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Abstract. We study the structure of the group of equivariant Lipschitz home-
omorphisms of a smooth G-manifold M which are isotopic to the identity through
equivariant Lipschitz homeomorphisms with compact support. First we show that
the group is perfect when M is a smooth free G-manifold. Secondly in the case of
Cn with the canonical U(n)-action, we show that the first homology group admits
continuous moduli. Thirdly we apply the result to the case of the group L(C, 0) of
Lipschitz homeomorphisms of C fixing the origin.

1. Introduction and statement of the results.

Let G be a compact Lie group. Let LG(M) denote the group of equivariant Lipschitz
homeomorphisms of a smooth G-manifold M which are isotopic to the identity through
equivariant Lipschitz homeomorphisms with compact support. The purpose of this paper
is to calculate the first homology of the group LG(M) which is defined as the quotient
of LG(M) by its commutator subgroup.

In the previous papers [3], [4], we treated the subgroup HLIP,G(M) of LG(M) whose
elements are isotopic to the identity with respect to the compact open Lipschitz topology,
and proved that HLIP,G(M) is perfect when M is a Lipschitz principal G-manifold or
M is a smooth G-manifold for a finite group G.

In this paper first we shall prove that LG(M) is perfect if M is a smooth principal
G-manifold. In the case of HLIP,G(M), the point of the proof is to construct a Lips-
chitz homeomorphism of the orbit space M/G depending on the compact open Lipschitz
topology which plays a key role in investigating the orbit preserving equivariant Lipschitz
homeomorphisms of M . For the case of LG(M) we shall construct it by a quite different
way which depends on the compact open topology (c.f. §2).

Secondly we consider the case of Cn with the canonical U(n)-action. We shall
prove that the group LU(n)(Cn) is not perfect by calculating the first homology group
H1(LU(n)(Cn)).

Let C ((0, 1]) be the set of real valued functions f on (0, 1] such that there exists a
positive number K satisfying

|f(x)− f(y)| ≤ K

x
(y − x) for 0 < x ≤ y ≤ 1.
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Then C ((0, 1]) is a vector space over R. Let C0((0, 1]) denote the subspace of those
f ∈ C ((0, 1]) with f bounded on (0, 1]. Then we shall prove that H1(LU(n)(Cn)) is
isomorphic to C ((0, 1])/C0((0, 1]). The isomorphism is induced from the map assigning
each h ∈ LU(n)(Cn) a function âh ∈ C ((0, 1]) which stands for the degree of rotation of h

as the point tends to zero (see §3). We note that the group C ((0, 1])/C0((0, 1]) is a fairly
large group since it contains a linearly independent family of elements parameterized by
(0, 1]. Therefore H1(LU(n)(Cn)) admits continuous moduli.

The situation is quite different in smooth category. Let DU(n)(Cn) denote the group
of equivariant diffeomorphisms of Cn which are equivariantly isotopic to the identity
through compactly supported isotopies. By [2], Theorem 3.2, we have that there exists
an isomorphism H1(DU(n)(Cn)) ∼= R × U(1) induced from the map assigning each h ∈
DU(n)(Cn) the differential of h at 0. Then it follows from the above result the group
DU(n)(Cn) is contained in the commutator subgroup of LU(n)(Cn), which implies that
the first homology group of DU(n)(Cn) detects an absolutely different geometric property.

Thirdly we consider the group L(C, 0) of Lipschitz homeomorphisms of C which
are isotopic to the identity through compactly supported Lipschitz homeomorphisms
fixing the origin. Applying the above calculation of H1(LU(1)(C)), we can prove that
H1(L(C, 0)) admits continuous moduli.

By [4] the group HLIP (C, 0) is perfect. Then the above result implies that the group
L(C, 0) is a fairly big group compared to its subgroup HLIP (C, 0). It is interesting to
see if H1(L(Cn, 0)) admits continuous moduli. If we consider the problem classifying
Lipschitz manifolds, the first homology group will give a relevant geometric invariant.
Therefore the group HLIP (M) is an intriguing object in Lipschitz category.

The paper is organized as follows. In §2 we prove that LG(M) is perfect if M

is a smooth principal G-manifold. §3 is devoted to investigate some basic properties
of the group LU(n)(Cn). In §4 we define the fundamental group homomorphism from
LU(n)(Cn) to C ((0, 1])/C0((0, 1]). In §5 we calculate H1(LU(n)(Cn)). In §6 we prove
that the first homology of the group L(C, 0) admits continuous moduli.

2. Equivariant Lipschitz homeomorphisms of principal G-manifolds.

Let G be a compact Lie group. Let π : M → X be a smooth principal G-bundle
over an n-dimensional smooth manifold X. In this section we shall prove the following.

Theorem 2.1. If n > 0, then LG(M) is perfect.

Let Br(p) denote the closed ball in Rn of radius r centered at p. The following
lemma plays a key role in the proof of Theorem 2.1.

Lemma 2.2. Let u : Rn → R (n ≥ 1) be a Lipschitz function supported in
Bδ(2δ, 0, . . . , 0). Assume that K < 4

81δ and |u(x)| ≤ log 3
2 for x ∈ Rn, where K is

the Lipschitz constant of u. Then there exist a real valued Lipschitz function v : Rn → R

and a Lipschitz homeomorphism ϕ : Rn → Rn such that
(1) supp(v) is contained in B4δ(3δ, 0, . . . , 0).
(2) supp(ϕ) is contained in Bδ(2δ, 0, . . . , 0).
(3) v ◦ ϕ− v = u.
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Proof. Let ξ : R → R be a smooth real valued function such that

ξ(t) =

{
log t

(
2
3δ ≤ t ≤ 9

2δ
)

0 (t ≤ 0, t ≥ 5δ).

Let µ : Rn−1 → R be a smooth function such that, for x = (x1, . . . , xn−1) ∈ Rn−1,
0 ≤ µ(x) ≤ 1 and

µ(x1, . . . , xn−1) =

{
1

(
x2

1 + · · ·+ x2
n−1 ≤ δ2

)
,

0
(
x2

1 + · · ·+ x2
n−1 ≥ 3δ2

)
.

Then define a map v : Rn → R by v(x1, . . . , xn) = ξ(x1) · µ(x2, . . . , xn) if n ≥ 2 and
v(x1) = ξ(x1) if n = 1.

Let ϕ : Rn → Rn be a map defined by

ϕ(x1, . . . , xn) =
(
x1e

u(x1,...,xn), x2, . . . , xn

)
.

Then for any points x = (x1, . . . , xn), y = (y1, . . . , yn) of Bδ(2δ, 0, . . . , 0), we have

|(ϕ− 1Rn)(x)− (ϕ− 1Rn)(y)| ≤ ∣∣(x1 − y1)
(
eu(x) − 1

)∣∣ + |y1|
∣∣eu(x) − eu(y)

∣∣

≤ (∣∣eu(x) − 1
∣∣ + |y1|Keu(y)+θ(u(x)−u(y))

)|x− y|.

Here θ is a real number satisfying eu(x)−eu(y) = eu(y)+θ(u(x)−u(y))(u(x)−u(y)), 0 < θ < 1.
We have

|eu(x) − 1|+ |y1|Keu(y)+θ(u(x)−u(y)) ≤ elog 3
2 − 1 + 3δKe3 log 3

2 < 1.

Since the map ϕ is the identity outside of Bδ(2δ, 0, . . . , 0), it follows from [3], Lemma 4.1
that ϕ is a Lipschitz homeomorphism of Rn.

If x = (x1, . . . , xn) ∈ Bδ(2δ, 0, . . . , 0), then 2
3δ ≤ x1e

u(x) ≤ 9
2δ, and we have

v(ϕ(x))− v(x) = log
(
x1e

u(x)
)− log x1 = u(x).

Since supp(u) is contained in Bδ(2δ, 0, . . . , 0), we have v ◦ϕ− v = u. This completes the
proof of Lemma 2.2. ¤

By the same argument to [3], Corollary 5.5 using the result in Siebenmann-Sullivan
[6], Appendix B, we can prove the following.

Lemma 2.3 (equivariant fragmentation lemma). Let f ∈ LG(M). For any open
ball covering Ui in B, there exist fi ∈ LG(M) (i = 1, 2, . . . , k) such that

(1) f = fk ◦ fk−1 ◦ · · · ◦ f1 and
(2) each fi is equivariantly isotopic to the identity through an equivariant Lipschitz

homeomorphism supported in π−1(Ui).
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Proof of Theorem 2.1. By Lemma 2.3, we can assume that M = Rn×G. Let
P : LG(M) → L(Rn) be the natural group homomorphism. Here L(Rn) denotes the
group of Lipschitz homeomorphisms of Rn which are isotopic to the identity through
Lipschitz homeomorphisms with compact support. Let Ψ : L(Rn) → LG(M) be a map
defined by Ψ(f)(x, g) = (f(x), g) for f ∈ L(Rn), x ∈ Rn, g ∈ G. Then Ψ is a group
homomorphism which is the right inverse of P .

Let g denote the Lie algebra of G and let {X1, . . . , Xl} be a basis of g. Define the map
Φ : g → G by Φ(

∑l
i=1 ciXi) = (exp c1X1) · · · (exp clXl). Then there are neighborhoods

Ŵ of 0 in g and W of 1 in G such that the restricted map Φ|Ŵ : Ŵ → W is diffeomorphic.
Let h ∈ KerP . We shall prove that h ∈ [KerP, LG(M)]. Let a : Rn → G be the

map given by h(x, g) = (x, ga(x)) for x ∈ Rn, g ∈ G. Then a is a Lipschitz map. Since
the homomorphism P has the right inverse Ψ , there exists a homotopy {at|0 ≤ t ≤ 1}
with a0 = 1, a1 = a. For any integer N , we can write

a = a1 =
(
a1 · a−1

(N−1)/N

) · (a(N−1)/N · a−1
(N−2)/N

) · · · (a2/N · a−1
1/N

) · (a1/N · a−1
0

)
.

We can take N large enough such that the images of a(N−i)/N · a−1
(N−i−1)/N (1 ≤ i ≤ l)

are contained in W . Thus we can assume that the image of a is contained in W . Set
â = Φ−1 ◦ a. Then â is a Lipschitz map.

Since supp(h) is compact, there exists a positive number δ such that supp(a) is
contained in Dδ, where supp(a) = {x ∈ Rn|a(x) 6= 1} and Dδ = {x ∈ Rn||x| ≤ δ}.
Let αi : Rn → R (1 ≤ i ≤ l) be the maps given by â(x) =

∑l
i=1 αi(x)Xi. Then

αi (1 ≤ i ≤ l) are Lipschitz maps. Let Ki be the Lipschitz constant of the map αi.

Set K = max{Ki|1 ≤ i ≤ l}. Let k be a positive integer satisfying
1
k
|αi(x)| ≤ log

3
2
,

1 ≤ i ≤ l, for x ∈ Rn and
K

k
<

4
81δ

. Let ui : Rn → R be a map defined by

ui(x1, . . . , xn) =
1
k

αi(x1 − 2δ, x2, . . . , xn) for (x1, . . . , xn) ∈ Rn.

Since the map ui satisfies the condition of Lemma 2.2, there exist a real valued Lipschitz
function vi : Rn → R and a Lipschitz homeomorphism ϕi : Rn → Rn which satisfy
the conditions (1), (2) and (3) in Lemma 2.2. Let Hui

(x, g) = (x, g exp(ui(x)Xi)) for
(x, g) ∈ M . Then Hui

∈ LG(M) and we have

H−1
vi
◦ Ψ(ϕi)−1 ◦Hvi

◦ Ψ(ϕi) = Hui
.

Thus Hui
∈ [KerP, LG(M)].

Let f : R → R be a diffeomorphism satisfying

f(t) =

{
t + 2δ (|t| ≤ δ),

t (|t| ≥ 4δ).

Let ψ be an equivariant diffeomorphism defined by
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ψ((x1, . . . , xn), g) = ((µ(x2, . . . , xn)f(x1) + (1− µ(x2, . . . , xn))x1, x2, . . . , xn), g)

for ((x1, . . . , xn), g) ∈ M , where µ is the function defined in the proof of Lemma 2.2.
Then for (x, g) ∈ Dδ ×G we have

(ψ−1 ◦Hui
◦ ψ)(x, g) = (x, g exp(ui(x1 + 2δ, x2, . . . , xn)Xi))

=
(

x, g exp
(

1
k

αi(x)Xi

))
= H 1

k αi
(x, g).

Since supp(αi) is contained in Dδ, we have ψ−1 ◦Hui
◦ ψ = H 1

k αi
. Thus H 1

k αi
∈ [KerP,

LG(M)]. Since Hαi = (H 1
k αi

)k, it follows that Hαi ∈ [KerP, LG(M)]. Note that by
definition h = Hαl

◦ · · · ◦Hα1 . Thus h ∈ [KerP, LG(M)], and we have KerP = [KerP,

LG(M)].
Now consider the following exact sequence

KerP/[KerP, LG(M)] → H1(LG(M)) → H1(L(Rn)) → 0.

By [3] Corollary 2.4, H1(L(Rn)) = 0. Therefore H1(LG(M)) = 0, and this completes
the proof of Theorem 2.1. ¤

Corollary 2.4. Let M be a smooth G-manifold with one orbit type. If
dimM/G > 0, then LG(M) is perfect.

Proof. Let H be an isotropy subgroup of a point of M . Set MH = {x ∈
M ;h · x = x for h ∈ H}. Let N(H) denote the normalizer of H in G. Then N(H)/H

acts freely on MH and M is G-diffeomorphic to G/H ×N(H)/H MH . It is easy to see
that LG(M) ∼= LN(H)/H(MH). Therefore Corollary 2.4 follows from Theorem 2.1. ¤

3. Basic properties of LU(n)(C).

Let D denote the unit disk in Cn and LU(n)(D, ∂D) denote the group of U(n)-
equivariant Lipschitz homeomorphisms of D which are isotopic to the identity through
U(n)-equivariant Lipschitz homeomorphisms with identity on the boundary ∂D. Since
Cn \ {0} has one orbit type, by combining Lemma 2.3 with Corollary 2.4, the group
H1(LU(n)(Cn)) is isomorphic to H1(LU(n)(D, ∂D)).

Let e1 = (1, 0, . . . , 0) ∈ D. Then we have the natural group homomorphism P :
LU(n)(D, ∂D) → L([0, 1]) given by

P (h)(x) = |h(xe1)| for h ∈ LU(n)(D, ∂D), 0 ≤ x ≤ 1.

There exists the right inverse Ψ : L([0, 1]) → LU(n)(D, ∂D) of P defined by

Ψ(f)(xg · e1) = f(x)g · e1 for f ∈ L([0, 1]), 0 ≤ x ≤ 1, g ∈ U(n).
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Note that the kernel KerP of P coincides with the set of those h ∈ LU(n)(D, ∂D)
which are orbit preserving and fixing the boundary. Next we shall investigate a relation
between the groups KerP and C ((0, 1]). Let h ∈ KerP . If v ∈ D with v 6= 0, then
the orbit U(n) · v is diffeomorphic to U(n)/U(n − 1). Let N(U(n − 1)) denote the
normalizer of U(n − 1) in U(n). Then the group of U(n)-equivariant diffeomorphisms
of U(n)/U(n − 1) is isomorphic to N(U(n − 1))/U(n − 1) ∼= U(1). We have a map
ah : (0, 1] → U(1) satisfying

h(xg · e1) = xgah(x) · e1 for 0 < x ≤ 1, g ∈ U(n).

Here U(1) acts on D as the scalar multiplication. We investigate the properties of those
maps ah.

For a map α : (0, 1] → U(1) ⊂ C, we define maps ᾱ : [0, 1] → D and Fα : D → D as
follows.

ᾱ(x) =

{
xα(x)e1 (0 < x ≤ 1)

0 (x = 0)
,

Fα(xg · e1) = gᾱ(x) · e1 (0 ≤ x ≤ 1, g ∈ U(n)).

Lemma 3.1. The following conditions (1), (2) and (3) are equivalent.
(1) There exists a positive number K such that

|α(x)− α(y)| ≤ K

x
(y − x) for 0 < x ≤ y ≤ 1.

(2) ᾱ is a Lipschitz map.
(3) Fα is a Lipschitz map.

Proof. First assume the condition (1). Then, for 0 < x ≤ y ≤ 1, we have

|ᾱ(x)− ᾱ(y)| ≤ x|α(x)− α(y)|+ |α(y)||x− y| ≤ (K + 1)|x− y|.

Since |ᾱ(x)| ≤ x for 0 < x ≤ 1, the condition (2) is satisfied.
Secondly assume the condition (2). Then, for 0 < x ≤ y ≤ 1, g1, g2 ∈ U(n),

|Fα(xg1 · e1)− Fα(yg2 · e1)| ≤ |(ᾱ(x)− ᾱ(y))g1 · e1|+ |ᾱ(y)(g1 · e1 − g2 · e1)|
≤ L(|x− y|+ |(y − x)g1 · e1|+ |xg1 · e1 − yg2 · e1|)
≤ 3L|xg1 · e1 − yg2 · e1|,

where L is the Lipschitz constant of ᾱ. Since |Fα(xg1 · e1)| ≤ x, the condition (3) is
satisfied.

Finally assume the condition (3). Then, for 0 < x ≤ y ≤ 1, we have
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|α(x)− α(y)| ≤ 1
x

(|xα(x) · e1 − yα(y) · e1|+ |(y − x)α(y)|)

=
1
x

(|Fα(xe1)− Fα(ye1)|+ |y − x|) ≤ L + 1
x

|y − x|,

where L is the Lipschitz constant of Fα. Thus the condition (1) is satisfied and Lemma
3.1 follows. ¤

Let E : R → U(1) denote the exponential map given by E(x) = e
√−1x. Let

h ∈ KerP . Since h is the identity on ∂D, ah(1) = 1. Let âh : (0, 1] → R be the lifting
of ah for E with âh(1) = 0. Then E ◦ âh = ah. Let C ((0, 1]) be the set of real valued
functions f on (0, 1] such that there exists a positive number K satisfying

|f(x)− f(y)| ≤ K

x
(y − x) for 0 < x ≤ y ≤ 1.

Let C0((0, 1]) denote the subspace of those f ∈ C ((0, 1]) with f bounded on (0, 1].

Lemma 3.2. âh is an element of C ((0, 1]). Conversely if α̂ ∈ C ((0, 1]), then E ◦ α̂

satisfies the condition (1) in Lemma 3.1.

Proof. By Lemma 3.1, there exists a positive number K such that

|ah(x)− ah(y)| ≤ K

x
(y − x) for 0 < x ≤ y ≤ 1.

Note that, for each x, y ∈ (0, 1] with x < y, the restriction ah|[x,y] is Lipschitz. Then we
can choose an increasing series of points x = x0 < x1 < · · · < xn−1 < xn = y such that

|ah(xi−1)− ah(xi)| ≤
√

3 (i = 1, . . . , n).

It follows that

|âh(xi−1)− âh(xi)| ≤ 2π

3
(i = 1, . . . , n).

Then we have

|ah(xi−1)− ah(xi)| =
∣∣e
√−1 â(xi−1) − e

√−1 â(xi)
∣∣

= 2
∣∣∣∣ sin

âh(xi−1)− âh(xi)
2

∣∣∣∣

=
∣∣∣∣ cos

θ(âh(xi−1)− âh(xi))
2

∣∣∣∣|âh(xi−1)− âh(xi)|,

for some 0 < θ < 1. Thus
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|âh(xi−1)− âh(xi)| ≤ 2|ah(xi−1)− ah(xi)| ≤ 2K

xi−1
|xi−1 − xi|.

Therefore we have

|âh(x)− âh(y)| ≤
n∑

i=1

2K

xi−1
|xi−1 − xi| ≤ 2K

x
(y − x),

and then we have that âh ∈ C ((0, 1]).
Since

|E(x)− E(y)| = ∣∣e
√−1x − e

√−1y
∣∣ ≤ y − x for 0 < x ≤ y ≤ 1,

it is clear that, for each α̂ ∈ C ((0, 1]), E ◦ α̂ satisfies the condition (1) in Lemma 3.1.
This completes the proof of Lemma 3.2. ¤

4. The fundamental homomorphism.

By Lemma 3.2 we can define a homomorphism

T : KerP → C ((0, 1])/C0((0, 1]), T (h) = âh mod C0((0, 1]).

Now we have a map

Θ : LU(n)(D, ∂D) → L([0, 1])× C ((0, 1])/C0((0, 1])

defined by

Θ(h) = (P (h), T (Ψ(P (h))−1 ◦ h)).

Proposition 4.1. Θ is an onto group homomorphism.

Proof. First we prove that Θ is a group homomorphism. For each h ∈
LU(n)(D, ∂D), we set h̃ = Ψ(P (h))−1 ◦ h. Let hi ∈ LU(n)(D, ∂D) (i = 1, 2). Since
P is a group homomorphism, in order for the map Θ to be a group homomorphism it is
sufficient to prove that

â
h̃1◦h2

= âh̃1
+ âh̃2

mod C0((0, 1]).

For 0 < x ≤ 1, g ∈ U(n), we have

hi(xg · e1) = P (hi)(x) gah̃i
(x)−1 · e1 (i = 1, 2),

and

(h1 ◦ h2)(xg · e1) = P (h1 ◦ h2)(x) ga
h̃1◦h2

(x)−1 · e1.
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On the other hand we have

(h1 ◦ h2)(xg · e1) = P (h1 ◦ h2)(x) gah̃2
(x)−1ah̃1

(P (h2)(x))−1 · e1.

Then

a
h̃1◦h2

= (ah̃1
◦ P (h2)) · ah̃2

.

Thus

â
h̃1◦h2

= âh̃1
◦ P (h2) + âh̃2

.

Let L and L′ be the Lipschitz constants of P (h2) and P (h2)−1, respectively. Let
x ∈ (0, 1]. For the case x ≤ P (h2)(x), by Lemma 3.2 there exists a positive number K

such that

∣∣âh̃1
(P (h2)(x))− âh̃1

(x)
∣∣ ≤ K

x
|P (h2)(x)− x| ≤ K(L + 1).

By definition x ≤ L′P (h2)(x). Then, for the case P (h2)(x) < x, we have

∣∣âh̃1
(P (h2)(x))− âh̃1

(x)
∣∣ ≤ K

P (h2)(x)
|P (h2)(x)− x| ≤ K(1 + L′).

Then

âh̃1
◦ P (h2)− âh̃1

∈ C0((0, 1]).

Thus

â
h̃1◦h2

= âh̃1
+ âh̃2

mod C0((0, 1]).

Therefore Θ is a group homomorphism.
Let f ∈ L([0, 1]), α̂ ∈ C ((0, 1]). Combining Lemma 3.1 with Lemma 3.2, we have

that FE◦α̂ ∈ KerP . Set

h(xg · e1) = f(x)FE◦α̂(xg · e1) for 0 ≤ x ≤ 1, g ∈ U(n).

Then we see that h ∈ LU(n)(D, ∂D) and Θ(h) = (f, α̂ mod C0((0, 1])). Thus Θ is onto.
This completes the proof of Proposition 4.1. ¤

5. The first homology of LU(n)(C
n).

Proposition 5.1. KerΘ is contained in the commutator subgroup of
LU(n)(D, ∂D).
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Proof. If h ∈ KerΘ, then h ∈ KerP and âh ∈ C0((0, 1]). Thus, for any positive

number ε, there exists an integer n such that
∣∣∣∣
âh(x)

n

∣∣∣∣ ≤ ε for 0 < x ≤ 1 and

∣∣∣∣
âh(x)

n
− âh(y)

n

∣∣∣∣ ≤
ε

x
(y − x) for 0 < x ≤ y ≤ 1.

Note that ah = E(nâh) = E(âh)n. Then, for a sufficiently small positive number ε, we
can assume that |âh(x)| ≤ ε for 0 < x ≤ 1 and

|âh(x)− âh(y)| ≤ ε

x
(y − x) for 0 < x ≤ y ≤ 1.

Let v be a real valued smooth monotone increasing function on (0, 1] such that

v(x) =

{
log x (0 < x ≤ 1/2),

0 (3/4 ≤ x ≤ 1).

Then it is easy to see v ∈ C ((0, 1]). Let f be a real valued function on [0, 1] defined by

f(x) =

{
xeâh(x) (0 < x ≤ 1),

0 (x = 0).

Note that f(1) = 1. We shall prove that f ∈ L([0, 1]) for sufficiently small ε. If 0 < x ≤
y ≤ 1, then we have

|(f(y)− y)− (f(x)− x)|
=

∣∣(y − x)(eâh(y) − 1) + x(eâh(y) − eâh(x))
∣∣

≤ (y − x)
∣∣e|âh(y)| − 1

∣∣ + x|âh(y)− âh(x)|eâh(x)+θ(âh(y)−âh(x))

≤ ((eε − 1) + εe3ε)(y − x),

for some 0 < θ < 1. Here we take a positive number ε satisfying

(eε − 1) + εe3ε < 1.

Then it follows from [3], Lemma 4.1 that the function f is a Lipschitz homeomorphism
of [0, 1] which is isotopic to the identity through Lipschitz homeomorphisms.

If 0 < x ≤ 1
2eε

, then we have

v(f(x))− v(x) = log
(
xeâh(x)

)− log x = âh(x).
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Then, for 0 < x ≤ 1
2eε

, g ∈ U(n) we have

(
F−1

E◦v ◦ Ψ(f)−1 ◦ FE◦v ◦ Ψ(f)
)
(xg · e1) =

(
F−1

E◦v ◦ Ψ(f)−1 ◦ FE◦v
)
(f(x)g · e1)

=
(
F−1

E◦v ◦ Ψ(f)−1
)(

f(x)ge
√−1 v(f(x)) · e1

)

= F−1
E◦v

(
xge

√−1 v(f(x)) · e1

)

= xge
√−1 v(f(x))e−

√−1 v(x) · e1

= h(xg · e1).

Set

h1 = h ◦ Ψ(f)−1 ◦ F−1
E◦v ◦ Ψ(f) ◦ FE◦v.

Then

h1(xg · e1) = xg · e1 for 0 ≤ x ≤ 1
2eε

, g ∈ U(n).

Thus supp(h1) is contained in D\{0}. It follows from Corollary 2.4 that g is contained in
the commutator subgroup of LU(n)(D, ∂D). Hence h is also contained in the commutator
subgroup. This completes the proof of Proposition 5.1. ¤

Theorem 5.2.

H1(LU(n)(Cn)) ∼= C ((0, 1])/C0((0, 1]).

Proof. Let ι : KerΘ → LU(n)(D, ∂D) denote the inclusion. By Proposition 4.1
we have the following exact sequence.

KerΘ/[KerΘ, LU(n)(D, ∂D)] ι∗−→ H1(LU(n)(D, ∂D))

Θ∗−→ H1(L([0, 1])× C ((0, 1])/C0((0, 1])) → 1.

Since ι∗ = 0 by Proposition 5.1, Θ∗ is isomorphic. By Tsuboi [7], Theorem 3.2 or [4],
Remark 2.6, the group L([0, 1]) is perfect. Thus we have

H1(LU(n)(D, ∂D)) ∼= C ((0, 1])/C0((0, 1]).

Since H1(LU(n)(D, ∂D)) ∼= H1(LU(n)(Cn)), Theorem 5.2 follows. ¤

Remark. (1) Let vc (0 < c ≤ 1) be real valued smooth functions on (0, 1] such
that
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vc(x) =

{
(− log x)c (0 < x ≤ 1/2),

0 (3/4 ≤ x ≤ 1).

Then vc ∈ C ((0, 1]). Thus the group C ((0, 1])/C0((0, 1]) contains a linearly independent
family {vc mod C0((0, 1]) ; 0 < c ≤ 1}.

(2) By using the integration by parts, we can prove that C ((0, 1]) is a subspace of
the function space L1((0, 1]). We expect that the quotient space C ((0, 1])/C0((0, 1]) has
some analytic meaning.

Let S(Cn ⊕ R) be the unit sphere in Cn ⊕ R with the canonical U(n)-action.
Combining Corollary 2.4 with Theorem 5.2 we have

Corollary 5.3.

H1(LU(n)(S(Cn ⊕R))) ∼= C ((0, 1])/C0((0, 1])× C ((0, 1])/C0((0, 1]).

6. The first homology of L(C,0).

Let L(C, 0) denote the group of Lipschitz homeomorphisms of C which are isotopic
to the identity through compactly supported Lipschitz homeomorphisms fixing the origin.
Set D∗ = D \ {0}. For h ∈ L(C, 0) let ch : D∗ → S1 be a map defined by

ch(rz) =
h(rz)
|h(rz)| z

−1 for 0 < r ≤ 1, z ∈ S1.

There exists a unique Lipschitz map ĉh : D∗ → R such that E ◦ ĉh = ch and ĉh = 0 on
∂D∗. Let C (D∗) be the set of real valued functions f on D∗ such that there exists a
positive number K satisfying

|f(x)− f(y)| ≤ K

|x| |y − x| for x, y ∈ D∗ with 0 < |x| ≤ |y| ≤ 1.

Lemma 6.1. ĉh ∈ C (D∗).

Proof. Let bh : D∗ → S1 be a map defined by bh(x) =
h(x)
|h(x)| for x ∈ D∗. Let L

and L′ be the Lipschitz constants of h and h−1, respectively. Assume 0 < |x| ≤ |y| ≤ 1
for x, y ∈ D∗. Then

|bh(x)− bh(y)| = 1
|h(x)||h(y)| |(|h(y)| − |h(x)|)h(x) + |h(x)|(h(x)− h(y))|

≤ 2
|h(y)| |h(x)− h(y)| ≤ 2LL′

|x| |x− y|.

Thus we have
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|ch(x)− ch(y)| =
∣∣∣∣bh(x)

x̄

|x| − bh(y)
ȳ

|y|

∣∣∣∣

≤ |bh(x)|
∣∣∣∣

x̄

|x| −
ȳ

|y|

∣∣∣∣ + |bh(x)− bh(y)|
∣∣∣∣

ȳ

|y|

∣∣∣∣

≤ 2LL′ + 1
|x| |x− y|.

Since |ĉh(x) − ĉh(y)| ≤ 2|ch(x) − ch(y)|, it follows that ĉh ∈ C (D∗) and Lemma 6.1
follows.

Let C0(D∗) denote the subspace of those f ∈ C (D∗) with f bounded on D∗. Let
T̄ : L(C, 0) → C (D∗)/C0(D∗) be a map defined by T̄ (h) = ĉh mod C0(D∗).

Proposition 6.2. T̄ is a group homomorphism.

Proof. Let g, h ∈ L(C, 0). Since

g(x) = |g(x)| x

|x| cg(x) for x ∈ D∗,

we have

g(h(x)) = |g(h(x))| h(x)
|h(x)| cg(h(x)).

On the other hand

g(h(x)) = |g(h(x))| x

|x| cg◦h(x).

Then

cg◦h(x) = ch(x)cg(h(x)).

Thus

ĉg◦h = ĉh + ĉg ◦ h.

Let L and L′ be the Lipschitz constants of h and h−1 respectively. Let x ∈ D∗. For the
case |x| ≤ |h(x)|, by Lemma 6.1 there exists a positive number K such that

|ĉg(h(x))− ĉg(x)| ≤ K

|x| |h(x)− x| ≤ K(L + 1).

By definition |x| ≤ L′|h(x)|. Then for the case |x| > |h(x)|,



14 K. Abe, K. Fukui and T. Miura

|ĉg(h(x))− ĉg(x)| ≤ K

|h(x)| |h(x)− x| ≤ KL′(L + 1).

Then

ĉg ◦ h− ĉg ∈ C0(D∗).

Thus

ĉg◦h = ĉh + ĉg mod C0(D∗),

which completes the proof of Proposition 6.2. ¤

Let j : C ((0, 1]) ↪→ C (D∗) be a map defined by j(α)(x) = α(|x|) for x ∈ D∗.

Lemma 6.3. The map j induces the isomorphism

j∗ : C ((0, 1])/C0((0, 1]) ∼= C (D∗)/C0(D∗).

Proof. Let α ∈ C ((0, 1]). By definition α(r) = j(α)(re1) for 0 < r ≤ 1. If j(α) is
bounded, then α is also bounded. Thus j∗ is injective.

For γ ∈ C (D∗), let α(r) = γ(re1). Then α ∈ C ((0, 1]). If x ∈ D∗, then

|γ(x)− j(α)(x)| = |γ(x)− γ(|x|e1)| ≤ K

|x| |x− |x|e1| ≤ 2K,

where K is a positive number such that

|γ(x)− γ(y)| ≤ K

|x| |y − x| for x, y ∈ D∗ with 0 < |x| ≤ |y| ≤ 1.

Then γ−j(α) ∈ C0(D∗). Thus j∗(α mod C0((0, 1])) = γ mod C0(D∗), which completes
the proof of Lemma 6.3. ¤

Let i : LU(1)(D) ↪→ L(C, 0) be the inclusion. Then

Theorem 6.4. The induced homomorphism i∗ : H1(LU(1)(C)) → H1(L(C, 0)) is
injective.

Proof. We have the following diagram

H1(LU(1)(D)) T∗
∼=

//

i∗
²²

C ((0, 1])/C0((0, 1])

j∗∼=
²²

H1(L(C, 0))
T̄∗ // C (D∗)/C0(D∗).
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By Theorem 5.2 and Lemma 6.3, the maps T∗ and j∗ are isomorphisms. Then the map
i∗ is injective. ¤

Corollary 6.5. The first homology of the group L(C, 0) admits continuous mod-
uli.
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