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Abstract. The aim in this note is to discuss the behavior at infinity for super-
biharmonic functions on Rn by use of spherical means.

1. Introduction.

A function u on an open set Ω ⊂ Rn, n ≥ 2, is called biharmonic if ∆2u = 0 on
Ω, where ∆2 denotes the Laplace operator iterated two times. We say that a locally
integrable function u on Ω is superbiharmonic in Ω if ∆2u is a nonnegative measure on
Ω, that is,

∫

Ω

u(x)∆2ϕ(x) dx ≥ 0 for all nonnegative ϕ ∈ C∞0 (Ω).

We denote by H (Ω) and H 2(Ω) the space of harmonic functions on Ω and the space of
biharmonic functions on Ω, respectively. Further, we denote by SH (Ω) and S H 2(Ω)
the space of superharmonic functions on Ω and the space of superbiharmonic functions
on Ω, respectively.

For a multi-index λ = (λ1, λ2, . . . , λn) and a point x = (x1, x2, . . . , xn), we set

|λ| = λ1 + λ2 + · · ·+ λn,

λ! = λ1!λ2! · · ·λn!,

xλ = x1
λ1x2

λ2 · · ·xn
λn

and

Dλ =
(

∂

∂x

)λ

=
(

∂

∂x1

)λ1
(

∂

∂x2

)λ2

· · ·
(

∂

∂xn

)λn

.

Consider the Riesz kernel of order 2m defined by
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R2m(x) =

{
|x|2m−n if 2m < n or 2m− n is a positive odd integer

|x|2m−n log(1/|x|) if 2m ≥ n and n is even

and its remainder term of Taylor’s expansion

R2m,L(x, y) =





R2m(x− y)−
∑

|λ|≤L

xλ

λ!
(
DλR2m

)
(−y) if |y| ≥ 1,

R2m(x− y) if |y| < 1,

where L is a nonnegative integer (cf. Hayman-Kennedy [3] and the second author [4]).
Here note that R4 ∈ H 2(Rn \ {0}) and

∆2R4 = c−1
n δ0

with the Dirac measure δx at x and

c−1
n = σn ×





−4 when n = 2,

−2 when n = 3,

4 when n = 4,

2(4− n)(2− n) when n ≥ 5,

where σn denotes the area of the unit sphere S(0, 1).
Let u ∈ S H 2(Rn) and µ = ∆2u. Then we see that for every r > 0, u is of the

form

u(x) = cn

∫

B(0,r)

R4(x− y) dµ(y) + hr(x) (1.1)

on B(0, r), where hr ∈ H 2(B(0, r)). This implies that u(x)/cn is considered to be lower
semicontinuous on Rn.

We denote by B(x, r) the open ball centered at x of radius r, whose boundary is
written as S(x, r). For a Borel measurable function u, we define the spherical mean

M(r, u) =
1

σnrn−1

∫

S(0,r)

u(x) dS.

Recently Premalatha [5] has proved that for a superharmonic function u on R2,
M(r2, u) − 2M(r, u) is bounded when r > 1 if and only if u is the sum of a loga-
rithmic potential and a harmonic function. Our aim in this note is to extend his result to
superbiharmonic functions. Before giving our results, we note from Almansi expansion
(see [1] and [4]) that if u is biharmonic in Rn, then
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M(r, u) = ar2 + b (1.2)

for some constants a and b, so that

M(2r, u)− 4M(r, u) = −3b = −3u(0).

Further, in view of (1.1), if u ∈ S H 2(Rn), then M(r, u) can be defined and will be
shown soon to be finite.

Now we show our results.

Theorem 1.1. Let n ≤ 4, u ∈ S H 2(Rn) and µ = ∆2u. Then M(2r, u) −
4M(r, u) is bounded when r > 1 if and only if u ∈ H 2(Rn).

Theorem 1.2. Let n ≥ 5, u ∈ S H 2(Rn) and µ = ∆2u. Then M(2r, u) −
4M(r, u) is bounded when r > 1 if and only if u is of the form

u(x) = cn

∫
R4(x− y) dµ(y) + h(x),

where h ∈ H 2(Rn) and

∫
(1 + |y|)4−n dµ(y) < ∞. (1.3)

Remark 1.3. Note that (1.3) is equivalent to

R4µ(x) =
∫

R4(x− y) dµ(y) 6≡ ∞

(see e.g. [3] or [4]).

Finally, by applications of the methods used in the proofs of our theorems, we
discuss the Riesz decomposition theorem for superharmonic functions, as an extension
of Premalatha [5].

2. Fundamental properties on spherical means.

Let u ∈ S H 2(Rn) and µ = ∆2u ≥ 0. Then we see that for every r > 0, u is of the
form

u(x) = cn

∫

B

R4,2(x, y) dµ(y) + hr(x) (2.1)

on B = B(0, r), where hr ∈ H 2(B). Note further that

∆R4,2 = CnR2,0, (2.2)
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where Cn = 2(4− n) when n 6= 4 and Cn = −2 when n = 4.

Lemma 2.1. Let u ∈ S H 2(Rn) and µ = ∆2u. Then for r > 1,

M(r, u) =
∫

B(0,r)

f(r, y) dµ(y) + ar2 + b,

where a, b are constants independent of r and

f(r, y) = cn





R4(r) + (2n)−1∆R4(r)|y|2 if |y| < 1,

R4(r) + (2n)−1∆R4(r)|y|2 −R4(y)− (2n)−1∆R4(y)r2 if 1 ≤ |y| < r,

0 if |y| ≥ r,

where we set Rm(r) = Rm(x) when r = |x|.
Proof. Let r2 > r1 > 0. Write u as in (2.1) as follows:

u(x) = cn

∫

B(0,ri)

R4,2(x, y) dµ(y) + hri(x)

for x ∈ B(0, r1), where hri
is biharmonic in B(0, ri) for each i = 1, 2. Then we have by

Fubini’s theorem and Almansi expansion

M(r, u) = cn

∫

B(0,ri)

M
(
r,R4,2(·, y)

)
dµ(y) + air

2 + bi

when 0 < r < r1 < r2. Since cnM(r,R4,2(·, y)) = f(r, y) by [2, Lemma 4.1], we see that

M(r, u) =
∫

B(0,r)

f(r, y) dµ(y) + air
2 + bi.

Hence it follows that

a1r
2 + b1 = a2r

2 + b2 for 0 < r < r1 < r2,

which implies that a1 = a2 (= a) and b1 = b2 (= b). Consequently,

M(r, u) =
∫

B(0,r)

f(r, y) dµ(y) + ar2 + b,

as required. ¤

Corollary 2.2. Let u ∈ S H 2(Rn) and µ = ∆2u. Then there exists a constant
b such that
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M(2r, u)− 4M(r, u) =
∫

B(0,1)

{
f(2r, y)− 4f(r, y)

}
dµ(y)

+
∫

B(0,r)\B(0,1)

{
f(2r, y)− 4f(r, y)

}
dµ(y)

+
∫

B(0,2r)\B(0,r)

f(2r, y) dµ(y)− 3b

for all r > 1.

3. Proof of Theorem 1.1.

In this section, we give a proof of Theorem 1.1.

3.1. The case n = 2.
In case n = 2, R4(x) = |x|2 log(1/|x|) and ∆R4(x) = −4(log |x| + 1). Hence, by

Lemma 2.1, we see that for |y| < 1,

f(r, y) = 4σ2

{
r2 log r + |y|2(log r + 1)

}
,

so that

f(2r, y)− 4f(r, y) = 4σ2

{
4r2 log 2− |y|2(3− log 2 + 3 log r)

}
> 0 (3.1)

when r > 1.
If 1 ≤ |y| < r, then

f(r, y) = 4σ2

{
r2 log r + |y|2(log r + 1)− |y|2 log |y| − r2(log |y|+ 1)

}
.

If we set |y| = tr with 0 < t < 1, then

f(r, y) = 4σ2r
2
(
t2 − t2 log t− log t− 1

)
> 0;

especially, if r ≤ |y| < 2r, then

f(2r, y) > 0. (3.2)

Further we have

f(2r, y)− 4f(r, y) = 4σ2

{
4r2 log 2− |y|2(3 log r − log 2)− 3|y|2 + 3|y|2 log |y|}

= 4σ2r
2
(
4 log 2 + t2 log 2− 3t2 + 3t2 log t

)
,

when 1 ≤ |y| = tr < r, so that
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f(2r, y)− 4f(r, y) > cr2 (3.3)

with c = 4σ2(5 log 2− 3) > 0.
Here we prove the following result, which completes the proof in the case n = 2.

Lemma 3.1.1. If M(2r, u)− 4M(r, u) is bounded when r > 1, then µ = 0.

Proof. Suppose M(2r, u)− 4M(r, u) is bounded when r > 1. Then we see from
(3.1), (3.2) and (3.3) that

∫

B(0,r)\B(0,1)

{f(2r, y)− 4f(r, y)} dµ(y)

is bounded for r > 1. In view of (3.3), we insist that r2µ(B(0, r) \ B(0, 1)) is bounded.
In the same way, we see from (3.1) that r2µ(B(0, 1)) is bounded. Hence it follows that
µ(R2) = 0, as required. ¤

3.2. The case n = 3.
When n = 3, R4(x) = |x| and ∆R4(x) = 2|x|−1. By lemma 2.1, we see that if

y ∈ B(0, 1), then

f(r, y) = −2σ3

(
r + 3−1r−1|y|2),

so that

f(2r, y)− 4f(r, y) = 2σ3

(
2r +

7
6
r−1|y|2

)
> 0 (3.4)

for r > 1. If 1 ≤ |y| < r, then

f(r, y) = −2σ3

(
r + 3−1r−1|y|2 − |y| − 3−1|y|−1r2

)

and

f(2r, y)− 4f(r, y) = 2σ3

(
2r +

7
6
r−1|y|2 − 3|y|

)
>

σ3

3
r. (3.5)

If r ≤ |y| < 2r, then, by the above consideration, we have

f(2r, y) > 0. (3.6)

Lemma 3.2.1. If M(2r, u)− 4M(r, u) is bounded when r > 1, then µ = 0.

Proof. Suppose M(2r, u)− 4M(r, u) is bounded when r > 1. Then we see from
(3.4), (3.5) and (3.6) that
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∫

B(0,r)\B(0,1)

{f(2r, y)− 4f(r, y)} dµ(y)

is bounded. It follows from (3.4) and (3.5) that rµ(B(0, r)) is bounded, which implies
that µ(R3) = 0. ¤

3.3. The case n = 4.
In case n = 4, R4(x) = log(1/|x|) and ∆R4(x) = −2|x|−2. By lemma 2.1, we see

that

f(r, y) = 2σ4

(
− log r − 1

4
r−2|y|2 + log |y|+ 1

4
|y|−2r2

)
> 0

for 1 ≤ |y| < r. Here we also obtain

f(2r, y)− 4f(r, y) = 2σ4

(
3 log(r/|y|) +

15
16

r−2|y|2 − log 2
)

>
9σ4

4
log

r

|y| > 0 (3.7)

for 1 ≤ |y| < r; moreover,

f(2r, y) > 0 (3.8)

when r ≤ |y| < 2r.
If |y| < 1, then

f(2r, y)− 4f(r, y) = 2σ4

(
log(r3/2) +

15
16

r−2|y|2
)

> 0 (3.9)

for r > 3
√

2.

Lemma 3.3.1. If M(2r, u)− 4M(r, u) is bounded when r > 1, then µ = 0.

Proof. We note from (3.7), (3.8) and (3.9) that

∫

B(0,r)\B(0,1)

log(r/|y|) dµ(y)

is bounded. Since log(r/|y|) ≥ log
√

r when |y| ≤ √
r, it follows with the aid of (3.9) that

(log
√

r)µ
(
B(0,

√
r)

)

is bounded when r > 1. This implies that µ(R4) = 0. ¤

3.4. Proof of Theorem 1.1.
Now we are ready to prove Theorem 1.1.
Let 2 ≤ n ≤ 4, u ∈ S H 2(Rn) and µ = ∆2u. If M(2r, u)− 4M(r, u) is bounded
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when r > 1, then it follows from Lemmas 3.1.1, 3.2.1 and 3.3.1 that µ = 0. This implies
that u is biharmonic in Rn.

Conversely, if u is biharmonic in Rn, then M(2r, u)−4M(r, u) is equal to a constant
by (1.2).

Thus the proof is completed. ¤

4. Proof of Theorem 1.2.

Let n > 4, u ∈ S H 2(Rn) and µ = ∆2u. In this case, R4(x) = |x|4−n and
∆R4(x) = 2(4− n)|x|2−n.

By lemma 2.1, we see that

f(r, y) = 2(4− n)(2− n)σn

{
r4−n + n−1(4− n)r2−n|y|2

− |y|4−n − n−1(4− n)|y|2−nr2
}

> 0

when 1 ≤ |y| < r. Hence we have

f(2r, y)− 4f(r, y)

= 2(4− n)(2− n)σn

{
(24−n − 4)r4−n + (22−n − 4)(4− n)n−1r2−n|y|2 + 3|y|4−n

}
,

so that

f(2r, y)− 4f(r, y) > c|y|4−n, (4.1)

where c = 2(4− n)(2− n)σn{3− 2n−1(4− 22−n)} > 0; if r ≤ |y| < 2r, then

f(2r, y) > 0. (4.2)

If |y| < 1, then

f(2r, y)− 4f(r, y)

= 2(4− n)(2− n)σn

{
(24−n − 4)r4−n + (22−n − 4)(4− n)n−1r2−n|y|2},

so that we can find c > 0 such that

∣∣∣∣
∫

B(0,1)

{f(2r, y)− 4f(r, y)} dµ(y)
∣∣∣∣ ≤ cr4−nµ(B(0, 1)),

which tends to zero as r →∞.

Lemma 4.1. If M(2r, u)− 4M(r, u) is bounded when r > 1, then (1.3) holds.

Proof. Suppose M(2r, u)− 4M(r, u) is bounded when r > 1. Then we see from
(4.1) and (4.2) that
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∫

B(0,r)\B(0,1)

|y|4−n dµ(y)

is bounded when r > 1, which yields (1.3). ¤

Proof of Theorem 1.2. Let n > 4, u ∈ S H 2(Rn) and µ = ∆2u. If M(2r, u)−
4M(r, u) is bounded when r > 1, then we see from Lemma 4.1 that

R4µ(x) =
∫

Rn

|x− y|4−n dµ(y)

is superbiharmonic in Rn and u(x)− cnR4µ(x) is biharmonic in Rn.
Conversely, suppose u is of the form

u(x) = cnR4µ(x) + h(x),

where h is biharmonic in Rn and µ satisfies (1.3). Then

M(r, cnR4µ) = cn

∫

B(0,r)

{
r4−n + n−1(4− n)r2−n|y|2} dµ(y)

+ cn

∫

Rn\B(0,r)

{|y|4−n + n−1(4− n)|y|2−nr2
}

dµ(y)

for r > 1. Applying Lebesgue’s dominated convergence theorem, we deduce from (1.3)
that

lim
r→∞

M(r,R4µ) = 0.

Thus the proof is completed. ¤

Remark 4.2. As was seen above, if n ≥ 5 and µ is a nonnegative measure on Rn

satisfying (1.3), then we have

lim
r→∞

M(r,R4µ) = 0.

Hence we see that when n ≥ 5 and u ∈ S H (Rn), M(2r, u)−4M(r, u) is bounded when
r > 1 if and only if M(r, u)− ar2 is bounded when r > 1 for some constant a.

5. Superharmonic functions.

Let R2(x) = log(1/|x|) when n = 2 and R2(x) = |x|2−n when n > 2. Recall that

R2,0(x, y) =

{
R2(x− y)−R2(−y) if |y| ≥ 1,

R2(x− y) if |y| < 1.
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Let u be superharmonic in Rn and µ = −∆u, where c′n is chosen so that ∆R2 = (c′n)−1δ0;
in fact,

(c′n)−1 = −
{

σ2 when n = 2,

(n− 2)σn when n ≥ 3.

Then we see that for r > 0, u is of the form

u(x) = −c′n

∫

B

R2,0(x, y) dµ(y) + hr(x) (5.1)

on B = B(0, r), where hr is harmonic in B.
As in Lemma 2.1, we find a constant a such that

M(r, u) = −c′n

∫

B(0,r)

M
(
r,R2,0(·, y)

)
dµ(y) + a (5.2)

for r > 1.
We here give another proof of Premalatha [5].

Theorem 5.1. Let u ∈ S H (R2) and µ = −∆u. Then M(r2, u) − 2M(r, u) is
bounded when r > 1 if and only if u is of the form

u(x) = −c′2

∫
log(1/|x− y|) dµ(y) + h(x),

where h ∈ H (R2) and µ satisfies

∫

R2

(
log(1 + |y|)) dµ(y) < ∞. (5.3)

Proof. Let u ∈ S H (R2) and µ = −∆u. If r > 1, then (5.2) gives

M(r, u) = −c′2
(
log(1/r)

)
µ
(
B(0, 1)

)− c′2

∫

B(0,r)\B(0,1)

(
log(|y|/r)

)
dµ(y) + a

for some constant a. Hence we have

M(r2, u)− 2M(r, u) = c′2

∫

B(0,r)\B(0,1)

(log |y|) dµ(y)

− c′2

∫

B(0,r2)\B(0,r)

(
log(|y|/r2)

)
dµ(y)− a.

If M(r2, u)− 2M(r, u) is bounded when 1 < r < ∞, then
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∫

B(0,r)\B(0,1)

(log |y|) dµ(y) is bounded,

so that (5.3) holds. Thus we see that

Lµ(x) =
∫

log(1/|x− y|) dµ(y) is superharmonic in R2, (5.4)

which implies that u(x) + c′2Lµ(x) is harmonic in R2.
Conversely, if h(x) = u(x) + c′2Lµ(x) is harmonic in R2, then we have for r > 1

M(r, u) = −c′2
(
log(1/r)

)
µ
(
B(0, r)

)− c′2

∫

R2\B(0,r)

(
log(1/|y|)) dµ(y) + h(0),

which gives

M(r2, u)− 2M(r, u) = − 2c′2

∫

B(0,r2)\B(0,r)

(
log(|y|/r)

)
dµ(y)

− c′2

∫

R2\B(0,r2)

(log |y|) dµ(y)− h(0).

Thus it follows from (5.3) that M(r2, u) − 2M(r, u) tends to −h(0) as r → ∞ by
Lebesgue’s dominated convergence theorem. ¤

Remark 5.2. If Lµ(x) is superharmonic in R2, then

lim
r→∞

{
M(r2, Lµ)− 2M(r, Lµ)

}
= 0.

Theorem 5.3. Let n > 2, u ∈ S H (Rn) and µ = −∆u. Then M(2r, u) −
22−nM(r, u) is bounded when r > 1 if and only if u is of the form

u(x) = −c′nR2µ(x) + h(x),

where R2µ(x) =
∫ |x− y|2−n dµ(y), h ∈ H (Rn) and µ satisfies

∫

Rn

(1 + |y|)2−n dµ(y) < ∞. (5.5)

Proof. Let n > 2, u ∈ S H (Rn) and µ = −∆u. If r > 1, then (5.2) yields

M(r, u) = −c′nr2−nµ
(
B(0, 1)

)− c′n

∫

B(0,r)\B(0,1)

(r2−n − |y|2−n) dµ(y) + a

for some constant a. Hence we find
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M(2r, u)− 22−nM(r, u) = (1− 22−n)c′n

∫

B(0,r)\B(0,1)

|y|2−n dµ(y)

− c′n

∫

B(0,2r)\B(0,r)

(
(2r)2−n − |y|2−n

)
dµ(y) + (1− 22−n)a.

If M(2r, u)− 22−nM(r, u) is bounded when r > 1, then it follows that

∫

B(0,r)\B(0,1)

|y|2−n dµ(y) is bounded,

which implies (5.5). Consequently, we see that R2µ(x) is superharmonic in Rn and
u(x) + c′nR2µ(x) is harmonic in Rn.

Conversely, if h(x) = u(x) + c′nR2µ(x) is harmonic in Rn, then

M(r, u) = −c′n

∫

B(0,r)

r2−n dµ(y)− c′n

∫

Rn\B(0,r)

|y|2−n dµ(y) + h(0).

It follows from (5.5) that M(r, u) tends to h(0) as r → ∞ by Lebesgue’s dominated
convergence theorem. ¤

Remark 5.4. If n > 2 and R2µ is superharmonic in Rn, then

lim
r→∞

M(r,R2µ) = 0.

Hence we see that when n > 2 and u ∈ S H (Rn), M(r, u) is bounded when r > 1 if
and only if M(2r, u)− 22−nM(r, u) is bounded when r > 1.
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