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Abstract. It is known that each 3-symmetric space admits an invariant almost
complex structure J, so-called a canonical almost complex structure. By making use
of simple graded Lie algebras and an affine Lie algebra, we classify half dimensional,
totally real (with respect to J) and totally geodesic submanifolds of compact 3-
symmetric spaces.

1. Introduction.

Let G be a Lie group and K a compact subgroup of G. A homogeneous space
(G/K, {(,)) with a G-invariant Riemannian metric {, ) is called a Riemannian 3-symmetric
space if it is not isometric to a Riemannian symmetric space and there exists an auto-
morphism ¢ of order 3 on G such that

(1) G°, C K C G°. Here G° and G, denote the set of fixed points of ¢ and its
identity component, respectively.

(2) The transformation of G/K induced by o is an isometry.

We denote by (G/K,{(,), o) a Riemannian 3-symmetric space with an automorphism o.

According to Gray [G], Wolf and Gray [WG], a compact simply connected Rieman-
nian 3-symmetric space (M, g) may be decomposed as a Riemannian product:

M =My x My x -+ x M,. (1.1)

Here M; (1 < i < r) is an irreducible Hermitian symmetric space of compact type or
a compact irreducible Riemannian 3-symmetric space. Moreover, a compact irreducible
Riemannian 3-symmetric space (G/K, (,), o) has one of the following forms:

(i) G is a compact simple Lie group and o is inner. Furthermore the dimension of the
center Zx of K is equal to 1, 2 or 0.

(ii) G = L x L x L where L is a compact simple Lie group, and ¢(X,Y, Z) = (Z,X,Y)
(X,)Y,ZeL).

(iii) G is a compact simple Lie group of type Dy and o is outer.

Gray [G] also proved that any Riemannian 3-symmetric space admits an almost complex
structure J which is called a canonical almost complex structure.
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In Hermitian symmetric spaces, Chen and Nagano [CN] proved that any totally
geodesic submanifold is either Kéhler or totally real, and totally geodesic Kahler sub-
manifolds were classified by Satake [Sa2] and Thara [I]. Moreover, half dimensional,
totally real and totally geodesic submanifolds of compact Hermitian symmetric spaces
were classified by Takeuchi [T]. In the case of 3-symmetric spaces, [To] proves that if
N is a totally complex or half dimensional, totally real and totally geodesic submanifold
(with respect to J) of a compact 3-symmetric space (G/K, (,), o), then there exists a Lie
subgroup B of G such that N is expressed as an orbit of B. Moreover, we classified half
dimensional, totally real and totally geodesic submanifolds of some 3-symmetric spaces
of inner type. More precisely, let g* be a noncompact simple Lie algebra over R and let

* = b+m* be a Cartan decomposition of g* such that b and m* denote a Lie subalgebra
and a subspace of g*, respectively. Take a gradation

g =g, +g5 +go+or +os (97 #{0})

of the second kind on g* with the characteristic element Z € m* N gj. Define an inner
automorphism o of order 3 on the compact dual g = b 4+ /—1m* of g* by

2
o= Ad(exp ;v—lZ),

and put & = g7, the set of fixed points of o. Let G be a compact connected simple Lie
group with Lie algebra g and K the connected Lie subgroup of G with Lie algebra £.
Then we proved in [To| that expb-o0 (o = {K} € G/K) is a half dimensional, totally
real (with respect to J) and totally geodesic submanifold of (G/K,{(,),o). Here (,)
denotes a Riemannian metric on G/ K induced by a biinvariant metric on G, and therefore
(G/K,(,)) is a naturally reductive homogeneous space (see [KN] for the definition of
naturally reductive homogeneous spaces). By [G], a Riemannian 3-symmetric space
(G/K,(,),0) is naturally reductive if and only if (G/K,{(,),J) is nearly Kahlerian, and
naturally reductive Riemannian metric is unique up to a scalar multiple. Moreover,
we proved in [To] that every such submanifold of a compact irreducible Riemannian
3-symmetric space (G/K,{(,),o) of inner type with a naturally reductive metric (,) is
obtained by the above method if dim Zx # 0.

To complete the classification of half dimensional, totally real and totally geodesic
submanifolds of compact and naturally reductive Riemannian 3-symmetric spaces, the
paper deals with a half dimensional, totally real and totally geodesic submanifolds of a
Riemannian 3-symmetric space (G/K, (,), o) which satisfies one of the following condi-
tions:

(T1) G is a compact simple Lie group, o is inner and dim Zx = 0.

(T2) G = L x L x L where L is a compact simple Lie group, and o(X,Y,Z) =
(Z,X)Y) (X,Y,Z e L).

(T3) G is a compact simple Lie group of type D4 and o is outer.

More precisely, let g and € be the Lie algebras of G and K, respectively. According to
[To, Proposition 3.2], a half dimensional, totally real and totally geodesic submanifold N
of (G/K,{(,),0) is expressed as an orbit of some Lie subgroup B of G. Let b denote the
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Lie algebra of B. We call a pair of ((G/K,(,),0), N) of a simply connected Riemannian
3-symmetric space and a half dimensional, totally real and totally geodesic submanifold
a TRG-pair. Then we shall prove the following theorem.

THEOREM 1.1.  Let (G/K,{,),0) be a compact, simply connected and naturally
reductive Riemannian 3-symmetric space which satisfies one of the conditions (T1), (T2)
and (T3). Let N be a half dimensional, totally real and totally geodesic submanifolds of

(G/K,{,),0). Then ((G/K,{,),0),N) is equivalent to one of TRG-pairs listed in Table
1, 2 and 3.

Table 1. (G/K,{,),0) is of type (T1) and N =expb - o.

G K b
sp(4)
Es/Zs | {SU(3) x SU(3) x SU(3)}/{Zs x Z3}
su(6) ¢ su(2)
su(8)
Er|Z, {SUB) x (5U(6)/22)}/ 23
50(12) @ su(2)
Ey SU(9)/Z3 50(16)
s0(16)
Ey {SU®B) x Ec}/Zs
e7 @ su(2)
Fy {SU(3) x SU(3)}/Z3 sp(3) P su(2)

Table 2. (G/K,{,),0) is of type (T2) and N =expb - o.

G K b
(LxLxLY/AZ | ALJAZ (B {(X,X); X €1}
Z is the center of L and [ is the Lie algebra of L. A(x) := (z,z,x) (x € L).

Table 3. (G/K,(,),0) is of type (T3) and N =expb - o.

G K b
Spin(8) | SU(3)/Z3 | s0(3) & s0(5)
s0(3) & s0(5)
s0(7)

Spin(8) GQ

In §2 we shall recall some notions and facts of graded Lie algebras and affine Kac-
Moody Lie algebras.

In §3 we shall give a necessary and sufficient condition of the existence of a half
dimensional, totally real and totally geodesic submanifold in a Riemannian 3-symmetric
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space by using automorphisms of Lie algebras.

In §4 and §5, by making use of graded Lie algebras of finite kind, we shall deal with
the classification problem in the case (T1) (Theorem 5.4).

We shall devote §6 to the classification of half dimensional, totally real and totally
geodesic submanifolds in the case (T2) (Theorem 6.1).

In §7 and §8, by making use of an affine Lie algebra of type D4(3), we shall classify
half dimensional, totally real and totally geodesic submanifolds in the case (T3) (Theorem
8.5).

The author would like to thank the referee for useful advices.

2. Preliminaries.

2.1.

In this subsection we recall notions and some results on root systems of semisimple
Lie algebras.

Let g and t be a compact semisimple Lie algebra and a maximal abelian subalgebra
of g, respectively. We denote by g. and t. the complexifications of g and t, respectively.
Let A(ge,t.) be the root system of g. with respect to t. and put

9o ={X € g¢;[H, X] = a(H)X for any H € t.}. (2.1)

As in Helgason [H], we take the Weyl basis {F, € ga;a € A(ge, te)} of ge so that

[EOUE—O(] = O(,
[Eav Eﬁ} = Na,ﬁEa+Ba Na,ﬁ € R,
Nos=—-N_a_s. (2.2)

Here, using the Killing form of g., we identify t.* with t.. We define A,, B, € g by
Ay i=Fo—FE_o, Bai=v—1(Ea+E_a). (2.3)
LEMMA 2.1. (1) For any vV—1H € t and o € A(g., t.), we have

Ad(expV—1H)(Aqa) = cosa(H) - Ay +sina(H) - Ba,
Ad(expV—1H)(B,) = cosa(H) - By —sina(H) - A,.

(2) For any v—1H € t and o € A(ge, t.), we have

Z (2;)! (ad\/le)Qm(Aa) =cosa(H) - Aa,
m=0
Z (2;1)! (ad\/le)zm(Ba) =cosa(H) - By,

3
]
o
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m(ad\/le)Qerl(Aa) =sina(H) - By,

m( d\/le)2m+1(Ba) = —sina(H) - A,.

M i1

0

3
Il

PROOF. (1) For /—1H € t, we have
[V-1H,E,| = V-1a(H)E,.
Therefore we have
Ad(expV=1H)(E,) = eV 1M E, = [ cosa(H) + v~ Tsina(H)} E,. (2.4)

It follows from (2.3) and (2.4) that

Ad(expV—1H)(A,) = {cosa(H) + V—1sina(H)} E,

—{cosa(H) — V~1sina(H)}E_,
= cosa(H) Ay +sina(H) - B,.

Similarly we obtain
Ad(expV—1H)(B,) = cosa(H) - By —sina(H) - Aq.

(2) By (2.3), it follows that [/—1H, A,] = «(H)B, and [/—1H, B,] = —a(H)A,.
Hence we have

(adelH)zm(Aa) - (_1)m04(H)2mAa,
(adV/=1H)™" (Ba) = (1) a(H)*" Ba,
(adv=TH)*" " (A4) = (1) a(H)*™ !B,
(adﬁH)2m+l(Ba) — (_1)m+1 (H)27n+1Aa’
and (2) of the lemma is easily obtained by these equations. 0
2.2,

In this subsection we recall some results of Kaneyuki and Asano [KA].
Let g* be a noncompact semisimple Lie algebra over R. Let 7 be a Cartan involution
of g* and

g-=b+m" 7.|b:17 Tlmx = —1 (2.5)
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the Cartan decomposition of g* corresponding to 7. Let a be a maximal abelian subspace
of m* and let A denote the set of restricted roots of g* with respect to a. We denote
by IT = {aq,---,q} the set of fundamental roots of A with respect to a lexicographic
ordering of a. We call subsets {Ily, ITy,--- ,II,} of IT a partition of IT if II; # O,
11, # & and

nI=Iy,JUIU---uUll, (disjoint union).

Let IT and IT be fundamental root systems of noncompact semisimple Lie algebras g*
and g* respectively. Partitions {IIy, ITy,--- ,II,,} of IT and {IIy,II,--- ,II,} of IT are
said to be equivalent if there exists an isomorphism ¢ from the Dynkin diagram of IT to
that of IT such that m = n and ¢(I1I;) = II; (i =0,1,--- ,n).

Take a gradation of the v-th kind on g*:

g'=9-,+ - +got+--+g, g1#{0}
95, 0;] Caprg T(@y) =97, -v<p q<w (2.6)

We denote by Z the characteristic element of the gradation, i.e. Z is a unique element
in m* N g§ such that

g, ={X €92 X]=pX}, —v<p<w (2.7)

Let

= 9 ¢ =) 8

i=—v i=—v

be two graded Lie algebras. These gradations are said to be isomorphic if v = v and
there exists an isomorphism ¢ : g* — g* such that ¢(gf) = g (—v < ¢ <v). Then the
following holds.

THEOREM 2.2 (Kaneyuki and Asano [KA]). Let g* be a noncompact semisimple
Lie algebra over R and II a fundamental root system of g*. Then there exists a bijection
between the set of equivalent classes of partitions of II and the set of isomorphic classes
of gradations of g*.

The bijection in Theorem 2.2 is constructed as follows: Let {IIy, ITy,--- ,II,} be a par-
tition of I1. Define h;; : A — Z by

!
hio(a) := Z m; + 2 Z mj+---+n Z my, azZmiaieA. (2.8)
1

a; €11 o €I ap€ell, =

Then there is a unique Z in a such that a(Z) = hi(a) for all « € A. For a partition

{IIy, II},--- ,II,} we obtain a gradation g* = > g whose characteristic element

equals Z. This correspondence induces a bijection mentioned in the theorem.
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2.3.
Next, we recall the notion of an affine Lie algebra of type D4®. We denote by A
the generalized Cartan matrix of type D@

2 -1 0
A= -1 2 -3
0 —1 2

Let h be a 4-dimensional complex vector space. We choose linear independent systems
IV (A) ={m", 72", %"} Cbh, I(A) = {v,72,73} Cb*
so that
vj(v:") =ai; (aij : (i,7)-component of A). (2.9)

Let g(A) be the Lie algebra with the generators ¢;, f; (i = 1,2,3) and b, and with the
following defining relations:

[h,h/] =0 (h,h’ €h),

lei, fi] = 6i v’ (3,5 =1,2,3),

[h3ei] :’Yl(h)el (th), i:17273)a
]

[hafl :_Vl(h’)fl (hehv Z:1a233)7

) = 0. (2.10)

We call g(A) an affine Lie algebra of type D@, {ei, fi} Chevalley generators of g(A)
and b a Cartan subalgebra of g(A).

Next, we describe another construction of g(A4). Let g. be a complex simple Lie
algebra of type D4 and t. a Cartan subalgebra of g.. Let A(g,,t.) be the root system of
g with respect to t. as in subsection 2.1 and let {a, as, a3, a4} be a set of fundamental
roots whose Dynkin diagram is as follows:

O as

O o

Let v be an automorphism of order 3 on g. induced from the following automorphism o
of the Dynkin diagram of g.:
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17(011) = Oy, D(Otg) = (2, D(Oég) = a1, 17(014) = Q3. (211)

We denote by g; (i € Z3) the eigenspace of v with the eigenvalue £ (€2 = 1, £ # 1).
Since v is an automorphism of g. we can get a gradation of g.:

gc=09-1+85+ 91

We define an infinite dimensional graded Lie algebra £ (g.) by

ZL(gc) =P L(9c,i), L(gei) =t ®@g; CClt,t"] @ ge, (2.12)
i€Z

where C[t,t~!] denotes the Laurent polynomial ring with a variable ¢, and the bracket
operation is determined by

[PeX.QeY|=PQeX,Y] (P,QeCtt™], XY €g.).

Then we have a Lie algebra

Z(ge) = ZL(g.) @ CK & Cd, (2.13)

with the bracket [,] defined by

o X, 0 Y] =t gX,Y]+ %5”]-,0()(, Y)K,
(K, Z(g.)] = {0},

[d,t'® X]=it'® X,

where (,) denotes the normalized invariant form of g.. We choose root vectors e, (o €
A(ge, te)) of ge so that {eq,,e_n,;1 <@ < 4} constitute Chevalley generators of g, and

lease—a] =@, [ea,es] = teats, (2.14)

if a, 8, a+ 5 € A(ge,t.). Here we identify h* with h by (,). In order to construct
Chevalley generators of the Lie algebra £(g.), we set

0 := a1 + as + as,

Es:=eq, +ea0; +€0y, E3:=eq,,

Fy = €—a; t€—a; t€_qay, F3:= €—ay;

Eyi=e_g+&%e_po) +Ee_p2), F1i=—eq—Eenn) — Ee2(p),
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E:=t®FE, E=t"@0E  (i=2,3),
Fl = f71 ®F1, Fi = to ®FL (Z = 2,3),

t:=t.Ngp. (2.15)

Then it is known (see Kac [K]) that there exists an isomorphism from .£(g.) to g(A)
such that

Ei — €4, Fz — fz (l = 1,2,3)
Note that

h=~t+CK + Cd.
Define a homomorphism ¢, : -Z(g.) — g. (a € C*) by
ba(t' ® X) :=a'X. (2.16)

LEmMA 2.3 ([K]). (1) Every proper mazimal ideal of £(g.) is of the form (1 —
(at)*)Z(gc) (a € C).
(2) Kerga = (1= (a™'1)*).Z(gc)-

3. Existence of totally real totally geodesic submanifolds.

Let G be a compact semisimple Lie group and (G/K,(,),0) a simply connected
irreducible Riemannian 3-symmetric space with a naturally reductive metric (,). Let g
and € be the Lie algebras of G and K respectively, and let h(,) be the Killing form of g.
Since G is compact, the G-invariant metric of G/K induced by —h(, ) is positive definite
and naturally reductive. Therefore, throughout this paper we assume that

<a> = _h(v)' (31)

Moreover, in the remaining part of this paper, we use the following notation:

g" : the set of fixed points of an automorphism p of a Lie algebra g,
G* : the set of fixed points of an automorphism g of a Lie group G,

[, ]Ju : the U-component of [,], where U is a vector subspace of g.

Let p be the orthogonal complement of £ with respect to (,). Then by (3.1) we have
an Ad(K)- and o-invariant orthogonal decomposition g = €+ p of g. Define a linear
automorphism J, of p by

1 3
oly = —51dp + %JO. (3.2)
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Since J,2 = —Id, and Ad(k)J, = J,Ad(k) (k € K), the linear automorphism J, induces a
G-invariant almost complex structure J of G/K. We call J the canonical almost complex
structure of (G/K,{,),0). Note that (G/K, (,),J) is an almost Hermitian manifold.
Assume that there exists a connected totally real (with respect to J) and totally
geodesic submanifold N of (G/K, (,)) such that 2dim N = dimG/K. Since J is G-
invariant and there is ¢ € G such that the origin o belongs to g - N, we may assume
that o € N. We denote by V (V C p = T,G/K) the tangent space of N at o and set
b=V +[V,V],. Let m denote the orthogonal complement of b in g with respect to (, ).

PROPOSITION 3.1.  Let u be a linear automorphism of g defined by ule =1, pilm =
—1. Then u s involutive and

po = o’ . (3.3)

Conversely, suppose that there exists an involutive automorphism p satisfying (3.3). Then
N := G*" -0 (G": the set of fixed points of ) is a half dimensional, totally real and totally
geodesic submanifold of (G/K, (,),0).

PROOF. Since b is a Lie subalgebra of g and [m, m] C b (see [To]), a mapping p is
an involutive automorphism of g. It follows from (3.2) that

1 3 1 3
J|p :_§Idp+§JQ7 02|p :_iIdp_gJo

Since

and

1 1
po(J,X) = u< — X \/§X> = —J,X — ﬁx

2707 27 ) T 2 2
— —%(—JOX) - ?J(,(—JOX) = o’ p(JoX).
For X € ¢, it follows that o(X) = X and u(¢) = £. So, we have
o’ u(X) = p(X) = po(X).

Thus (3.3) holds for any X € g.
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Next, we suppose that there is an involutive automorphism p satisfying (3.3). Since
op(X) = po*(X) = p(X) (X €¢), we have p(t) = ¢, u(p) = p and

gt =g'net+g’np.

According to Sagle [S], if a subspace U of a tangent space at o of a naturally reductive
homogeneous space G/ K satisfies

U, U, cU, [UUUCU

then exp(U + [U,U]) - o is a totally geodesic submanifold of G/K. Hence it follows that
G" - o is totally geodesic. Furthermore, for X € g#* Np, we have

w(J,X) = %u (O‘(X) + ;)() = % (ﬂu(x) + ;M(X))

_ % <U2(X) + ;X> = —J,X.

Consequently, we obtain that
p=g"'Npad J,(g"Np), (orthogonal decomposition)

which implies that G* - o0 is a half dimensional, totally real and totally geodesic subman-
ifold of G/K. O

4. The case (T1).

In this section we use the same notation as in Section 2. Let (G/K,(,),0) be a
simply connected, compact irreducible Riemannian 3-symmetric space such that o is
inner and dim Zx = 0. Since o is inner, there exists a maximal abelian subalgebra t of g
contained in €. According to [G], 3-symmetric pairs (g, £) satisfying the condition (T1)
are given by

(eg,5u(3) @ su(3) & su(3)), (er,su(3) ®su(6)), (es,su(9)),
(es,su(3) D eg), (fa,5u(3) ®su(3d)), (g2,5u(3)). (4.1)

Note that if (g, ) = (g2,5u(3)), then (G/K, (,), o) is isometric to the standard 6-sphere
S6. Accordingly we deal with 3-symmetric pairs except for (ga, 5u(3)).

First, we construct a half dimensional, totally real and totally geodesic submanifold
by using graded Lie algebras. Let g* be a noncompact simple Lie algebra over R such
that the complexification g. of g* is simple. Consider a Cartan decomposition g* = b4+m*
and a Cartan involution 7 given by (2.5). We take a gradation g* = Z;:ﬂ, g, of the
v-th kind on g* as in (2.6) and we define an inner automorphism o of order 3 on the
compact dual g = b +m (m:=/—1m*) as follows:
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2w
0= Ad<exp 3\/—1Z>. (4.2)

Here Z denotes the characteristic element defined by (2.7). Since Z € m*, we have

go =bNgs+m" N,
g, to,=bN(g,+g-,)+m" N(g,+9~,), p=1--,u (4.3)

Then it follows from (2.7) and (4.2) that € := g coincides with

t=bngy+vV-1m*ngy)+ > {bn(g+g7,)+V-1(m N(gy+g",))} (44)

p=0 mod 3
We put

pr= > {bn(gp+e ) +V-I(m n(g+97,)}
p#Z0 mod 3

Vi= Y bn(g+l,)
p#Z0 mod 3

We= > V=I(m*n(g +g",)) (4.5)
p#Z0 mod 3

Then it is obvious that

bNp=V, p=V@W (orthogonal direct sum). (4.6)

By (2.6) and (2.7) we can see that [¢,p] C p and o(p) = p. Therefore the decomposition
g = £+ p is ad(t)- and o-invariant. Moreover the following lemma holds.

LEMMA 4.1.  Let p be the involutive automorphism of g defined by ple = Idp,
tlm = —Idw. Then

po = a’pu.

PROOF. Because v—1Z € m, we have pu(v/—1Z) = —/—1Z. Therefore, by (4.2)

we obtain
-1 2 1 2
pop” " = pAd| exp ?\/—12 p— - =Ad( exp ?,u(\/—lZ)
2 -1 2
= Ad eXp—?\/—lZ =0 " =o0". O

In the remaining part of this section, we shall prove the following theorem.



Totally real, totally geodesic submanifolds of 3-symmetric spaces 29

THEOREM 4.2. (1) Let g* = b+ m* be a Cartan decomposition of a noncompact
simple Lie algebra g* as in (2.5) and let g = b + /—1m* be the compact dual of g*.
Take a gradation g* = Z;:ﬂjg; on g* with the characteristic element Z € m* N g;
and set o = Ad(exp %HZ) Let G be a Lie group whose Lie algebra is g and let K
be a connected Lie subgroup of G corresponding to € given by (4.4). Then expb-o is a
half dimensional, totally real and totally geodesic submanifold of a compact Riemannian
3-symmetric space (G/K, (,),0).

(2) Let (G/K,{(,),0) be a compact Riemannian 3-symmetric space such that o is
inner and dimZx = 0. Then every half dimensional, totally real and totally geodesic
submanifold is obtained from a graded Lie algebra by the method described in the above

(1).

We note that (1) of the theorem is immediate from Proposition 3.1 and Lemma 4.1,
and so, we shall prove (2) of the theorem in the following.

Since G/K is simply connected, we may assume that G is centerless, K is connected
and the center Zx of K is isomorphic to Zs (see [G]). Then since ¢ = g7, there is
g € Zg such that 0 = Ad(g). Assume that there exists a half dimensional, totally
real and totally geodesic submanifold of G/K. Then by Proposition 3.1, there exists an
involutive automorphism p of g satisfying (3.3). As before, put

b:=g", m:=bt, V:i=bnp (4.7)

where | means the orthogonal complement with respect to (,). Since the pair (g,b) is
locally symmetric and [€, p] C p, we have

mm] b, [b,m]Cm, (b, V]CBNp=V,
mNne,Vicmnp=J,V, [mngJV]CV. (4.8)

Since o is inner, there exists a maximal abelian subalgebra t of g contained in £. Let
v —1tg be an element of t such that gy := expnv—1tg € Zk, go # e. We decompose

V—1ty to
V=ltg = V—=1t1 + V—1ta, V—1t; emne, /—1t, € by. (4.9)
Let Ay, Bo (@ € A(ge, te)) be as in (2.3). Since t C €, we have for any o € A(g,, t.)
A,, Bo€et, or A, B,€p,

So, we put

A i ={a € A(ge, te); Aa, Bo € B},
Ay ={a € Age, tc); Aa, Ba € p}.

Then
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g=t+ Y (RA.+RB.), t=t+ Y (RA,+ RB.). (4.10)

a€A(ge,te) aEAy
Replacing H in Lemma 2.1 with ¢y, we can see that for any o € Ay
a(to) = alt) + a(t2) € 22 (4.11)

because gy € Zk .
To prove Theorem 4.2 we prepare some lemmas.

LEMMA 4.3. For a € Ag, we have
a(ty), a(ts) € Z, a(t) = aftz) (mod 2).

PrOOF. Let

X = Z caXa

aEAg

be an element of ¢&. Here X, = aoAg +baBa, a2 +bs> = 1. We define a subset supp(X)
of A(ge,t.) by

supp(X) := {a € A(ge, te); ca # 0} (4.12)
First, we assume that X € bg. By Lemma 2.1 and (4.8), we obtain

Z é( dwﬁt1)2m+l(X) = Z cosinma(ty) - Yo € m,

|
= (2m + 1)! =,

> L( dmy/=Tt) " (X) = > casinma(ty) - Ya € be, (4.13)

|
m=0 (2m + 1)' €Ay
where Y, = o Bo — boAq. By (4.11), we get
sina(t]) = —sinma(tz), o€ A,

and it follows from (4.13) that

Z cosinma(ty) - Yo = Z cosinma(te) - Y, = 0.
a€Ag acAg

Consequently, we obtain

alty), alts) € Z, o €supp(X), X € bg. (4.14)
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Next, we assume that X € m N ¢ By the similar computation as above, we can see
that

Z cosinma(ty) - Y, € by, Z cosinma(te) - Y, € mnNe,

acAe a€Ae
and
a(th), a(te) € Z, aesupp(X), X emnt. (4.15)
By using (4.14) and (4.15) together with (4.11), the lemma is proved. O

LEMMA 4.4. exp2my/—1t; € Zg, exp2my/—1t; # e.

PROOF. Note that

go = expmy —1tg = expmv—1t; - expmV/ —1t9,
go? = exp 2mV/—1tg = exp 2w/ —1t1 - exp 2w/ —1ts.
By substituting 2t; or 2ty for H in Lemma 2.1, it follows from Lemma 4.3 that
exp 2wV —1t1, exp2mV—1ty € Zk.
Suppose that exp 2m/—1ty # e, then Ad(exp2m\/—1ts) coincides with o or o2 since
Zy = Zs. Since b is a Lie algebra and /—1ty € b, we have o(V) = V. However, this

contradicts the fact that IV is totally real with respect to J. So, we obtain exp 2my/—1ty =
e and

exp 2my/—1t; = exp2nvV/—1ty = go® € Zx, go° #e. 0

By Lemma 4.4, it follows that Ad(exp 2my/—1t;) coincides with o or o2. Therefore,
by putting h = t; or —t;1, we see that there is a vector v/—1h € g such that

V—=1lhemnt, a(h)€2Z, ac A (4.16)
and
Ad(expmv/—1h) =o. (4.17)
For any o € A,, we have by Lemma 2.1 and (4.17) that
3a(h) €2Z (a € Ap).

For k € Z, we put
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acA; (k)
Ap(k): ={a € Aga(h) =2k}, &:= > (RA.+ RB.). (4.18)
aGAe(k)
Note that
Ap= | Aelk), A, = | (Ai(k) U Az(R)).
keZ keZ
LEMMA 4.5.

V=Y Vn(pi(k)+pa(=k), be=(bN) &> b (k+Ey).
keZ keZ

PRrROOF. Let

X = Z caXa

a€A,

be an element of V, where X, = aoqAq + baBa, o> + bo? = 1. Tt follows from Lemma
2.1 and (4.18) that for any s € R

o0

Z %(ad sx/jlh)zm(X) = Z cq cossa(h) - X,

m=0 a€A,

:Z{ Z cacossa(h) - X, + Z cacossa(h)-Xa}

k€EZ N aEA (k)

acAs (k)
2 2
= Z { Z cacoss<3 +2kz) - Xo + Z cacoss(3 —2k> -Xa}
k€Z ™ aeA, (k) acAs(k)
2
= Z coss<3 —|—2k> - X,
keZ

where

X, = Z CoXo + Z CoXe.

acA (k) a€la(—k)

By (4.8), each (ady/—1h)?™(X) is contained in V, therefore we have
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2
Zcoss(g+2k) - XpeV

for any s € R. Consequently, we obtain Xy € V for any k € Z.
Next, let

W= Z caWa

aEAy

be an element of be, where W, = aqAq + baBa, ao® + bo? = 1. By the same argument
as above, we can see that

Z cos 2ks - Wy, € by,
keZ

for any s € R. Here

Wy = Z caWy + Z caWy.

acAg (k) a€Ay(—k)

Consequently we have Wy, € bg. O
Under the same notation as in the proof of Lemma 4.5, we obtain by (4.8)

[V=1h, X;] = (; +2k;)< S ocYa— Y caYa> €LV,

acA; (k) a€Ay(—k)

[V=1h, W] = 2k< Yooelu— Y caTa> emne, (4.19)

a€Ag (k) a€Ap(—k)

where Y, := aoBo — boAa (@ € Ap), Ty := aqBo — bo Ao (o € Ap). We denote by
g* = b+ +/—1m the noncompact dual of g and put

\/—lYk::\/—1< Z coYo — Z caYa) ev—=1J,V,
acA (k) a€Ay(—k)
V=T, = ( Z caTy — Z caTa) emnt. (4.20)
OéEAt(k) OéEAg(*k)

Then, it is obvious that for any k € Z

X, V=1Yy, Wi, V—1T) € g".
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LEMMA 4.6. For any k € Z, we have

adh (Xj +V-1Y}) = — <§ + 2k> (X + V1Y),

adh (X —V=1Y;) = <§ + 2k> (Xx — V1Y),

adh (Wi + V—1Ty) = —2k(Wj + vV—-1T),
adh (Wy, — V=1Ty) = 2k(Wj, — V—1T).

PrOOF. By (4.18) and (4.20) we have

[ﬁh,ﬁ}’k]:ﬁ{\/fm, Y oWt YO caya]

acA; (k) a€Ay(—k)

=—V-1 Y aeaXa+V-1 Y alh)caXa

a€A; (k) acAy(—k)
2
= _,/_1(3 - 2k> ( Y caXa— > caXa)
a€ A (k) a€la(—k)
2

Therefore, it follows from (4.19) that

[h, X}, £V-1Y}] = —ﬁ(g = Qk) (Vi FV-1Xy) = :F@ + 2k> (X £V—-1Y3).

Similarly, we obtain
[h, Wi £+ v 71Tk] = :FQ]C(Wk + 71Tk). O

Now we are in a position to prove Theorem 4.2.

PROOF OF THEOREM 4.2. As mentioned below Theorem 4.2, it is sufficient to
prove (2) of the theorem. By Lemma 4.5 and Lemma 4.6, all the eigenvalues of ad h :
gt — g* are

2
0, +2k, j:<3 + 2k> (for some k € Z).

Put Z = %h € v—1Im C g*. Then the eigenvalues of ad Z are contained in Z and
therefore Z is a characteristic element of a graded Lie algebra. Moreover, by (4.7) and
(4.17), we have
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2
N =expb-o, o= Ad(exp;\/—1Z>,

and (2) follows. O

As in [T], we call a pair ((G/K,{,),0),N) of a simply connected Riemannian 3-
symmetric space and a half dimensional, totally real and totally geodesic submanifold
a TRG-pair. Moreover we call a TRG-pair constructed from a graded Lie algebra g* =
>; 8 a TRG-pair associated to g* =) . g;. Let
g=9-,+ - +g+ - +a,
g=g,+-+o+ -+
be two graded simple Lie algebras which have Z € m* and Z € m* as characteristic ele-
ments, respectively. Let ((G/K, (,),o),N) and ((G/K,{,),5),N) be two TRG-pairs as-
sociated to {g} }_,<i<, and {g} }—s<i<p, respectively. TRG-pairs ((G/K, (,),0), N) and
(G/K,{,),5),N) are said to be equivalent if there exists an isometry ¢ : (G/K, {,)) —
(G/K,{(,)) such that ¢(N) = N. We note that if g* = >.7_  g¢ is isomorphic to
g* =Y g, then (G/K,{,),0,N)) and ((G/K,{,),5,N)) are equivalent (cf. Re-
mark 5.4 of [To]).

5. Classification of TRG-pairs satisfying (T1).

In this section we shall classify the equivalent classes of TRG-pairs satisfying the
condition (T1). Then, considering Theorem 4.2, it is sufficient to determine the isomor-
phism classes of simple graded Lie algebras such that dim Zx = 0.

Let g* be a noncompact simple Lie algebra such that its complexification is simple,
and let g* = b + m* be a Cartan decomposition of g*. Let a be a maximal abelian
subspace of m* and t* a Cartan subalgebra of g* such that a C t*. We denote by A and
A(g*., t*.) the sets of roots of (g*, a) and of (g*_, t*.), respectively. Moreover, we denote
by

1I = {0417"' ,Oél}, H(g*cvt*c) = {617" : 7571}

fundamental root systems of A and A(g*_, t*..), respectively, with respect to a compatible
orderings of A and A(g*_,t*.). Put

t:=+v—-la+t"Nb.

Then t is a maximal abelian subalgebra of the compact dual g = b+ m (m := /—1m*)
of g*. We define h; € a and H; € /—1t by

ai(hj) = 6y, Bi(Hj) = dsj, (5.1)

and denote the highest root of A by
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l
6:= ijaj, mj € Z. (52)

=1

First, by applying Wolf and Gray [WG, Theorem 3.3] to restricted root systems, we shall
prove the following proposition.

PROPOSITION 5.1.  Let W (g, b) be the Weyl group of the symmetric pair (g,b) and
V/—1h a vector in /—1a. Suppose that an inner automorphism Ad(exp 27’T\/—7lh) of g is
of order 3. Then
(1) If A is a reduced root system, then there exist w € W (g, b) and /—1t € \/—1a such
that 1v/—=1h = fw(v/=1h) + v/—=1t, Ad(exp 2m\/—=1t) = Id, where h is either

h=h; (m;=1,2, or3) or (h;+hj) (m; =m;=1).

(2) If A is a nonreduced root system, then there exist w € W(g,b) and /=1t € v/—1a
such that 3+/=1h = fw(v/=1h) + /=1t, Ad(exp 2rv/—1t) = 1d, where

h:hk (mk:2)

PrROOF. By Lemma 2.1, we can see that for /—1H € t an automorphism
Ad(exp ZX/—1H) is of order 3 if and only if

Bi(H)eZ, 1<i<n. (5.3)

Similarly, for v/—1h € v/—1a an automorphism Ad(exp 2%v—lh) is of order 3 if and only
if

ai(h)eZ, 1<i<l. (5.4)

(1) Considering (5.3) and (5.4), by applying the argument of the proof of [WG,
Theorem 3.3] to this case, we can prove that there exist w € W(g,b) and v/—1t € v/—1a
such that

%ﬁh = éw(\/jll_z) +V-1t, at)eZz, 1<i<l (5.5)

Here h is one of the following form:

h=h; (m;=1,2 0r3) or (h;+h;) (mi=m;=1).

By Lemma 2.1, we have Ad(exp 27v/—1t) = Id, and (1) is proved.

(2) Note that A is of type bc and m; = 2 for all ¢ in this case. Furthermore the
Dynkin diagram of type bc is isomorphic to that of type b and there are not o; and «;
(¢ # j) with m; = m; = 1 in a fundamental root system of type b. Then by the same
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argument as in the proof of (1), it follows that there exist w € W(g, b) and \/—1t € v/—1a
such that

%\/Tm - éw(ﬁhk) +VIE ) € Z,

for some k and for all 4. This proves (2). O

LEMMA 5.2. Let h € a be one of h; (m; =1,2) and h; + h; (m; =m; =1). Then
the center of the fized point set of Ad(exp 2%\/_1}0 in g is non-trivial.

PrOOF. It follows from Theorem 2.2 and (2.8) that there exists a graded Lie
algebra of the first or the second kind:

g*:giu+...+gé+...+gz’ v=1or?2

whose characteristic element coincides with h. Then the fixed point set of
Ad(exp 2Fv/—1h) equals

98 nb+ v 71(98 n m*)a

which contains v/—1h as central element. O

Next, we consider the case where h = hy, my = 3. In this case the following lemma
holds.

LEMMA 5.3.  Suppose that oy € II with my = 3. Then the center of the fized point
set of Ad(exp Z\/—1hy) in g is trivial.

PROOF. It is known that there is aj such that m; = 3 if and only if IT is of
exceptional type. Therefore a pair (g*, b) is one of the following (cf. Araki [A], [H] and
[Sal]):

(e6(6),5P(4)),  (e6(2),5u(6) D su(2)), (er(r),5u(8)), (er(—5),50(12) © su(2)),
(?8(8)750(16))7 (?8(—24),2769511(2))7 (f4(4),5p(3)@5u(2)). (5.6)

Moreover, in the Satake diagram of (g*,b), there exists a unique g;, € II(g*,,t*.) such
that

5ik|a = ak7 In‘ik = 3
Here we denote the highest root of A(g*,., t*,) by § := Y or nif;. Since for any 3;, @ # iy,
Bila = 0 or B|q = «j for some j # k,

it follows that
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Bi(he) =0, By, (hx) = ar(hy) = 1.
Hence, by (5.1), we have hy = H;,. Finally, by the Table in [WG, Theorem 3.3], we can
check that the center of the fixed point set of Ad(exp ZF+/—1H;,) is trivial. O

Now, we prove the following theorem which classifies the TRG-pairs satisfying (T1).

THEOREM 5.4. Let (G/K,(,),0),N) be a TRG-pair such that o is inner and the
center of € is trivial. Then the equivalent class of ((G/K,{,),0),N) is associated to one
of isomorphism classes of simple graded Lie algebras listed in Table 4.

Proor. By Theorem 4.2, we may assume that ((G/K,{(,),0),N) is a TRG-pair
associated to

g=g-,+-+g+-+a,

whose characteristic element is Z € a C m* N gj. Then we have o = Ad(exp 2F/=1Z).
By (4.4) and the fact that t* C gf, we obtain t C £ and v/—1Z € t. Since the center of ¢
is trivial, we may assume that G is a centerless exceptional Lie group and not of type G»
(cf. (4.1)). It follows from Proposition 5.1, Lemma 5.2 and Lemma 5.3 that there exist
hi € a, w € W(g*,b) and t € a such that my = 3, Ad(exp 27y/—1t) = Id and

1 1
g V —1Z = gﬂ)(\/ —1hk;) + V _1t
Therefore we have
2w N 21 -1
o =Ad| exp gw(\/flhk) =wo Ad| exp ?\/flhk ow T,
where @ denotes an element of Int(b) such that @|q = w. Put v := Ad(exp ZF/=1hy).
Then it is easy to see that
w(b)=b, t=w(g"), (5.7)

and hy is a characteristic element of a graded Lie algebra of the third kind (see Theorem
2.2). More precisely, the gradation is corresponding to a partition

II =IIyull,, II = {o}.

Let K be the connected Lie subgroup of G with Lie algebra g”. Then, it follows from

(5.7) that a TRG-pair ((G/K,{,),0),N) is equivalent to ((G/K,(,),v),expb -0). As

stated in the proof of Lemma 5.3, (g*,b) is one of pairs in (5.6). Moreover, using the

classification of the Satake diagrams in [A] or [H], we can easily get oy with my = 3.
Now, suppose that g is of type es. Then, by (4.2), a pair (g, ) is one of
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(es,5u(9)), (es,su(3) P eg).
Moreover, it follows from (5.6) that (g*,b) is one of
(eg(—24), 67 D 5uU(2)), (eg(s),50(16)).
The Satake diagram of eg(_24) is as follows:

fa

Jo B7 Bs Bs Ba B3 B

In this case, the Dynkin diagram of IT is of type f4:

O—0O0—=—0—70

(€51 (&) (%] Qg4

Here
a1 = Bslay, @2 =Frlay @3 =Bslas = Bila-
It is well-known that
6 = 201 + 3an + das + 20y,
and so o is conjugate to v = Ad(exp 2?”\/—71h2) Noting that he = H7, the Lie algebra

t is isomorphic to su(3) @ eg (cf. the Table in [WG, Theorem 3.3] and Theorem 5.15 of
Chapter X of [H]). Hence, in this case, we have

(g*a b7 g, E) = (88(724)5 e7 S¥ 5u(2)7 eg, 5u(3) S2) e6)7
and I} = {as}.
Next, we consider the case g* = eg(s). The Satake diagram of eg(g) is as follows:

In this case we have a; = 3;, 1 < i <&, and

0 = 2a1 + 3ag + 4dag + 6y + das + dag + 3ar + 200.

Therefore, o is conjugate to one of
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o

O—O—"CO0O—C0O0—0O0—0——=0
B B7 Be Bs Ba B3 B

v i= Ad<exp 2;\/71h2>, Vo 1= Ad(exp 2;\/71%)
Noting that ho = Hy and h7 = Hr, the Lie algebra ¢ is isomorphic to
gt =su(9) or g”? =su(3) P eg.
Hence (g*, b, g, £) is one of
(es(s),50(16),es,5u(9)), (es(s),50(16), es, 5u(3) @ eg).

In the case where g is one of type ¢g, ¢7 and f4, by the similar argument as above, we
can get all (g*,b,g,8). We list (g*,b), II, II; and (g,¥¢) in Table 4. O

Table 4. The case where ¢ is inner.

(g*,b) II=1I,ullL | I (9,0
EI (¢6(6), 50(4)) Es {ou} | (e6,5u(3) ® su(3) & su(3))
EIT (eg(2), 5u(6) © s5u(2)) Fy {az} | (e6,5u(3) @ su(3) ®su(3))
EV (e7(7),5u(8)) E; {as} (e7,5u(3) ® su(6))
EVT (e7(_5),50(12) © s5u(2)) F, {az} (e7,5u(3) & su(6))
EVIII (eg(s),50(16)) Eg {az} (es,5u(9))
EVIII (eg(s),50(16)) Eg {a7} (es,5u(3) @ eg)
EIX (eg(—24),¢7 © 5u(2)) Fy {az} (es,5u(3) @ ¢g)
FI (§4(4),5p(3) & su(2)) £y {az} (F4,5u(3) & su(3))

REMARK 5.5. In the above table, we use the numbering of simple roots given in
[H, p.477].

6. The case where G =L X L X L.
In this section we classify a TRG-pair ((G/K, (,),0), N) such that
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G=LxLxL (L:acompact simple Lie group), o(z,y,2)=(z,z,y) (x,y,2z € L).

Then we have
t=g" ={(X, X, X); X €1},

where [ denotes the Lie algebra of L. Let p be the orthogonal complement of £ with
respect to (,). We denote by V' C p the tangent space of N at o = {K} and put
b=V +[V,V]e. Then as stated in Section 3, the orthogonal complement m of b satisfies
[m,m] C b. So, b is conjugate under Aut(G) to one of the followings:

(1) b=1b1 ® bs @ b3. ([,b;) is a locally symmetric pair.

(2) b=0b1®{(X,X); X €1}. (I,b1) is a locally symmetric pair.

B)b=Db1 @b (,b;) (i =1,2) is a locally symmetric pair.

4Hb=baladl ([,b1) is a locally symmetric pair.

(5)b=1®{(X,X); X €1}.

The Case (1): In this case, an involutive automorphism p of g such that gt = b is
given by

(X, Y, 2) = ((X), p2(Y), u3(2)) (X, Y, Z €1),

where p; : [ — [ denotes an involutive automorphism of [ satisfying [# = b; (i = 1,2, 3).
Assume that p satisfies (3.3). Then for (0,0, X) € g (X # 0) it follows that

UQN(anvX) = (07N3(X)’0) = (,ul(X)v()?O) = MU(()?O?X)'

This means that X = 0. Therefore there is no involutive automorphism satisfying (3.3)
in this case.

The case (2): Let py be an involutive automorphism of [ such that " = by. It is
easy to see that an involutive automorphism

of g satisfies (3.3) if and only if
(11(2),Y,X) = (Z,Y, (X)),

ie. pu1(X) =X for any X € [. So, in the case (2) there is no TRG-pair.
By a similar computation as above, we can see that there is no TRG-pair in the case
(3) and (4).

The case (5): In this case an involutive automorphism g of g such that gt = b is
given by

w(X,Y,2) = (X,Z,Y).
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It is easy to show that p satisfies (3.3).

Consequently we obtain the following theorem.

THEOREM 6.1. Let ((G/K,{,),0),N) be a TRG-pair such that g =B [. Then
it 1s equivalent to a TRG-pair

((G/Ka <7>a0)aepr ! O),

where b =1 {(X,X); X € [}.

7. Constructions of some TRG-pairs for the case (T3).

In the remaining part of this paper we use the same notation as in Section 2. By
making use of an affine Lie algebra of type D4(3)7 we shall give examples of TRG-pairs
((G/K,{,),0),N) such that G is of type D4 and o is an outer automorphism of G. Let
g be a compact simple Lie algebra of type 04 and g. the complexification of g. Let

L(ge) =P Z(8c,i), L(ge) = L(ge) + CK + Cd

i€Z

and ¢, be as in Section 2. We define mappings &; : j(gc) — j(gc) (i = 1,2) by the
following relations:
G1(Er) =EB1, a1(F) =R, a1(E) =E;, a1(F)=F (j=23),
Go(Es) = EBs,  G2(Fs) = &Fy,  62(Bx) = By, 62(Fy) = Fr  (k=1,2),
Gi(H)=H (Heh=t+CK+Cd, i=1,2), (7.1)
where €3 = 1 (£ # 1). It is easy to check that &; (i = 1,2) preserves a defining relations
(2.10). Therefore we can extend & to an automorphism of Z(g.) (and to -£(g.)). Then

the following holds (see Theorem 8.6 of [K] and Theorem 5.15 of [H], Chapter X. Also,
see [G], [WG]).

PROPOSITION 7.1.  Define a mapping o; : g — gc (1 = 1,2) by
¢p100; =0;0¢1.
Then o; is a well-defined outer automorphism of order 3 on g.. Conversely, any outer
automorphism of order 3 on g. is conjugate within Aut(g.) to one of o; (i =1,2).
Furthermore, g°* and g°2 are generated by {F;, F;; i = 2,3} and {F;, F;; i =1,2}
respectively, and

g%t =go, @72 =su(3).

Facrt. (1) The Dynkin Diagram of a generalized Cartan matrix A of type Dy® is
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as follows ([K]):

O—O&0

71 Y2 Y3

(2) Put 6y := 22 +v3. Then we have 6y|; = 6 = —n|; ([K]). Furthermore, we have
Yoli = a1, v3lp = e

(3) By the definition of v, we have v = ¢; and g5 = g”* = Z(g.,0).

For any root v of .Z(g.), we denote the root space of v by 2, and define a root ¢
of Z(gc) by

5 = 00+’Yl.

By the above Fact, we get 6]; = 0.

PROPOSITION 7.2.  Z(g.,1) (resp. ¢1(Z(ge,1))) is an irreducible representation
space of gg with the lowest weight —0 and with the lowest weight vector Ey (resp. Ei).
Similarly, £ (ge, —1) (resp. ¢1(ZL(ge, —1))) is an irreducible representation space of gg
with the highest weight 0 and with the highest weight vector Fy (resp. Fy).

Moreover we have the following root space decompositions of £ (ge, £1) :

g(gw 1) = ZLs—0, + g’YlJr’Yz + gts*’yz + 25+ $5+’Y2 + $5+72+’Y3 + Zs+0,,
f(gc, 71) = $*5+90 + "%—(’Yl-ﬁ-’yz) + 3*54”72 + 25+ f—(ls-‘r’)’fz)

+ L (542t73) T L (5400)-

In particular, the highest weight of £ (gc,1) is 6 = (8 + 60o)|;, and the lowest weight of
L(ge,—1) is —0 = —(0 + 0)|;-

PrOOF. The early part of the proposition is immediately from Proposition 8.3 of

[K].
Let

B+ivp<j<a
be the ~;-series through 8. Then it is known that
p+a=-B8("). (7.2)

Using (7.2) and the fact that gg is generated by {E;, F;; i = 2,3} and .£(g., £1) are
irreducible representation space of gg, we can show the latter part of the proposition. [

Now, we give some examples of TRG-pairs. Let p; be an involutive automorphism
of g. (and g) satisfying the following relations:
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lul(e()u) = €ay, /Ll(eaz) = €ay, .ul(eag) = €ay>

:u’l(e—al) =€—a;; M1 (e—az) = €—ay; ul(e—a3> = €—qy-

(7.3)

ProrosiTION 7.3. ((G/K,{,),01),expght - 0) is a TRG-pair. In particular, we

have gt = so(7).

PROOF. In this case we may assume that

ﬂ1(€a1+a2+a3) = €ajtaztaqs M1(€a2+a3+a4) = Castaztaqs

Ml(e—(a1+a2+a3)) = €—(a1taz+tas) Ml(e—(a2+a3+a4)) = €—(aztas+as)-
Then by (2.15) and (7.3) it is easy to see that
m(Ei) = By, m(F)=F (i=23).
Put

X:i=m (El) = €_(ar+as+tas) T ge*(a2+a3+a4) + 526*(061+042+C¥3)7

2
Y= pi(F1) = —€a;+astas — § Caztastas — E€artastas-

(7.4)

(7.5)

Since v(X) = €2X, v(Y) = £Y and 07 = v, we have X € g = ¢1(Z(ge, —1)) and

Y € g1 = ¢1(Z(gc, 1)). More precisely, since
O(=a1+az+az)=a; +as+ag=ay+as3+as ont,
it follows that
X € 01(L(5+05)) C 01(L(ge, —1)), Y € 01(Ls40,) C 01(L (g 1))-
By (7.5), (7.6) and Proposition 7.2, we obtain

p1(01(Z (8, 1)) = ¢1(Z (e, 1)),

(7.6)

and so o1 o 11 = p1 0 012, which concludes that ((G/K, (,),01),expgh! - o) (o = {K}) is

a TRG-pair. We note that g'* = s0(7) (cf. [H], [G]).
Put
Xy =¢€q, Xoi=e€qn,, X3:=e€q;+e€a,,
Yl =€_ay, }/2 =€y YS = €_qj + €—ay

Xo = € (ar1+astasz) = C—(ar+aztay)s Yo := €ar+ast+asz — €arjtastag-

O
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According to Theorem 5.15 of Chapter X of [H], there exists an (outer) involutive auto-
morphism po of g satisfying the following relations:

p2(Xo) = Xo, pa(X1) = X1, pa(Xo) = —Xo,  pa(Xs) = X,
p2(Yo) = Yo, p2(Y1) =Y1, p2(Ye) =Yy, pa(Ys)=Ys. (7.7)
ProproSITION 7.4.  ((G/K,{,),0),expgt? - 0) is a TRG-pair. In particular, we
have gt? = 50(3) @ so(5).

PROOF. By (7.7), it is easy to see that
po(ar) = a1,  pa(az) =z,  p2(asz+ o) = az + ag.
Since 122 =1 and as — a4 is perpendicular to o, as and asz + oy, we obtain
p2(on) = o1,  po(az) = a2, po(as) = a. (7.8)
From (7.7) and (7.8), we may assume that

M2(eia1) = €tay, MQ(eiocg) = —€4ay; M2(eia3) = €tay,

/~L2(ei(a1+az+a3)) = TCi(an+astas)s ﬂQ(ei(az+as+a4)) Tt (agtaztay):

Then we can easily check that

p2(Eo) = By,  po(Es) = —Es, po(Er) =-X,
po(Fo) = Fo, po(F3) = —F;, po(Fr)=-Y, (7.9)

(see the proof of Proposition 7.3 for the definition of X and Y'). Then Proposition 7.2
shows that pa(¢1(Z(ge,1))) = ¢1(L(ge, —1)) and o 0 g = pa o 012, Consequently, we
obtain a TRG-pair ((G/K,{(,),01),exp g2 - 0). Note that gt2 = s0(3) @ s0(5). O

Next, suppose that ¢ = o3. Since eq,;, €—4, (1 < i < 4) constitute Chevalley
generators of g., there exist involutive automorphisms vy and wy of g. satisfying the
following relations:

V0(€as) = €ass  V0(Cas) = €ays  V0(€ay) = €ays

1/0(67042) = €—ay; 1/0(67044) = €—ay; Vo(e*al) = €—as;

wolen,) = —€_q, (1<i<4). (7.10)

PROPOSITION 7.5.  Put u3 :=vgowqg. Then ((G/K,(,),02),expgHs -0) is a TRG-
pair. In particular, we have gi's = s0(3) @ s0(5).

PrOOF. By (7.10), we get



46 K. ToJo
wo(h) = —h,  het, (7.11)

and by using the Jacobi identities, we can check that

Heau [6(12’ 6043]]7 [e—an [e—azv 6_(,3]” = a1 +ag + as,
Heau [eaw 6044]]7 [e*au [6702’ 67044”] =y + g+ g,
Heas.v [ea2v 6a4]]7 [670137 [€,a2, 67044]}] = a2 + a3 + 04. (7'12)

Considering (7.10) and (7.11) together with (7.12) we obtain
wo(eg) = —e—g, Wo(eﬂ(e)) = —€_5(0)s W0(€172(0)) = —€_p2(0)-
Then we can show that us satisfies
us(Ey) =Fy, us(E;)=—-F;, i=2,3. (7.13)

Because F;, F; (i = 1,2, 3) constitute Chevalley generators of j(gc), the vectors F;, F;
(i =1,2,3) generate g.. Consequently, it follows from (7.13) that pg is involutive and

020 M3 = [3 © 022,
and hence ((G/K,{,),02),exp g"3-0) is a TRG-pair. By a dimension argument, it is easy

to see that gt = s0(3) @ s0(5). O

8. TRG-pairs satisfying (T3).

Let G be a compact simple Lie group of type D, and o an outer automorphism of
order 3 on G. In this section we shall prove that any TRG-pair ((G/K,{(,),0),N) is
equivalent to one of TRG-pairs described in Propositions 7.3, 7.4 and 7.5.

First, we consider a Riemannian 3-symmetric space (G/K,{(,),01). In this case
t = g7 (= gg) is generated by

E27 E37 FQ; F3a
and isomorphic to g (see Proposition 7.1). Suppose that there exists a half dimensional,
totally real and totally geodesic submanifold of (G/K,(,),01). Then, by Lemma 3.1,
there exists an involutive automorphism p of g such that
Ho1 = 0'12M.

Let X be in Z(g¢,1). Then

o121 (X) = po1¢1(X) = pd161(X) = Eugr (X)),
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that is
o1pup1(X) = §2N¢1(X)-
Then since v = 07 and g, = ¢1(Z(ge, £1)), it follows that
191(ZL(ge; 1)) = o1(L(ge, —1)). (8.1)
By (8.1), we can see that the mapping i : -Z(g.) — -Z(g.) defined by
ptoX)=t"ouX), t'eXec.L(g.,i) (8.2)
induces an automorphism of #(g.). Since ¢, o i = o ¢1, Lemma 2.2 shows that
(1= 1)2(gc) = (1 - °)-Z(gc)- (8.3)

Since €22 gy and p? = 1 (on ), it is known that ple is conjugate within Int(€) to one
of the following:

18— TI(EZ):EQa T1(F2):F2, TI(EB):_EB» 7’1(F3):—F37

To=1Ide : € — L.

Hence we may assume that ple = 7; (i =1 or 2).
LEMMA 8.1. ﬂ(El) IS $7(5+9o)a [L(Fl) € Lsio,-

PROOF. By Proposition 7.2, the vector F; is the lowest weight vector of Z(g., 1).
Since € = gg and p|e = 71 or 7o, it is easy to check that ﬂ(El) is the lowest weight vector
of Z(ge, —1). Therefore it follows from Proposition 7.2 that ji(E;) € ZL_(5+0,)- Similarly
we have ﬂ(ﬁ'l) € Lsio,- O

We put

t® Xo, = (1), t7'® X_g, = fi(Er),
and choose a, b € C, t*' @ Hy € L1 so that

(adt ® Hy)*(Ep) = t°F,,  (adt™' @ H_)*(Fy) =t F,

t® Hy = alBy, [Ey, [Ea, Blll, ¢ ® Ho = b[FY, [Py, [Py, F3]]). (8.4)
It follows from (8.2) and (8.4) that

(1 = t%)Ey) = fi(Ep) — i(t*Ey) = By — i((adt @ Hy)?(Ey)), (8.5)

and
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it ® Hy) = alf(Ey), [i(E2), [A(E2), i(E3)]]
=alt™' @ X_g,, [Fa, [E2, £E5]]].

Since t 71 @ X_g, € Z_(516,), We can see that 4(t ® Hy) € £_s and there is ¢ € C such
that

pt@H ) =c-t '@ H_. (8.6)
Considering (8.5) and (8.6) together with (8.3), we obtain
(1= t3)Ey) = By — P(adt ™ @ H_)?(Ey) € (1—t3).%(g.),
and thus
AadH_)3(Ey) = By, Aladt™ @ H_)3(Fy) =t Ey. (8.7)
Now we are in a position to prove the following lemma which is related to the

uniqueness of TRG-pairs.

LEMMA 8.2.  Let Aute, (g.) be the set of automorphisms of g. which preserve €.
If there exists an involutive automorphism u' : g. — @. such that ple, = p'le, and
W ooy =o120u, then ' is conjugate to pu under Aute_(g.).

PROOF. By the same argument as above, there are an automorphism /i’ of Z(g.)
and s € C'* satisfying the following:
grofil =p'odr, ((1-)ZL(g)) = (1-1)L(ge),
W(E) = wE;), p(F)=pF) (i=23),
p(E) =spu(Er) =s- X _g,, p'(F1) =5 "p(F1)=s"Xg,. (8.8)

Moreover, by (8.7) and (8.8), we have

B ((1—t3)Ey) = By — s°A(adt ™' @ H_)?(E»)

=By = st By € (1-19)Z(g.),

and so 53 = 1.
Since Ej;, F; (i = 1,2,3) constitute Chevalley generators of g(A4) = .Z(g.), we can
get an automorphism ¢ of Z(g.) and of Z(g.) satisfying the following:
G(Ey) = sEy,  ¢(Fy) =s'Fy,

P(E;) = E;,

@
o(Fy) =F;, (i=2,3). (8.9)
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Indeed,
@ = (52)F, (k=1,20r3), (8.10)

because s® = 1. It follows from (8.4) and (8.9) that
ptrteoH )=t H_,
so we obtain
PR X ) =5t @ Xy, (8.11)
From (8.10) and Proposition 7.1 we have
P((1=19)L(ge) = (1 - 9)L(ge),

hence there exists an automorphism ¢ of g. such that po¢; = ¢1 0 @. Using (8.8), (8.9)
and (8.11), it is easy to see that ¢ € Aute,(g.) and

pop=ypop. O

Next, we suppose that ¢ = o5. In this case, &€ = g2 is generated by {F;, F;;i = 1,2}
and

£ = su(3). (8.12)

Suppose that there exists an involutive automorphism x of g such that p o oo = 032 o p.
By using the classification of symmetric spaces, we know that g# is isomorphic to one of
50(7), u(4), s0(3) ®so(5) and s0(4) ®so(4). Since dim G/K = dim g — dim ¢ = 20 and the
possibilities of the dimension of g are 21, 16, 13 and 12, the dimension of # must be
11, 6, 3 or 2. Therefore it follows from (8.12) that dim &* = 3 and € = s0(3). Moreover,
since (su(3),s0(3)) is a symmetric pair associated to a normal real form of sl(3,C), it
follows that £ is conjugate within Int(€) to

R(Ey + F1) + R(E2 — F2) + R[E1 + Iy, Ep — Fy.
So, we may assume that
w(Ey) = Fr, p(F) =E1, p(Ey) =—F, up(fy)=—E,. (8.13)
Since 09(E3) = £E3, 09(F3) = €2F3 (€2 = 1) and po o9 = 092 o u, we get
o2 (1(E3)) = €2 u( E3), o2 (u(F3)) = u(Fs). (8.14)

LEMMA 8.3. There is c € C* such that p(E3) = cFs.



50 K. ToJo
PrOOF. By a dimension argument it is easy to see that the dimension of the

eigenspaces g(o, £*1) of o9 with the eigenvalues ¢+ are 10. Moreover, by using (7.2) we
can check that

adU (8)(Es) = Ly + Ly s + Loyatrs + Lonatrs + Lo tratns + Lon 429075

+ Ly t3vetye T Loy 277 T Lovit3v247s T Loyi43y2473>
adU (¢) (£3) = Lng L (atys) T L (@ratrs) T ZLBratrs) T L (ntrats)

T L2yt T L-(nt3ratr2) T Lo @nt2vatan) T L@ +3y2t7s)

+ 2 (Bv1+3v2+73)»

where we denote by U(¢) the universal enveloping algebra of €. Since ¢, (adU(¢)(E3)) C
9(02,€), ¢1(adU(£)(F3)) C g(02, &%) and dim g(o2, £*') = 10, we get

61(adU (8)(Ey)) = 9(02,€),  ¢1(adU ()(F3)) = g(02, ).
Considering g(o2,*1) to be representation spaces of €, it is clear that Es is the lowest
weight vector of g(o9, &), and it follows from (8.13) and (8.14) that u(Es3) is the highest
weight vector of g(os,£2). Consequently, we obtain
ILL(Eg) S (,251(.,%_73) = CFs;. O
Define a mapping i : -Z(g.) — -Z(g.) as follows:

At X) =t @ u(X).

Then it follows from (8.13) and Lemma 8.3 that fi is an involutive automorphism satis-
fying

profi=podr,  A((l1—1*)L(g)) = (1-°)ZL(ge). (8.15)
Now, as in the case where o = o1, we calculate i((1 — t3)Fy) by using (8.4). Since

it ® Hy) = aji([Er, [Ba, [Ea, Bs]))

= a[Flv [7FA‘27 [7F2aCF3]]] = %t71 Y H—7
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Therefore it follows from (8.15) that

(“;)3 ~ 1. (8.16)

Now, we shall prove the following lemma which claims the uniqueness of the TRG-
pair in this case.

LEMMA 8.4. Let Aute,(gc) be as in Lemma 8.2. If there exists an involutive auto-
morphism p' : g. — g such that ple, = (e, and (' ooy = 03?0 ', then u' is conjugate
within Aute, (gc) to p.

PROOF. By the assumption of the lemma, we can see that there is p € C'* such
that

p(Er) =Fi, p/(F1)=E;, W (E)=—F,

f(Fy) =—E,, ' (Es)=pFs, p'(F3)=p 'Es. (8.17)

Moreover there exists an involutive automorphism i’ of £ (g.) satisfying ¢1 o i’ = p/ oy
(see (8.13), (8.15), (8.16) and Lemma 8.3). As stated in the case where o = oy, for any
g € C* there exists an automorphism 7 of £(g.) satisfying

(Ey) = B, 0(E) = FEs, #(Es)=qFs,

D(FI)ZF17 ﬂ(FQ):F27 D(Fg):q_lp37

(‘Z’)S ~1, (8.18)

since E;, Fy (i = 1,2,3) are Chevalley generators of .Z(g.). Then by using (8.4) we
obtain (t® Hy) = ¢-t® Hy and

7((1 — 1) Ey) = By — 0((adt ® Hy )3 (En)) = By — ¢*t° B,

and the equations (8.16) and (8.18) imply that

3
~ cq
- 20) = 1) 2 = (1- (L) #) 200,
Therefore there exists an automorphism v of g. satisfying
I/O¢1 :(25(%)71 ov. (819)

Note that v € Aute, (g.). By making use of (8.13), (8.17), (8.18), (8.19) and Lemma 8.3,
we can calculate p/ o v(E;) and v o u(E;) (i = 1,2, 3):
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—1
C C
'U,/OI/(El): <];]) Fl, Z/O/}J(El): (;)Fl,

:U’/ o I/(E2) = 7F2, Vo /,L(EQ) = 7F2,

1 ov(Bs) = pqFs, vou(E3)=cq 'Fs.

The proof of the lemma is completed by choosing ¢ so that ¢ = ﬁ. O
Finally, we shall prove the following theorem.

THEOREM 8.5. Let G be a compact simple Lie group of type Dy and o an outer
automorphism of order 3 on G. Then a TRG-pair ((G/K, {(,),0), N) is equivalent to one
of TRG-pairs

((G/K, <a>701)7expgui '0) (Z = 132) and ((G/Ka <,>,O’2),expgl‘3 '0)

described in Propositions 7.3, 7.4 and 7.5.

ProoF. Considering (7.5) and (7.9) combined with Lemma 8.2, it is easy to see that
a TRG-pair ((G/K,(,),01),N) is equivalent to one of TRG-pairs described in Proposi-
tions 7.3 and 7.4. Also by (7.13), (8.13) and Lemma 8.4, a TRG-pair ((G/K, (,),02), N)
is equivalent to that in Proposition 7.5. O

REMARK 8.6. Combining Theorem 8.5 with Theorem 6.1, all the possibilities of
TRG-pairs ((G/K,(,),0),expb - 0) is obtained in the case where o is outer. We list all
(g,€=g%,b=g* p) in Table 5 below.

Table 5. The case where o is outer.

g t=g° g" p
s0(8) g2(=g7") 50(7) (1 in Proposition 7.3.
50(8) g2(=g7") 50(3) ®s0(5) 2 in Proposition 7.4.
50(8) su(3)(= g7?) 50(3) ® s0(5) us in Proposition 7.5.
(Blal | {(X,X,X);Xel} | [e{(X,X);Xel} | u(X,Y,2) = (X,Z,Y)
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