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The stable Calabi-Yau dimension of tame symmetric algebras

By Karin Erdmann and Andrzej Skowroński
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Abstract. We determine the Calabi-Yau dimension of the stable module cat-
egories of all symmetric algebras of tame representation type over an algebraically
closed field, and derive some consequences.

Introduction.

One of the goals of noncommutative algebraic geometry is to obtain an understand-
ing of triangulated K-linear categories over an algebraically closed field K which have
properties close to the derived categories Db(cohX) of bounded complexes of coher-
ent sheaves on projective varieties X over K. Following Bondal and Kapranov [11] a
triangulated K-linear category A is said to have a Serre duality if there is a triangle
autoequivalence F : A → A , called a Serre functor, such that there are natural K-linear
automorphisms

HomA (A,B) ∼= DHomA (B,F (A))

for all objects A and B in A , where D = HomK(−,K). Moreover, if F and F ′ are two
Serre functors of A , then they are naturally isomorphic (see [11], [40]). Then, for a
nonsingular projective variety X of dimension n and the canonical sheaf ωX =

∧n
ΩX ,

the classical Serre duality [31]

Hi(X, F ) ∼= DExtn−i
coh(X)(F , ωX),

for F ∈ coh(X), is just the statement that the functor F = − ⊗ ωX [n] defines a Serre
duality on the triangulated K-linear category Db(cohX). Important examples of tri-
angulated K-linear categories with Serre duality are provided by the derived categories
Db(modA) of bounded complexes over the category modA of finite dimensional modules
of finite dimensional K-algebras A of finite global dimension (see [27]). We refer also
to [40] for a complete classification of the noetherian hereditary abelian categories C
such that the derived category Db(C ) has Serre duality. Recently triangulated K-linear
categories with more subtle Serre dualities came to be of interest. Following Kontsevich
[36] (see also [35]), a triangulated K-linear category A , with shift functor T , is said to
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be Calabi-Yau if an iterated shift Tn = [n] is a Serre duality of A . If so then the minimal
n ≥ 0 having this property is called the Calabi-Yau dimension of A , and is denoted by
CYdimA . If A is not Calabi-Yau, we set CYdimA = ∞.

An important class of triangulated K-linear categories of algebraic nature is formed
by the stable module categories modA of finite dimensional selfinjective K-algebras A,
where the shift is given by the inverse Ω−1

A of Heller’s syzygy functor ΩA. Then modA

is Calabi-Yau if and only if an iterated shift Ω−n
A (for some n ≥ 1) is isomorphic to the

Nakayama functor νA = DHomA(−, A). If A is selfinjective then we define the stable
Calabi-Yau dimension of A to be CYdimmodA, and we write briefly CYdimA. In par-
ticular, for a symmetric algebra A, we have CYdimA < ∞ if and only if Ωn

A
∼= 1modA for

some n ≥ 1. We also note that the stable module category modA of a selfinjective algebra
A is equivalent (as a triangulated category) to the quotient category Db(modA)/Kb(PA)
of Db(modA) by the homotopy category Kb(PA) of bounded complexes of finite dimen-
sional projective A-modules [41, Theorem 2.1], and that Db(modA) has no Serre duality
(see [29, Corollary 1.5], [40, Theorem A]).

The finite dimensional algebras over an algebraically closed field K may be divided
into two disjoint classes (see [15], [17]). One class consists of the tame algebras for which
the indecomposable modules occur, in each dimension d, in a finite number of discrete
and a finite number of one-parameter families. The second class is formed by the wild
algebras; the representation theory of any wild algebra comprises the representation
theories of all finite dimensional algebras over K. Accordingly, we may realistically hope
to classify the indecomposable finite dimensional modules only for the tame algebras.
We note that the class of tame algebras contains all representation-finite algebras, that
is algebras which have only finitely many indecomposable modules up to isomorphism. It
also contains all algebras of polynomial growth. Recall that an algebra is of polynomial
growth if there is a natural number m such that the indecomposable modules occur, in
each dimension d, in a finite number of discrete and at most dm one-parameter families
[47].

We are concerned with the problem of describing the stable Calabi-Yau dimension of
(tame) selfinjective algebras. Recently, the authors completed in [22] the classification of
the connected tame symmetric algebras all of whose indecomposable nonprojective mod-
ules are periodic. This class of algebras consists of algebras which are Morita equivalent
to the algebras of the following three types:

• socle deformations of the symmetric algebras of Dynkin type (described in [14],
[33], [43], [44], [52], [53]);

• socle deformations of the symmetric algebras of tubular type (described in [8], [9],
[10], [37], [38], [48]);

• algebras of quaternion type (investigated in [19], [20], [21]).

We refer also to [1], [6], [7], [26], [30], [32] and [39] for the derived and stable equiva-
lence classification of these tame symmetric algebras. We prove in this paper that these
algebras are precisely all tame symmetric algebras of finite stable Calabi-Yau dimension,
and determine their stable Calabi-Yau dimension.

We now describe the content of this paper in detail. In Section 1 we present nec-
essary and sufficient conditions for a stable module category of a selfinjective algebra to
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be Calabi-Yau. In Section 2 we describe all selfinjective algebras of stable Calabi-Yau
dimensions 0 and 1. In Section 3 we provide information on the selfinjective algebras of
stable Calabi-Yau dimension 2. In particular, all connected tame selfinjective algebras
of stable Calabi-Yau dimension 2 are completely described. In Section 4 we determine
the stable Calabi-Yau dimension of all symmetric algebras of finite representation type.
In particular, we prove that every nonnegative integer occurs as the stable Calabi-Yau
dimension of a connected representation-finite symmetric algebra. Moreover, we exhibit
representation-finite selfinjective algebras of infinite stable Calabi-Yau dimension. In
Section 5 we prove that all algebras of expected quaternion type, that is the algebras
listed in [21, pp. 303–306], have stable Calabi-Yau dimension 3, and hence are in fact of
quaternion type. As a consequence, we also obtain that all connected tame symmetric
algebras of nonpolynomial growth and finite stable Calabi-Yau dimension have stable
Calabi-Yau dimension 3. In the final Section 6 we determine the stable Calabi-Yau di-
mension of connected representation-infinite symmetric algebras of polynomial growth
and finite stable Calabi-Yau dimension. We show that the stable Calabi-Yau dimensions
of these algebras are precisely the prime numbers 2, 3, 5, 7 and 11.

For basic background on the representation theory of algebras we refer to [2], [4],
[21], [24], [27], [46] and [54].

1. Stable module categories.

Throughout this paper K will denote a fixed algebraically closed field. By an algebra
we mean a finite dimensional K-algebra (associative, with identity). For an algebra A,
we denote by modA the category of finite-dimensional right A-modules, and by D :
modA → modAop the standard duality HomK(−,K). We write ΓA for the Auslander-
Reiten quiver of A, then Γ s

A is the stable Auslander-Reiten quiver of A, which is obtained
from ΓA by removing the nonstable vertices and arrows attached to them; and we write
τA and τ−1

A for the Auslander-Reiten translations DTr and TrD, respectively. We shall
identify an indecomposable module from modA with the corresponding vertex of ΓA.

An algebra A is called selfinjective if A ∼= D(A) in modA, that is, the projective
A-modules are injective. Further, A is called symmetric if A and D(A) are isomorphic
as A-A-bimodules. The classical examples of selfinjective algebras are provided by the
blocks of group algebras of finite groups, or more generally Hopf algebras. For a self-
injective algebra A, we denote by modA the stable category of modA. Recall that the
objects of modA are the objects of modA without nonzero projective direct summands,
and for any two objects M and N of modA the space of morphisms from M to N in
modA is the quotient HomA(M, N) = HomA(M, N)/P (M, N), where P (M, N) is the
subspace of HomA(M, N) consisting of all morphisms which factor through projective A-
modules. Then the Auslander-Reiten translations induce two mutually inverse functors
τA and τ−1

A : modA
∼−→ modA. We shall also consider two (mutually inverse) Heller’s

loop and suspension functors ΩA, Ω−1
A : modA

∼−→ modA. Recall that ΩA (respectively,
Ω−1

A ) assigns to any object M of modA the kernel of its projective cover PA(M) → M

(respectively, the cokernel of its injective envelope M → IA(M)) in modA. Finally, de-
note by νA : modA

∼−→ modA the Nakayama functor DHomA(−, A). By general theory
[4, (IV.3.7)] we have τA = Ω2

AνA = νAΩ2
A and τ−1

A = Ω−2
A ν−1

A = ν−1
A Ω−2

A . In partic-
ular, τA = Ω2

A and τ−1
A = Ω−2

A if A is symmetric. Two selfinjective algebras A and Λ
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are said to be stably equivalent if their stable module categories modA and modΛ are
equivalent. Further, two selfinjective algebras A and Λ are said to be derived equivalent
if the derived categories Db(modA) and Db(modΛ) are equivalent as triangulated cat-
egories. It is known that derived equivalent selfinjective algebras are stably equivalent
[41, Corollary 2.2]. Finally, a selfinjective algebra Λ is said to be a socle deformation of
a selfinjective algebra A if Λ/socΛ ∼= A/socA.

The following known facts (see [4, Chapter IV]) will be crucial for our investigations.

Proposition 1.1. Let A be a selfinjective algebra and M , N be modules from
modA. Then there are natural K-linear isomorphisms

(i) DHomA(τ−1
A N, M) ∼= Ext1A(M, N) ∼= DHomA(N, τAM);

(ii) HomA(Ωn
AM, N) ∼= Extn

A(M, N) ∼= HomA(M, Ω−n
A N).

Proposition 1.2. Let A be a selfinjective algebra. Then

(i) modA is a triangulated category whose shift is the suspension functor Ω−1
A .

(ii) ΩAνA is a unique (up to natural equivalence of functors) Serre duality of modA.

Proof.

(i) This is proved in [27, (2.6)].
(ii) Invoking Proposition 1.1, for X and Y in modA, we have natural K-linear isomor-

phisms

HomA(X, Y ) ∼= HomA(τ−1
A (τAX), Y ) ∼= DExt1A(Y, τAX)

∼= DHomA(Y, Ω−1
A τAX) ∼= DHomA(Y, Ω−1

A Ω2
AνAX)

∼= DHomA(Y, ΩAνAX).

Therefore, ΩAνA is a Serre duality of modA. Moreover, it is a unique Serre duality
of modA (see [40, (I.1.3) and (I.1.5)]). ¤

Corollary 1.3. Let A be a selfinjective algebra. Then the following statements
are equivalent :

(i) modA is Calabi-Yau.
(ii) νA

∼= Ω−d−1
A for some d ≥ 0.

(iii) τA
∼= Ω−d+1

A for some d ≥ 0.

Proof. It follows from Proposition 1.2 that modA is Calabi-Yau if and only if
ΩAνA

∼= Ω−d
A for some d ≥ 0. Then the equivalence of (i), (ii) and (iii) follows from the

formula τA = Ω2
AνA = νAΩ2

A. ¤

As an immediate consequence we obtain the following.

Corollary 1.4. Let A be a symmetric algebra. Then modA is Calabi-Yau if and
only if Ωn

A
∼= 1modA for some n ≥ 1.

Therefore, the stable Calabi-Yau dimension CYdimA of a selfinjective algebra A is
the minimal nonnegative integer d such that νA

∼= Ω−d−1
A (equivalently, τA

∼= Ω−d+1
A )
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on modA. Observe that the stable Calabi-Yau dimension of selfinjective algebras is
invariant under stable equivalence and then under derived equivalence. The next propo-
sition exhibits an Ext-symmetry of the Calabi-Yau stable module categories. Here,
Ext0A(X, Y ) = HomA(X, Y ).

Proposition 1.5. Let A be a selfinjective algebra. Then the following statements
are equivalent :

(i) modA is Calabi-Yau.
(ii) There is a nonnegative integer d such that

Exti
A(X, Y ) ∼= DExtj

A(Y, X)

for all modules X and Y from modA and nonnegative integers i, j with i + j = d.
(iii) There exist nonnegative integers i and j such that

Exti
A(X, Y ) ∼= DExtj

A(Y, X)

for all modules X and Y from modA.

Proof. (i) ⇒ (ii). Assume modA is Calabi-Yau. Then τA
∼= Ω−d+1

A for some
nonnegative integer d, by Corollary 1.3. Let X, Y be modules from modA and i, j

nonnegative integers with i + j = d. Then, applying Proposition 1.1, we have canonical
isomorphisms of K-vector spaces

Exti
A(X, Y ) ∼= HomA(X, Ω−i

A Y ) ∼= HomA(Ω−j+1
A X, Ω1−d

A Y )

∼= HomA(Ω−(j−1)
A X, τAY )

∼= DExt1A(Y, Ω
−(j−1)
A X) ∼= DHomA(Y, Ω−j

A X)

∼= DExtj
A(Y, X).

(ii) ⇒ (iii). Trivial.
(iii) ⇒ (i). Assume Exti

A(X, Y ) ∼= DExtj
A(Y, X) for some nonnegative integers i, j

and all modules X, Y from modA. Then, for d = i + j and X, Y from modA, we obtain
canonical isomorphisms of K-vector spaces

HomA(X, τAY ) ∼= DExt1A(Y, X) ∼= DHomA(Y, Ω−1
A X)

∼= DHomA(Ωi
A(Ω−i

A Y ), Ω−1
A X)

∼= DExti
A(Ω−i

A Y, Ω−1
A X) ∼= Extj

A(Ω−1
A X, Ω−i

A Y )

∼= HomA(Ω−1
A X, Ω−i−j

A Y ) ∼= HomA(X, Ω1−d
A Y ),

and consequently τAY ∼= Ω1−d
A Y . Thus τA

∼= Ω1−d
A and modA is Calabi-Yau. ¤
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Corollary 1.6. Let A be a selfinjective algebra. Then modA is Calabi-Yau of
dimension d if and only if d is a minimal nonnegative integer such that Exti

A(X, Y ) ∼=
DExtj

A(Y, X) for all nonnegative integers i, j with i + j = d and all modules X, Y from
modA.

Corollary 1.7. Let A be a selfinjective algebra. Then modA is Calabi-Yau
of even dimension 2e if and only if e is a minimal nonnegative integer such that
Exte

A(X, Y ) ∼= DExte
A(Y, X) for all modules X, Y from modA.

2. Selfinjective algebras of stable Calabi-Yau dimension 0 and 1.

In this section we describe the selfinjective algebras of the stable Calabi-Yau dimen-
sions 0 and 1.

Proposition 2.1. Let A be a selfinjective algebra. Then the following statements
are equivalent :

(i) CYdimA = 0.
(ii) HomA(X, Y ) ∼= DHomA(Y, X) for all modules X, Y from modA.
(iii) HomA(X, Y ) = 0 for all nonisomorphic indecomposable modules X, Y from modA.
(iv) A is a Nakayama algebra of Loewy length at most 2.

Proof. The equivalence (i) and (ii) follows from Corollary 1.6. The equivalence
(iii) and (iv) follows from the fact that A is a Nakayama algebra of Loewy length at
most 2 if and only if every indecomposable A-module is either projective or simple. The
implication (iii)⇒ (ii) is trivial. Finally, assume that A is of stable Calabi-Yau dimension
0. Then ν−1

A
∼= ΩA. Suppose S is a simple nonprojective A-module. Then we have an

exact sequence

0 −→ ΩAS −→ PA(S) −→ S −→ 0.

On the other hand, ν−1
A (S) is the socle of the projective cover PA(S) of S. Hence

ν−1
A (S) ∼= ΩA(S) implies that radPA(S) = socPA(S), and consequently PA(S) is uniserial

of Loewy length 2. Therefore, A is a Nakayama algebra of Loewy length at most 2. ¤

Proposition 2.2. Let A be a connected selfinjective algebra. Then the following
statements are equivalent :

(i) CYdimA = 1.
(ii) A is isomorphic to a matrix algebra Matm(K[X]/(Xn)) for some m ≥ 1 and n ≥ 3.
(iii) A is Morita equivalent to a local Nakayama algebra K[X]/(Xn) of Loewy length

n ≥ 3.

Proof. It follows from Corollary 1.3 and Proposition 2.1 that CYdimA = 1 if and
only if τA = 1modA and A is not Nakayama of Loewy length at most 2. The equivalence of
(ii) and (iii) follows from the connectedness of A and the known structure of the module
category of a local Nakayama algebra K[X]/(Xn). Further, for A Morita equivalent to
K[X]/(Xn), we have τA = 1modA, and hence (iii) implies (i). In order to prove the
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implication (i) ⇒ (iii), we may assume that A is basic. Since A has Loewy length at
least 3, there is an indecomposable projective A-module P with radP 6= socP . We have
an Auslander-Reiten sequence of the form (see [4, (V.5.5)])

0 −→ radP −→ (radP/socP )⊕ P −→ P/socP −→ 0.

Then radP = τA(P/socP ) ∼= P/socP , and consequently we obtain radiP ∼=
radi−1P/socP for all i ≥ 1. This implies that P is uniserial with all composition factors
isomorphic to S = P/radP . Since A is basic and connected, we conclude that A = P

and A is a local Nakayama algebra, A ∼= K[X]/(Xn) for some n ≥ 3. This shows (i) ⇒
(iii). ¤

As an immediate consequence of the above propositions we obtain the following
corollaries.

Corollary 2.3. Let A be a selfinjective algebra with CYdimA ≤ 1. Then A is
representation-finite.

Corollary 2.4. Let A be a connected symmetric algebra. Then CYdimA ≤ 1 if
and only if A is Morita equivalent to K[X]/(Xn) for some n ≥ 1.

3. Selfinjective algebras of stable Calabi-Yau dimension 2.

In [5] we proved that if Λ is an arbitrary connected selfinjective algebra of sta-
ble Calabi-Yau dimension 2 then Λ is a deformed preprojective algebra of generalized
Dynkin type. We will now introduce these algebras, recalling [5, Section 3], and obtain
a classification of all tame selfinjective algebras of stable Calabi-Yau dimension 2.

Let ∆ be a generalized Dynkin graph: An(n ≥ 1), Dn(n ≥ 4), En(n = 6, 7, 8), and
Ln(n ≥ 1). Then the Gabriel quiver QP (∆) of the ordinary preprojective algebra P (∆)
of type ∆ is of the form

QP (An) :
(n ≥ 1)

0
a0 // 1
ā0

oo
a1 // 2
ā1

oo ... n− 2
an−2 // n− 1

ān−2

oo

QP (Dn) :
(n ≥ 4)

0
a0

ÁÁ=
==

==
==

2
ā0

^^=======

ā1¡¡¢¢
¢¢

¢¢
¢

a2 // 3
ā2

oo ... n− 2
an−2 // n− 1

ān−2

oo

1

a1

@@¢¢¢¢¢¢¢

QP (En) :
(n = 6, 7, 8)

0

a0

²²
1

a1 // 2
ā1

oo
a2 // 3
ā2

oo
a3 //

ā0

OO

4
ā3

oo ... n− 2
an−2 // n− 1

ān−2

oo



104 K. Erdmann and A. Skowroński

QP (Ln) :
(n ≥ 1) 0@ABGFEε=ε̄

¼¼ a0 // 1
ā0

oo
a1 // 2
ā1

oo ... n− 2
an−2 // n− 1

ān−2

oo .

We choose the exceptional vertex in the Gabriel quiver QP (∆) of P (∆) as: 0, 2, 3 and 0
if ∆ = An,Dn,En and Ln, respectively. To this exceptional vertex we associate a local
algebra R(∆) as follows:

R(An) = K;

R(Dn) = K〈x, y〉/(x2, y2, (x + y)n−2);

R(En) = K〈x, y〉/(x2, y3, (x + y)n−3);

R(Ln) = K[x]/(x2n).

Here, K〈x, y〉 denotes the polynomial algebra in two noncommuting variables x and
y over K and K[x] the polynomial algebra in one variable x over K. Then R(∆) is
isomorphic to the finite dimensional local selfinjective algebra eP (∆)e, where e is the
primitive idempotent of P (∆) corresponding to the exceptional vertex of Q = QP (∆)

(see [5, Lemma 3.1]). We call an element f admissible if it belongs to the square of the
radical of R(∆). Note that f = 0 is the unique admissible element of R(An). Finally,
we denote by ia the starting vertex of an arrow a of the quiver QP (∆).

For an admissible element f of R(∆), the deformed preprojective algebra P f (∆)
of type ∆, with respect to f , is defined to be the bound quiver algebra KQ/If , where
Q = QP (∆) and If is the ideal in the path algebra KQ of Q generated by the elements
of the form

∑

a,ia=v

aā, if v is an ordinary vertex of Q,

together with the elements:

a0ā0 ∆ = An (n ≥ 1);

ā0a0 + ā1a1 + a2ā2 + f(ā0a0, ā1a1), (ā0a0 + ā1a1)n−2 ∆ = Dn (n ≥ 4);

ā0a0 + ā2a2 + a3ā3 + f(ā0a0, ā2a2), (ā0a0 + ā2a2)n−3 ∆ = En (n = 6, 7, 8);

ε2 + a0ā0 + εf(ε), ε2n ∆ = Ln (n ≥ 1).

Hence, for f = 0 we have P f (∆) is P (∆), the ordinary preprojective algebra of type
∆. The following theorem, proved in [5, Theorem 1.1], describes the basic homological
properties of the algebras P f (∆).

Theorem 3.1. Let Λ = P f (∆) be a deformed preprojective algebra of a generalized
Dynkin type ∆. Then the following statements hold.

(i) Λ is a finite dimensional selfinjective algebra with dimK Λ = dimK P (∆).



The stable Calabi-Yau dimension of tame symmetric algebras 105

(ii) The Nakayama permutation of Λ is the identity for ∆ = A1, Dn (n even), E7,
E8, Ln, and of order 2 for ∆ = An (n ≥ 2), Dn (n odd), E6.

(iii) Ω3
Λe(Λ) ∼= 1Λ% for an automorphism % of Λ of finite order.

(iv) There is a positive integer m = mΛ such that Ω3m
Λ (M) ∼= M for any nonprojective

indecomposable module M in modΛ.

The most relevant for this paper is the following theorem proved in [5, Theorem 1.2].

Theorem 3.2. Let Λ be a basic, connected finite dimensional selfinjective algebra.
Then the following statements are equivalent :

(i) Λ is isomorphic to a deformed preprojective algebra P f (∆) of a generalized Dynkin
type ∆.

(ii) Ω3
ΛS ∼= ν−1

Λ S for any nonprojective simple Λ-module S.

As an immediate consequence of Corollary 1.3 and Theorem 3.2 we obtain the fol-
lowing fact.

Corollary 3.3. Let A be a connected selfinjective algebra of stable Calabi-Yau
dimension 2. Then A is Morita equivalent to a deformed preprojective algebra P f (∆) of
a generalized Dynkin type ∆.

We note that, by Propositions 2.1 and 2.2, for a deformed preprojective algebra
Λ = P f (∆) of a generalized Dynkin type ∆, we have CYdimΛ ≤ 1 if and only if
Λ is the ordinary preprojective algebra P (A1), P (A2), or P (L1). Moreover, P (A1),
P (A2) and P (L1) have stable Calabi-Yau dimension 0. We do not know whether any
deformed preprojective algebra P f (∆) of generalized Dynkin type ∆ other than A1, A2,
L1 has stable Calabi-Yau dimension 2. On the other hand, we have the following direct
consequence of [3, (3.1)–(3.3)] and [5, (2.6)].

Proposition 3.4. Let Λ = P (∆) be a preprojective algebra of a generalized Dynkin
type ∆ 6= A1,A2,L1. Then CYdimΛ = 2.

To identify the tame algebras P f (∆) we need two preliminary lemmas.

Lemma 3.5. Let D be the bound quiver algebra KΣ/J where Σ is the quiver

•
ϕ

ÂÂ@
@@

@@
@@

•
α

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

γ

ÂÂ@
@@

@@
@@

•
ξ

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

%

ÂÂ@
@@

@@
@@

•

β ÂÂ@
@@

@@
@@

•
σ

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

η
ÂÂ@

@@
@@

@@
•

ω
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

• •

and J is the ideal in the path algebra KΣ of Σ generated by αβ− γσ and ξη− %ω. Then
D is wild.

Proof. Let C be the bound quiver algebra KΣ′/J ′, where Σ′ is the full subquiver
of Σ given by all arrows and vertices of Σ except ϕ and its starting vertex, and J ′ is the
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ideal in KΣ′ generated by αβ − γσ and ξη − %ω. Observe that C is a tame concealed
algebra of Euclidean type D̃6 (see [34]) and D is the one-point extension C[P ] of C

by the indecomposable projective C-module P of dimension 3 whose top is the simple
C-module corresponding to the starting vertex of β. Then D = C[P ] is wild, by [45,
Lemma 2.5.3], because the projective C-modules are preprojective. ¤

Lemma 3.6. Let E be the bound quiver algebra KΘ/L where Θ is the quiver

•
α

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

γ

²²

ξ

ÂÂ@
@@

@@
@@

•
ϕ

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

•

β ÂÂ@
@@

@@
@@

•
σ

²²

•
η

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

•

and L is the ideal in the path algebra KΘ of Θ generated by αβ + γσ + ξη. Then E is
wild.

Proof. Similarly as above, E is the one-point extension F [R] of the tame concealed
algebra F = KΘ′/L′ of Euclidean type D̃4, for the subquiver Θ′ of Θ given by all
arrows and vertices except ϕ and its source, L′ is generated by αβ + γσ + ξη, and R is
the indecomposable projective F -module whose top is the simple module given by the
starting vertex of η. Therefore, E is (as above) wild. ¤

Denote by P ∗(D4) the deformed preprojective algebra P f (D4) with f = xy, and by
P ∗(L2) the deformed preprojective algebra P f (L2) with f = ε2. Observe that P ∗(D4) is
a socle deformation of P (D4) and P ∗(L2) is a socle deformation of P (L2). The following
theorem shows that there are only very few tame deformed preprojective algebras of
generalized Dynkin type.

Theorem 3.7. Let Λ = P f (∆) be a deformed preprojective algebra of a generalized
Dynkin type ∆. The following statements are equivalent :

(i) Λ is tame.
(ii) Λ is isomorphic to one of the algebras:

(1) P (An), 1 ≤ n ≤ 5;
(2) P (D4);
(3) P (Ln), 1 ≤ n ≤ 2;
(4) P ∗(D4), P ∗(L2), for K of characteristic 2.

Proof. We will analyse the representation type of the algebra Λ = P f (∆) case
by case.

(a) ∆ = An. Then P f (∆) = P (∆), and it is well known that P (An) is wild for
n ≥ 6. In fact, for n ≥ 6, P (An) is a factor algebra of P (A6), and the universal Galois

covering P̃ (A6) of P (A6) contains, as a convex subalgebra, the wild algebra Σ described
in Lemma 3.5. Then, invoking [16, Proposition 2], we conclude that P (A6) is wild.
Clearly, then all algebras P (An), n ≥ 6, are wild. Further, P (A1) = K, P (A2) is a
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Nakayama algebra of Loewy length 2, P (A3) is a representation-finite (special biserial)
selfinjective algebra of Dynkin type A3, and P (A4) is a representation-finite selfinjective
algebra of Dynkin type D6 (see [42], [43]). Finally, P (A5) is a representation-infinite
tame selfinjective algebra of tubular type, isomorphic to the algebra A30 in [10, p. 696].
In particular, the algebras P (An), 1 ≤ n ≤ 5, are tame.

(b) ∆ = Dn. Let P (D5)′ be the factor algebra of P (D5) by the ideal
rad2P (D5)erad2P (D5), where e is the primitive idempotent of P (D5) corresponding to

the exceptional vertex of QP (D5). Then the universal Galois covering P̃ (D5)′ of P (D5)′

contains, as a convex subalgebra, the wild algebra E described in Lemma 3.6, and conse-
quently P (D5)′ is wild. Further, it is easy to see that P (D5)′ is a factor algebra of any
deformed preprojective algebra P f (Dn) with n ≥ 5. Hence, the algebras P f (Dn), n ≥ 5,
are wild. Finally, consider a deformed preprojective algebra Λ = P f (D4) of type D4 with
f nonzero. Any such algebra Λ is a socle deformation of the preprojective algebra P (D4)
since the square of the radical of the local algebra R(D4) at the exceptional vertex is
already in the socle. It was proved in [10, Lemma 5.10] that there is, up to isomorphism,
exactly one selfinjective algebra socle equivalent but not isomorphic to P (D4), and then
necessarily the field K has characteristic 2. Hence, one can take P ∗(D4). Moreover,
P (D4) is a representation-infinite tame selfinjective (even symmetric) algebra of tubular
type (3, 3, 3) isomorphic to the algebra A3 in [9, Theorem]. Hence, the algebras P (D4)
and P ∗(D4) are tame.

(c) ∆ = En. Then any deformed projective algebra P f (En), n = 6, 7, 8, admits a
factor algebra isomorphic to the algebra P (D5)′ considered in (b), and hence is wild.

(d) ∆ = Ln. Let P (L3)′ be the factor algebra of P (L3) by the ideal generated by ε2.

Then the universal Galois covering P̃ (L3)′ of P (L3)′ contains, as a convex subalgebra,
the wild algebra D described in Lemma 3.5, and consequently P (L3)′ is wild. Further,
any deformed preprojective algebra P f (Ln) with n ≥ 3 has a factor algebra isomorphic to
P (L3)′, and hence is wild. Observe also that the preprojective algebra P (L1) = K[ε]/(ε2)
is the unique deformed preprojective algebra of type L1. Finally, consider a deformed
preprojective algebra Λ = P f (L2) of type L2 with f nonzero. Then any such algebra
Λ is a socle deformation of the preprojective algebra P (L2). Moreover, it follows from
[44] (see also [52]) that P (L2) is a representation-finite selfinjective (even symmetric)
algebra of Dynkin type D6, and there is, up to isomorphism, exactly one selfinjective
algebra socle equivalent but not isomorphic to P (D4), and then necessarily the field K

is of characteristic 2. Hence, one can take P ∗(D4). In particular, P (L2) and P ∗(L2) are
representation-finite, hence tame, algebras.

This finishes the proof. ¤

We may now present the classification of all connected tame selfinjective algebras of
stable Calabi-Yau dimension 2.

Theorem 3.8. Let A be a connected selfinjective algebra. The following statements
are equivalent :

(i) A is tame and CYdimA = 2.
(ii) A is Morita equivalent to one of the algebras P (A3), P (A4), P (A5), P (D4),

P (L2), or to P ∗(D4), P ∗(L2) if K has characteristic 2.
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Proof. We proved in [5, Example 3.6] that Ω3M ∼= M ∼= ν−1M for any nonprojec-
tive indecomposable module M in modP ∗(D4), and hence CYdimP ∗(D4) = 2. Further,
P ∗(L2) is a symmetric representation-finite algebra whose stable Auslander-Reiten quiver
is isomorphic to ZD6/(τ3). Moreover, a direct checking shows that ΩP∗(L2)

∼= τ2
P∗(L2)

on modP ∗(L2), and hence Ω3
P∗(L2)

∼= 1modP∗(L2). This shows that CYdimP ∗(L2) = 2
(see also Theorem 4.3). Now, the theorem is a consequence of Propositions 2.1, 2.2, 3.4,
Corollary 3.3 and Theorem 3.7. ¤

Corollary 3.9. Let A be a connected selfinjective algebra. The following state-
ments are equivalent :

(i) A is tame, symmetric and CYdimA = 2.
(ii) A is Morita equivalent to one of the algebras P (D4), P (L2), or P ∗(D4), P ∗(L2)

if K is of characteristic 2.

Corollary 3.10. The algebras P (A3), P (A4), P (L2), P ∗(L2) (if charK = 2) are
unique (up to Morita equivalence) connected representation-finite selfinjective algebras of
stable Calabi-Yau dimension 2.

Corollary 3.11. The algebras P (A5), P (D4), and P ∗(D4) (if charK = 2) are
unique (up to Morita equivalence) connected representation-infinite tame selfinjective al-
gebras of stable Calabi-Yau dimension 2.

4. Symmetric algebras of finite type.

In this section we describe the stable Calabi-Yau dimension of all connected sym-
metric algebras of finite representation type.

An important class of selfinjective algebras is formed by the orbit algebras B̂/G,
where B̂ is the repetitive algebra of B (see [33]), locally bounded without identity, and
G is an admissible group of automorphisms of B̂. Recall that

B̂ =
⊕

k∈Z

(Bk ⊕D(B)k)

with Bk = B and D(B)k = D(B) for all k ∈ Z and the multiplication in B̂ is defined by

(ak, fk) · (bk, gk) = (akbk, akgk + fkbk−1)k

for ak, bk ∈ Bk, fk, gk ∈ D(B)k. For a fixed set E = {ei|1 ≤ i ≤ n} of orthogonal
primitive idempotents of B with 1B = e1 + · · · + en, consider the canonical set Ê =
{ej,k|1 ≤ j ≤ n, k ∈ Z} of orthogonal primitive idempotents of B̂ such that 1Bk

=
e1,k + · · · + en,k. By an automorphism of B̂ we mean a K-algebra automorphism of B̂

which fixes the chosen set Ê of orthogonal primitive idempotents of B̂. A group G of
automorphisms of B̂ is said to be admissible if the induced action of G on Ê is free and has
finitely many orbits. Then the orbit algebra B̂/G (see [25]) is a selfinjective algebra and
the G-orbits in Ê form a canonical set of orthogonal primitive idempotents of B̂/G whose
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sum is the identity of B̂/G. We denote by ν bB the Nakayama automorphism of B̂ whose
restriction to each copy Bk⊕D(B)k is the identity map Bk⊕D(B)k → Bk+1⊕D(B)k+1.
Then the infinite cyclic group (ν bB) generated by ν bB is admissible and B̂/(ν bB) is the
trivial extension T(B) = B n D(B) of B by D(B), and it is a symmetric algebra. An
automorphism ϕ of B̂ is said to be positive (respectively, rigid) if ϕ(Bk) ⊆ ∑

i≥k(Bi)
(respectively, ϕ(Bk) = Bk) for any k ∈ Z. Moreover, ϕ is said to be strictly positive if
ϕ is positive but not rigid.

Let ∆ be a Dynkin graph An(n ≥ 1), Dn(n ≥ 4), En(n = 6, 7, 8). By a tilted
algebra of Dynkin type ∆ we mean an algebra B = EndH(T ) where H is the path
algebra K ~∆ of a quiver ~∆ with the underlying graph ∆ and T is a multiplicity-free
tilting H-module. Then a selfinjective algebra of Dynkin type ∆ is defined to be an
algebra of the form B̂/G, where B is a tilted algebra of type ∆ and G is an admissible
group of automorphisms of B̂. It is known that such an admissible group G is always
infinite cyclic generated by a strictly positive automorphism of B̂. By general theory
(see [33], [25], [42]) every selfinjective algebra A = B̂/G of Dynkin type ∆ is of finite
representation type and its stable Auslander-Reiten quiver Γ s

A is the translation quiver
Z ~∆/G, for an (arbitrarily chosen) orientation ~∆ of ∆. In fact, the selfinjective algebras
of Dynkin type exhaust all basic connected selfinjective algebras of finite representation
type having simply connected Galois coverings. Moreover, the remaining (nonstandard)
selfinjective algebras of finite representation type are socle deformations of selfinjective
algebras of Dynkin type (see [14], [33], [43], [44], [52], [53]).

In particular, we have the following description of the symmetric algebras of finite
representation type.

Theorem 4.1. Let A be a basic connected selfinjective algebra nonisomorphic to
K. Then A is symmetric of finite representation type if and only if A is isomorphic to
an algebra of one of the following types:

(i) T(B), for a tilted algebra B of Dynkin type An, Dn, E6, E7, or E8.
(ii) B̂/(ϕ), where B is a tilted algebra of Dynkin type An and ϕ is a proper root of the

Nakayama automorphism ν bB.
(iii) a socle deformation of an algebra B̂/(ϕ), where B is a tilted algebra of Dynkin

type D3s and ϕ is a root of order 3 of the Nakayama automorphism ν bB.

It is known that the class of algebras described in (ii) coincides with the class of
Brauer tree algebras A(Tm

S ) given by Brauer trees Tm
S with e ≥ 1 edges and one excep-

tional vertex S of multiplicity m ≥ 2, and then the Dynkin type An is given by n = m ·e.
In fact, the class of the trivial extension algebras T(B) of tilted algebras B type An

coincides with the class of Brauer tree algebras A(T 1
S) = A(T ) of Brauer trees T with

n = e edges and the exceptional vertex S of multiplicity m = 1 (see [33], [43]). Further,
the class of tilted algebras of type B̂/(ϕ), with B tilted of type D3m and ϕ a cube root
of ν bB , coincides with the class of modified Brauer tree algebras D(TS) given by Brauer
trees with e ≥ 2 edges and an extreme exceptional vertex S, and then m = e. Moreover,
for such an algebra D(TS), there exists exactly one (up to isomorphism) symmetric socle
deformation D(TS)′ with D(TS) � D(TS)′ only for K of characteristic 2 (see [44], [52],
[53]).
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For a Dynkin graph ∆, denote by h∆ the Coxeter number of ∆. Recall that h∆ is
the order of the Coxeter element of the Coxeter (Weyl) group of ∆, so that

hAn = n + 1, hDn = 2n− 2, hE6 = 12, hE7 = 18, hE8 = 30.

Moreover, we put m∆ = h∆ − 1.
The following proposition describes the action of the syzygy functors Ω bB on the

stable module categories modB̂ of the repetitive algebras B̂ of tilted algebras B of Dynkin
types (see also [13]).

Proposition 4.2. Let B be a tilted algebra of Dynkin type ∆. Then we have
equivalences of functors on the category modB̂:

(i) Ω bB
∼= τ

h∆/2
bB , for ∆ = A1, Dn (n even), E7, E8.

(ii) Ω bB
∼= στ

h∆/2
bB , for ∆ = An (n ≥ 3 odd), Dn (n odd), E6 and an automorphism σ

of order 2.
(iii) Ω bB

∼= %τ
m∆/2
bB , for ∆ = An (n even) and an automorphism % with %2 = τ bB.

Proof. It is known (see [51]) that modB̂ ∼= modĤ for the path algebra H = K ~∆

of the Dynkin quiver ~∆ given by a bipartite (sink-source) orientation of ∆. Moreover, any
equivalence modB̂ ∼= modĤ commutes with the syzygy and Auslander-Reiten functors
(see [4, Section X]). Then the required equivalences follow by direct checking of the
action of Ω bH on the indecomposable nonprojective modules over the radical cube zero
selfinjective algebra Ĥ. We note that (in this case) it is sufficient to check the action of
Ω bH on the simple Ĥ-modules. ¤

We will determine now the stable Calabi-Yau dimension of the symmetric algebras
of finite representation type.

Theorem 4.3. Let A be a basic connected symmetric algebra of finite representa-
tion type. Assume A is a socle deformation of a selfinjective algebra B̂/(ϕ), where B is a
tilted algebra of Dynkin type ∆ and ϕ is a root of order r of the Nakayama automorphism
ν bB. Then

CYdimA =





m∆

r
− 1 for ∆ = A1, Dn (n even), E7, E8.

2m∆

r
− 1 for ∆ = An (n ≥ 2), Dn (n odd), E6.

Proof. We assume first that A = B̂/(ϕ) and that A is a symmetric algebra of
Dynkin type. Then we have a canonical Galois covering F : B̂ → B̂/G = A with Galois
group G = (ϕ) and the associated push-down functor Fλ : modB̂ → modA. By general
theory (see [25], [33]) the functor Fλ is dense and ΩAFλ

∼= FλΩ bB , τAFλ
∼= Fλτ bB , as

functor on modB̂. We have several cases to consider.
(1) Assume A = T(B). Hence ϕ = ν bB and r = 1. Then A is stably equivalent to

the trivial extension T(H) of the path algebra H = K ~∆ of a bipartite oriented quiver ~∆
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of type ∆, and consequently m∆ is the order of τA on modA (see [49], [50], [27]).
Let ∆ be one of the graphs A1,Dn (n even), E7, or E8. It follows from Proposi-

tion 4.2 that ΩA
∼= τ

h∆/2
A on modA. Let d be a natural number such that Ωd

A
∼= 1modA.

Then τ
dh∆/2
A

∼= 1modA, and hence dh∆/2 = d(m∆ + 1)/2 is divisible by m∆. Since
gcd((m∆ + 1)/2,m∆) = 1, we obtain m∆|d. On the other hand, νA

∼= 1modA and
Ωm∆

A
∼= τ

m∆h∆/2
A

∼= 1modA. Then m∆ is the minimal nonnegative integer such that
νA

∼= Ω−m∆

A , and consequently CYdimT(B) = m∆ − 1.
Let ∆ be one of the graphs An (n ≥ 3 odd), Dn (n odd), or E6. Let d be a natural

number such that Ωd
A
∼= 1modA. Then we have Ωd

bB
∼= τ lm∆

bB for some natural number

l ≥ 1. Invoking Proposition 4.2, we obtain σdτ
dh∆/2
bB

∼= τ lm∆

bB for an automorphism

σ of order 2, and consequently d is even. Let d = 2e. Then τeh∆

bB
∼= τ lm∆

bB . Since
gcd(m∆, h∆) = 1, we conclude that m∆|e. Clearly, Ω2m∆

A
∼= τm∆

A
∼= 1modA. Therefore,

we have CYdimT(B) = 2m∆ − 1.
Finally, assume that ∆ = An(n even). Let d be a natural number such that Ωd

A
∼=

1modA. Then Ωd
bB
∼= τ lm∆

bB for some l ≥ 1, and, applying Proposition 4.2, we conclude

that %dτ
dm∆/2
bB

∼= τ lm∆

bB for some natural number l ≥ 1, and an automorphism % of B̂

with %2 = τ bB . Then d is even, say d = 2e, and we obtain τeh∆

bB = τe
bBτem∆

bB
∼= τ lm∆

bB .
Again, gcd(m∆, h∆) = 1 forces m∆|e. Since Ω2m∆

A
∼= τm∆

A
∼= 1modA, we conclude that

CYdimT(B) = 2m∆ − 1.
(2) Assume A = B̂/(ϕ), where B is a tilted algebra of type An and ϕ is an automor-

phism of B̂ with ϕr = ν bB for some r ≥ 2. Then the Galois covering F : B̂ → B̂/(ϕ) = A

is the composition of the canonical Galois covering B̂ → B̂(ν bB) = T(B) with Galois
group (ν bB) and a Galois covering T(B) → A with Galois group cyclic of order r. In
particular, we have r|n, n = m∆, and τ

m∆/r
A

∼= 1modA. Using arguments as in (1)
and applying Proposition 4.2, we conclude that d = 2m∆/r is the minimal nonnegative
integer with Ωd

A
∼= 1modA, and consequently CYdimB̂/(ϕ) = 2m∆

r − 1.
(3) Assume A = B̂/(ϕ), where B is a tilted algebra of type D3s and ϕ is an auto-

morphism of B̂ with ϕ3 = ν bB . Then as above the Galois covering F : B̂ → B̂/(ϕ) = A

is the composition of the canonical Galois covering B̂ → B̂/(ν bB) = T(B) with Galois
group (ν bB) and a Galois covering T(B) → A whose Galois group is cyclic of order 3.
Observe also that mD3s

= 2(3s − 1) − 1 = 3(2s − 1) and hence 1
3mD3s

= 2s − 1. In
particular, we obtain τ

m∆/3
A = τ2s−1

A
∼= 1modA. Let d be a minimal nonnegative integer

such that Ωd
A
∼= 1modA. By arguments as above and by Proposition 4.2, we conclude that

d = m∆/3 for s even and d = 2m∆/3 for s odd, because 3s and s have the same parity.
Therefore, CYdimA = m∆/3− 1 if ∆ = D3s with s even, and CYdimA = 2m∆/3− 1 if
∆ = D3s with s odd.

(4) Assume A is not a symmetric algebra of Dynkin type. Then, by Theorem 4.1,
A is a socle deformation of Λ = B̂/(ϕ), where B is a tilted algebra of Dynkin type D3s

and ϕ is an automorphism of B̂ with ϕ3 = ν bB . In fact, since A � Λ, the field K has
characteristic 2. Observe also that A/socA ∼= Λ/socΛ forces ΓA

∼= ΓΛ. In particular,
m∆/3 is the order of τA and τΛ.

Moreover, it follows from [33] and [42] that the full subcategory indB̂ of modB̂

formed by chosen representations of indecomposable modules is equivalent to the mesh-
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category K(Γ̃Λ) ∼= K(Γ̃A) of the universal cover Γ̃Λ
∼= Γ̃A of ΓΛ

∼= ΓA. Further we have
the push-down functor

Fλ : modB̂ → modΛ

associated to the canonical Galois covering F : B̂ → B̂/(ϕ) = Λ and a well-behaved
functor (see [12, (3.1)], [43, (1.5)])

F ∗ : modB̂ → modA,

and the both functors Fλ and F ∗ are dense, exact, and preserve indecomposable modules,
projective-injective modules and Auslander-Reiten sequences. Therefore, we have the
equivalences of functors on modB̂

FλΩ bB
∼= ΩΛFλ, Fλτ bB

∼= τΛFλ

and

F ∗Ω bB
∼= ΩAF ∗, F ∗τ bB

∼= τAF ∗.

Therefore, we obtain CYdimA = CYdimΛ, and the required formula for CYdimA follows
from (3). ¤

Corollary 4.4. Let d be a natural number. Then there exists a connected sym-
metric algebra A of finite representation type with CYdimA = d.

Proof. It follows from Propositions 2.1 and 2.2 that CYdimK[X]/(X2) = 0 and
CYdimK[X]/(X3) = 1. Therefore, we may assume d ≥ 2.

Let d be an odd number. Then d = 2n − 1 for some n ≥ 2. Taking A the trivial
extension algebra T(B) of an arbitrary tilted algebra B of type An, we obtain from
Theorem 4.3 that CYdimT(B) = 2n− 1 = d.

Let d be an even number 2n, n ≥ 1. For n even, take s = n + 2, B a tilted algebra
of type Ds and A = T(B). Then, applying Theorem 4.3, we obtain

CYdimA = mDs
− 1 = (2s− 2)− 2 = 2(n + 2)− 4 = 2n = d.

For n odd, take s = n + 1 and A = B̂/(ϕ), where B is a tilted algebra of type D3s and
ϕ is a cube root of ν bB . Then, applying Theorem 4.3, we obtain

CYdimA =
1
3
mD3s

− 1 = (2s− 1)− 1 = 2(s− 1) = 2n = d. ¤

The final result of this section shows that there are selfinjective algebras of finite
representation type and of infinite stable Calabi-Yau dimension.

Corollary 4.5. Let B be a tilted algebra of type ∆ where ∆ is a Dynkin graph
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different from A1, and let A = B̂/(νh∆

bB ). Then CYdimA = ∞.

Proof. Observe that we have a Galois covering A → A/(νA) = T(B) with cyclic
Galois group (νA) of order h∆ generated by νA. Since m∆ = h∆ − 1 is the order of
τT(B) on modT(B), we conclude that h∆m∆ is the order of τA on modA. Further, it
follows from Proposition 4.2 that Ω2

bB
∼= τh∆

bB , and hence Ω2
A
∼= τh∆

A . Suppose modA is
Calabi-Yau. Observe that A is neither a Nakayama algebra of Loewy length 2 nor a
local Nakayama algebra, and hence CYdimA ≥ 2, by Propositions 2.1 and 2.2. Thus we
have τ−1

A
∼= Ωr

A for some r ≥ 1. Then τ rh∆+2
A = τ rh∆

A τ2
A
∼= Ω2r

A τ2
A
∼= 1modA implies that

h∆m∆ divides rh∆ + 2, and consequently h∆ divides 2. On the other hand, ∆ 6= A1

implies h∆ ≥ 3. Therefore modA is not Calabi-Yau, and hence CYdimA = ∞. ¤

5. Algebras of quaternion type.

Following [21] an algebra A is said to be of quaternion type if A is connected,
symmetric, tame, the Cartan matrix of A is nonsingular, and the stable Auslander-Reiten
quiver Γ s

A of A consists only of tubes of rank at most 2. These include all blocks of group
algebras of finite groups with generalized quaternion defect groups. It was proved in [18]
that an algebra of quaternion type has at most three simple modules. Further, the first
named author proved in [19], [20], [21] that any algebra of quaternion type is Morita
equivalent to one of 12 types of symmetric representation-infinite algebras defined by
quivers and relations (see [21, Tables]). Moreover, T. Holm has classified in [32] these
algebras up to derived equivalence, and proved that they are in fact tame.

The main aim of this section is to prove the following result.

Theorem 5.1. Let A be an algebra of quaternion type. Then for all indecomposable
nonprojective A-modules M we have Ω4

AM ∼= M . In particular, CYdimA = 3.

Since for a symmetric algebra A we have τA
∼= Ω2

A, we obtain the following immediate
consequence of the theorem and the results described above, solving the problem raised
in [21, VII.9].

Corollary 5.2. Let A be an algebra. Then the following statements are equiva-
lent :

(i) A is of quaternion type.
(ii) A is Morita equivalent to one of the algebras in the list given in [21, pp. 303–306].

For the proof of Theorem 5.1 we use the derived equivalence classification from [32],
and we show that for most algebras in [32, (5.1) and (5.9)] the bimodule resolution of
the algebra is periodic of period ≤ 4. Algebras with small parameters behave differently,
and we deal with these first. Our notation for the algebras is based on [32].

For a ∈ K \ {0, 1} and c ∈ K, let Q(2B)33(a, c) be the bound quiver algebra KQ/I,
where Q is the quiver

0@ABGFEα
¼¼ β // 1

γ
oo ABCFED η

¦¦



114 K. Erdmann and A. Skowroński

and I is the ideal in KQ generated by the elements

αβ − βγ, ηγ − γα, βγ − α2, γβ − aη2 − cη3,

α4, η4, γα2, α2β

(see [21, Tables] and [32, (5.1), (5.8)]).

Lemma 5.3. Let A = Q(2B)33(a, c). Then the following statements hold.

(i) If charK 6= 2 then A ∼= Q(2B)33(a, 0).
(ii) If charK = 2 then A ∼= Q(2B)33(a, 0) or A ∼= Q(2B)33(a, 1).

Proof. Observe that A = Q(2B)33(a, c) is a socle deformation of Q(2B)33(a, 0).
It follows from [9, Theorem 1] that Q(2B)33(a, 0) is a symmetric algebra of tubular
type (2, 2, 2, 2), isomorphic to the algebra A2(a−1) (described in [9]). Then, applying
[10, Lemma 5.4], we obtain that A ∼= Q(2B)33(a, 0) or A ∼= Q(2B)33(a, 1). Moreover,
Q(2B)33(a, 0) ∼= Q(2B)33(a, 1) if and only if charK 6= 2. ¤

For a ∈ K \ {0, 1}, let Q(3A )2,2
1 (a) be the bound quiver algebra KQ/I, where Q is

the quiver

1
β // 0
γ

oo
δ // 2
η

oo

and I is the ideal in KQ generated by the elements

βδη − βγβ, δηγ − γβγ, ηγβ − aηδη,

γβδ − aδηδ, βδηδ, ηγβδ.

We note that Q(3A )2,2
1 (a) is a symmetric algebra of tubular type (2, 2, 2, 2), and iso-

morphic to the algebra A1(a) in [9, Theorem 1].

Proposition 5.4. Let A be a selfinjective algebra. Then the following statements
are equivalent :

(i) A is of quaternion type and of polynomial growth.
(ii) A is Morita equivalent to one of the algebras Q(2B)33(a, 0), Q(2B)33(a, 1), or

Q(3A )2,2
1 (a).

Proof. It is a direct consequence of the description of the Morita equivalence
classes of algebras of quaternion type, given in [19], [20], [21], and the classification
of the symmetric algebras of tubular types with nonsingular Cartan matrices and their
socle deformations, obtained in [9], [10]. ¤

Corollary 5.5. Let A be an algebra of quaternion type which is of polynomial
growth. Then for any indecomposable nonprojective A-module M we have Ω4

AM ∼= M .
In particular, CYdimA = 3.
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Proof. This follows from Proposition 5.4 and the fact that Q(2B)33(a, 0),
Q(2B)33(a, 1), Q(3A )2,2

1 (a), a ∈ K \ {0, 1}, are representation-infinite symmetric al-
gebras of tubular type (2, 2, 2, 2) (see [9], [10], [48]), and hence stable Auslander-Reiten
quiver consists only of tubes of rank at most 2. Then for any indecomposable nonpro-
jective A-module M , we have Ω4

AM ∼= τ2
AM ∼= M . Since A is representation-infinite, we

then have CYdimA = 3 (see Corollary 2.3). ¤

In the proof of Theorem 5.1 for the remaining algebras of quaternion type, we apply
the derived equivalence classification of these algebras [32], construct the first part of
minimal bimodule resolutions for one algebra from each derived equivalence class, and
use these to show that they have periodic bimodule resolutions of period 4. We need
three families of bound quiver algebras.

For k ≥ 2 and a, b ∈ K, let Qk(a, b) be the local bound quiver algebra KQ/I, where
Q is the quiver

0@ABGFEα
¼¼ ABCFED β

¦¦

and I is the ideal in KQ generated by the elements

α2 − (βα)k−1β − a(βα)k, β2 − (αβ)k−1α− b(αβ)k,

(αβ)k − (βα)k, (αβ)kα, (βα)kβ.

Lemma 5.6. Let A be a local algebra of quaternion type. Then A is Morita equiv-
alent to an algebra Qk(a, b). Moreover, if charK 6= 2, then Qk(a, b) ∼= Q(a, 0).

Proof. See [21, Theorem III.1]. ¤

For k ≥ 1 and s ≥ 3 with k + s > 4, a ∈ K \ {0}, c ∈ K, let Q(2B)k,s
1 (a, c) be the

bound quiver algebra KQ/I, where Q is the quiver

0@ABGFEα
¼¼ β // 1

γ
oo ABCFED η

¦¦

and I is the ideal in KQ generated by the elements

γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

α2 − a(βγα)k−1βγ + c(βγα)k, α2β.

Lemma 5.7. Let A = Q(2B)k,s
1 (a, c) with k ≥ 1, s ≥ 3 and k + s > 4, and where

a ∈ K \ {0} and c ∈ K. Then we have

(i) Q(2B)k,s
1 (a, c) ∼= Q(2B)k,s

1 (1, c′) for some c′ ∈ K.
(ii) If charK 6= 2 then Q(2B)k,s

1 (a, c) ∼= Q(2B)k,s
1 (a, 0).

Proof. We identify an element of KQ with its residue class in A = KQ/I. For
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(ii), if charK 6= 2, we replace α by α′ = α − (c/2)(βγα)k−1βγ and obtain the required
isomorphism of bound quiver algebras.

(i) We set α = xα′, β = bβ′, γ = gγ′, η = mη′, where x, b, g and m are nonzero
scalars. We substitute these into the relations and we want to replace α by α′, β by β′,
γ by γ′ and η by η′. If we can find solutions for the scalar identities

x2 = a(bgx)k−1bg, bg = ms−1, (xbg)k−1xb = bm, mg = (bgx)k−1gx

then we will have replaced the scalar a by 1 (and the scalar c if nonzero by some other
scalar) but have kept the other relations unchanged.

The last three equations above are equivalent with

bg = ms−1, m = xk(bg)k−1. (∗)

The scalar m does not play any role and we can eliminate it, that is replace (∗) by

bg = (xk(bg)k−1)s−1. (∗∗)

Since b and g always come with the same exponent we can assume g = 1. Then we have
to solve

b = (xkbk−1)s−1 and x2 = axk−1bk.

Equivalently,

1 = xk(s−1) · b(k−1)(s−1)−1 and 1 = axk−3 · bk.

From the first equation (note that k(s− 1) 6= 0) we obtain

x = b
1−(k−1)(s−1)

k(s−1) .

Substituting this into the second equation we get 1 = abr, where

r =
[
(k − 3)

1− (k − 1)(s− 1)
k(s− 1)

]
+ k.

If we know that r 6= 0 then we take for b a root of tr−a−1. Then this determines x (and
then also m). In case r < 0, write this as (t−1)−r − a−1.

Suppose we would have r = 0, that is

k2(s− 1) + (k − 3)(1− (k − 1)(s− 1)) = 0.

Equivalently,
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0 = (s− 1)(k2 − (k − 1)(k − 3)) + (k − 3) = (s− 1)(4k − 3) + (k − 3).

But, for the integers k ≥ 1 and s ≥ 3, this equality hold only for k = 1 and s = 3. Since
k + s > 4, we obtain r 6= 0, as required. ¤

For a, b, c ≥ 1 (at most one parameter equal 1) let Q(3K )a,b,c be the bound quiver
algebra KQ/I, where Q is the quiver

0
β //

κ

ÁÁ>
>>

>>
>> 1

γ
oo

δ¡¡¡¡
¡¡

¡¡
¡

2
λ

^^>>>>>>>

η
@@¡¡¡¡¡¡¡

and I is the ideal in KQ generated by the elements

βδ − (κλ)a−1κ, ηγ − (λκ)a−1λ,

δλ− (γβ)b−1γ, κη − (βγ)b−1β,

λβ − (ηδ)c−1η, γκ− (δη)c−1δ,

γβδ, δηγ, λκη.

Proposition 5.8. Let A be an algebra of quaternion type which is not of polyno-
mial growth. Then A is derived equivalent to one of the algebras:

(i) Qk
1 (a, b), k ≥ 2, a, b ∈ K;

(ii) Q(2B)k,s
1 (1, c), k ≥ 1, s ≥ 1, k + s > 4, c ∈ K;

(iii) Q(3K )a,b,c, a, b, c ≥ 1 (at most one equal 1).

Proof. This is a direct consequence of [19], [20], [21, Section VII], [32, Section 5],
Proposition 5.4 and Lemma 5.7. ¤

Theorem 5.9. Let A be one of the algebras Qk
1 (a, b), Q(2B)k,s

1 (1, c), Q(3K )a,b,c

listed in the above proposition. Then Ω4
Ae(A) ∼= A as A-A-bimodules.

Proof. Let A = KQ/I be the bound quiver presentation of A, as described above.
Denote by Q0 and Q1 the set of vertices and arrows of the quiver Q, respectively. For
each arrow α of Q, we denote by iα the initial vertex of α and by tα the target of α.
Moreover, by ⊗ we mean the tensor product ⊗K . We divide the proof into several steps.

(1) A minimal projective resolution for any simple module in modA is easily calcu-
lated. Using [28, Lemma 1.5] this shows that the projectives in the first few terms of a
minimal projective bimodule resolution

P3
S→ P2

R→ P1
d→ P0

u→ A → 0 (∗)

are as follows

P0 = ⊕i∈Q0(Aei ⊗ eiA), P1 = ⊕α∈Q1(Aeiα ⊗ etαA), P2
∼= P1, P3

∼= P0.
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We must define the maps.
(1a) The first two maps are standard. Take u to be the multiplication map, its

kernel has minimal generators

xα := α⊗ etα − eiα ⊗ α, α ∈ Q1.

Then we define the bimodule homomorphism d by sending eiα⊗etα to xα, for each arrow
α of the quiver Q; and then Im(d) = Ker(u).

(1b) The map R will be defined in terms of the minimal relations as follows. Let
µ = α1α2 . . . αk be a monomial in the arrows. Define ρ(µ) ∈ ⊕Aeiα ⊗ etαA by setting

ρ(µ) :=
k∑

j=1

α1α2 . . . αj−1 ⊗ αj+1 . . . αk

where the j-th term lies in Aeiαj ⊗ etαj A. Then for a certain minimal relation of the
form

∑
cµµ from ei to ej , where cµ ∈ K, we define

R(ei ⊗ ej) =
∑

µ

cµρ(µ).

For calculations we will use the following observation. Suppose α is an arrow, then

αρ(µ) = ρ(αµ)− eiα ⊗ µ.

We will later specify the map R explicitly for each of the three cases. Then it will be
straightforward to show that d ◦ R = 0 and we will leave this as an exercise without
further comments.

(1c) We will write down the map S in each case later, and show R ◦ S = 0.
(1d) We will show that the kernel of the map S is isomorphic to A. To do so, we

will define a one-to-one bimodule homomorphism j : A → P3 and show that S ◦ j = 0.
Once this is done, the proof of Theorem 5.9 will be complete. Namely, we will know

that all compositions of the maps in (∗) are zero, and also that S ◦ j = 0. Furthermore,
from the definition of R and S it will be clear that the respective image contains genera-
tors of the previous kernel. This will then imply that the sequence (∗) is exact and that
the kernel of S is equal to the image of j and hence isomorphic to A, as required.

(2) We start by constructing an injective hull j : A → ⊕iA(ei ⊗ ei)A of A as a
bimodule. Here A can be an arbitrary symmetric algebra; this is a variation of [23]. Let
(−,−) be a symmetrizing bilinear form on A, that is, a nonsingular associative symmetric
bilinear form. We fix a full set of orthogonal primitive idempotents ei, i ∈ Q0, of A such
that

∑
ei = 1A. For each i, take a vector space basis Bi of eiA, and let B∗

i be the
corresponding dual basis, with respect to the given form. Define

ζi :=
∑

b∈Bi

b⊗ b∗ ∈ ⊕jAej ⊗ ejA.
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(2a) We claim that ζi is independent of the basis. Namely, let Bi = {b1, . . . , bn};
if one takes some other basis of eiA and writes b′j =

∑n
k=1 cjkbk with coefficient matrix

C = [cjk], then the matrix C−T is the coefficient matrix expressing (b′j)
∗ in terms of the

b∗i . If one substitutes this into
∑n

j=1 b′j ⊗ (b′j)
∗ one obtains precisely ζi.

(2b) Suppose a ∈ exAey and a is in the radical but not in the square of the radical.
We claim that then

aζy = ζxa.

To see this, take a basis of eyA which contains a basis {bi} of the kernel of the linear map
m → am from eyA to exA. Say By = {bi} ∪ {ci}. Then we can take Bx = {aci} ∪ {di}.
By (2a) we can use these bases and their dual bases to write down ζx and ζy. Then

aζy =
∑

i

aci ⊗ c∗i , ζxa =
∑

aci ⊗ (aci)∗a +
∑

i

di ⊗ d∗i a.

We claim that d∗i a = 0 and that (aci)∗a = c∗i . Write

d∗i a =
∑

rj(acj)∗ +
∑

sjd
∗
j with rj and sj in K.

Then

rj = (acj , d
∗
i a) = (d∗i a, acj) = (d∗i , a

2cj) = (a2cj , d
∗
i ).

Since a2cj is in the span of the {acs} this is zero. Similarly one shows that sj = 0 for all
j. Now write

(aci)∗a =
∑

j

rjb
∗
j +

∑

j

sjc
∗
j with rj and sj in K.

Then

rj = (bj , (aci)∗a) = ((aci)∗a, bj) = (π−1(aci)∗, abj) = 0,

since abj = 0. Moreover

sj = (cj , (aci)∗a) = ((aci)∗a, cj) = (acj , (aci)∗) = δij ,

as required. Now it follows as in [23] that we have a bimodule map j : A → ⊕(Aei⊗eiA)
such that j(ei) = ζi and that j is one-to-one.

(3) We continue with the setup as in (2). Take any element a = exaey which
belongs to the radical (it will later be an arrow). Then we take bases compatible with
idempotents; we claim that for r, s ≥ 0

∑

b∈E

b(ar ⊗ as)b∗ =
∑

b∈F

b(ex ⊗ ar+s)b∗,
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where E and F are suitable bases for the module eiA.
We use a similar argument as in (2). Namely, we take for E a basis which contains

a basis {bi} of the kernel of m → mar, say E = {bi} ∪ {ci}. For F we take a basis
{cia

r} ∪ {di}. Now we must show that

∑

i

cia
r ⊗ as(c∗i ) =

∑

i

(cia
r)⊗ ar+s(cia

r)∗ +
∑

di ⊗ ar+s(d∗i ).

That is, we must show ar+sd∗i = 0 and ar(cia
r)∗ = c∗i . This is done by the argument in

(2).
(4) Now let A = Q(3K )a,b,c, a, b, c ≥ 1 (at most one parameter equal 1). We may

assume a ≥ b ≥ c. Consider first the case when c ≥ 2.
We will now define the map R in this case.
(4a) Take any arrow α of the quiver Q. Then there is a unique minimal relation

between eiα and etα which involves a monomial of degree two. We use this to define
R(eiα ⊗ etα). For α = κ, we define

R(e0 ⊗ e2) := ρ(βδ)− ρ((κλ)a−1κ).

For α = λ, we define

R(e2 ⊗ e0) := ρ(ηγ)− ρ((λκ)a−1λ).

By the same principle we define R(ei ⊗ ej) for the other vertices i 6= j.

(4b) Next we define the map S : P3 → P2. Set

S(e0 ⊗ e0) := β ⊗ e0 − e0 ⊗ γ + κ⊗ e0 − e0 ⊗ λ,

S(e1 ⊗ e1) := γ ⊗ e1 − e1 ⊗ β + δ ⊗ e1 − e1 ⊗ η,

S(e2 ⊗ e2) := λ⊗ e2 − e2 ⊗ κ + η ⊗ e2 − e2 ⊗ δ.

As we have explained, it suffices to show that R ◦ S = 0 and that S ◦ j = 0.
(4c) The composition R ◦ S is zero: As a typical case we calculate R ◦ S(e0 ⊗ e0).

This is equal to

βR(e1 ⊗ e0)−R(e0 ⊗ e1)γ + κR(e2 ⊗ e0)−R(e0 ⊗ e2)λ.

The first two terms are

β[ρ(δλ)− ρ((γβ)b−1γ)]− [ρ(κη)− ρ((βγ)b−1β)]γ.

Using the observation in (1) and cancelling, invoking the relations of the algebra, this
becomes

ρ(βδλ)− ρ(κηγ).
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Similarly, we calculate

κR(e2 ⊗ e0)−R(e0 ⊗ e2)λ = ρ(κηγ)− ρ(βδλ),

and in total we get R ◦ S(e0 ⊗ e0) = 0.
(4d) The composition S ◦ j is zero. Write

S ◦ j(ei) =
∑

b∈B

bS(e0 ⊗ e0)b∗ +
∑

b

bS(e1 ⊗ e1)b∗ +
∑

b

bS(e2 ⊗ e2)b∗,

where every time we sum over a basis of eiA which is compatible with the idempotents.
We substitute, and by (3), for any arrow α, the sum

∑
b bα⊗b∗ cancels against

∑
b b⊗αb∗.

So we get zero.
This completes now the proof of the theorem for algebras with three simple modules

when c ≥ 2.
(4e) It remains to deals with the case when c = 1. Then δ and η lie in the square

of the radical, that is we must delete these arrows from the quiver. Now the minimal
relations take the form

βγκ = (κλ)a−1κ, γκλ = (γβ)b−1γ,

λβγ = (λκ)a−1λ, κλβ = (βγ)b−1β,

and some zero relations which we will not need.
We define the map R by the same principle as described in (1), so for example

R(e0 ⊗ e2) = ρ(βγκ)− ρ((κλ)a−1κ).

We define the map S as in (4b) but omitting the two terms in which δ occurs, and
also the two terms in which η occurs. It is clear from (3) that S ◦ j = 0, and it is
straightforward to check that R ◦ S = 0. This completes now the proof of the theorem
for A = Q(3K )a,b,c,.

(5) We consider now A = Q(2B)k,s
1 (1, c). By Lemma 5.7 we assume K has charac-

teristic 2 when c 6= 0.
(5a) We start by defining the map R in this case. We use the four minimal relations

which involve paths of length two. That is we define

R(e1 ⊗ e1) := ρ(γβ)− ρ(ηs−1),

R(e0 ⊗ e1) := ρ(βη)− ρ((αβγ)k−1αβ),

R(e1 ⊗ e0) := ρ(ηγ)− ρ((γαβ)k−1γα),

R(e0 ⊗ e0) := ρ(α2)− ρ((βγα)k−1βγ) + cρ((βγα)k).

Note that we made a choice in the definition of R(e0 ⊗ e0).
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(5b) We define the bimodule homomorphism S : P3 → P2 as follows. Set

S(e0 ⊗ e0) := (β ⊗ e0 − e0 ⊗ γ) + (α⊗ e0 − e0 ⊗ α)

+ c(α⊗ α + e0 ⊗ α2) + c2(α⊗ α2 + e0 ⊗ α3),

S(e1 ⊗ e1) := (γ ⊗ e1 − e1 ⊗ β) + (η ⊗ e1 − e1 ⊗ η).

As before, it suffices to show that R ◦ S = 0 and that S ◦ j = 0.
(5c) Consider the composition R ◦ S. It is easy to check that R ◦ S(e1 ⊗ e1) = 0.

We will give details for R ◦S(e0 ⊗ e0). Using the remark in (1) and cancelling the scalar
multiples of β ⊗ γ we have

R(β ⊗ e0 − e0 ⊗ γ) = βR(e1 ⊗ e0)−R(e0 ⊗ e1)γ

= βη ⊗ e0 − ρ
(
(βγα)k

)
+ e0 ⊗ (γαβ)k−1γα

− e0 ⊗ ηγ − ρ((αβγ)k) + (αβγ)k−1αβ ⊗ e0.

Since βη = (αβγ)k−1αβ, the first and the last term cancel. Similarly two terms cancel
using the relation for ηγ. We are left with

−ρ(βγα)k + ρ(αβγ)k. (x)

Consider similarly R(α⊗ e0 − e0 ⊗ α). After cancellation this leaves

−ρ((αβγ)k)− cρ((αβγ)kα) + ρ((βγα)k) + cρ((βγα)kα). (y)

The first and the third term in (y) cancel against (x) and we are left with

−cρ[(αβγ)kα] + cρ[(βγα)kα]. (z)

If c = 0 (which happens always for characteristic 6= 2) we see already now that R◦S(e0⊗
e0) = 0. So assume now c 6= 0; and then we have char(K) = 2, which we will use freely.

Using the relation for α2 and also the fact that α3 = (αβγ)k = (βγα)k, we calculate

R(α⊗ α) = αR(e0 ⊗ e0)α

= α2 ⊗ α + α⊗ α2 + e0 ⊗ α3 + α3 ⊗ e0 + ρ((αβγ)kα) + cρ((αβγ)kα2),

R(e0 ⊗ α2) = R(e0 ⊗ e0)α2

= α⊗ α2 + α2 ⊗ α + e0 ⊗ α3 + α3 ⊗ e0 + ρ((βγα)kα) + cρ((βγα)kα2),

and similarly

R(α⊗ α2) = αR(e0 ⊗ e0)α2

= α2 ⊗ α2 + α⊗ α3 + α3 ⊗ α + ρ((αβγ)kα2) + cρ((αβγ)kα3),
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R(e0 ⊗ α3) = R(e0 ⊗ e0)α3

= α⊗ α3 + α2 ⊗ α2 + α3 ⊗ α + ρ((βγα)kα2) + cρ((βγα)kα3).

Now adding (z) together with c[R(α⊗ α) + R(e0 ⊗ α2)] and c2[R(α⊗ α2) + R(e0 ⊗ α3)]
leaves just

c3[ρ((αβγ)kα3) + ρ((βγα)kα3)].

Observe that

ρ((αβγ)kα3) = (αβγ)k ⊗ α3 = (βγα)k ⊗ α3 = ρ((βγα)kα3),

and we get zero, because charK = 2.
One shows that S ◦ j = 0 by applying (3); this is similar to (3d) and we omit details.

This completes the proof of the theorem in this case.
(6) Finally we consider the local algebras A = Qk(a, b), k ≥ 2, a, b ∈ K. Here P1

and P2 are direct sums of two copies of the indecomposable projective Ae-module. To
distinguish between the copies, we label them as

P1 = P2 = (A⊗α A)⊕ (A⊗β A).

We make the convention that if we define ρ(µ) of some monomial µ then we replace α

by ⊗α and we replace β by ⊗β .
(6a) We define

R(1⊗α 1) := ρ(α2)− ρ((βα)k−1β)− aρ((βα)k),

R(1⊗β 1) := ρ(β2)− ρ((αβ)k−1α)− bρ((αβ)k).

(6b) We define the bimodule homomorphism S : P3 → P2 as follows. Set first

ξα := a[(α⊗α α) + (1⊗α α2)] + a2[(α⊗α α2) + (1⊗α α3)],

ξβ := +b[(β ⊗β β) + (1⊗β β2)] + b2[(β ⊗β β2) + (1⊗β β3)].

Now we define

S(1⊗ 1) := (α⊗α 1− 1⊗α α) + ξα + (β ⊗β 1− 1⊗β β) + ξβ .

As before, it suffices to show that R ◦ S = 0 and that S ◦ j = 0. The details are similar
to the case of two simple modules and we omit them.

These completes the proof of the theorem. ¤

The following corollary completes the proof of Theorem 5.1.
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Corollary 5.10. Let A be an algebra of quaternion type which is not of poly-
nomial growth. Then for any indecomposable nonprojective A-module M we have
Ω4

AM ∼= M . In particular, CYdimA = 3.

Proof. The properties are invariant under stable equivalences and then under
derived equivalences. Therefore, by Proposition 5.8, it is sufficient to prove the corollary
for A occuring in this proposition. Then, applying Theorem 5.9, for any indecomposable
nonprojective A-module M we have that Ω4

AM is isomorphic to the nonprojective direct
summand of Ω4

Ae(A)⊗A M ∼= A⊗A M ∼= M , and hence Ω4
AM ∼= M . Moreover, it follows

from Corollary 2.3 that CYdimA = 3. ¤

Since all connected tame symmetric algebras of nonpolynomial growth and with the
stable Auslander-Reiten quiver consisting only of stable tubes are of quaternion type [22]
we obtain also the following fact.

Corollary 5.11. Let A be a connected tame symmetric algebra of nonpolynomial
growth and finite stable Calabi-Yau dimension. Then CYdimA = 3.

6. Symmetric algebras of polynomial growth.

In this section we describe the stable Calabi-Yau dimension of all connected
representation-infinite symmetric algebras of polynomial growth and finite stable Calabi-
Yau dimension.

Following [46] by a tubular algebra we mean a tubular extension (equivalently,
tubular coextension) B of a tame concealed algebra C of tubular type nB ∈
{(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)}. Then B is of global dimension 2 and the rank
of the Grothendick group K0(B) of B is equal 6, 8, 9, or 10, respectively. By a self-
injective algebra of tubular type we mean an algebra of the form B̂/G, where B is a
tubular algebra and G is an admissible group of automorphisms of B̂. In fact, such an
admissible group G is infinite cyclic, generated by a strictly positive automorphism of B̂.
It has been shown in [8, Theorem 3.1], that a basic connected algebra A is selfinjective
of tubular type if and only if A is tame, admits a simply connected Galois covering, and
the stable Auslander-Reiten quiver of A consists of only of tubes. By general theory (see
[48, Section 3]), if A = B̂/G is a selfinjective algebra of tubular type, then the stable
Auslander-Reiten quiver Γ s

A of A is of the form

Γ s
A =

∨

q∈S1(Q)

T q,

where S1(Q) is the set of rational points of the unit circle, and, for each q ∈ S1(Q),
T q = (T q

λ )λ∈P1(K) is a P1(K)-family of stable tubes of tubular type nB . Here, by a
P1(K)-family of stable tubes of tubular type (n1, . . . , nr), with n1, . . . , nr ≥ 2 integers,
we mean a family T = (Tλ)λ∈P1(K) of stable tubes having tubes Tλ1 , . . . ,Tλr

(for some
λ1, . . . , λr ∈ P1(K)) of ranks respectively n1, . . . , nr, and the remaining tubes of rank
1. Therefore, to any selfinjective algebra A = B̂/G of tubular type we may assign its
tubular type nA = nB (the tubular type of B), describing the ranks of stable tubes of
Γ s

A.
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The class of symmetric algebras of tubular type may be divided into two disjoint
classes (see [9], [37], [38]). One class consists of the trivial extensions T(B) of tubular
algebras B, for which the Cartan matrices are singular. The second class is formed
by the symmetric algebras of the form B̂/(ϕ), with ϕ a proper root of the Nakayama
automorphism ν bB of B̂, described in [9, Theorem 1] by quivers and relations, for which
the Cartan matrices are nonsingular. Further, in [10, Theorem 1.1] all proper socle
deformations of the symmetric algebras of tubular type have been also described by
quivers and relations.

The most relevant for us is the following consequence of the main result of [22].

Proposition 6.1. Let A be a connected symmetric algebra. The following state-
ments are equivalent :

(i) A is representation-infinite of polynomial growth and the stable Auslander-Reiten
quiver of A consists only of tubes.

(ii) A is representation-infinite of polynomial growth and finite stable Calabi-Yau di-
mension.

(iii) A is Morita equivalent to a socle deformation of a symmetric algebra of tubular
type.

Let A be a symmetric algebra which is a socle deformation of a selfinjective algebra
Λ = B̂/G of tubular type. Since the stable Auslander-Reiten quivers Γ s

A and Γ s
Λ are

isomorphic, we may call the tubular type nΛ = nB of Λ also the tubular type of A, and
denote by nA.

For the proof of the main result of this section, we need a preliminary result.

Lemma 6.2. Let A = T(B) be the trivial extension of a tubular algebra B and mA

the least common multiple of the numbers in the tubular type nA of A. Then there exists
an indecomposable nonprojective A-module M such that Ω2mA

A M ∼= M but Ωr
AM � M

for r with 1 ≤ r < 2mA.

Proof. Let m = mA. It is known (see [30], [41], [50]) that A = T(B) is
stably equivalent to the trivial extension T(C) of the canonical algebra C of tubular
type nC = nB . Further, it follows from [30] that ΓT(C) admits a stable tube T of
rank m whose mouth is formed by m− 1 simple modules S1, . . . , Sm−1, with τT(C)Si

∼=
Si+1 for 1 ≤ i ≤ m − 2, and the module τ−T(C)S1

∼= τT(C)Sm−1. Since T(C) is a
symmetric algebra, we have τT(C) = Ω2

T(C). Moreover, the projective covers of the
simple modules S1, . . . , Sm−1 in modT(C) are uniserial projective module of length at
least 4, and consequently the modules ΩT(C)Si, 1 ≤ i ≤ m−1, are not simple. Therefore,
for any simple module S = Si, 1 ≤ i ≤ m − 1, we have Ω2m

T(C)S
∼= S but Ωr

T(C)S � S if
1 ≤ r < 2m. Since modA ∼= modT(B) ∼= modT(C) and the syzygy functors commute
with the stable equivalences of connected selfinjective algebras of Loewy length at least
3 (see [4, Proposition X.1.12]), the required claim for A follows. ¤

We may now prove the main result of this section.

Theorem 6.3. Let A be a basic, connected, representation-infinite symmetric al-
gebra of polynomial growth and finite stable Calabi-Yau dimension. Then the following
statements hold :
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(i) CYdimA = 2, if A is isomorphic to a deformed preprojective algebra P (D4) or
P ∗(D4).

(ii) CYdimA = 3, if nA = (2, 2, 2, 2).
(iii) CYdimA = 5, if nA = (3, 3, 3) and A is nonisomorphic to P (D4) or P ∗(D4).
(iv) CYdimA = 7, if nA = (2, 4, 4).
(v) CYdimA = 11, if nA = (2, 3, 6).

Proof. (i) This is a consequence of Corollary 3.9.
(ii) Assume nA = (2, 2, 2, 2). Then Γ s

A consists of tubes of rank at most 2, and
hence τ2

A
∼= 1modA. Hence, Ω4

A
∼= 1modA, because A is symmetric. Therefore, invoking

Corollary 2.3, we obtain CYdimA = 3.
(iii) Assume nA = (3, 3, 3). Then Γ s

A consists of tubes of rank 1 and 3, and hence
Ω6

A
∼= τ3

A
∼= 1modA. Therefore, we have CYdimA = 5 or CYdimA = 2. But it follows

from Corollaries 3.9 and 3.10 that CYdimA = 2 if and only if A ∼= P (D4) or P ∗(D4).
Thus the claim follows.

(iv) Assume nA = (2, 4, 4). Then Γ s
A consists of tubes of rank 1, 2 and 4, and hence

Ω8
A
∼= τ4

A
∼= 1modA. Since A is representation-infinite, we have then CYdimA = 3 or

CYdimA = 7. We claim that CYdimA = 7. We have two cases to consider. Assume first
that the Cartan matrix of A is nonsingular. Since A is of polynomial growth, invoking
Proposition 5.4, we conclude that A is not of quaternion type. Then Ω4

A � 1modA, and
consequently CYdimA = 7. Assume now that the Cartan matrix of A is singular. Then
it follows from [9] and [10] that A is isomorphic to the trivial extension T(B) of a tubular
algebra B of type (2, 4, 4). Applying Lemma 6.2, we conclude that CYdimA = 7.

(v) Assume nA = (2, 3, 6). Then it follows from [9, Theorem] and [37, Corollary 5.5]
that A is isomorphic to the trivial extension T(B) of a tubular algebra B of type (2, 3, 6).
Since Γ s

A consists of tubes of rank 1, 2, 3 and 6, we have Ω12
A
∼= 1modA. Moreover, it

follows from Lemma 6.2 that Ω6
A � 1modA. Therefore, CYdimA = 11. ¤
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[14] O. Bretscher, C. Läser and C. Riedtmann, Selfinjective and simply connected algebras, Manuscr.

Math., 36 (1982), 253–307.

[15] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc., 56 (1988),

451–483.
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