) and (iii) in a similar way as in [28].

We can extend α⊗ id ∈ Aut(M ⊗M opp) to α £ id ∈ Aut(A(∆)) by setting

α £ id(Vi) = (u(α, ρi)⊗ 1)Vi.

In fact, let Uα ∈ B(L2(M )) be the standard implementing unitary for α, and define
V ∈ U(H) by

(V ξ)(i) := (u(α, ρi)∗Uα ⊗ 1)ξ(i).

Then AdV gives an automorphism of A(∆), and satisfies the above property.
In a similar way, we can extend α⊗αopp ∈ Aut(M⊗M opp) to α£αopp ∈ Aut(A(∆))

by

α £ αopp(Vi) = (u(α, ρi)⊗ jM (u(α, ρi)))Vi.

Both extensions fix the common Jones projection eN .
We mainly apply the above extension to the modular automorphism σϕ

t . In this
case, u(σϕ

t , ρ) is given by dρ−it(Dϕ : Dϕ ◦ φρ)t.

3. Torus actions on IIIλ subfactors.

In this section, we will discuss how to reduce our classification theorem to that of
torus actions on strongly amenable subfactors of type IIIλ.

Proposition 3.1. Let N ⊂ M be a subfactor of type III1 with GM ,N = G̃M ,N .
Fix T > 0 and set θ := σϕ

T . Then Q ⊂ P := N oθ Z ⊂ M oθ Z is a subfactor of type
IIIλ, T = − 2π

log λ , with GM ,N = GP,Q = G̃P,Q.

Proof. By [6, Lemma 1.1], P and Q are type IIIλ factors. Since GM ,N = G̃M ,N ,
σϕ

T is strongly outer for any non-zero T ∈ R by Corollary 2.15. We also have σϕ
T ∈ KerΦ.

Thus GM ,N = GP,Q holds. Next we investigate G̃P,Q. By standard argument, we can
identify Q̃ ⊂ P̃ with Ñ oeθ Z ⊂ M̃ oeθ Z. In this case, θ̃ is inner. Hence

Q̃ ⊂ P̃ ∼= Ñ oeθ Z ⊂ M̃ oeθ Z ∼= Ñ ⊗ L∞(T ) ⊂ M̃ ⊗ L∞(T ),

showing GM ,N = GP,Q = G̃P,Q. ¤
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Proposition 3.2. (i) Let Q ⊂ P be a strongly amenable subfactor of type IIIλ

with GP,Q = G̃P,Q, and θ ∈ Aut(P,Q) an automorphism such that Qoθ Z ⊂ P oθ Z

is a subfactor of type IIIλ with GP,Q = GPoθZ,QoθZ = G̃PoθZ,QoθZ . If the dual action
θ̂t is strongly free for every 0 6= t ∈ T , then θ is outer conjugate to idP ⊗ σ, where σ is
an aperiodic automorphism of the injective type II1 factor R0.
(ii) Let Q ⊂ P be as in (i), and θ a strongly free action of T such that Qoθ T ⊂ Poθ T

is a subfactor of type IIIλ with GP,Q = GPoθT ,QoθT = G̃PoθT ,QoθT . Then θ is cocycle
conjugate to idP ⊗ σ̂.

Proof. (i) If the approximate innerness and central freeness of the action (θ, Z) is
known, then we can apply [24, Theorem 4.3(2)]. By Theorem 2.17, we have Int(P,Q) =
KerΦ ∩ Kermod and Cntf(P,Q) = Cnt(P,Q). Hence we only have to prove θn 6∈
Cntf(P,Q) for 0 6= n ∈ Z and θ ∈ KerΦ∩Kermod . Since Qoθ Z and Poθ Z are type
IIIλ factors, θ is an outer action of Z, and mod θ = id. (See [37, Lemma XVIII.4.18],
for example.) Next we compute Q′ ∩ (Pn oθ Z). Then it is elementary to see

Q′ ∩ (Pn oθ Z) =
{ ∑

k

akuk|ak ∈ Pn, xak = akθk(x) for every x ∈ Q

}
,

where u is the implementing unitary. Set In
k := {a ∈ Pn|xa = aθk(x) for every x ∈ Q}.

Then In
k is a finite dimensional Hilbert space, and θ acts on In

k as a unitary operator in
the natural way. We claim that the action of θ on In

k is trivial. Suppose the converse
holds. Then we can find an eigenvalue 0 6= t0 ∈ T of θ, and an eigenvector a for
t0. Hence θ(a) = eit0a holds. We will show that θ̂t0 is non-strongly outer. We have
θ̂t0(x)auk = xauk = aθk(x)uk = aukx for x ∈ Q. We also have θ̂t0(u)auk = e−it0uauk =
e−it0θ(a)uku = auku. Hence θ̂t0(x)auk = aukx holds for every x ∈ Q oθ Z, and this
implies that θ̂t0 is non-strongly outer, and hence non-strongly free by [21, Theorem 17].
This contradicts the assumption on θ̂. Hence θ acts on In

k trivially. This holds for every
k and n, and hence this especially implies θ ∈ KerΦ if we consider the case k = 0.

Next we compute (Qoθ Z)′ ∩ (Pn oθ Z). Since θ acts on In
k trivially, (Qoθ Z)′ ∩

(Pn oθ Z) = {∑k akuk|ak ∈ In
k }. Since we assume GP,Q = GPoθZ,QoθZ , we have

In
k = {0} for every non-zero k ∈ Z and n ≥ 0. Hence θ is a strongly outer action of Z.

In a similar way as above, we can show that θ is a strongly free action of Z.
(ii) This can be shown by using (i) and the Takesaki duality [36]. ¤

Remark. In Proposition 3.2(i), we assume strong freeness of θ̂t. If we do not have
this condition, then Proposition 3.2(i) may fail. If θ is a non-strongly outer action such
that γh(θ)n 6= 1 for all non-zero n ∈ Z, where γh(θ) is the higher obstruction in [19],
then the standard invariant does not change by taking the crossed product. However the
author does not know whether such subfactors exist or not.

Let N ⊂ M and Q ⊂ P be as in Proposition 3.1. Let L be a type III1 factor,
and ϕ0 a faithful normal state of L . Set θ(0) := σϕ0

T and L̄ := L oθ(0) Z. Then
αt := θ̂t ⊗ θ̂

(0)
−t is a strongly free action of T on Q ⊗ L̄ ⊂ P ⊗ L̄ with modαt = id.

Lemma 3.3. The crossed product (Q ⊗ L̄ )oα T ⊂ (P ⊗ L̄ )oα T is a subfactor
of type IIIλ, and the standard invariant of this subfactor is equal to that of Q ⊂ P.
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Proof. As in the proof of [6, Lemma I.1], we can identify (Q ⊗ L̄ ) oα T ⊂
(P ⊗ L̄ )oα T and (N ⊗L )o

σ
ϕ⊗ϕ0
T

Z ⊂ (M ⊗L )o
σ

ϕ⊗ϕ0
T

Z, which is a subfactor of
type IIIλ. Moreover since N ⊗L ⊂ M ⊗L has the same type III and type II standard
invariants, so does (N ⊗L )o

σ
ϕ⊗ϕ0
T

Z ⊂ (M ⊗L )o
σ

ϕ⊗ϕ0
T

Z. (See Proposition 3.1) ¤

When N ⊂ M is strongly amenable and L = R∞ in Lemma 3.3, we can apply
Proposition 3.2 since αt is strongly free for t 6= 0. Hence α is cocycle conjugate to idP⊗σ̂.

Proposition 3.4. Let N ⊂ M be a strongly amenable subfactor of type III1, and
Q ⊂ P as in Proposition 3.1. If θ̂t is cocycle conjugate to θ̂t⊗ idRλ

⊗ σ̂t, then N ⊂ M
is isomorphic to N st ⊗R∞ ⊂ M st ⊗R∞.

Proof. By Theorem 2.16, Q ⊂ P is isomorphic to N st ⊗Rλ ⊂ M st ⊗Rλ. On
one hand, idRλ

⊗ σ̂t is cocycle conjugate to θ̂
(0)
−t ⊗ θ̂

(0)
t . On the other hand θ̂t ⊗ θ̂

(0)
−t

is cocycle conjugate to idP ⊗ σ̂t, and hence cocycle conjugate to idM st ⊗ idRλ
⊗ σ̂t.

Therefore

θ̂t ∼ θ̂t ⊗ idRλ
⊗ σ̂t

∼ θ̂t ⊗ θ̂
(0)
−t ⊗ θ̂

(0)
t

∼ idM st ⊗ idRλ
⊗ σ̂t ⊗ θ̂

(0)
t

∼ idM st ⊗ θ̂
(0)
t

holds. By the Takesaki duality, we get N ⊂ M ∼= N st ⊗R∞ ⊂ M st ⊗R∞. ¤

Thanks to Proposition 3.4, all we need for classification of type III1 subfactors is the
cocycle conjugacy of θ̂t to θ̂t ⊗ idRλ

⊗ σ̂t. However, this follows from the following two
conditions by the same argument as in [6].

(1) N ⊂ M ∼= N ⊗Rλ ⊂ M ⊗Rλ,
(2) σϕ

T ∈ Int(M ,N ).
According to [37, Chapter XVIII], a subfactor satisfying the condition (1) is called

a relatively λ-stable subfactor.
We sketch how to deduce θ̂t

∼= θ̂t ⊗ idRλ
⊗ σ̂t from the above conditions.

Let ϕ1 be a periodic state on Rλ. By (1), we may assume θ = σϕ
T ⊗σϕ1

T = σϕ
T ⊗ idRλ

.
This implies θ̂t ∼ θ̂t⊗ idRλ

. Also by (1), we have N ⊂ M ∼= N ⊗R0 ⊂ M ⊗R0. Hence
we can find a centralizing sequence {un} such that u2

n = 0 and u∗nun + unu∗n = 1. Since
un can be chosen in R0, we can assume σϕ

t (un) = un. By (2), there exists {vn} ⊂ U(N )
such that σϕ

T = limn→∞Ad vn. Let U be the implementing unitary in (N ⊗R0)oθ Z.
Define wn := un(v∗n ⊗ 1)U ∈ (N ⊗R0) oθ Z. Then {wn} is a centralizing sequence of
(M ⊗R0)oθ Z. We have w2

n = 0, wnw∗n + w∗nwn = 1 and θ̂t(wn) = eitwn. Thus we get
θ̂t
∼= θ̂t ⊗ σ̂t in a similar way as in [37, Lemma XVIII.4.22].

Moreover the condition (1) follows from the condition (2). In [6, Theorem II.2],
Connes gave the “local” characterization of property L′λ [1]. It is not difficult to translate
[6, Theorem II.2] to subfactor case. For readers’ convenience we prepare a subfactor
version of [6, Theorem II.2].
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Theorem 3.5. Let N ⊂ M be a subfactor of type III. Then N ⊂ M is rela-
tively λ-stable if and only if the following holds. For any ε > 0, faithful normal states
ϕ1, · · · , ϕn on M , there exists a non-zero x ∈ N such that

‖(∆
1
2
ϕj − λ

1
2 )xξj‖2 ≤ ε

∑
ϕi(x∗x),

where ξj ∈ L2(M )+ is the representing vector for ϕj, i.e., ϕj(x) = 〈xξj , ξj〉.
The arguments in [6, Theorem II.4] together with this result yield

Theorem 3.6. Let A ⊂ B be a subfactor of type III, (θ, Z) an approximately
inner, outer action on A ⊂ B. If A oθ Z ⊂ B oθ Z is relatively λ-stable, then so is
A ⊂ B.

In our case, Q ⊂ P = N oθ Z ⊂ M oθ Z is obviously relatively λ-stable due to
Theorem 2.16, thus so is N ⊂ M under the condition (2). Therefore the rest of this
paper is devoted to show the approximate innerness of modular automorphisms (i.e., the
condition (2)).

4. Relative bicentralizer.

Let N ⊂ M be a subfactor of type III1 with finite index and E0 the minimal
expectation.

As an analogue of [11], we introduce a notion of the relative bicentralizer for N ⊂
M .

Definition 4.1. (i) Let ϕ be a faithful normal state of M with ϕ ◦ E0 = ϕ. Set
C(ϕ) := {{xn} ∈ l∞(N ,N )| limn→∞ ‖[xn, ϕ]‖ = 0}.
(ii) Define B(ϕ) as the set of a ∈ M such that xna − axn converges to zero σ-strongly
for every {xn} ∈ C(ϕ). We call B(ϕ) the relative bicentralizer of ϕ.

It is clear that N ′ ∩M ⊂ B(ϕ). It is also easy to see B(ϕ) ⊂ N ′
ϕ ∩M since Nϕ is

embedded in C(ϕ) as constant sequences. Hence if N ′ ∩M = N ′
ϕ ∩M , then we have

B(ϕ) = N ′ ∩M . This condition is satisfied as long as N ⊂ M is the tensor product of
a type II1 subfactor and R∞, for example.

We collect basic facts on the relative bicentralizer.
Set Cϕ(a, δ) := conv{u∗au|u ∈ U(N ), ‖[u, ϕ]‖ ≤ δ}, where the closure is taken in

the σ-weak topology.

Lemma 4.2. For a ∈ M , a ∈ B(ϕ) if and only if {a} =
⋂

δ>0 Cϕ(a, δ).

Proof. The same proof as in [11, Lemma 1.2] works with obvious changes. ¤

As in [11, Proposition 1.3], it is shown that B(ϕ) is a von Neumann subalgebra in
M by the above lemma.

Proposition 4.3. Following four conditions are equivalent.
(i) B(ϕ) = N ′ ∩M .
(ii) Cϕ(a, δ) ∩N ′ ∩M 6=∅ for every a ∈ M and every δ > 0.
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(iii) Eϕ
N ′∩M (a) ∈ Cϕ(a, δ) for every a ∈ M and δ > 0.

(iv) ψ ◦ Eϕ
N ′∩M ∈ conv{uψu∗|u ∈ U(N ), ‖[u, ϕ]‖ ≤ δ} for every ψ ∈ M∗ and δ > 0.

Proof. (i)⇒(ii). Put Cϕ(a) :=
⋂

δ>0 Cϕ(a, δ). Then Cϕ(a) is a σ-weakly compact
convex set, and Cϕ(a) 6= ∅ since a ∈ Cϕ(a, δ) for every δ. Let Hϕ be the completion
of M with ϕ-norm. Then Cϕ(a) is a norm closed convex subset of Hϕ. Hence there
exists a unique element b ∈ Cϕ(a) with ‖bξϕ‖ = min{‖xξϕ‖|x ∈ Cϕ(a)}. If a′ ∈ Cϕ(a, δ),
then Cϕ(a′, δ) ⊂ Cϕ(a, 2δ). Hence Cϕ(b) =

⋂
δ>0 Cϕ(b, δ) ⊂ ⋂

δ>0 Cϕ(a, 2δ) = Cϕ(a). If
‖[u, ϕ]‖ ≤ δ, then ‖u∗bu‖2ϕ ≤ ‖b‖2ϕ + δ‖b‖2ϕ. By the lower semicontinuity of ϕ-norm in
the σ-weak topology, ‖x‖2ϕ ≤ ‖b‖2ϕ + δ‖b‖2ϕ for every x ∈ Cϕ(b, δ). Hence ‖x‖2ϕ ≤ ‖b‖2ϕ
holds for x ∈ Cϕ(b). Since x ∈ Cϕ(b) ⊂ Cϕ(a), we get x = b, and hence Cϕ(b) = {b}
holds. By Lemma 4.2 and the assumption, we have b ∈ B(ϕ) = N ′ ∩M .

(ii)⇒(iii). First note that N ′∩M is finite dimensional. So the sets Cϕ(a, δ)∩N ′∩
M , δ > 0, form a decreasing family of nonempty compact sets. Thus their intersection
is also non-empty. Hence there exists b ∈ Cϕ(a) ∩N ′ ∩M . For every u ∈ U(N ) with
‖[u, ϕ]‖ ≤ δ and x ∈ N ′ ∩M , we have

|ϕ(u∗aux)− ϕ(ax)| = |(uϕu∗ − ϕ)(ax)|
≤ ‖uϕu∗ − ϕ‖‖ax‖
≤ δ‖ax‖,

and we get |ϕ(bx) − ϕ(ax)| = 0 for every x ∈ N ′ ∩ M . Since 0 = ϕ(bx) − ϕ(ax) =
ϕ((b − Eϕ

N ′∩M (a))x) holds, we get b = Eϕ
N ′∩M (a), where Eϕ

N ′∩M is the ϕ-preserving
conditional expectation on N ′ ∩M .

(iii)⇒(i). We have a − Eϕ
N ′∩M (a) ∈ conv{a − u∗au|u ∈ U(N ), ‖[u, ϕ]‖ ≤ δ}. By

the lower semicontinuity of ϕ-norm in the σ-weak topology, we get ‖a−Eϕ
N ′∩M (a)‖ϕ ≤

sup{‖a− u∗au‖ϕ|u ∈ U(N ), ‖[u, ϕ]‖ ≤ δ}.
Here if a ∈ B(ϕ), then the right hand side of the above inequality converges to 0 as

δ → 0. Hence we get a = Eϕ
N ′∩M (a) and B(ϕ) ⊂ N ′ ∩M .

(iii)⇔(iv). This follows from the duality argument. ¤

Corollary 4.4. If B(ϕ) = N ′ ∩ M holds for some ϕ with ϕ ◦ E0 = ϕ, then
B(ψ) = N ′ ∩M holds for every normal faithful state ψ with ψ ◦ E0 = ψ.

Proof. The same proof as in [11, Corollary 1.5] works by using Proposition 4.3
and the Connes-Størmer transitivity [7]. ¤

Proposition 4.5. Let N ⊂ M be a subfactor of type III1 with [M : N ] < ∞,
and assume B(ϕ) = N ′ ∩M . Then for any ε > 0, δ > 0 and any ψ1, · · · , ψn ∈ M∗,
there exist u1, · · · , um ∈ U(N ) and λ1, · · · , λm > 0 such that

∑m
i=1 λi = 1, ‖[ui, ϕ]‖ < δ

and ‖ψj ◦ Eϕ
N ′∩M − ψj ◦ P‖ < ε, j = 1, · · · , n, where P (x) =

∑
i λiu

∗
i xui.

Proof. We prove by induction. When n = 1, the proposition follows from Propo-
sition 4.3(iv). Assume that the proposition holds for n− 1. Take ψ1, · · · , ψn ∈ M∗. By
the induction hypothesis, for any ε′ > 0 and δ′ > 0, we can find u1, · · · , um ∈ U(N ) and
λ1, · · · , λm > 0 satisfying the conclusion of proposition for ε′, δ′ and ψ1, · · · , ψn−1. Apply
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Proposition 4.3(iv) to ψn ◦ P . Then we can find v1, · · · , vl ∈ U(N ) and µ1, · · · , µl > 0
such that

∑
µi = 1, ‖[vi, ϕ]‖ < δ′ and ‖ψn ◦ P ◦ Eϕ

N ′∩M − ψn ◦ P ◦ Q‖ < ε′, where
Q(x) =

∑
µjv

∗
j xvj . It is clear that P ◦ Eϕ

N ′∩M = Eϕ
N ′∩M holds, and hence we get

‖ψn ◦Eϕ
N ′∩M −ψn ◦P ◦Q‖ < ε′. By the choice of {ui} and {vj}, ‖[uivj , ϕ]‖ < 2δ′ holds.

Next we will estimate ‖ψi ◦ Eϕ
N ′∩M − ψi ◦ P ◦Q‖, 1 ≤ i ≤ n− 1. Since we have

‖ψi ◦ Eϕ
N ′∩M − ψi ◦ P ◦Q‖

≤ ‖ψi ◦ (Eϕ
N ′∩M − Eϕ

N ′∩M ◦Q)‖+ ‖ψi ◦ Eϕ
N ′∩M ◦Q− ψi ◦ P ◦Q‖

≤ ‖ψi ◦ (Eϕ
N ′∩M − Eϕ

N ′∩M ◦Q)‖+ ε′,

we have to estimate ‖Eϕ
N ′∩M −Eϕ

N ′∩M ◦Q‖. Let ‖ · ‖1 be the L1 norm on N ′ ∩M for
ϕ|N ′∩M . (Note that the restriction of ϕ on N ′ ∩M is a tracial state.) Then we have

sup{|ϕ(yx)||x ∈ N ′ ∩M , ‖x‖ ≤ 1} = ‖y‖1, y ∈ N ′ ∩M .

On the other hand, we have the following inequality.

|ϕ((Eϕ
N ′∩M (y)− Eϕ

N ′∩M ◦Q(y))x)| = |ϕ(yx−Q(y)x)|

=
∣∣∣∣ϕ

(
yx−

∑

i

µiv
∗
i yxvi

)∣∣∣∣

≤
∑

i

µi|ϕ(yx)− viϕv∗i (yx)|

=
∑

i

µi|(ϕ− viϕv∗i )(yx)|

≤ δ′‖yx‖.

Combining these, we get ‖Eϕ
N ′∩M (y) − Eϕ

N ′∩M ◦ Q(y)‖1 ≤ δ′‖y‖. Since N ′ ∩M
is finite dimensional, there exists a constant 0 6= C such that ‖ · ‖1 ≥ C‖ · ‖. Hence we
get ‖Eϕ

N ′∩M (y) − Eϕ
N ′∩M ◦ Q(y)‖ ≤ δ′/C‖y‖, and ‖Eϕ

N ′∩M − Eϕ
N ′∩M ◦ Q‖ ≤ δ′/C.

Finally we get ‖ψi ◦ Eϕ
N ′∩M − ψi ◦ P ◦Q‖ < max ‖ψi‖δ′/C + ε′. If we take ε′ and δ′ in

such a way that 2δ′ < δ and max ‖ψi‖δ′/C + ε′ < ε, then {λiµj} and {uivj} satisfy the
conclusion of the proposition for n. ¤

Let N ⊂ M be an inclusion of AFD factors of type III1 with GM ,N = G̃M ,N , and
Ek the minimal conditional expectation from Mk onto Mk−1. We extend ϕ to Mk by
ϕ ◦ E1 ◦ · · · ◦ Ek, and denote by ϕ for simplicity.

Popa proved the following theorem in [33, Theorem 4.2].

Theorem 4.6. Let N ⊂ M be an inclusion of AFD type III1 factors, and ϕ0 be
a dominant weight for M with ϕ0 ◦E0 = ϕ0. If we have N ′

ϕ0
∩M = N ′∩M , then there

exists a faithful normal state ϕ such that ϕ ◦ E0 = ϕ and Nϕ ∩M = N ′ ∩M .

Here is an important corollary.
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Corollary 4.7. Let N ⊂ M be as above. Then we have N ′ ∩Mk = B(ϕ) for
every k and every faithful normal state ϕ of Mk such that ϕ = ϕ ◦ E0 ◦ · · · ◦ Ek.

Proof. Since GM ,N = G̃M ,N , we have N ′ ∩Mk = N ′
ϕ0
∩ (Mk)ϕ0 for every k

and a dominant weight ϕ0. By combining this with the relative commutant theorem
N ′

ϕ0
∩ Mk = N ′

ϕ0
∩ (Mk)ϕ0 ([33, Theorem 4.3]), we get N ′

ϕ0
∩ Mk = N ′ ∩ Mk. By

the above Popa’s theorem, there exists a faithful normal state ϕ on Mk such that ϕ =
ϕ ◦ E1 ◦ · · · ◦ Ek and N ′ ∩Mk = N ′

ϕ ∩Mk. By Corollary 4.4, we get the conclusion. ¤

Set M∞ := (
⋃

k Mk)−, where the closure is taken in the GNS representation with
respect to ϕ.

Proposition 4.8. We can find {uk
n}mn

k=1 ⊂ U(N ) and {λk
n}mn

k=1 ⊂ R∗
+ such that∑mn

k=1 λk
n = 1 for each n, supk ‖[uk

n, ϕ]‖ ≤ 1/n and ψ ◦ Pn → ψ ◦ Eϕ
N ′∩M∞ , n →∞, for

every ψ ∈ (M∞)∗, where Pn(x) =
∑mn

k=1 λk
nuk∗

n xuk
n.

Proof. Let E∞
k be a ϕ preserving conditional expectation from M∞ onto Mk. By

the martingale convergence theorem [4, Lemma I.2], we have limk→∞ ‖ψ−ψ ◦E∞
k ‖ = 0.

Let Vk be a dense countable subset of (Mk)∗. We regard ϕ ∈ (Mk)∗ as the element
of (M∞)∗ via ϕ → ϕ ◦ E∞

k+1. Set V :=
⋃

k Vk. Then V is a dense countable subset of
(M∞)∗. We index V as {ψi}∞i=1. By the definition of V , there exists k > 0 such that
ψi ◦ E∞

k = ψi, 1 ≤ i ≤ n. We regard ψi as a normal functional on Mk, and apply
Proposition 4.5. Then we can find λn

k ⊂ R∗
+,

∑
k λn

k = 1, and {un
k} ⊂ U(N ) such that

‖ψi ◦ Pn − ψi ◦ Eϕ
N ′∩Mk

‖ < 1/n and ‖[ψi, u
n
k ]‖ ≤ 1/n, where Pn =

∑
k λn

kAdun
k . Then

we get ‖ψi ◦ Pn − ψi ◦ Eϕ
N ′∩M∞‖ < 1/n since Eϕ

N ′∩Mk
◦ E∞

k = E∞
k ◦ Eϕ

N ′∩M∞ and
E∞

k ◦ Pn = Pn ◦ E∞
k . These {λn

k} and {un
k} are desired ones. ¤

By Proposition 4.8, Pn(x) converges to Eϕ
N ′∩Mk

(x) σ-strongly* for x ∈ Mk. This
fact is crucial in later sections.

5. Symmetric enveloping algebras and Longo-Rehren inclusions.

Now we discuss how to construct the symmetric enveloping algebra for a subfactor
N ⊂ M of type III1, since details of construction in type III case is not presented in
[35].

First we fix a tunnel M ⊃ N =: M−1 ⊃ M−2 ⊃ · · · for N ⊂ M . Let
ek ∈ Mk be the Jones projection for Mk−1 ⊃ Mk−2, and Ek the minimal condi-
tional expectation from Mk on Mk−1. We assume M acts on L2(M ), and iden-
tify M opp with M ′ = JMJ via jM (x) ↔ JxJ . Set ek := jM (e2−k) for k ≥ 2.
Then M ⊂ M1 ⊂ · · · ⊂ Mk := Alg〈Mk−1, ek〉 ⊂ Mk+1 ⊂ · · · is algebraically
isomorphic to the Jones tower, and each Mk is σ-weakly closed in B(L2(M )). Set
B0 :=

⋃
k≥0 M oppMkM opp ⊂ B1 := C∗(M , eN ,M opp) ⊂ B(L2(M )). Then B0 is a

dense ∗-subalgebra in B1. See [35]. In fact, we have B0 = Alg(M ,M opp, eN ).
We recall the construction of the symmetric enveloping algebra for type II1 case, so

assume N ⊂ M is of type II1 for a moment. The relative Dixmier property [34] (also
see [35, Appendix]) enable us to construct a conditional expectation E from B1 on M opp

by xyz ∈ M oppMkM opp → xEM ′∩Mk
(y)z ∈ M opp. Indeed assume 0 =

∑
i xiyizi ∈

M oppMkM opp. Then we can choose {λk
n}mn

k=1 ⊂ R∗
+,

∑
k λk

n = 1, and {uk
n}mk

k=1 ⊂ U(M )
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such that Pn(yi) :=
∑mn

k=1 λk
nuk

n
∗
yiu

k
n converges to EM ′∩Mk

(yi) in the norm topology for
every i. (In fact, σ-strong convergence is enough in the following argument since Mk is
σ-weakly closed.) It follows that

∑

i

xiEM ′∩Mk
(yi)zi = lim

n

∑

i

xiPn(yi)zi

= lim
n

∑

i

xi

( ∑

k

λk
nuk

n

∗
yiu

k
n

)
zi

= lim
n

∑

k

λk
nuk

n

∗∑

i

(xiyizi)uk
n

= 0,

so E is well-defined. Then it is shown that trMopp ◦ E is a unique tracial state for B1.
Then by GNS construction, we get the symmetric enveloping algebra as M £

eN

M opp :=

πtrMopp◦E(B1)′′, which is a II1 factor due to the uniqueness of a tracial state.
In the type III case, it is not clear if we have such a projection E. However when

N ⊂ M is a strongly amenable subfactor of type III1 with GM ,N = G̃M ,N , we can
use Proposition 4.8 instead of the relative Dixmier property. Namely, let Pn be as in
Proposition 4.8. Then xyz → xEϕ

M ′∩Mk
(y)z = limn→∞ xPn(y)z is shown to be a well-

defined map from B0 onto M opp in a similar way as above. This map can be extended
to a conditional expectation E from B1 onto M opp. Then we get a state ψ on B1 by
ψ(x) := 〈E(x)ξϕ, ξϕ〉, where ξϕ ∈ L2(M )+ is the representing vector for ϕ.

Definition 5.1. Define the symmetric enveloping algebra for N ⊂ M as M £
eN

M opp := πψ(B1)′′, where πψ is the GNS representation for ψ.

Though the symmetric enveloping algebra for a strongly amenable subfactor of type
III1 is defined, it is not clear that this construction produces indeed an factor, or inde-
pendent on the choice of ϕ. Here we already have (another) similar construction, the
Longo-Rehren construction. We compare these ones.

To do so, we recall the canonical implementation for endomorphisms of M . Let Wρ

be the canonical implementing isometry for ρ defined as in [10, Appendix A]. Namely
fix a faithful normal state ϕ ∈ M∗, and we define Wρ by Wρ(xξϕ) = ρ(x)ξϕ◦φρ

for
ρ ∈ End(M ). Indeed, Wρ is an isometry. See [10, Appendix A] for more properties of
Wρ.

Denote Wρi by Wi for simplicity for i ∈ I. Then {d(j)Wj}j∈I satisfy the
same relations as {Vi} in the Longo-Rehren construction by [10, Proposition A.4],
i.e., d(i)Wid(j)Wj =

∑
k v̂k

i,jd(k)Wk and WixJyJ = ρi(x)ρopp(jM (y))Wρ hold for

x, y ∈ M . (Of course, v̂k
i,j =

∑
e

√
d(i)d(j)

d(k) v(k
i,j)

eJv(k
i,j)

eJ , in this case.) We can

identify d(i)Wi ∈ B(L2(M )) and Vi ∈ A(∆). Hence we have a *-homomorphism
Alg(M ,M opp, {Vi}) → B(L2(M )) by π(x ⊗ jM (y))Vi → xJyJd(i)Wi, which we call
the canonical map.

We also have the formula eN = [M : N ]−1
∑

i∈I0

√
d(i)ã∗i d(i)Wi for the common
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Jones projection with the same notations as in §2.5. (Also see Appendix A.) As a
consequence we have B0 = Alg(M , JMJ, eN ) = Alg(M , JMJ, {Wi}).

Let (A :=)M ⊗M opp ⊂ A(∆) be the Longo-Rehren inclusion for N ⊂ M . As was
explained §2.5, we can construct the common Jones projection eN in A(∆). Once we
have the common Jones projection, we can construct a Jones tower for N ⊂ M within
A(∆) as in the symmetric enveloping algebra case, and we have

⋃
k M oppMkM opp =

Alg(M ,M opp, {Vi}).
Lemma 5.2. We have the following.

(1) ϕ⊗ ϕopp ◦ EA(xyz) = ϕopp(xEϕ
M ′∩Mk

(y)z), x, z ∈ M opp, y ∈ Mk(⊂ A(∆)).
(2) ψ(

∑
i aiWi) = ϕ⊗ ϕopp(a0) for

∑
i aiWi ∈ Alg(M , JM j, {Wi}).

Proof. (1) Note that since M ′ ∩ A(∆) = M opp, Eϕ
M ′∩Mk

(y) ∈ M opp. Then we
have

|ϕ⊗ ϕopp ◦ EA(xyz)− ϕ⊗ ϕopp ◦ EA(xPn(y)z)|

=
∣∣∣∣ϕ⊗ ϕopp ◦ EA(xyz)−

∑

k

λk
nϕ⊗ ϕopp ◦ EA(xuk

n

∗
yuk

nz)
∣∣∣∣

≤
∑

k

λk
n|ϕ⊗ ϕopp ◦ EA(xyz)− uk

nϕuk∗
n ⊗ ϕopp ◦ EA(xyz)|

=
∑

k

λk
n|(ϕ− uk

nϕuk∗
n )⊗ ϕopp ◦ EA(xyz)|

≤ 1
n
‖E (xyz)‖ → 0

if n →∞. ¤

To prove (2), we begin with the following lemma. (In the following, we use notations
in §2.5.)

Lemma 5.3. For every x ∈ M and 0 6= j ∈ I0, we have Eϕ
M ′∩M1

(xwe∗
j eN wf

0 ) = 0.

Proof. We verify ϕ ◦ E1(yxwe∗
j eN wf

0 ) = 0 for every y ∈ M ′ ∩M1, which implies
the conclusion since ϕ ◦ E1(yxwe∗

j eN wf
0 ) = ϕ ◦ E1(yEϕ

M ′∩M1
(xwe∗

j eN wf
0 )). First note

that there exists a unique z ∈ N ′ ∩M such that zeN = yeN by the push-down lemma.
Then we have

ϕ ◦ E1(yxwe∗
j eN wf

0 ) = ϕ ◦ E1(xwe∗
j yeN wf

0 )

= ϕ ◦ E1(xwe∗
j zeN wf

0 )

= [M : N ]−1ϕ(xwe∗
j zwf

0 ).

It is easy to see we∗
j zwf

0 ∈ (id, ρj). Hence we∗
j zwf

0 = 0 for j 6= 0. ¤
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Proof of Lemma 5.2(2). We compute ψ(xJyJWj) for x, y ∈ M . As was ex-
plained in §2.5, we have

Wj = Cw̃∗j eN w̃0 = C
∑

e,f

we∗
j Jwe∗

j JeN wf
0Jwf

0J

for some nonzero constant C.
Hence for 0 6= j ∈ I0, we have

ψ(xJyJWj) = Cψ

(
xJyJ

∑

e,f

we∗
j Jwe∗

j JeN wf
0Jwf

0J

)

= C
∑

e,f

ψ(Jywe∗
j Jxwe∗

j eN wf
0Jwf

0J)

= C
∑

e,f

ϕopp(Jywe∗
j JEϕ

M ′∩M1
(xwe∗

j eN wf
0 )Jwf

0J)

= 0.

In a similar way, we can show ψ(xJyJWj) = 0 for all 0 6= j ∈ I by considering M−k ⊂
M ⊂ Mk instead of N ⊂ M ⊂ M1. Note that ψ(xJyJ) = ϕ(x)ϕopp(JyJ) = ϕ ⊗alg

ϕopp(x⊗ JyJ).
Take

∑
i xiWi ∈ Alg(M , JMJ, {Wj}j∈∆), xi ∈ Alg(M , JMJ), and assume∑

i xiWi = 0. We have (
∑

i xiWi)∗(
∑

j xjWj) =
∑

i,j,k v̂0∗
ı̄,iρı̄(x∗i xj)v̂k

ı̄,jWk. By the above
argument, 0 = ψ((

∑
i xiWi)∗

∑
j xjWj) = ϕ ⊗alg ϕopp(

∑
i v̂0∗

ı̄,i ρ̂ı̄(x∗i xi)v̂0
ı̄,i). Thus we get

ρ̂ı̄(xi)v̂0
ı̄,i = 0 for every i, and we get xi = xiv̂

0∗
i,̄ı ρ̂i(v̂0

ı̄,i) = v̂0∗
i,̄ı ρ̂i(ρ̂ı̄(xi)v̂0

ı̄,i) = 0. Hence
the map E

E : Alg(M , JMJ, {Wj}) 3
∑

i

aiWi → a0 ∈ Alg(M , JMJ)

is well-defined. Thus we have

ψ

( ∑
aiWi

)
= ϕ⊗ ϕopp(a0) = ϕ⊗ ϕopp ◦ E

on Alg(M , JMJ, {Wj}j∈I) = Alg(M ,M opp, eN ). ¤

Now we can state the main result in this section.

Theorem 5.4. Let ψ be a state on C∗(M , eN , JMJ) defined as above. Let
πψ be the GNS representation of C∗(M , eN , JMJ) via ψ. Then M £

eN

M opp =

πψ(C∗(M ,M opp, eN ))′′ is isomorphic to A(∆) in the canonical way.

Proof. By Lemma 5.2, the canonical map Alg(M ,M opp, {Vi}) →
Alg(M , JMJ, {Wi}) can be extended to a unitary V between L2(A(∆), ϕ⊗ ϕopp ◦ EA)
and L2(B1, ψ). Then it is easy to see A(∆) ∼= πψ(B1)′′ via V . ¤
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6. Approximation property for Longo-Rehren inclusion and Effros-
Lance type characterization.

Let N ⊂ M be a strongly amenable subfactor of type III1, and π(A) ⊂ A(∆) the
Longo-Rehren inclusion for N ⊂ M . (We write an isomorphism π from A into A(∆)
explicitly for a while, and freely use notations in §2.5.) We often write x ⊗ jM (y) ∈
M ⊗M opp as xjM (y) for simplicity.

Lemma 6.1. Let M be an injective factor of type III1. Then there exist finite
dimensional factors Mn, unital completely positive maps Sn : M → Mn and Tn : Mn →
M such that limn→∞ Tn◦Sn(x) = x in strong* topology and limn→∞ ‖ψ◦Tn◦Sn−ψ‖ = 0
for every ψ ∈ M∗.

Proof. Fix T > 0, set θ := σϕ
T for some faithful normal state ϕ on M . Then P :=

M oθ Z is an injective type IIIλ factor, (T = −2π/ log λ), and hence we can identify P
with the infinite tensor product factor

⊗∞
k=1(M2(C), ϕλ), where ϕλ

(
a b
c d

)
= a

1+λ + λd
1+λ .

Set Mn :=
⊗n

k=1 M2(C), and let En be the
⊗∞

k=1 ϕλ preserving conditional expectation
from P on Mn. Then En(x) (resp ψ ◦ En) converge to x (resp. ψ) in strong* (resp.
norm) topology for x ∈ P (resp. ψ ∈ P∗). Let EM be the conditional expectation from
P on M . Define Sn := En|M and Tn := EM |Mn

. Then these Tn and Sn are desired
ones. Indeed we have

lim
n→∞

Tn ◦ Sn(x) = lim
n→∞

EM ◦ En(x) = EM (x) = x

in strong* topology and

lim
n→∞

‖ψ ◦ Tn ◦ Sn − ψ‖ = lim
n→∞

‖ψ ◦ EM ◦ En|M − ψ ◦ EM |M‖

≤ lim
n→∞

‖ψ ◦ EM ◦ En − ψ ◦ EM‖ = 0. ¤

To state the following lemmas, we need some definitions and results on amenable
fusion algebras in [14]. Let µ be a measure on I given by µ({i}) = d(i)2. We denote the
pairing between `1(I, µ) and `∞(I) by 〈·, ·〉µ.

A right convolution operator λr
i on `1(I, µ) is defined by

λr
i (f)(j) =

∑

k

d(k)
d(i)d(j)

Nk
j,if(k), f ∈ `1(I, µ).

In [14, Theorem 4.6], Hiai and Izumi proved that the amenability of GN ⊂M in the sense
of Popa, i.e., the principal graph of N ⊂ M satisfies the Følner type condition in [31,
Definition 3.1], is equivalent to the existence of an almost invariant finite subset in I.
Namely, for any finite set J ⊂ I and ε > 0, there exists a finite subset F ⊂ I such that

‖λr
i (χF )− χF ‖1,µ < ε‖χF ‖1,µ

for any i ∈ J .



978 T. Masuda

Lemma 6.2. Let F ⊂ I be a finite set, and set eF :=
∑

i∈F 1⊗ eii ∈ A⊗B(`2(I)).
Define SF : A(∆) → A⊗M|F |(C) by SF (x) = eF xeF , and TF : A⊗M|F |(C) → A(∆) by
TF (x) = 1

‖χF ‖1,µ
FA(∆)(x). Let Ψ be a completely positive map from A into itself. Then

TF ◦ Ψ ⊗ id ◦ SF (π(a)Vi) =
1

‖χF ‖1,µ

∑

j,k∈F,l∈I

π(v̂0∗
̄,j ρ̂̄(Ψ(ρ̂j(a)v̂k

j,i))v̂
l
̄,k)Vl

holds.

Proof. First note ‖χF ‖1,µ = FA(∆)(eF ). Hence TF is unital. The above lemma
is shown by the following computation. (Recall matrix form representation in §2.)

TF ◦ (Ψ ⊗ id) ◦ SF (π(a)Vi)

=
∑

j,k∈F

TF ◦ (Ψ ⊗ id)(ρ̂j(a)v̂k
j,i ⊗ ej,k)

=
1

‖χF ‖1,µ

∑

j,k∈F,l∈I

V̄l(ρ̂l(Ψ(ρ̂j(a)v̂k
j,i))⊗ ej,k)V̄ ∗

l

=
1

‖χF ‖1,µ

∑

j,k∈F,l,m,n∈I

v̂m∗
l,j ρ̂l(Ψ(ρ̂j(a)v̂k

j,i))v̂
n
l,k ⊗ em,n

=
1

‖χF ‖1,µ

∑

j,k∈F,l,m,n∈I

ρ̂m(v̂0∗
̄,j)v̂

l
m,j̄ ρ̂l(Ψ(ρ̂j(a)v̂k

j,i))v̂
n
l,k ⊗ em,n

(by Corollary 2.19)

=
1

‖χF ‖1,µ

∑

j,k∈F,l,m,n∈I

ρ̂m(v̂0∗
̄,j)ρ̂mρ̂̄(Ψ(ρ̂j(a)v̂k

j,i))v̂
l
m,j̄ v̂

n
l,k ⊗ em,n

=
1

‖χF ‖1,µ

∑

j,k∈F,l,m,n∈I

ρ̂m(v̂0∗
̄,j ρ̂̄(Ψ(ρ̂j(a)v̂k

j,i))ρ̂m(v̂l
̄,k)v̂n

m,l ⊗ em,n

(by Lemma 2.18(1))

=
1

‖χF ‖1,µ

∑

j,k∈F,l∈I

π(v̂0∗
̄,j ρ̂̄(Ψ(ρ̂j(a)v̂k

j,i))v̂
l
̄,k)Vl. ¤

Lemma 6.3. There exist finite dimensional factors Nn, unital completely positive
maps Sn : A(∆) → A⊗Nn and Tn : A⊗Nn → A(∆) such that Tn◦Sn(x) → x σ-strongly*
for x ∈ Alg(π(A), {Vi}).

Proof. At first we compute 〈λr
i (χF ), χF 〉µ. Then we have

〈λr
i (χF ), χF 〉µ =

∑

j∈I

λr
i (χF )(j)χF (j)d(j)2 =

∑

j,k∈I

d(k)
d(i)d(j)

Nk
j,iχF (k)χF (j)d(j)2

=
∑

j,k∈F

d(k)d(j)
d(i)

Nk
j,i.
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By Hiai-Izumi’s Følner type condition, we can find a sequence {Fn} of finite subsets
in I such that

lim
n→∞

‖λr
i (χFn

)− χFn
‖1,µ

‖χFn
‖1,µ

= 0

for every i ∈ I. Set Nn := M|Fn|(C). Let Tn := TFn , Sn := SFn be the unital completely
positive maps constructed in Lemma 6.2.

By Lemma 6.2 and the above computation, we have

Tn ◦ Sn(π(a)Vi) =
1

‖χFn‖1,µ

∑

j,k∈Fn,l∈I

π(v̂0∗
̄,j ρ̂̄(ρ̂j(a)v̂k

j,i)v̂
l
̄,k)Vl

=
1

‖χFn
‖1,µ

∑

j,k∈Fn,l∈I

π(av̂0∗
̄,j ρ̂̄(v̂k

j,i)v̂
l
̄,k)Vl

=
1

‖χFn‖1,µ

∑

j,k∈Fn,l∈I

π(av̂i∗
̄,kv̂l

̄,k)Vl

=
1

‖χFn‖1,µ

∑

j,k∈Fn

d(j)d(k)
d(i)

N i
̄,kπ(a)Vi

=
1

‖χFn‖1,µ

∑

j,k∈Fn

d(j)d(k)
d(i)

Nk
j,iπ(a)Vi

=
〈λr

i (χFn
), χFn

〉µ
‖χFn‖1,µ

π(a)Vi.

Here

∣∣∣∣
〈λr

i (χFn
), χFn

〉µ
‖χFn

‖1,µ
− 1

∣∣∣∣ =
∣∣∣∣
〈λr

i (χFn
), χFn

〉µ − 〈χFn
, χFn

〉µ
‖χFn

‖1,µ

∣∣∣∣

≤ ‖λr
i (χFn)− χFn‖1,µ‖χFn‖∞

‖χFn
‖1,µ

→ 0

as n goes to infinity. Hence limn→∞ Tn ◦ Sn(π(a)Vi) = π(a)Vi holds. ¤

Now we can present the Effros-Lance type characterization on the amenability of
N ⊂ M .

Theorem 6.4. Let (%,K) be a representation of Alg(M ,M opp, {Vi}) such
that %|M and %|Mopp are normal. Then ‖%(x)‖B(K) ≤ ‖x‖A(∆) for every x ∈
Alg(M ,M opp, {Vi}).

Proof. Take a unit vector ξ ∈ K. Let T
(1)
n , S

(1)
n be as in Lemma 6.1, and T

(2)
n ,

S
(2)
n as in Lemma 6.3. Set T̂

(1)
n = T

(1)
n ⊗ T

(1)opp
n and Ŝ

(1)
n = S

(1)
n ⊗ S

(1)opp
n . Let ωξ be a
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vector state associated with ξ and define a normal state ψm,n on A(∆) by

ψm,n = ωξ ◦ % ◦ T (2)
n ◦ (T̂ (1)

m ⊗ idn) ◦ (Ŝ(1)
m ⊗ idn) ◦ S(2)

n ,

where idn is the identity map on Nn.
Indeed, since (Ŝ(1)

m ⊗idn)◦S(2)
n is a normal unital completely positive map from A(∆)

to Mm⊗Mopp
m ⊗Nn, and ωξ ◦%◦T

(2)
n ◦(T̂ (1)

m ⊗ idn) is a normal state on Mm⊗Mopp
m ⊗Nn,

ψm,n is a normal state on A(∆). Note that T
(2)
n ◦ (T̂ (1)

m ⊗ idn)(Mm ⊗ Mopp
m ⊗ Nn) ⊂

Alg(M ,M opp, {Vi}), and hence % ◦ T
(2)
n ◦ (T̂ (1)

m ⊗ idn) is well defined. Hence we have
|ψm,n(x)| ≤ ‖x‖A(∆) for x ∈ Alg(M ,M opp, {Vi}).

We will verify limn→∞ limm→∞ ψm,n(x) = ωξ ◦ %(x) for π(xjM (y))Vi ∈
Alg(M ,M opp, {Vi}). By Lemma 6.2, we have

T (2)
n ◦ (T̂ (1)

m ⊗ idn) ◦ (Ŝ(1)
m ⊗ idn) ◦ S2

n(π(xjM (y))Vi)

=
1

‖Fn‖1,µ

∑

j,k∈Fn,l∈I

π(v̂0∗
̄,j ρ̂̄(T̂ (1)

m ◦ Ŝ(1)
m (ρ̂j(xjM (y))v̂k

j,i))v̂
l
̄,k)Vl

=
1

‖Fn‖1,µ

∑

j,k∈Fn,l∈I

π(v̂0∗
̄,j)π(ρ̄T

(1)
m S(1)

m ρj(x)⊗ jM (ρ̄T
(1)
m S(1)

m ρj(y))π(v̂k
j,iv̂

l
̄,k)Vl.

Then

ψm,n(xjM (y)Vi)

=
1

‖Fn‖1,µ

∑

j,k∈Fn,l∈I

〈%(v̂0∗
̄,j)%(ρ̄T

(1)
m S(1)

m ρj(x))

%(jM (ρ̄T
(1)
m S(1)

m ρj(y)))%(v̂k
j,iv̂

l
̄,k)%(Vl)ξ, ξ〉

holds. Since %|M and %|Mopp are normal, and {T (1)
m ◦S(1)

m (a)}∞m=1 converges to a strongly*
for every a ∈ M ,

lim
m→∞

ψm,n(x) =
1

‖Fn‖1,µ

∑

j,k∈Fn,l∈I

〈%(v̂0∗
̄,j)%(ρ̄ρj(x))%(jM (ρ̄ρj(y)))%(v̂k

j,iv̂
l
̄,k)%(Vl)ξ, ξ〉

= ωξ ◦ % ◦ T (2)
n ◦ S(2)

n (π(xjM (y))Vi)

for π(xjM (y))Vi ∈ Alg(M ,M opp, {Vi}). By letting n →∞, we have

lim
n→∞

lim
m→∞

ψm,n(π(xjM (y))Vi) = ωξ ◦ %(π(xjM (y))Vi)

for π(xjM (y))Vi ∈ Alg(M ,M opp, {Vi}). Thus limn→∞ limm→∞ ψm,n(x) = ωξ ◦ %(x) for
every x ∈ Alg(M ,M opp, {Vi}). It follows
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‖%(x)ξ‖2 = ωξ ◦ %(x∗x) ≤ ‖x∗x‖A(∆) = ‖x‖2A(∆).

This holds for any unit vector ξ, and hence we have ‖%(x)‖B(K) ≤ ‖x‖A(∆). ¤

As a corollary to Theorem 6.4, we have

Corollary 6.5. We have C∗(M , JMJ, eN ) ∼= C∗min(M ,M opp, eN ) via the
natural isomorphism, where C∗min(M ,M opp, eN )(= C∗min(M ,M opp, {Vi})) is the C∗-
subalgebra in A(∆) generated by M ,M opp and eN .

Proof. Let Wl ∈ B(L2(M )) be the canonical implementing isometry for ρl.
Then the canonical map π(x ⊗ jM (y))Vl ∈ A(∆) → xJyJd(l)Wl ∈ B(L2(M )) is a
representation of Alg(M ,M opp, {Vi}), which is normal on M and M opp. By Theorem
6.4, ‖∑

i aid(i)Wi‖B(L2(M )) ≤ ‖∑
i π(ai)Vi‖A(∆), ai ∈ Alg(M ,M opp).

On the other hand, ‖∑
i aid(i)Wi‖B(L2(M )) ≥ ‖∑

i π(ai)Vi‖A(∆) by Theorem
5.4. Hence ‖∑

i aid(i)Wi‖B(L2(M )) = ‖∑
i π(ai)Vi‖A(∆) holds. It follows that the

canonical map is extended to the isomorphism between C∗(M , JMJ, {Wi}) and
C∗min(M ,M opp, {Vi}). ¤

In the above argument, we approximate ωξ◦% by a double sequence {ψm,n}. However
we would like to approximate by a sequence of normal states (Proposition 6.7), which
will be crucial in the proof of Lemma 7.6.

Lemma 6.6. Fix a faithful normal state ϕ on M . Let ξ ∈ L2(M )+ be the repre-
senting vector for ϕ. For any finite set {xk}1≤k≤m, {yk}1≤k≤m ⊂ M , finite subset J ⊂ I

and ε > 0, we can find a normal state ψ′ on A(∆) such that
(1) |ψ′(xkjM (yk)Vi)− 〈xkJykJViξ, ξ〉| < ε, 1 ≤ k ≤ m, i ∈ J ,
(2) ‖ψ′|M⊗C1 − ϕ‖ < ε,
(3) ‖ψ′|C1⊗Mopp − ϕopp‖ < ε.
(From now on, we omit π, and write aVi instead of π(a)Vi.)

Proof. The argument in the proof of Theorem 6.4 shows the existence of a state
on A(∆) satisfying (1). We see this more carefully. Set X := {xkjM (yk)Vi|1 ≤ k ≤
m, i ∈ J}. Let T

(i)
n , i = 1, 2, be as in the proof of Theorem 6.4. Then we can find n ∈ N

such that |〈xξ, ξ〉 − 〈T (2)
n ◦ S

(2)
n (x)ξ, ξ〉| < ε/2 for x ∈ X.

By Lemma 6.1, we choose T
(1)
m , and S

(1)
m such that

|〈T (2)
n ◦ S

(2)
n (x)ξ, ξ〉 − 〈T (2)

n ◦ (T̂ (1)
m ◦ ˆ

S
(1)
m ⊗ idn) ◦ S

(2)
n (x)ξ, ξ〉| < ε/2, x ∈ X

‖ϕ ◦ φi ◦ T
(1)
m ◦ S

(1)
m − ϕ ◦ φi‖ < ε, i ∈ J,

where φi is the standard left inverse for ρi. Note φi is given by φi(x) = v(0ı̄,i)
∗ρı̄(x)v(0ı̄,i)

in the notation in §2.
Set ψ′ := ψm,n. Then ψ′ satisfies the condition (1). Next we will verify (2). (In the

following, we denote T
(i)
n and S

(i)
m by T (i) and S(i) for simplicity.)

By Lemma 6.2,
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T (2) ◦ (T̂ (1) ◦ Ŝ(1) ⊗ id) ◦ S(2)(a⊗ 1)

=
1

‖χF ‖1,µ

∑

j,k∈F,l∈I

v̂0∗
̄,j ρ̂̄(T̂ (1) ◦ Ŝ(1)((ρj(a)⊗ 1)v̂k

j,0))v̂
l
̄,kVl

=
1

‖χF ‖1,µ

∑

j∈F,l∈I

v̂0∗
̄,j(ρ̄ ◦ T (1) ◦ S(1) ◦ ρj(a)⊗ 1)v̂l

̄,jVl

=
1

‖χF ‖1,µ

∑

j∈F,l∈I,1≤e≤N l
̄,j

d(j)2√
d(l)

v(0̄,j)
∗ρ̄ ◦ T (1) ◦ S(1) ◦ ρj(a)v(l

̄,j)
e

⊗ jM (v(0̄,j)
∗v(l

̄,j)
e)Vl

=
1

‖χF ‖1,µ

∑

j∈F

d(j)2φj ◦ T (1) ◦ S(1) ◦ ρj(a)⊗ 1

holds. Hence we have

ψ′|M⊗C =
1

‖χF ‖1,µ

∑

j∈F

d(j)2ϕ ◦ φj ◦ T (1) ◦ S(1) ◦ ρj .

By the choice of T (1), S(1),

‖ψ′|M⊗C − ϕ‖ =
1

‖χF ‖1,µ

∥∥∥∥
∑

j∈F

d(j)2(ϕ ◦ φj ◦ T (1) ◦ S(1) ◦ ρj − ϕ ◦ φj ◦ ρj)
∥∥∥∥

≤ 1
‖χF ‖1,µ

∑

j∈F

d(j)2‖ϕ ◦ φj ◦ T (1) ◦ S(1) ◦ ρj − ϕ ◦ φj ◦ ρj‖

≤ 1
‖χF ‖1,µ

∑

j∈F

d(j)2‖ϕ ◦ φj ◦ T (1) ◦ S(1) − ϕ ◦ φj‖

<
ε

‖χF ‖1,µ

∑

j∈F

d(j)2

= ε.

Hence we have the condition (2). The condition (3) can be shown in a similar way. ¤

Proposition 6.7. Let ϕ and ξ be as in the previous lemma. Then there exists
a sequence {ψn} of normal states on A(∆) such that limn→∞ ψn(a) = 〈aξ, ξ〉 for every
a ∈ Alg(M ,M opp, {Vi}).

Proof. First we prove V ∗
l (x⊗ 1)Vl = d(l)2φl(x). This can be shown as follows.
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V ∗
l (x⊗ 1)Vl = v̂0∗

l̄,l Vl̄(x⊗ 1)Vl

= v̂0∗
l̄,l (ρl̄(x)⊗ 1)Vl̄Vl

=
∑
m

v̂0∗
l̄,l (ρl̄(x)⊗ 1)v̂m

l̄,lVm

=
∑

m,1≤e≤Nm
l̄,l

d(l)2√
d(m)

v(0l̄,l)
∗ρl̄(x)v(m

l̄,l)
e ⊗ jM (v(0l̄,l)

∗v(m
l̄,l)

e)Vm

= d(l)2v(0l̄,l)
∗ρl̄(x)v(0l̄,l)⊗ 1

= d(l)2φl(x)⊗ 1.

We also have V ∗
l (1⊗ jM (y))Vl = jM (φl(y)).

Let {xi}∞i=1 be a strongly dense countable subset in the unit ball (M )1 of M , {In}
an increasing sequence of finite subsets of I such that

⋃
In = I. Set ψ(a) = 〈aξ, ξ〉. By

Lemma 6.6, for each n ∈ N , there exists a normal state ψn on A(∆) such that
(1.n) |ψ(xijM (x∗j )Vl)− ψn(xijM (x∗j )Vl)| < 1/n, 1 ≤ i, j ≤ n, l ∈ In,

(2.n) ‖ψn|M − ϕ‖ < 1/n,

(3.n) ‖ψn|Mopp − ϕopp‖ < 1/n.

We will prove limn→∞ ψn(a) = ψ(a), a ∈ Alg(M ,M opp, {Vi}). Fix x ∈ (M )1,
j ∈ N and l ∈ I. First we verify limn→∞ ψn(xjM (x∗j )Vl) = ψ(xjM (x∗j )Vl). For ε > 0,
choose xi such that d(l)‖x−xi‖ϕ◦φl

< ε. Choose N ∈ N such that d(l)/
√

N < ε, l ∈ IN ,
i, j ≤ N . Then we have (1.n), (2.n) and (3.n) for every n ≥ N . Then

|ψn(xjM (x∗j )Vl)− ψ(xjM (x∗j )Vl)|
≤ |ψn((x− xi)jM (x∗j )Vl)|+ |ψn(xijM (x∗j )Vl)− ψ(xijM (x∗j )Vl)|

+ |ψ((x− xi)jM (x∗j )Vl)|

≤ ‖jM (xj)‖ψ‖(x− xi)Vl‖ψ +
1
n

+ ‖jM (xj)‖ψn
‖(x− xi)Vl‖ψn

≤ ‖(x− xi)Vl‖ψ +
1
n

+ ‖(x− xi)Vl‖ψn

holds. Here we have

‖(x− xi)Vl‖2ψ = d(l)2‖x− xi‖2ϕ◦φl

and

‖(x− xi)Vl‖2ψn
= d(l)2‖x− xi‖2ψn|M◦φl

since Vl(x∗ − xi)(x − xi)Vl = d(l)2φl((x − xi)∗(x − xi)). We also have that ‖x‖ϕ1 ≤
‖x‖ϕ2 +

√
δ‖x‖ if ‖ϕ1 − ϕ2‖ < δ for ϕ1, ϕ2 ∈ (M∗)+.

Hence we have
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|ψn(xjM (x∗j )Vl)− ψ(xjM (x∗j )Vl)| ≤ ε +
1
n

+ d(l)‖x− xi‖ϕ◦φl
+

2d(l)√
n

≤ 5ε

for any n ≥ N . Hence we get limn→∞ ψn(xjM (x∗j )Vl) = ψ(xjM (x∗j )Vl). In other
words, for any ε > 0, there exists an positive integer N = N(x, ε, j, l) such that if
n ≥ N(x, ε, j, l), then |ψn(xjM (x∗j )Vl)− ψ(xjM (x∗j )Vl)| < ε holds.

Next we prove limn→∞ ψn(xjM (y)Vl) = ψ(xjM (y)Vl) for x, y ∈ (M )1 and l ∈ I.
For ε > 0, fix xj such that d(l)‖y∗−xj‖ϕ◦φl

< ε. Fix N ′ ∈ N such that N ′ ≥ N(x, ε, j, l),
d(l)/

√
N ′ < ε.

If n ≥ N ′, then

|ψn(xjM (y)Vl)− ψ(xjM (y)Vl)|
≤ |ψn(xjM (y − x∗j )Vl)|+ |ψn(xjM (x∗j )Vl)− ψ(xjM (x∗j )Vl)|+ |ψ(xjM (y − x∗j )Vl)|
≤ ‖jM (y − x∗j )Vl‖ψ + ε + ‖jM (y − x∗j )Vl‖ψn

≤ ε + d(l)‖jM (y − x∗j )‖ϕopp◦φopp
l

+ d(l)‖jM (y − x∗j )‖ψn|Mopp◦φopp
l

≤ ε + d(l)‖y∗ − xj‖ϕ◦φl
+ d(l)‖jM (y − x∗j )‖ϕopp◦φopp

l
+

2d(l)√
n

≤ 5ε

holds. Hence limn→∞ ψn(a) = ψ(a) for all a ∈ Alg(M ,M opp, {Vl}). ¤

Remark. Let us consider the single factor case, i.e., A(∆) = A = M ⊗M opp. In
[6, pp. 210], Connes claimed the existence of a normal state ψ′ on M ⊗M opp satisfying
Lemma 6.6(1), ψ′|M = ϕ and ψ′|Mopp = ϕopp instead of Lemma 6.6(2), (3). The author
cannot find a proof for this claim in the literature, and unable to prove this. However
Lemma 6.6(2), (3) are enough for our purpose.

At the end of this section, we discuss the extension of automorphisms to the symmet-
ric enveloping algebra. Let N ⊂ M be a strongly amenable subfactor of type III1. Take
α ∈ KerΦ. Then we can extend α⊗ id ∈ Aut(M ⊗M opp) to α £ id ∈ Aut(M £

eN

M opp)

such that α£ id(eN ) = eN as explained in §2. It is clear that α£ id is an automorphism
of C∗min(M , eN ,M opp). Hence by Theorem 6.4, we have α̃ ∈ Aut(C∗(M , eN , JMJ))
such that α̃ = α on M , α̃ = id on M ′ and α̃(eN ) = eN . Especially since σϕ

t ∈ KerΦ,
we can apply the above argument for modular automorphisms. Here we remark that
α̃(ek) = ek for k ≥ 1 since α̃ is trivial on JMJ . Hence α̃ preserves Mk, and this
coincides with the usual extension of α to Mk. So we denote α̃|Mk

by α.

7. Approximate innerness of modular automorphisms.

As an analogue of [6, Theorem III.1], approximately inner automorphisms of sub-
factors can be characterized as follows. (Also see Appendix B.)

Theorem 7.1. For θ ∈ Aut(M ,N ), θ ∈ Int(M ,N ) if and only if for any
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ϕ1, · · · , ϕn ∈ (M∗)+ and ε > 0, we can find 0 6= x ∈ N such that

(∗) ‖xξϕj − Uθ(ξϕj )x‖2 ≤ ε2
∑

j

ϕj(x∗x),

where ξϕj
∈ L2(M )+ is the representing vector for ϕj, Uθ ∈ B(L2(M )) the standard

implementing unitary of θ.

By using Theorem 7.1, we will prove the following theorem, which implies Theorem
2.2 as remarked at the end of §3.

Theorem 7.2. For any 0 6= T ∈ R and any faithful normal state ψ with ψ◦E0 = ψ,
σψ

T is approximately inner.

Proof. Fix ε > 0 and ϕ1, · · · , ϕn ∈ (M∗)+. We may assume ϕ1 is faithful. Set
ϕ := [M : N ]

∑
j ϕj ◦ E0. Then ϕ ◦ E0 = ϕ and ϕ ≥ ϕj hold. For the last inequality, we

used the Pimsner-Popa inequality E0(x) ≥ [M : N ]−1x [29]. For simplicity, we denote
ξϕj

by ξj , and Uθ by θ. Put α = σϕ
T . Since σψ

T = Ad (Dψ : Dϕ)T α, it suffices to show
that α satisfies Theorem 7.1(∗). Define Tj as Tjxξϕ = xξj . Then ‖Tj‖ ≤ 1, and Tj

belongs to M ′. Set bj := JT ∗j J ∈ M . Then b∗jξϕ = ξϕbj = ξj holds by definition. We
have ‖bj‖ ≤ 1. Set A := C∗(M , eN , JMJ). Define X := eN

∑
j |Jb∗jJ − b∗j |2eN ∈ A.

Fix f(x) ∈ C∞c (R∗
+) as in [6, p. 205]. Then 0 ≤ 1− eN +X + eN |f(∆ϕ)− 1|2eN ≤

4n+2 holds. Here note that eN ξϕ = ξϕ, Xξϕ = 0 and eN |f(∆ϕ)−1|2eN ξϕ = 0. Hence
we get ‖4n + 2− (1− eN )−X − eN |f(∆ϕ)− 1|2eN ‖ = 4n + 2.

Let α̃ be the automorphism of A as in the end of the previous section. We actually
have ‖4n+2−(1−eN )− α̃(X)−eN |f(∆ϕ)−1|2eN ‖ = 4n+2, whose proof is postponed
(see Lemma 7.8). Then we can find a unit vector η ∈ L2(M ) such that
(i) ‖(Jb∗jJ − α(bj)∗)eN η‖ ≤ ε,
(ii) ‖(f(∆ϕ)− 1)eN η‖ ≤ ε,
(iii) ‖(1− eN )η‖ ≤ ε.

Set η1 := eN η. Then η1 ∈ eN L2(M ) = L2(N ). By (iii), 1 ≥ ‖η1‖ ≥ 1 − ε. Next

set η2 := f(∆ϕ)η1. Then η2 ∈ D(∆
1
2
ϕ) ∩ L2(N ). By (ii), we have ‖η2 − η1‖ ≤ ε, and

hence we get 1 ≥ ‖η2‖ ≥ 1− 2ε. By (i), we get ‖(Jb∗jJ − α(b∗j ))η2‖ ≤ 3ε. By the choice

of f(x), ‖(∆
1
2
ϕ −1)η2‖ ≤ ε‖η1‖ ≤ ε. Since N ξϕ is dense in D(∆

1
2
ϕ)∩L2(N ) in the graph

norm, we can choose xξϕ ∈ N ξϕ such that ‖η2 − xξϕ‖ ≤ ε and ‖∆
1
2
ϕη2 −∆

1
2
ϕxξϕ‖ ≤ ε.

Then ‖xξϕ‖ ≥ ‖η2‖ − ‖η2 − xξϕ‖ ≥ 1− 3ε holds. Thus we get

‖(Jb∗jJ − α(b∗j ))xξϕ‖ ≤ ‖(Jb∗jJ − α(b∗j ))η2‖+ ‖(Jb∗jJ − α(bj))(η2 − xξϕ)‖
≤ 3ε + 2ε

= 5ε

≤ 5ε

1− 3ε
‖xξϕ‖

and
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‖xξϕ − ξϕx‖ = ‖xξϕ −∆
1
2
ϕxξϕ‖

≤ ‖xξϕ − η2‖+ ‖η2 −∆
1
2
ϕη2‖+ ‖∆

1
2
ϕη2 −∆

1
2
ϕxξϕ‖

≤ 3ε

≤ 3ε

1− 3ε
‖xξϕ‖.

Hence if we take a sufficiently small ε, we can assume ‖xξϕ − ξϕx‖ ≤ 6ε‖xξϕ‖ and
‖(Jb∗jJ − α(b∗j ))xξϕ‖ ≤ 6ε‖xξϕ‖.

Finally we have

‖xξj − α(ξj)x‖ = ‖xξϕbj − α(b∗jξϕ)x‖
= ‖Jb∗jJxξϕ − α(b∗j )ξϕx‖
≤ ‖Jb∗jJxξϕ − α(b∗j )xξϕ‖+ ‖α(b∗j )(xξϕ − ξϕx)‖
≤ 12ε‖xξϕ‖.

Hence we have ‖xξj − α(ξj)x‖2 ≤ 144ε2‖xξϕ‖2 = ε2ϕ(x∗x) = 144ε2[M : N ]
∑

j ϕj ◦
E0(x∗x) = 144ε2[M : N ]

∑
j ϕj(x∗x). Hence α satisfies Theorem 7.1(∗), and σψ

T is
approximately inner. ¤

It remains to show ‖4n + 2− (1− eN )− α̃(X)− eN |f(∆ϕ)− 1|2eN ‖ = 4n + 2. To
do this, we use the Effros-Lance type characterization (Theorem 6.4). To construct the
Jones tower in the symmetric enveloping algebra for N ⊂ M , hence we fix a tunnel for
M ⊃ N := M−1 ⊃ M−2 ⊃ M−3 ⊃ · · · , and denote by E−k the minimal conditional
expectation from M−k onto M−k−1. Note that σϕ

t does not necessarily preserve M−k,
however σϕ(k)

t does, where ϕ(k) := ϕ ◦ E−k+1 ◦ · · · ◦ E0.

Lemma 7.3. Let K be a compact metric space, µ a probability measure on K, a(k),
c(k) bounded σ-strongly* continuous maps from K to M ′, and b(k) a bounded σ-strongly*
continuous map from K to Mn, and consider

∫
K

a(k)b(k)c(k)dµ(k) ∈ B(L2(M )).
(i) The set B ⊂ B(L2(M )) of all elements of the above form, (with K, µ, n varying), is
a ∗-subalgebra of B(L2(M )).
(ii) B is invariant under Ad∆it

ϕ .

Proof. (i) It is easy to see that B is closed under summation and ∗-operation. We
verify that B is closed under multiplication. Let ai(ki), ci(ki) be bounded σ-strongly*
continuous maps from Ki to M opp, and bi(ki) a bounded σ-strongly* continuous map
from Ki to Mn, i = 1, 2, and consider

∫
Ki

ai(ki)bi(ki)ci(ki)dµi(ki), i = 1, 2. Let fn ∈
M opp be the Jones projection for M opp

−2n ⊂ M opp
−n ⊂ M opp, and choose v ∈ M opp such

that v∗fnv = 1. Note Mn ∨ {fn} = M2n. Then

c1(k1)a2(k2) = c1(k1)a2(k2)v∗fnv

= [M : N ]2EMopp
−n

(c1(k1)a2(k2)v∗fn)fnEMopp
−n

(fnv)
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holds by the push-down lemma. Set d(k1, k2) := [M : N ]2EMopp
−n

(c1(k1)a2(k2)v∗fn),
and v′ := EMopp

−n
(fnv). Then d(k1, k2) is a σ-strongly* continuous map from K1 ×K2 to

M opp
−n . Then we have

( ∫

K1

a1(k1)b1(k1)c1(k1)dµ1(k1)
)( ∫

K2

a2(k2)b2(k2)c2(k2)dµ2(k2)
)

=
∫

K1×K2

a1(k1)b1(k1)c1(k1)a2(k2)b2(k2)c2(k2)d(µ1 × µ2)(k1, k2)

=
∫

K1×K2

a1(k1)b1(k1)d(k1, k2)fnv′b2(k2)c2(k2)d(µ1 × µ2)(k1, k2)

=
∫

K1×K2

a1(k1)d(k1, k2)b1(k1)fnb2(k2)v′c2(k2)d(µ1 × µ2)(k1, k2).

Here a1(k1)d(k1, k2) and v′c2(k2) are σ-strongly* continuous maps from K1 × K2 to
M opp, and b1(k1)fnb2(k2) is a σ-strongly* continuous map from K1×K2 to M2n. Hence
the above operator is in B.

(ii) First note that we have Ad∆it
ϕ(n−1)Mn = Mn for every n ≥ 0. We have ∆it

ϕ =
un

t Jun
t J∆it

ϕ(n−1) , where un
t := (Dϕ : Dϕ(n−1))t. Let b(k) be a σ-strongly* continuous

map from K to Mn. Then we have Ad∆it
ϕ(b(k)) = Jun

t Jun
t Ad∆it

ϕ0
(b(k))u∗t Ju∗t J . Here

Adun
t ∆it

ϕ(n−1)(b(k)) is a σ-strongly∗ continuous map from K to Mn. Now it is easy to
see that Ad ∆it

ϕ preserves B. ¤

Lemma 7.4. Define A := {T ∈ B|t → ∆it
ϕT∆−it

ϕ is norm continuous}−‖·‖.
(i) A is a C∗-algebra.
(ii) θt := Ad∆it

ϕ is a pointwise norm continuous action of R on A .
(iii) For a ∈ C∗(M , eN ,M opp) and f ∈ Cc(R),

∫
R

f(t)∆it
ϕa∆−it

ϕ dt is in A .

Proofs of (i) and (ii) are the same as those in [6, Lemma IV.3]. To prove (iii), we only
have to prove it for abc with a, c ∈ M opp and b ∈ Mn. Here we use the notations in the
proof of Lemma 7.3. We have

Ad∆it
ϕ(abc) = Ad∆it

ϕ(a)Ad∆it
ϕ(b)Ad∆it

ϕ(c)

= Ad ∆it
ϕ(a)Jun

t Jun
t Ad∆it

ϕ(n−1)(b)un∗
t Jun∗

t JAd∆it
ϕ(c).

Here Ad ∆it
ϕ(a)Jun

t J, Jun∗
t JAd∆it

ϕ(c) ∈ M opp and Adun
t ∆it

ϕ(n−1)(b) ∈ Mn are σ-
strongly* continuous maps. Hence

∫
R

f(t)Ad∆it
ϕ(abc)dt ∈ B. It is clear that this opera-

tor is in A . ¤

By Lemma 7.4, (A , θ) is a C∗-dynamical system and (A ,∆it
ϕ) is a C∗-covariant

representation for (A , θ), say π. Set B := π(A oθ R). Then any element of B is the
norm limit of operators of the form

∫
a(s)∆is

ϕ ds, where a(s) is a norm continuous map
from R to A with a compact support. Our next purpose is to construct β ∈ Aut(B)
such that β(

∫
a(s)∆is

ϕ ds) =
∫

α̃(a(s))∆is
ϕ ds.

The next observation will be used in the proof of Lemma 7.6.
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Lemma 7.5. For a given sequence {ai
nm}(i,n,m)∈N×N×Z ⊂ C with limn→∞ ai

nm =
ai, one can find an increasing sequence {Nn} ⊂ N satisfying limn→∞Nn = ∞ and

lim
n→∞

1
2Nn

Nn∑

m=−Nn+1

ai
nm = ai (for each i).

Proof. By subtracting ai from each ai
nm, we may assume ai = 0. We construct

a strictly increasing sequence {Mk}∞k=0 inductively as follows: We set M0 := 0 and
assume Mk−1 as been chosen. Since limn→∞ ai

mn = 0 for each (i,m), we can certainly
choose Mk > Mk−1 in such a way that as long as n > Mk we have |ai

nm| < k−1 for
i = 1, 2, · · · , k, and m = −k + 1,−k + 2, · · · , k. For each n we set Nn = k with the
index k satisfying Mk < n ≤ Mk+1. We claim that these Ni’s do the job. First we have
Nn ↗∞ from the construction. Secondly for each i we choose n satisfying i ≤ Nn(= k).
Note Mk < n ≤ Mk+1 by definition of Nn and consequently |ai

nm| < 1/k for (i ≤ k and)
each m = −k + 1,−k + 2, · · · , k. We thus have

∣∣∣∣
1

2Nn

Nn∑

m=−Nn+1

ai
nm

∣∣∣∣ =
∣∣∣∣

1
2k

k∑

m=−k+1

ai
nm

∣∣∣∣ <
1
k

=
1

Nn
.

Since N−1
n ↘ 0, we are done. ¤

Let H be the standard Hilbert space for M £
eN

M opp. Note that L2(M ⊗M opp) =

L2(M ) ⊗ L2(M opp) is a subspace of H, and ϕ ⊗ ϕopp ◦ EA is given by a vector state
for ξϕ ⊗ ξϕopp . As was explained in §2, we have the extensions σϕ

t £ id and σϕ
t £ σϕopp

−t .
Let ∆it

ϕ £ id and ∆it
ϕ £ ∆−it

ϕopp be the standard implementing unitaries for σϕ
t £ id and

σϕ
t £ σϕopp

−t respectively.

Lemma 7.6. (A) There exists a sequence {ξν} ⊂ H such that (1) ‖∆it
ϕ £∆−it

ϕoppξν −
ξν‖ → 0 for any t ∈ R and (2) 〈abcξν , ξν〉 → 〈abcξϕ, ξϕ〉 for any a, c ∈ M opp and
b ∈ Mk.
(B) There exists a sequence {Ψν} of normal states on B(L2(M )) such that (1) Ψν(∆it

ϕ) →
1 for any t ∈ R and (2) Ψν(abc) → 〈abcξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp〉 for any a, c ∈ M opp and
b ∈ Mk.

Proof. (A) Since C∗(M , eN , JMJ) ∼= C∗min(M , eN ,M opp), Ψ(abc) :=
〈abcξϕ, ξϕ〉 can be viewed as a state of C∗min(M , eN ,M opp), and can be extended to
a state on B(H) by the Hahn-Banach extension Theorem. By Lemma 6.7, we can find a
sequence {Ψn} of normal states on A(∆) such that
(a) limn→∞ Ψn(a) = Ψ(a) for every Alg(M ,M opp, {Vi}),
(b) ‖Ψn|M − ϕ‖ < 1/n,
(c) ‖Ψn|Mopp − ϕopp‖ < 1/n.
We extend Ψn to a normal state on B(H).

Let {xi}∞i=1 be a countable strongly dense subset in the unit ball (M )1. For simplic-
ity we denote ∆it

ϕ £∆−it
ϕopp by vt. Since Ψ is invariant under Ad vt, limn→∞(Ad vtΨn)(x) =

Ψ(x) for every x ∈ Alg(M ,M opp, {Vi}) and t ∈ R. Define
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ai,j,l
nm =

∫ m

m−1

vtΨnv∗t (xijM (x∗j )Vl)dt.

By the Lebesgue convergence theorem, limn→∞ ai,j,l
nm = Ψ(xijM (x∗j )Vl) holds. We choose

a sequence {Nn} for {ai,j,l
nm } as in Lemma 7.5. We replace Ψn by

Ψ ′n :=
1

2Nn

∫ Nn

−Nn

vtΨnv∗t dt.

Hence

lim
n→∞

1
2Nn

Nn∑

m=−Nn+1

ai,j,l
nm = lim

n→∞
1

2Nn

∫ Nn

−Nn

vtΨnv∗t (xijM (x∗j )Vl)dt = Ψ(xijM (x∗j )Vl)

holds by Lemma 7.5. This means that limn→∞ Ψ ′n(xijM (x∗j )Vl) = Ψ(xijM (x∗j )Vl). Since

Ψ ′n|M = 1
2Nn

∫ Nn

−Nn
Ψn|M ◦ σϕ

−t,

‖Ψ ′n|M − ϕ‖ ≤ 1
2Nn

∫ Nn

−Nn

‖(Ψn|M − ϕ) ◦ σϕ
−t‖ <

1
n

holds. In a similar way, we can show ‖Ψ ′n|Mopp −ϕopp‖ < 1/n. Then the same argument
as in Proposition 6.7 works in this case, and limn→∞ Ψ ′n(x) = Ψ(x) holds for every
x ∈ Alg(M ,M opp, {Vi})(= Alg(M ,M opp, eN ) =

⋃
k M oppMkM opp).

Since limn→∞Nn = ∞ we have ‖Ψ ′n − vtΨ
′
nv∗t ‖ → 0 for every t ∈ R. Let ξn ∈ H be

the representing vector for Ψ ′n|M �
eN

Mopp . Then {ξn} satisfies (1) and (2).

(B) By Proposition 4.8, we can find {λk
n}mn

k=1 ⊂ R∗
+ and {uk

n}mn

k=1 ⊂ U(M ) such that∑
k λk

n = 1, ‖[uk
n, ϕ]‖ < 1/n and

∑mn

k=1 λk
nuk∗

n xuk
n → Eϕ

M ′∩Mk
(x) σ-strongly* for x ∈ Mk.

Define a state Ψn on B(L2(M )) by Ψn(x) :=
∑

k λk
n〈xuk

nξϕ, uk
nξϕ〉. Since ‖[uk

n, ϕ]‖ < 1/n,
Ψn(∆it

ϕ) → 1 for any t ∈ R. (For example, see [37, Lemma.XVIII.4.13].) For a, c ∈ M opp

and b ∈ Mk, Ψn(abc) → 〈aEϕ
M ′∩Mk

(b)cξϕ, ξϕ〉 = 〈abcξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp〉. (See §5 for
the last equation.) ¤

Lemma 7.7. (1) With the notations in Lemma 7.3, there exists an automorphism
α̃ ∈ Aut(A ) such that

α̃

( ∫

K

a(s)b(s)c(s)dµ(s)
)

=
∫

K

a(s)α(b(s))c(s)dµ(s).

(2) There exists an automorphism β ∈ Aut(B) such that

β

( ∫
a(s)∆is

ϕ ds

)
=

∫
α̃(a(s))∆is

ϕ ds.
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Proof. (1) Let A1 be the subalgebra of B(H) formed by the operators∫
K

a(k)b(k)c(k)dµ(k) with the notations in Lemma 7.3. To distinguish elements in
B and A1, we use the notations

∫
K,B

a(k)b(k)c(k)dµ(k) and
∫

K,A1
a(k)b(k)c(k)dµ(k).

Define % by

%

( ∫

K,A1

a(k)b(k)c(k)dµ(k)
)

=
∫

K,B

a(k)b(k)c(k)dµ(k).

By Lemma 7.6(A) and the Lebesgue convergence theorem,

〈 ∫

K,B

a(k)b(k)c(k)dµ(k)ξϕ, ξϕ

〉
= lim

ν→∞

〈 ∫

K,A1

a(k)b(k)c(k)dµ(k)ξν , ξν

〉
.

Hence |〈%(T )ξϕ, ξϕ〉| ≤ ‖T‖ holds for T ∈ A1. Since ξϕ is cyclic for B, % is a well-defined
by [6, Lemma IV.5].

By Lemma 7.6(B) and the Lebesgue convergence theorem, we have

〈 ∫

K,A1

a(k)b(k)c(k)dµ(k)ξϕ⊗ϕopp , ξϕ⊗ϕopp

〉
= lim

ν→∞
Ψν

( ∫

K,B

a(k)b(k)c(k)dµ(k)
)

.

Hence we get |〈Tξϕ⊗ϕopp , ξϕ⊗ϕopp〉| ≤ ‖%(T )‖ for T ∈ A1. Since ξϕ ⊗ ξϕopp is cyclic for
A1, % is an isometry by [6, Lemma IV.5].

Then

∥∥∥∥
∫

K,B

a(k)α(b(k))c(k)dµ(k)
∥∥∥∥ =

∥∥∥∥%

( ∫

K,A1

a(k)α(b(k))c(k)dµ(k)
)∥∥∥∥

=
∥∥∥∥

∫

K,A1

a(k)α(b(k))c(k)dµ(k)
∥∥∥∥

=
∥∥∥∥(∆iT

ϕ £ id)
∫

K,A1

a(k)b(k)c(k)dµ(k)(∆−iT
ϕ £ id)

∥∥∥∥

=
∥∥∥∥

∫

K,A1

a(k)b(k)c(k)dµ(k)
∥∥∥∥

=
∥∥∥∥

∫

K,B

a(k)b(k)c(k)dµ(k)
∥∥∥∥.

Since α̃ and θt commutes, α̃ ∈ Aut(A ).
(2) By (1), there exists an isomorphism η from A into B(H) such that

η

( ∫

K,B

a(k)b(k)c(k)dµ(k)
)

=
∫

K,A1

a(k)b(k)c(k)dµ(k).

Then η(∆it
ϕX∆−it

ϕ ) = ∆it
ϕ £∆−it

ϕoppη(X)∆−it
ϕ £∆it

ϕopp holds. Let B1 ⊂ B(L2(M )) be
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the ∗-algebra of elements of the form T =
∫

R
a(s)∆is

ϕ ds, a(s) ∈ Cc(R,A ). Define η1 by

η1

( ∫

R

a(s)∆is
ϕ ds

)
=

∫

R

η(a(s))∆is
ϕ £ ∆−is

ϕoppds.

Then by Lemma 7.6(B), limν→∞ Ψν(T ) = 〈η1(T )ξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp〉. Indeed we can
verify this as follows. First note that limν→∞ Ψν(a) = 〈η(a)ξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp〉 for
a ∈ A . We have

Ψν(T ) = Ψν

( ∫

R

Y (s)∆is
ϕ ds

)

= Ψν

( ∫

R

Y (s)(∆is
ϕ − 1)ds

)
+ Ψν

( ∫

R

Y (s)ds

)

=
∫

R

Ψν(Y (s)(∆is
ϕ − 1))ds +

∫

R

Ψν(Y (s))ds.

Here

|Ψν(Y (s)(∆is
ϕ − 1))| ≤ Ψν(Y (s)Y (s)∗)Ψν((∆is

ϕ − 1)∗(∆is
ϕ − 1))

= Ψν(Y (s)Y (s)∗)Ψν(2−∆is
ϕ −∆−is

ϕ )

→ 0

as ν goes to infinity. Hence

lim
ν→∞

Ψν(T ) = lim
ν→∞

∫

R

Ψν(Y (s))ds

=
∫

R

〈η(Y (s))ξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp〉ds

=
〈 ∫

R

η(Y (s))∆is
ϕ £ ∆−is

ϕoppξϕ ⊗ ξϕopp , ξϕ ⊗ ξϕopp

〉

holds.
Hence we get

|〈η1(T )ξϕ⊗ϕopp , ξϕ⊗ϕopp〉| ≤ ‖T‖.

Since ξϕ ⊗ ξϕopp is cyclic for η1(B1), η1 is a well-defined homomorphism by [6, Lemma
IV.5]. In a similar way, we have

〈 ∫

R

a(s)∆is
ϕ dsξϕ, ξϕ

〉
= lim

ν→∞

〈 ∫

R

η(a(s))∆is
ϕ £ ∆−is

ϕoppdsξν , ξν

〉
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by using Lemma 7.6(A). So |〈Tξϕ, ξϕ〉| ≤ ‖η1(T )‖ holds. Since ξϕ is cyclic for B1, η1 is
an isometry by [6, Lemma IV.5]. Then

∥∥∥∥
∫

R

α̃(a(s))∆is
ϕ ds

∥∥∥∥ =
∥∥∥∥η1

( ∫

R

α̃(a(s))∆is
ϕ ds

)∥∥∥∥

=
∥∥∥∥

∫

R

η(α̃(a(s)))∆is
ϕ £ ∆−is

ϕoppds

∥∥∥∥

=
∥∥∥∥

∫

R

(∆iT
ϕ £ id)η(a(s))(∆−iT

ϕ £ id)∆is
ϕ £ ∆−is

ϕoppds

∥∥∥∥

=
∥∥∥∥(∆iT

ϕ £ id)
( ∫

R

η(a(s))∆is
ϕ £ ∆−is

ϕoppds

)
(∆−iT

ϕ £ id)
∥∥∥∥

=
∥∥∥∥

∫

R

η(a(s))∆is
ϕ £ ∆−is

ϕoppds

∥∥∥∥

=
∥∥∥∥

∫

R

a(s)∆is
ϕ ds

∥∥∥∥.

Hence we get a desired isomorphism. ¤

Lemma 7.8. With the notations in the proof of Theorem 7.2, we have

‖4n + 2− (1− eN )− α̃(X)− eN |f(∆ϕ)− 1|2eN ‖ = 4n + 2.

Proof. Let h(t) ∈ C∞c (R) be a positive function with
∫

R
h(t)dt = 1. Then we

have
∫

R
∆it

ϕX∆−it
ϕ h(t)dt ∈ A . Also

Z :=
( ∫

R

∆it
ϕ(4n+2−1+eN +X +eN |f(∆ϕ)−1|2eN )∆−it

ϕ h(t)dt

) ∫

R

∆it
ϕh(t)dt ∈ B.

By Lemma 7.7,

β(Z) =
( ∫

R

∆it
ϕ(4n+2−1+eN +α̃(X)+eN |f(∆ϕ)−1|2eN )∆−it

ϕ h(t)dt

) ∫

R

∆it
ϕh(t)dt,

and ‖β(Z)‖ = ‖Z‖. Here
∫

R
h(t)∆it

ϕdt = ĥ(∆ϕ), and ‖ĥ(∆ϕ)‖ ≤ 1, where ĥ(λ) =∫
λith(t)dt. Hence we have

‖β(Z)‖ ≤ ‖4n + 2− (1− eN ) + α̃(X) + eN |f(∆ϕ)− 1|2eN ‖.

Since ξϕ is an eigenvector of Z for an eigenvalue 4n + 2, ‖Z‖ ≥ 4n + 2. Hence we get
‖4n + 2− (1− eN ) + α̃(X) + eN |f(∆ϕ)− 1|2eN ‖ = 4n + 2. ¤
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A. Common Jones projection in Longo-Rehren inclusion.

In [27], we constructed the common Jones projection in the Longo-Rehren inclusion
for a type II1 subfactor. The proof in [27] is based on the computation of a biunitary
connection in paragroup theory. In the first appendix, we present a direct proof of the
existence of the common Jones projection in the Longo-Rehren inclusion for a subfactor
of type III.

Let N ⊂ M be a subfactor of type III with finite index, E the minimal conditional
expectation, ι the inclusion map, and ιῑ ∼= ⊕iNiρi the irreducible decomposition. (Of
course, ιῑ is the canonical endomorphism for N ⊂ M .) Let {ae

i}Ni
e=1 ⊂ (ι, ρiι) be an

orthonormal basis.
We assume M acts standardly on L2(M ). Let Wi be the standard implement-

ing isometry for ρi. Set ãi :=
∑

e ae
i Jae

i J , which is independent on the choice of an
orthonormal basis.

Theorem A.1. Let eN be the Jones projection for N ⊂ M . Then

eN = [M : N ]−1
∑

i

√
d(i)d(i)ã∗i Wi

holds.

Lemma A.2. Let σ ∼= ⊕iσi be the irreducible decomposition for σ ∈ End(M ), and
fix an isometry wi ∈ (σi, σ) with w∗i wj = δi,j. Let φσ be the standard left inverse for σ.
Then

d(σ)φσ(x) =
∑

i

d(σi)φσi(w
∗
i xwi)

holds.

Proof. Fix an isometry w̄i ∈ (σ̄i, σ̄) with w̄∗i w̄j = δi,j . Let Ri ∈ (id, σiσ̄i) and
R̄i ∈ (id, σ̄iσ) be isometries such that R∗i σ(R̄i) = d(σi)−1 and R̄∗i σ̄i(Ri) = d(σi)−1.

Define R :=
∑

k

√
d(σk)
d(σ) wkσk(w̄k)Rk, and R̄ :=

∑
k

√
d(σk)
d(σ) w̄kσ̄k(wk)R̄k. It is easy to see

that R and R̄ are isometries such that R ∈ (id, σσ̄), R̄ ∈ (id, σ̄σ), R∗σ(R̄) = R̄∗σ̄(R) =
d(σ)−1. Then φσ(x) is given by R̄∗σ̄(x)R̄. Hence we have

φσ(x) = R̄∗σ̄(x)R̄

=
∑

k,l

√
d(σk)d(σl)

d(σ)
R̄∗kσ̄k(w∗k)w̄∗kσ̄(x)w̄lσ̄l(wl)R̄l

=
∑

k

d(σk)
d(σ)

R̄∗kσ̄k(w∗k)σ̄k(x)σ̄k(wk)R̄k

=
∑

k

d(σk)
d(σ)

φσk
(w∗kxwk). ¤
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Corollary A.3. Let σ, σi, wi be as above. Let ϕ be a faithful normal state of
M . Then

√
d(σ)ξϕ◦φσ

wi =
√

d(σi)wiξϕ◦φσi
holds.

Proof. By Lemma A.2, we get d(σ)φσ(wixw∗i ) = d(σi)φσi
(x). Hence d(σ)ϕ ◦

φσ(wixw∗i ) = d(σi)ϕ◦φσi
(x) holds. If we replace x by xwi, we get d(σ)ϕ◦φσ(wixwiw

∗
i ) =

d(σi)ϕ◦φσi(xwi). Since wiw
∗
i ∈ σ(M)′∩M , and φσ ◦Eσ = φσ, wiw

∗
i is in the centralizer

of ϕ◦φσ. Hence we get d(σ)ϕ◦φσ(wix) = d(σi)ϕ◦φσi
(xwi). This implies the conclusion.

¤

Proof of Theorem A.1. Let ϕ be a faithful normal state of M such that ϕ◦E =
ϕ. Then eN is given by eN (xξϕ) = E(x)ξϕ. Fix v ∈ (id, ιῑ) and v̄ ∈ (id, ῑι) such that
v∗ι(v̄) = v̄∗ῑ(v) = [M : N ]−

1
2 . Let {we

i } ⊂ (ρi, ιῑ) be an orthonormal basis. By the
Frobenius reciprocity, we may assume ae

i =
√

[M : N ]/d(i)we∗
i ι(v̄). We have

[M : N ]−1
∑

i

√
d(i)d(i)ã∗i Wi(xξϕ) = [M : N ]−1

∑

i

√
d(i)d(i)ã∗i ρi(x)ξϕ◦φρi

= [M : N ]−1
∑

i,e

√
d(i)d(i)ae∗

i ρi(x)ξϕ◦φρi
ae

i

=
∑

i,e

√
d(i)ι(v̄∗)we

i ρi(x)ξϕ◦φρi
we∗

i ι(v̄)

=
∑

i,e

√
d(i)ι(v̄∗)ιῑ(x)we

i ξϕ◦φρi
we∗

i ι(v̄).

By Corollary A.3, we have
√

d(i)we
i ξϕ◦φρi

=
√

[M : N ]ξϕ◦φιῑ
we

i .
Hence we get

∑

i,e

√
d(i)ι(v̄∗)ιῑ(x)we

i ξϕ◦φρi
we∗

i ι(v̄) =
∑

i,e

√
[M : N ]ι(v̄∗)ιῑ(x)ξϕ◦φιῑ

we
i w

e∗
i ι(v̄)

=
√

[M : N ]ι(v̄∗)ιῑ(x)ξϕ◦φιῑ
ι(v̄).

Here

E ◦ φιῑ(x) = ι(v̄∗ῑ(φιῑ(x))v̄)

= ι(v̄∗ῑ(v∗)ῑι(v̄∗)ῑιῑ(x)ῑι(v̄)ῑ(v)v̄)

= ι(φιῑι(x))

holds. So

[M : N ]ϕ ◦ φιῑ(ι(v̄)x) = [M : N ]ϕ ◦ ι(φιῑι(ι(v̄)x))

= [M : N ]ϕ ◦ ι(φῑι(v̄φι(x)))

= ϕ ◦ ι(φι(x)v̄)

= ϕ(xι(v̄))
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holds, and we have
√

[M : N ]ξϕ◦φιῑ
ι(v̄) = ι(v̄)ξϕ.

Finally we get
√

[M : N ]ι(v̄∗)ιῑ(x)ξϕ◦φιῑ
ι(v̄) = ι(v̄∗)ιῑ(x)ι(v̄)ξϕ = E(x)ξϕ. ¤

B. Exhaustion trick.

In the second appendix we give a proof of a subfactor-version of [6, Lemma III.4],
since the proof was omitted in [6]. This lemma is a key for the proof of Theorem 7.1. As
mentioned in [6], idea is similar to that of [6, Theorem II.2].

Lemma B.1. Let N ⊂ M , ε, ϕj and θ be as in the “if part” of Theorem 7.1, and
ξj ∈ L2(M )+ be the representing vector for ϕj. Let c be as in [6, III.Lemma 2]. Then
there exist a projection E ∈ N and non-zero y ∈ N such that,
(1) ‖y‖ ≤ 1, y = θ(E)yE,
(2)

∑ ‖yξj‖2 ≥ 2−6c−1
∑ ‖Eξj‖2,

(3) ‖[E, ξj ]‖2 ≤ ε2
∑ ‖Eξj‖2,

(4) ‖yξj − θ(ξj)y‖2 ≤ ε2
∑ ‖yξj‖2.

A proof of this lemma is same as that of [6, III.Lemma 3]. Here note that since x ∈ N
in Theorem 7.1, E and y can be chosen in N by construction.

Lemma B.2. Let N ⊂ M , and θ be as in the “if part” of Theorem 7.1. Then
there exists a bounded sequence {yn} ⊂ N such that {yn} does not converge to 0 strongly
and

‖ynϕ− θ(ϕ)yn‖ → 0, ϕ ∈ M∗.

Proof. Fix ϕ1, · · · , ϕn ∈ M +
∗ . We may and do assume that ϕ1 is faithful. Let

ε > 0 be such that 2−6c−1 − nε2 ≥ 2−7c−1, where c is a constant defined in [6, Lemma
III.3]. Let ξj ∈ L2(M )+ be the representing vector for ϕj , i.e., ϕj(x) = 〈xξj , ξj〉. Let R

be the set of r = (E, x, α1, · · · , αn) ∈ Proj (N )×N × L2(M )n satisfying the following
conditions.
(i) θ(E)xE = x, ‖x‖ ≤ 1.
(ii) Eαj = αj , ηj := ξj − αj − Jαj ∈ L2(M )+ and [E, ηj ] = 0.
(iii) ‖αj‖2 ≤ ε2

∑
j ‖Eξj‖2.

(iv)
∑

j ‖xηj‖2 ≥ 2−7c−1
∑

j ‖Eηj‖2.
(v) ‖xηj − θ(ηj)x‖2 ≤ ε2

∑
j ‖xξj‖2.

We define a partial ordering r = (E, x, α1, · · · , αn) ≤ r′ = (E′, x′, α′1, · · · , α′n) as
follows.
(α) E ≤ E′.
(β) θ(E)x′E = x.
(γ) E(α′j − αj) = 0.
(δ) ‖α′j − αj‖2 ≤ ε2

∑
j ‖(E′ − E)ξj‖2.

We claim that this is indeed an order.
(1) It is trivial that r ≤ r.
(2) Assume r ≤ r′ and r′ ≤ r. By (α), E = E′. By (β) and (i), x = θ(E)x′E =

θ(E′)x′E′ = x′. By (δ), αj = α′j . Hence we get r = r′.
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(3) Assume r ≤ r′ and r′ ≤ r′′. It is clear that E ≤ E′′. Next θ(E)x′′E =
θ(E)θ(E′)x′′E′E = θ(E)x′E = x, so (β) holds. E(α′′j −αj) = E(α′′j −α′j)+E(α′j−αj) =
E′(α′′j − α′j) = 0. Hence (γ) holds. To prove (δ), first note 〈α′′j − α′j , α

′
j − αj〉 =

〈E′(α′′j −α′j), α
′
j −αj〉 = 0. Then ‖α′′j −αj‖2 = ‖α′′j −α′j‖2 +‖α′j −αj‖2 ≤ ε2

∑
j ‖(E′′−

E′)ξj‖2 + ε2
∑

j ‖(E′ − E)ξj‖2 = ε2
∑

j ‖(E′′ − E)ξj‖2.
Next we prove that R is an inductively ordered set. Let {ri}i∈I be a totally ordered

subset. Set ri = (Ei, xi, α
i
1, · · · , αi

n). Then we can see that ri → ϕ1(Ei) ∈ R is a
faithful map. Hence there exists a cofinal sequence {rik

}. So we may assume that {rk}
is an increasing sequence. Then {Ek} is an increasing sequence of projections, and hence
E = limk Ek exists in the strong topology. By a similar reason, x = limk xk also exists.
By (δ), ‖αk

j − αl
j‖2 ≤ ε2

∑
j ‖(Ek − El)ξj‖2. By letting k, l →∞, we know that {αk

j } is
a Cauchy sequence. Hence a limit αj = limk αk

j exists. Then r = (E, x, α1, · · · , αn) is in
R by continuity. By construction r is an upper bound of {rk}. Hence R is inductive.

By Zorn’s lemma, there exists a maximal element r = (E, x, α1, · · · , αn) ∈ R. Ac-
tually we have E = 1. We assume E = 1 for a moment, and it will be proved at the end
of the proof. Then we get x ∈ N , αj ∈ L2(M ) satisfying the following conditions.
(1) ‖x‖ ≤ 1.
(2) ‖αj‖2 ≤ ε2

∑
j ‖ξj‖2.

(3) With ηj = ξj − αj − Jαj ,
∑

j ‖xηj‖ ≥ 2−7c−1
∑

j ‖ηj‖2.
(4) ‖xηj − θ(ηj)x‖2 ≤ ε2

∑
j ‖ξj‖2.

Set a :=
√∑

j ‖ξj‖2. Then ‖αj‖ ≤ εa holds. By (4), we get

‖xξj − θ(ξj)x‖ = ‖xηj − θ(ηj)x + x(αj + Jαj) + θ(αj + Jαj)x‖
≤ 5εa,

and

‖xηj‖ = ‖x(ξj − αj − Jαj)‖
≤ ‖xξj‖+ 2‖αj‖
≤ ‖xξj‖+ 2εa.

Hence we have the following.

∑

j

‖xηj‖2 ≤
∑

j

(‖xξj‖+ 2εa)2

=
∑

j

(‖xξj‖2 + 4εa‖xξj‖+ 4ε2a2)

≤
∑

j

‖xξj‖2 + 4εn
1
2

( ∑

j

‖xξj‖2
) 1

2

a + 4ε2na2

=
(( ∑

j

‖xξj‖2
) 1

2

+ 2εan
1
2

)2

.



Classification of subfactors of type III1 997

On the other hand, we have the following.

∑

j

‖ηj‖2 =
∑

j

‖ξj − αj − Jαj‖2

≥
∑

j

(‖ξj‖ − 2εa)2

=
∑

j

(‖ξj‖2 − 4εa‖ξj‖+ 4ε2a2)

≥ a2 − 4εn
1
2 a2 + 4ε2a2n

= a2(1− 2εn
1
2 )2.

So by (3), ((
∑

j ‖xξj‖2) 1
2 + 2εan

1
2 )2 ≥ 2−7c−1a2(1 − 2εn

1
2 )2 holds. If we take

sufficient small ε, then we get x ∈ N , ‖x‖ ≤ 1 such that ‖xξj − θ(ξj)x‖ ≤ εa and∑
j ‖xξj‖2 ≥ d′a2 for some constant 0 6= d′.

Since H is separable, we can construct a bounded sequence {yn} ⊂ N such that
{yn} does not converge to 0 strongly and limn→∞ ‖ynϕ− θ(ϕ)yn‖ = 0 for every ϕ ∈ M∗.

Now it remains to show E = 1. To do so by contradiction, we assume E 6= 1. Let
u ∈ N be a unitary such that uθ(1 − E)u∗ = 1 − E, and consider θ̄ := Aduθ|M(1−E) .
Since Eαj = αj , we have (1 − E)αj = 0 and (Jαj)(1 − E) = J(1 − E)αj = 0, so that
(1− E)ξj(1− E) = (1− E)ηj(1− E)(=: ζj). By applying the above lemma to M(1−E),
θ̄ and {ζj}, we can find 0 6= y ∈ N(1−E) and F ∈ Proj (N(1−E)) such that
(1) θ̄(F )yF = y, ‖y‖ ≤ 1,
(2)

∑
j ‖yζj‖2 ≥ 2−6c−1

∑
j ‖Fζj‖2,

(3) ‖[F, ζj ]‖2 ≤ ε2
∑

j ‖Fζj‖2,
(4) ‖yζj − θ̄(ζj)y‖2 ≤ ε2

∑
j ‖yζj‖2.

Set x′ = x + u∗y, E′ = E + F , α′j = αj + Fηj(1 − F ). We claim that r′ =
(E′, x′, α′1, · · · , α′n) ∈ R and r′ majorizes r. Note that Fηj = Fζj and ηjF = ζjF since
1− E ≥ F and (1− E) commutes with ηj .

(i) First note that θ̄(F )y = y implies θ(F )u∗y = u∗y. Then ‖x′‖ ≤ 1 is clear from
the facts θ(E)xE = x, θ(F )u∗yF = u∗y.

(ii) E′α′j = (E+F )(αj+Fηj(1−F )) = Eαj+Fηj(1−F ) = α′j . Set η′j = ξj−α′j−Jα′j .
Since

η′j = ξj − α′j − Jα′j

= ξj − αj − Fηj(1− F )− Jαj − (1− F )ηjF

= ηj − Fηj(1− F )− (1− F )ηjF

= FηjF + (1− F )ηj(1− F ),

we have η′j ∈ L2(M )+.
Next we verify [η′, E′] = 0. Note that Eηj = ηjE = EηjE holds due to [E, ηj ] = 0.

Then we get the following.
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[E′, η′j ] = (E + F )(FηjF + (1− F )ηj(1− F ))− (FηjF + (1− F )ηj(1− F ))(E + F )

= FηjF + Eηj(1− F )− FηjF − (1− F )ηjE

= Eηj(1− F )− (1− F )ηjE

= EηjE(1− F )− (1− F )EηjE

= 0.

(iii) Since Eαj = αj , αj and Fηj(1− F ) are orthogonal. Then

‖α′j‖2 = ‖αj‖2 + ‖Fηj(1− F )‖2

≤ ε2
∑

j

‖Eξj‖2 + ‖Fζj(1− F )‖2

= ε2
∑

j

‖Eξj‖2 + ‖F [F, ζj ]‖2

≤ ε2
∑

j

‖Eξj‖2 + ε2
∑

j

‖Fζj‖2

= ε2
∑

j

‖Eξj‖2 + ε2
∑

j

‖Fξj(1− E)‖2

≤ ε2
∑

j

‖Eξj‖2 + ε2
∑

j

‖Fξj‖2

= ε2
∑

j

‖(E + F )ξj‖2

= ε2
∑

j

‖E′ξj‖2.

(iv) First we compute x′η′j .

x′η′j = (x + u∗y)(FηjF + (1− F )ηj(1− F ))

= xηj(1− F ) + u∗yηjF

= xηj + u∗yζjF.

Hence ‖x′η′j‖2 = ‖xηj‖2 + ‖u∗yζjF‖2 holds. We also have

‖yζj‖2 = ‖yζjF‖2 + ‖yζj(1− F )‖2

≤ ‖yζjF‖2 + ‖Fζj(1− F )‖2

= ‖yζjF‖2 + ‖F [F, ζj ]‖2

≤ ‖yζjF‖2 + ε2
∑

j

‖Fζj‖2.
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Hence
∑

j ‖yζjF‖ ≥
∑

j ‖yζj‖2 − ε2n
∑

j ‖Fζj‖2 holds.
We will estimate

∑
j ‖x′η′j‖.

n∑

j=1

‖x′η′j‖2 ≥
∑

j

‖xηj‖2 +
∑

j

‖yζj‖2 − ε2n
∑

j

‖Fζj‖2

≥ 2−7c−1
∑

j

‖Eηj‖2 + (2−6c−1 − nε2)
∑

j

‖Fζj‖2

≥ 2−7c−1
∑

j

‖Eηj‖2 + 2−7c−1
∑

j

‖Fζj‖2

≥ 2−7c−1
∑

j

‖E(1− F )ηj(1− F )‖2 + 2−7c−1
∑

j

‖FζjF‖2

= 2−7c−1
∑

j

‖E(1− F )ηj(1− F ) + FζjF‖2

= 2−7c−1
∑

j

‖(E + F )((1− F )ηj(1− F ) + FηjF )‖2

= 2−7c−1
∑

j

‖E′η′j‖2.

(v) We compute θ(η′j)x
′.

θ(η′j)x
′ = θ(FηjF + (1− F )ηj(1− F ))(x + u∗y)

= θ(Fηj)u∗y + θ((1− F )ηj)x

= u∗θ̄(Fζj)y + θ((1− F )ηj)x

= u∗θ̄(Fζj)y + θ((1− F )ηjE)x

= u∗θ̄(Fζj)y + θ((1− F )Eηj)x

= u∗θ̄(Fζj)y + θ(Eηj)x

= u∗θ̄(Fζj)y + θ(ηj)x.

Then we have the following estimate.

‖x′η′j − θ(η′j)x
′‖2 = ‖xηj + u∗yζjF − θ(ηj)x− u∗θ̄(Fζj)y‖2

= ‖xηj − θ(ηj)x + u∗yζjF − u∗θ̄(F )θ̄(ζj)y‖2

= ‖xηj − θ(ηj)x‖2 + ‖u∗θ̄(F )yζjF − u∗θ̄(F )θ̄(ζj)y‖2

≤ ε2
∑

j

‖xξj‖2 + ‖yζjF − θ̄(ζj)yF‖2
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≤ ε2
∑

j

‖xξj‖2 + ‖yζj − θ̄(ζj)y‖2

≤ ε2
∑

j

‖xξj‖2 + ε2
∑

j

‖yζj‖2

= ε2
∑

j

‖xξj‖2 + ε2
∑

j

‖y(1− E)ξj(1− E)‖2

≤ ε2
∑

j

‖xξj‖2 + ε2
∑

j

‖u∗yξj‖2

= ε2
∑

j

‖(x + u∗y)ξj‖2 (xξj and u∗yξj are orthogonal,)

= ε2
∑

j

‖x′ξj‖2.

Hence r′ is in R. Next we verify r′ > r. (α) is obvious. Since θ(E)(x + u∗y)E =
θ(E)xE + θ(E)θ(F )u∗yFE = x, so (β) holds. Next we verify (γ). Then E(α′j − αj) =
E(Fηj(1−F ) = 0). Finally ‖α′j−αj‖2 = ‖Fηj(1−F )‖2 = ‖F ([F, ηj ])‖2 ≤ ε2

∑
j ‖Fζ‖2 =

ε2
∑

j ‖Fξ(1−E)‖2 ≤ ‖(E′ −E)ξ‖2, so (δ) holds. This contradicts the maximality of r,
so we get E = 1. ¤
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