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Abstract. It is well known that the spectrum of Laplacian on a compact Rie-
mannian manifold M is an important analytic invariant and has important geometric
meanings. There are many mathematicians to investigate properties of the spectrum
of Laplacian and to estimate the spectrum in term of the other geometric quantities
of M. When M is a bounded domain in Euclidean spaces, a compact homogeneous
Riemannian manifold, a bounded domain in the standard unit sphere or a compact
minimal submanifold in the standard unit sphere, the estimates of the k4 1-th eigen-
value were given by the first k eigenvalues (see [9], [12], [19], [20], [22], [23], [24]
and [25]). In this paper, we shall consider the eigenvalue problem of the Laplacian
on compact Riemannian manifolds. First of all, we shall give a general inequality of
eigenvalues. As its applications, we study the eigenvalue problem of the Laplacian
on a bounded domain in the standard complex projective space CP"™(4) and on a
compact complex hypersurface without boundary in CP™(4). We shall give an ex-
plicit estimate of the k 4 1-th eigenvalue of Laplacian on such objects by its first k
eigenvalues.

Introduction.

In this paper, we consider the eigenvalue problem of the Laplacian on a compact

Riemannian manifold M with boundary (possible empty):

Au=—)du, in M,

u|8M = Oa

where A is the Lapalacian on M.
This problem has a real and purely discrete spectrum

D<A <A< A< — o0

We put A\g = 0 if OM = . Here each eigenvalue is repeated from its multiplicity.
It is well known that the spectrum of Laplacian on M is an important analytic

invariant and has important geometric meanings (cf. Chavel [7]).
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There are many
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mathematicians to investigate properties of spectrum of Laplacian and to estimate the
spectrum in term of the other geometric quantities of M. First of all, we will review
several important results on estimates of eigenvalues.

(1). When M = (2, where {2 is a connected bounded domain in the Euclidean space
R"™, the main contributions on estimates of higher eigenvalues are obtained by Payne,
Pélya and Weinberger [22] and Thompson [23], Hile and Protter [14] and Yang [24].
The following very sharper inequality was obtained by Yang [24]

k

4
Z(/\k+1 — )\1) <>\k+1 — (1 + 7’L>>\l) S 0, for k = 1,27 LR N (13)

i=1

According to the inequality, he also obtained (cf. [24])

k
1 4
)\k+1<k<1+n>;)\“ fork:].,Q, (14)

We must remark that when & = 1, Ashbaugh and Benguria in [3], [4] and [5] gave an
optimal estimate of Ay by A;.

(2). When M is an n-dimensional compact homogeneous Riemannian manifold, Li
[20] estimated the difference of any two consecutive eigenvalues of Laplacian on M. He
proved

k k
N1 — Ak_kH( (Z/\) (k+1)zx\i)\1+z/\i>+)\1. (1.5)

Furthermore, Harrel IT and Michel [12] improved the estimates introduced by Li [20].
Namely, they obtained that

Mot = M < 5= Z)\ + A1 (1.6)

Recently, the authors [9] obtained

k

3 N
Mpag < —— S0+ 2L
k+1_k+1; T3

where A\g = 0. Since A\, > % Zle A; holds, we infered, from the above inequality,
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2 .
From (Z’?f )‘i) < R Lo ’\2 and the inequality above, we obtained, in [9],
k k
4k —1 4
A - A —_— A+ A — Ai + A1
K+l k<k(k+1)zi:1 * 1<k+1; T

(3). When M is a compact minimal submanifold in the standard unit sphere S¥ (1),
P. C. Yang and Yau [25] obtained

k k
M1 — Ak <+ k:+1< (ZA) +n2(k+1)> A +ZA1->. (1.9)

i=1 i=1

(cf. Leung [19]). Furthermore, Harrel IT and Michel [12] proved
4 k
A — A < _ A 1.10
k+1 k_n—i_n(k;—&-l)g ( )
In [9], we gave an estimate of the k + 1-th eigenvalue in terms of the first k eigenvalues:

k
2 1 n
< . —
)\k+1<1+ >k 15 )\1+2

1/2

(”+2ki1i*)2 <1+4>kili(Aj kiliA” ,

=0 =0

where \g = 0. From A\, > %Z?:l i, it is obvious that our inequality above is much
sharper than these inequalities (1.9) and (1.10) of P. C. Yang and Yau [25] and Harrel
IT and Michel [12].

(4). When M is a connected bounded domain of S™(1), in [9], we obtained

and
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21 & n\ > A1 & 1 2]/
<2l (2= ) (1422 - . .

j=1

In this paper, we shall consider the eigenvalue problem of the Laplacian on compact
Riemannian manifolds. In section 2, we shall give a general inequality of eigenvalues for
the eigenvalue problem (1.1). Namely, when M is a compact Riemannian manifold with
boundary M, for any function g € C3(M) N C?(OM) and any integer k, we obtained
(see Proposition 1)

k
3 Aest = A2 [ Vg2 <€ Aigr — A)[12Vg - Vs + wig]?,

i=1

where u; is the orthonormal eigenfunction corresponding to eigenvalue \; of (1.1). As
applications of the above inequality, in section 3, we study the eigenvalue problem of
the Laplacian on a connected bounded domain of the standard complex projective space
CP"(4) with holomorphic sectional curvature 4. We proved (see Theorem 1)

/\k+1§(1+;>]1€§:)\,»+2(n+1)
+{[;;§;Ai+2(n+1)r—(1+z>;j§;<j ;ﬁ: )}1/2.

In section 4, for a compact complex hypersurface without boundary in CP"*1(4), we
derived (see Theorem 2)

1 1
A < (1 A+ 2( 1
k+1<+ >k+1z +2(n+1)

{[nk+12/\ +2n+1 } <1+ 2)k41rlzk:(&_k41rlg&>2}l/2.

ACKNOWLEDGEMENT. We like to express our gratitude to the referee for the valu-
able suggestions and comments.
2. A general Inequality of Eigenvalues.

Let M be an n-dimensional compact Riemannian manifold with boundary OM (pos-
sible empty). We consider the following eigenvalue problem:

Au=—Mu, in M,
(2.1)

u|8M = 07
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where A is the Laplacian of M. We shall prove a general inequality of eigenvalues for
the above eigenvalue problem which will be applied to prove Theorems 1 and 2.

PROPOSITION 1. Let \; be the i-th eigenvalue of the above eigenvalue problem (2.1)
and u; be the orthonormal eigenfunction corresponding to \;, that is, u; satisfies

Aui = —)\iui, mn M,
uiloar = 0,

/ uu; = 035, foranyi,j=1,2,---.
M

Then, for any function g € C3(M) N C?*(OM) and any integer k, we have

k
D kg1 = M) [wiVgl® < Ckgr = )12V - Vs + wiAgl?,
i=1

where

7= f 1

PROOF. Assume that u; is an orthonormal eigenfunction corresponding to the i-th
eigenvalue \;, i.e. u; satisfies

A’U,i = —)\iui, in M,

uilom =0, (2.2)
/ Ut = O35
M
We have
0<A <A< < Apgr <e-- . (2.3)

Define ¢y, a;; and b;5, for 4,5 =1,--- ,k, by

aij:/ guiuy,
M

k
Yi = gu; — Zaijuj, (24)
j=1

1
bij = / Uy (Vuz -Vg—+ uiAg>,
M 2

where V denotes the gradient operator. Then, we have, from (2.2),
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aij = ajia /M Spiuj = O’ forj — 1,27 e ’k. (25)

Thus, we have

Aey1 < Ju IVeil®

< (2.6)
S ?
According to Stokes formula, we infer
Ajai; = / g(—Auj)u; = / (—2u;Vu, - Vg — Agu,u; — gujAuy)
M M
= 72b¢j —+ )\i(lij.
Hence, we obtain
205 = —2bj; = (A — Aj)aq;. (2.7)
From the definition of ¢; and a simple calculation, we have
k
j=1
k
= —Aigu; +2Vg - Vu; +u;Ag + Z Qi Ajuj.
j=1
Therefore, from (2.5) and the above equality, we have
[ 1vet == [ aae
M M
= )\i/ o / vi(2Vg - Vu,; + u;Ag). (2.8)
M M
From (2.6) and (2.8), we infer
M1 = X))l < —/ ¢i(2Vg - Vu; + u;Ag) = w;. (2.9)
M
Since
1
M

from p; = gu; — Z?:l ai;u; and the definition of a;;, we have
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k
w; = —/ (guz' - aij“i) (2Vyg - Vu; + uiAg)
M

j=1
k
= iVl + > (A = Aj)aZ;

j=1

On the other hand, from the definition of w; and (2.5), we have

wi:—/ ¢Z<2Vg Vuz—i—ulAg—QZb”uJ)

j=1

From Schwarz inequality, we obtain

k
(et — A)w? < (Mgt — A)lil Pl12Vg - Vi +uiAg — 2> biju|?.

j=1

From (2.9), (2.12) and the definition of b;;, we infer

k
(A1 — M)w? < w; <||2Vg Vi +u Ag* — 4Zb3j>.

=1

Hence,

k
(k1 = Awi < [2Vg - Vu; + uAgl* =4 b7
j=1

Multiplying (2.13) by (Ag+1 — ;) and taking sum on ¢ from 1 to k, we have

k 2
Z()\k+l —X)’w; < —4 Z (A1 — Xi)b;
i=1 i,j=1
+ Z (Aet1 — N)|12Vg - Vau; + u;Agl?.

In terms of Qbij = ()\z — )\j)aij, we have
k
Z(/\k-i-l Z Me+1 — Ai)[[2Vg - Vu,; + ulAgHZ

- Z A1 — M) (X = Aj)as;.

4,J=1

Further, from (2.11) and the symmetry of a;;, we have

551

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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k k
D e = A wi = > (Aerr — M) [[us Vgl
i=1 i=1
A
+ Y 3 [ = X0)? = g = A7) ] (N = Ag)ai;
ij=1
k k
= (kg1 = 22w Val? = D7 e — M) (N — Aj)%al;.
Jj=1 ,j=1

Therefore, we infer, from (2.15) and the above equality,

k k
D kg1 = A)?[lwiVg|* < Z Aei1 = A)[2Vg - Vus +widgl®. (2.16)
i=1 i=1
This completes the proof of Proposition 1. O

3. Eigenvalues of Laplacian on a domain in CP™(4).

In this section, we shall consider the eigenvalue problem of the Laplacian on a domain
in CP"™(4), that is, let M be a connected domain in CP™(4) with boundary OM, we
consider the following:

Au = —Au, in M,
(3.1)
U|6M = Oa
where A is the Laplacian of CP™(4).

THEOREM 1. Let M be a connected bounded domain in the standard n-dimensional
complex projective space CP™(4). Assume that \; is the i-th eigenvalue of the above
eigenvalue problem (3.1). Then, we have

k
1\1
S e i+ 2 1
/\k+1_( +n>k§)\z+ (n+1)
k k k 2y 1/2
11 2\1 1
—— i + 2 1 1 — . 2
+{[nk;>\z+(n+ )} (+ ) ;( k; )} (3.2)
COROLLARY 1. Under the assumptions of Theorem 1, we have
11 2 2\ 1 & 1.\
A — A <2¢ |—— i +2 1 —(1+—-)= - .
SERELE {{nk; M )} ( +n)kz;( TR ) }

PROOF OF THEOREM 1. Let Z = (Z° Z', ..., Z") be a homogeneous coordinate
system of CP"(4), (ZP € C). Defining fpg, for p,¢ =0,1,--- ,n, by
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Zrza
= ————, 3.3
i =5z (33)
we have
[ n E—
fra = faps Z frafra =1. (3.4)
p,q=0

For any fixed point P € M, we can choose a new homogeneous coordinate system of
CP™(4) such that, at P

0402 = .=2"=0 (3.5)

and

Zr =" CpZ", (3.6)

r=0

where C' = (Cpq) € U(n+1) is an (n + 1) X (n + 1)-unitary matrix, that is, C,, satisfies

D CopCaq = CpsCqs = by (3.7)
s=0 s=0

Then, we know that z = (2!,...,2"), 2P = ZP/ZO, is a local holomorphic coordinate

system of CP™(4) in a neighborhood U of the point P € M and satisfies, at P,

= =2"=0. (3.8)
Hence, we infer, for p,q =0,1,--- ,n,
f; ,vaﬁ 2Pz4
I R R VL
B (3.9)
fpﬁ = Z Cpr@ﬁ"?a ZO =1
r,s=0
Putting G,3 = Re(fpg) and Fg = Im(f,3), for p,¢ = 0,1,...,n, then, we have
Z (Gha + Frg) = Z foafoa = Z frafva =1,
P,q=0 P,q=0 P,q=0
(3.10)

> (GgVGhg + FigVFyg) =0.

p,q=0
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Let ds® = )" _; gpgdzPdz7 is the Fubini-Study metric of CP™(4). Then,

Opg 292P
Gy — i , (3.11)

k n 2
ey (1)
r=1 r=1

(9p7) " = (9"%),

_ n _ o (3.12)
gl = (1 + Z |z7'2) (0P 4 292P).
r=1
Under the local coordinate system, for any smooth function f, we have
Af = 4gPT—— f. 3.13
/ Z g 0zP0z1 f (3.13)
P,q=1
And, at P,
n 32
A=4 —,
; 0zr0z"
V};@:O, if p#£0 and g # 0,
Vﬂﬁ = 0,
_ (3.14)
Afpg=0, ifp#gq
Afo() = —4n, Aﬁ;:él, r=1,---,n.
Thus, we obtain from (3.10), at P,
Z (VGyg - VGig + Vg - V) = — Z (GpgAGyg + FgAFyg)
p,g=0 p,q=0
= —Re Z JoaAfoa
P,q=0
n n R n _ .
= —Re Z Z Oprcqsf'rg Z Cpqu'UAfui
p,q=017,5=0 u,v=0

= — Z RQEAE@ = —fbaAan = 4n. (315)

p,q=0

By a similar calculation, we have, at P,
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> (VGraAGys + VE,zAF,z) =Re Y VigAfyg =0, (3.16)
P,q=0 P,q=0

Y (AGAGy; + AF;AFyg) =Re Y AfgAfig=Re Y AfigAfyg

P,q=0 P,4=0 P,q=0

=(—4n) x (—4n)+4 x4 xn=16n(n+1) (3.17)

and

> {(VGpz-Vui)® + (VE,z- Vu;)?} =Re > (Vpg - Vi) (Vg - Vui)
P,q=0 p,q=0
=Re Z (V frg - Vi) (V fug - Vi) = 2|V . (3.18)

p,q=0

Since P is arbitrary, we have at any point « € M,

(Vqu . Vqu + VFpg . Vqu) = 4n,
0

M= 3]

p,q=0

(3.19)

_
=

> (VGG + VF,zAF,;) =0,
p,q=0
Z {(VGyz- vui)2 + (VEyq- v“i)2} = 2|Vu;|*.

P,q=0

By applying the Proposition 1 to the functions G5 and Fjg and taking sum on p and ¢
from 0 to n, we infer

k

SO =2 [ 3 (19 Gl + [V Fal)

i=1 p,q=0

k n
_ . _ . ui2 g ui2
<3 0w 0ot [ 3 (VG T + (VEig - V0]

p,q=0

+ 4/ Z (VGPQAGZ;@ . u1VuZ + VquAqu . UZV’LLZ)
M

p,q=0

+ / 3 (AquAqu+AquAqu)u?}. (3.20)
M

p,q=0
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From (2.2), (3.19) and (3.20), we obtain

namely,

k k
Y (Aeg1 — A Z Mer1 — A)[8Ai + 16n(n + 1)],

k

k
D> k1 = X)? < 2 D (kg1 = A)[Ai + 2n(n + 1)].
=1 i=1

3

Letting p; = A; + 2n(n + 1), we have

k

k
2
Z(Mk:+1 —w)r< = Z(,Uk+1 — i) i

i=1 i=1

3

Since (3.22) is a quadratic inequality of g1, we have

k
1\1
< — | = .
A1 < <1+ n)k i; Ai+2(n+1)

N [(;;i&m(nu)f (”Z);y;(

R‘\H

This finishes the proof of Theorem 1.

PROOF OF COROLLARY 1.

know that (3.22) is also true if we replace k + 1 with k, namely, we have

Hence, we infer

E

-1
(r — pa)? < %Z(uk — i)

i=1

k k

> (= pi)* < %Z(Nk — i) i

i=1 i=1

Thus, i also satisfies the same quadratic inequality. Hence, we have

k

1\1
> (142 )2 N2+
)\k_<1 n)ki_l/\l 2(n+1)

i) - (2150

k‘\»—l

)]

N

1))

(3.21)

(3.22)

(3.23)

O

In the proof of Theorem 1, since k is any integer, we

(3.24)
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Therefore, we have

11 2 2\ 1 & 1< 2) /2
>\k+1)\k§2{|:nk;>\i+2(n+1)] <1+n>kz<>\jk;)\i> } . -

7j=1

4. Eigenvalues of Laplacian on a complex hypersurface in CP"t1(4).
In this section, we shall consider the eigenvalue problem of the Laplacian on a
compact complex hypersurface M without boundary in CP"*1(4):

Au = —\u, in M, (4.1)

where A is the Laplacian of M. We know that this eigenvalue problem has a discrete
spectrum: 0 = Ay < A\; < Ay < -+ — 00. As an application of the Proposition 1, we
obtain the following Theorem 2. In this case, we must consider the eigenfunction wug
corresponding to eigenvalue Ay = 0.

THEOREM 2.  Let M be a compact complex hypersurface without boundary in
CP"1(4). Assume that \; is the i-th eigenvalue of the above eigenvalue problem (4.1).
Then, we have

COROLLARY 2. Under the assumptions of Theorem 2, we have
11 & 2
Mert =M <20 |=—— SN +2(n+1
k1 — Ak < {[nkﬂrl; +2(n+ )]

9 1 k 1 k 2
(”n)szszm;Ai)}

Jj=0

1/2

PROOF OF THEOREM 2. Since the method of proof is the same as in the proof of
Theorem 1, we shall only give its outline. Let Z = (Z°,Z1,..., Z"*!) be a homogeneous
coordinate system of CP"1(4). Defining f,g, for p,q =0,1,--- ,n,n+ 1, by

ANAD

fptj = W? (43)
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we have

- ntl -
fra = faps Z frafra =1. (4.4)

p,q=0

For any fixed point P € M, we can choose a new homogeneous coordinate system of
CP""1(4) such that, at P

720402  =...= 72" =0 (4.5)
and
n+1 »
7P =" CpZ', (4.6)
r=0

where C' = (Cpq) € U(n+2) is an (n + 2) x (n + 2)-unitary matrix, that is, Cp, satisfies

n+1 n+1
Z C(spcysq = Z C(pscvqs = oP1, (47)
s=0 s=0
Let
2P = Z”/ZO, forp=0,1,--- ,n,n+ 1.
Then, we know that z = (21,..., 2") is a local holomorphic coordinate system of M in a

neighborhood U of the point P € M and 2"*! = h(z!,...,2") € O(U) is a holomorphic
function of z!,..., 2" satisfying

Oh

@P:O, for p=1,---,n, (4.8)
and, at P,
=== = (4.9)
Hence, we infer, for p,q =0,1,--- ,n,n+ 1,
= Zr7a 2P21
Pq —

Z::& Z’I”Z’l‘ 1+ Z:Jrll 2"z
o (4.10)
fpa = Z Cprciqsﬁvg, ZO = 1

r,s=0
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Putting Gp3 = Re(fpg) and Fp5 = Im(f,g), for p,¢ = 0,1,--- ,n,n + 1, then, for the
2(n + 2)? functions G, and F,g, we have

n+1 n+1 o ntl
Z (G§a+ Fgﬁ) = Z fpﬁfpﬁ = Z fpﬁfpﬁ =1,
p,q=0 p,q=0 p,q=0
(4.11)
n+1
Z (GPEVGPG + FpEVFpE) = 0.
P,9=0
Since, under the local coordinate system, we have, for z € U,
n
dsiy = ) (1+O(|z*)dz"d=,
p,q=1
we obtain, at P,
n 82
A=14 —,
rz::l 0z"0z"
Vi =0, ifp#0andq#0,
Vi =0,
V fatnn) = Viimss = Vi yogn = 0 forp =1, ,n, (4.12)

Afyg=0, ifp#q, Af, 57 =0,

Afos = —4n, Afir=4, r=1,--- n.

Thus, making use of the same arguments as in the proof of Theorem 1, we obtain, at any
point z € M,

n+1

> (VGyg VG + Vs VEy) = 4n,
P,9=0

n+1

> (AGAGy; + AF,zAF,;) = 16n(n + 1),
P,q=0

n+1

Z (VGPEAGW + VFPEAFPE) =0,
p,q=0

n+1

> {(VGyg - V) + (VB Vi) '} = 2|V 2.

p,q=0

(4.13)
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By applying the Proposition 1 to the functions G5 and Fj5 and taking sum on p and ¢
from 0 to n 4+ 1, we infer

k+1 p
1

k 2 k k 27 2

1 1 2 1 1
- S nA42m+1)) - (1+2)—— N———S N |

(2] (2 ) i X (v e o)
i=1 =0 j=1
This finishes the proof of Theorem 2. O
PRrOOF OF COROLLARY 2. By using the same proof as in the Corollary 1, Corollary
2 is obvious. O
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