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Abstract. Let M be a closed 3-dimensional Riemann manifold and let
3 ≤ r ≤ ∞. We prove that there exists an open dense subset in the space
of Cr volume-preserving Anosov flows on M such that all the flows in it are

exponentially mixing.

1. Introduction.

In this paper, we study mixing properties of volume-preserving Anosov flows on a

3-dimensional closed C∞ Riemann manifold M . Let FrA be the space of Cr Anosov flows

on M preserving the Riemann volume m, equipped with the Cr compact-open topology

as a subspace of Cr(M ×R,M). A flow f t ∈ FrA is said to be exponentially mixing with

respect to the volume m if, for some α > 0, we have∣∣∣∣∫ φ · (ψ ◦ f t) dm
∣∣∣∣ ≤ Cα ∥φ∥Cα ∥ψ∥Cα exp(−cαt) (1.1)

for any t > 0 and any φ,ψ ∈ Cα(M) satisfying
∫
φdm = 0, where cα and Cα > 0 are

constants independent of φ, ψ and t. (Note that once the decay estimate (1.1) holds for

some α > 0, we can prove it for any α > 0 by approximation, possibly with different

constants cα and Cα. See [8, p.1046]. It is therefore enough to consider (1.1) for some

fixed α > 0.) The main result is

Theorem 1.1. For 3 ≤ r ≤ ∞, there exists a C3-open and Cr-dense subset

U ⊂ FrA such that all the flows in U are exponentially mixing. Further there is a C3-open

neighborhood of each f t ∈ U such that the decay estimate (1.1) holds for all the flows in

it with uniform constants cα and Cα.

It is well known as Anosov alternative that a volume-preserving Anosov flow is either

mixing or C1 conjugate to a suspension flow of an Anosov diffeomorphism by a constant

roof function. Also it is not difficult to see that the former alternate holds for almost all

cases, say, for an open dense subset in the space of volume-preserving Anosov flows. But,

for the questions how often the flows are exponentially mixing, our knowledge is rather

incomplete. An ultimate conjecture, known as Bowen–Ruelle conjecture, states that

mixing Anosov flows will always be exponentially mixing. But this conjecture is widely
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open at present. In this paper, we investigate a related problem: whether exponential

mixing is an open dense property for volume-preserving Anosov flows.

A few important progresses on the rate of mixing for Anosov flows were made by

Chernov [4] and Dolgopyat [6], [7], [8] in late 1990’s. In [6], Dolgopyat proved that a

volume-preserving Anosov flow is exponentially mixing if the stable and unstable foli-

ations are C1 and are not jointly integrable. In particular, it is proved in [6] that the

geodesic flows on negatively curved surfaces are exponentially mixing. (Later this result

is extended to higher dimensional contact Anosov flows [15], [21], [22] and also to those

with singularities such as Sinai billiard flows [1], [2].) In [7] and [8], he also studied

exponential and rapid (i.e. super-polynomial) mixing for suspension flows of subshifts of

finite type, which abstracts Axiom A flow, and gave several criteria for such flows to be

rapid or exponential mixing. Based on the argument in [7], Field, Melbourne and Török

proved more recently in [11] that rapid mixing is an open dense property for Axiom A

flows and, in particular, for volume-preserving Anosov flows.

However, to the author’s knowledge, the problem on exponential mixing mentioned

above remains open. The aim of this paper is to study the problem in the simplest

possible setting of dimension 3 and present an affirmative answer in Theorem 1.1. This

also provides an example of a non-empty open set of volume-preserving Anosov flows

which stably exhibit exponential mixing. (Rather surprisingly, no such example has

been known.)

In the following sections, we first investigate the geometry of the stable and un-

stable foliations and introduce the notion of s-template which describes how the stable

subbundle twists along unstable manifolds. In Definition 2.11, we formulate the non-

integrability condition (NI)ρ for ρ > 0 in terms of s-templates. In Theorem 2.15, we

show that the condition (NI)ρ for sufficiently small ρ > 0 holds for a dense subset in

FrA for any r ≥ 3. Then we prove Theorem 1.1 by showing, in Theorem 2.16, that, if

f t0 ∈ F3
A satisfies (NI)ρ for some ρ > 0, there is a C3 open neighborhood of f t0 in F3

A in

which all the flows are exponentially mixing with uniform constants cα and Cα in the

decay estimate (1.1).

The main novelty in our argument consists in the argument related to s-templates

in Section 2. The idea is quite simple and explained in the following few pages. Also the

perturbation argument in the proof of Theorem 2.15 in Section 3 may be of some interest,

where we consider deformation families of a flow with huge number of parameters and

apply large deviation argument in the parameter spaces. The proof of Theorem 2.16

is obtained by modifying the argument in the author’s previous papers [21], [22]. Un-

fortunately this part is rather long and occupies the remaining two-thirds of this paper,

though the core of the argument is presented in a few pages. This is because some objects

we consider are not smooth and require careful treatment. Still our argument is basically

elementary and straightforward. If the reader is familiar with estimates on non-linearity

of hyperbolic flows and/or Fourier analysis, one will be able to skip good part of the

argument and/or find better ways to prove the propositions in this part.

Remark 1.2. The argument presented in this paper depends crucially on the

assumptions that M is three dimensional and that f t preserves a smooth volume. So it

will not extend to more general cases directly. But the author would like to emphasize
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that the following idea behind the argument will be useful in much more general cases

of partially hyperbolic dynamical systems: Twist of the stable subbundle along pieces of

unstable manifolds viewed in the unit scale will be “random” and “rough” in generic

cases and such “random” twist will not be cancelled completely in the process where the

flow f t contracts the piece of unstable manifold to microscopic scale as t → −∞ (if

we view things in an appropriate scaling), because the contraction is exponential and

therefore only Taylor approximation of f t up to some finite order will be effective. See

also Remark 2.14.

2. The non-integrability condition.

Let 3 ≤ r ≤ ∞ and consider a Cr Anosov flow f t : M → M . We suppose that the

flow f t preserves a Cr volume µ on M . Here, by a technical reason, we do not assume

that µ is the Riemann volume m. Let v be the Cr−1 vector field generating the flow

f t. We suppose that ∥v∥ ≡ 1 for the Riemann metric ∥ · ∥ on M . Since the argument

below does not depend on the Riemann metric essentially, this does not cause any loss

of generality.

In some points in the argument below, we will need to check that some constants

can be taken uniformly for the flows in a sufficiently small Cr neighborhood of f t that

preserve Cr volume forms sufficiently close to µ. In order to distinguish such constants,

we put the subscript ∗ to the symbols of them. We use C∗ as a generic symbol for such

class of constants and write C∗(·) when we emphasize their dependence on some quantity

in the parentheses. Also we write O∗(·) for a term which is bounded in absolute value

by the quantity inside the parenthesis multiplied by some constant C∗.

2.1. Anosov flows.

From the definition of Anosov flow, there is an f t-invariant continuous decomposition

of the tangent bundle

TM = E0 ⊕ Es ⊕ Eu with dimE0 = dimEs = dimEu = 1 (2.1)

such that E0 = ⟨v⟩ and that, for some positive constants C∗ > 0 and χ∗ > 0,

∥Df tx|Es∥ ≤ C∗e
−χ∗t, ∥Df tx|Eu∥ ≥ C−1

∗ eχ∗t for all t ≥ 0. (2.2)

The decomposition dual to (2.1) is T ∗M = E∗
0 ⊕ E∗

s ⊕ E∗
u where

E∗
0 = (Es ⊕ Eu)

⊥, E∗
s = (Eu ⊕ E0)

⊥, E∗
u = (Es ⊕ E0)

⊥.

The subbundle E0 is Cr−1, but Es and Eu are not even C1 in general. However we have

∠(Es(p), Es(q)) ≤ C∗∥p− q∥ · ⟨log ∥p− q∥⟩ (2.3)

in local charts, where (and henceforth) ⟨s⟩ denotes some fixed C∞ function of s such

that

⟨s⟩ = |s| if |s| ≥ 2 and ⟨s⟩ ≥ 1 for any s.
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The estimate (2.3) holds also for the subbundles Eu and E∗
0 .

Remark 2.1. The non-smoothness of Es and Eu mentioned above is caused mainly

by their variation in the flow direction. In fact, the sums Eu ⊕ E0 and Es ⊕ E0 are C1

and so are their normals E∗
s and E∗

u. Especially we have

∠(E∗
s (p), E

∗
s (q)) ≤ C∗∥p− q∥, ∠(E∗

u(p), E
∗
u(q)) ≤ C∗∥p− q∥ (2.4)

in local charts.

2.2. The intrinsic metric on stable and unstable manifolds.

Let W s(p) and Wu(p) be the stable and unstable manifolds passing through a point

p ∈M . Below we discuss about twist of the stable subbundle Es along W
u(p). But note

that, by considering the time-reversed flow f−t, we can (and will) argue about twist of

the unstable subbundle Eu along W s(p) in parallel. To begin with, let us introduce a

Cr−1 metric on Wu(p) by

|v|Wu(p) = lim
t→−∞

∥Df tq(v)∥
∥Df tp|Eu∥

for v ∈ TqW
u(p) at q ∈Wu(p). (2.5)

The following lemma is an immediate consequence of this definition.

Lemma 2.2. If f t sends Wu(p) to Wu(p′), it brings the metric |·|Wu(p) to |·|Wu(p′)

up to multiplication by a positive constant. If f t(p) = p′, the multiplier is just ∥Df tp|Eu∥.

Let wup : R →M be the Cr parametrization ofWu(p) by the arc length with respect

to the metric | · |Wu(p) such that wup (0) = p. (We do not care about the direction of

parametrization.) For an interval J ⊂ R, we set Wu
J (p) := wup (J) ⊂Wu(p).

2.3. Some sections of the normal bundles of unstable manifolds.

For a point p ∈ M and an interval J ⊂ R, let Γu(p, J) be the space of continuous

sections γ : Wu
J (p) → T ∗M such that γ(q) ∈ T ∗

qM at each q ∈ Wu
J (p) is normal to the

tangent space TqW
u(p) = Eu(q). Let Γu1 (p, J) ⊂ Γu(p, J) be the subset that consists of

γ ∈ Γu(p, J) satisfying ⟨γ(q), v(q)⟩ ≡ 1 where v(·) denotes the generating vector field of

the flow f t.

We write γ⊥p,J ∈ Γu(p, J) for either of the two Cr−1 sections satisfying

⟨γ⊥p,J(q), u⟩ = ±µ(v(q), (wup )′(τ), u) for any u ∈ TqM at q = wup (τ) and for any τ ∈ J ,

where µ is the volume preserved by f t. We tentatively fix a Cr−1 section γ0p,J in Γu1 (p, J).

For the moment we assume only that the sections γ0p,J are bounded in Cr−1 sense uni-

formly for p ∈M and J ⊂ (−1, 1). We may then express each section γ ∈ Γu1 (p, J) as

γ(q) = γ0p,J(q) + ψγ(τ) · γ⊥p,J(q) for q = wup (τ) with τ ∈ J , (2.6)

where ψγ : J → R is a continuous function and called the representation function of γ.

For a Cr−1 section γ ∈ Γu1 (p, J), we define its (maximum) curvature κ(γ) by
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κ(γ) = sup{ |ψ′′
γ (τ)| | τ ∈ J }.

For a Cr−1 section γ ∈ Γu1 (p, J) and t ∈ R, there is a unique section γt ∈
Γu1 (f

t(p), J(t)) with J(t) = ±∥Df t|Eu(p)∥ · J so that

γ(q) = (Df t)∗γt(f
t(q)). (2.7)

Observe that the curvature κ(γt) of γt tends to infinity as t → −∞ in most cases, but

may be bounded for some γ. This motivates the following definition.

Definition 2.3. A Cr−1 section γ ∈ Γu1 (p, J) is said to be straight if κ(γt) is

bounded uniformly for all t ≤ 0.

Note that this definition does not depend on the choice of γ0p,J provided that they

are uniformly bounded in Cr−1 sense (as we are assuming) and is therefore intrinsic to

the flow f t. In the next lemma, we describe the space of straight sections.

Definition 2.4. Two functions ψ0, ψ1 : J → R are said to be equivalent modulo

affine functions if ψ0(τ) = ψ1(τ) + ατ + β for τ ∈ J with some α, β ∈ R. Two sections

γ0, γ1 ∈ Γu1 (p, J) are said to be affine equivalent if their representation functions ψγ0 and

ψγ1 (defined in (2.6)) are equivalent modulo affine functions.

Lemma 2.5. For any point p ∈ M and any interval J ⊂ R, there exists a straight

section γ0 ∈ Γu1 (p, J). A Cr−1 section γ ∈ Γu1 (p, J) is straight if and only if it is affine

equivalent to γ0. If a Cr−1 section γ ∈ Γu1 (p, J) is straight, then γt ∈ Γu1 (f
t(p), J(t)) for

t ∈ R is again straight.

Proof. If f t sends a Cr−1 section γ ∈ Γu1 (p, J) to γt ∈ Γu1 (p(t), J(t)), the repre-

sentation functions of γt is related to that of γ by the formula

ψγt(τ) = a(t) · ψγ(a(t)−1 · τ) + φp,t(τ), a(t) = ±∥Df tp|Eu∥ (2.8)

where φp,t is a C
r−1 function that stems from the difference between γ0ft(p),J(t) and the

push-forward of γ0p,J by f t. Note that, for any t0 > 0, the Cr−1 norm of the function

φp,t is bounded uniformly for p ∈M and t ∈ R with |t| ≤ t0.

Remark 2.6. The indefiniteness of the sign of a(t) in (2.8) is due to that in the

direction of the parametrization wup . In most part of the argument below, we will ignore

the related indefiniteness of sings because they are not essential at all and easy to fix if

one likes.

Differentiating the both sides of (2.8) with respect to τ twice and changing the

variable τ to a(t)−1τ , we obtain the relation

ψ′′
γ (τ) = a(t) · ψ′′

γt(a(t)τ)− a(t) · φ′′
p,t(a(t)τ). (2.9)

The claims of the lemma are consequences of this relation. Let us consider a sequence
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t(0) = 0 > t(1) > t(2) > · · · → −∞ such that
t0
2

≤ t(i)− t(i+ 1) ≤ t0.

By letting t0 larger if necessary, we may and do assume

ai := ∥Df t(i+1)−t(i)
p(i) |Eu∥ =

a(t(i+ 1))

a(t(i))
∈
[
−1

2
,
1

2

]
.

If we set t = t(i+1)− t(i) and replace p with p(i) = f t(i)(p) in (2.9), we find the formula

ψ′′
γt(i)

(τ) = ai · ψ′′
γt(i+1)

(ai · τ)− ai · φ′′
p(i),t(i+1)−t(i)(ai · τ) for τ ∈ [−1, 1]. (2.10)

Recursive application of this formula yields, for any integer N > 0 and τ ∈ [−1, 1],

ψ′′
γ (τ) = a(t(N)) · ψ′′

γt(N)
(a(t(N)) · τ)−

N−1∑
i=0

a(t(i+ 1)) · φ′′
p(i),t(i+1)−t(i)(a(t(i+ 1)) · τ).

Since |a(t)| ≤ C∗e
χ∗t for t ≤ 0 by (2.2), the right-hand side converges to a unique

continuous function as N → ∞ in C0 sense, provided that κ(γt) = ∥ψ′′
γt∥∞ is uniformly

bounded for t ≤ 0. That is to say, if γ ∈ Γu1 (p, J) is straight, its representation function

satisfies

ψ′′
γ (τ) = −

∞∑
i=0

a(t(i+ 1)) · φ′′
p(i),t(i+1)−t(i)(a(t(i+ 1)) · τ) for τ ∈ [−1, 1]. (2.11)

Conversely, suppose that γ ∈ Γu1 (p, J) satisfies the last condition (2.11). Then ψ′′
γ is

of class Cr−3 and γ is of class Cr−1. The relation (2.10) gives

ψ′′
γt(j)

(τ) = −
∞∑
i=j

a(t(i+ 1))

a(t(j))
·φ′′
p(i),t(i+1)−t(i)

(
a(t(i+ 1))

a(t(j))
· τ

)
for τ ∈ [−a(t(j)), a(t(j))]

and the right-hand side is bounded uniformly in j ≥ 0, so that γ must be straight.

Clearly the former two statements of the lemma follow from the argument above.

The last statement is an immediate consequence of the definition of straight section. □

Since the choice of the sections γ0p,J was rather arbitrary, we henceforth assume

without loss of generality that the sections γ0p,J are straight sections. (This is just for

avoiding a new notation.) Further, in the case J = (−1, 1), we specify γ0p,J as the unique

straight section satisfying the following conditions at the end points:

lim
τ→σ

γ0p,(−1,1)(w
u
p (τ)) ∈ E∗

0 (w
u
p (σ)) for σ = ±1. (2.12)

2.4. The definition of s-templates.

We next consider how the direction of the stable subspace Es twists along the local

unstable manifoldWu
J (p) when we observe it in the frame given in the last subsection. Let

γsp,J ∈ Γu1 (p, J) be the unique continuous section such that γsp,J(q) ∈ E∗
0 (q) = (Eu(q) ⊕

Es(q))
⊥ for q ∈Wu

J (p) and let ψsp,J : J → R be its representation function.
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Remark 2.7. The function ψsp,J captures the variation of the stable subbundle Es
along Wu

J (p). But note that we consider only the component normal to Wu
J (p). The

variation of the other component will turn out to be negligible. (See Remark 2.1.)

The function ψsp,J is not even C1 in general but satisfies

|ψsp,J(τ ′)− ψsp,J(τ)| ≤ C∗|τ ′ − τ | · ⟨log |τ ′ − τ |⟩ for τ, τ ′ ∈ J (2.13)

as a consequence of (2.3). Now we introduce

Definition 2.8 (s-templates). The functions ψsp,(−1,1) for p ∈ M are called the

s-templates for the flow f t. We write T = T (f t) = {ψsp,(−1,1) | p ∈ M} for the set of all

s-templates for the flow f t.

Note that, from the condition (2.12) in the choice of γ0p,(−1,1), the s-templates satisfy

ψsp,(−1,1)(±1) := lim
τ→±1

ψsp,(−1,1)(τ) = 0. (2.14)

The next lemma tells that the twist of Es along the unstable manifolds in a microscopic

scale is a miniature of an s-template up to affine equivalence. (This is the reason for the

name “template”.)

Lemma 2.9. For any q ∈M and any δ ∈ (0, 1), there exist t > 0 such that

ψsq,(−δ,δ)(τ) = δ · ψsp,(−1,1)(δ
−1τ) + ατ + β with p = f t(q) (2.15)

where |α| ≤ C∗⟨log δ⟩ and |β| ≤ C∗.

Proof. Let q ∈M and 0 < δ < δ′ ≤ 1. We take t > 0 satisfying ∥Df tq |Eu∥ = δ′/δ,

so that f t(Wu
(−δ,δ)(q)) =Wu

(−δ′,δ′)(p) with p = f t(q). Let us recall the relation (2.8) and

find that

ψγt(τ) =
δ′

δ
· ψγ

(
δ

δ′
· τ

)
+ φq,t(τ) (2.16)

for any section γ ∈ Γu1 (q, (−δ, δ)) and its image γt ∈ Γu1 (p, (−δ′, δ′)) by f t that is defined
by the relation (2.7). (See also Remark 2.6.)

We show that the function φq,t(τ) in (2.16) is an affine function. To see this, we let

γ ∈ Γu1 (q, (−δ, δ)) be the pull-back of the section γ0p,(−δ′,δ′) by f
t, so that γt = γ0p,(−δ′,δ′).

Then the representation function of γt = γ0p,(−δ′,δ′) on the left-hand side is null by

definition. Also that of γ on the right-hand side is an affine function because it is a

straight section from Lemma 2.5. Therefore φq,t(τ) is also an affine function.

In order to get the conclusion of the lemma, we set γ = γsq,(−δ,δ) ∈ Γu1 (q, (−δ, δ)) in
(2.16). Then, from invariance of E∗

0 , we see

ψsp,(−δ′,δ′)(τ) =
δ′

δ
· ψsq,(−δ,δ)

(
δ

δ′
· τ

)
+ φq,t(τ).
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Changing the variable τ to (δ′/δ)τ , we rewrite it as

ψsq,(−δ,δ)(τ) =
δ

δ′
· ψsp,(−δ′,δ′)

(
δ′

δ
· τ

)
− δ

δ′
· φq,t

(
δ′

δ
· τ

)
. (2.17)

We obtain the formula (2.15) as the case δ′ = 1. The required estimate on α is obtained

by applying (2.17) with δ′/δ bounded recursively (as in the proof of Lemma 2.5) and

by using the fact that the affine function φq,t(τ) is bounded provided that δ′/δ (or t) is

bounded. The required estimate on β should be obvious. □

Remark 2.10. As we noted in the beginning of Subsection 2.2, we can develop the

argument above for the time-reversed flow f−t in parallel. The objects corresponding to

| · |Wu(p), Wu
J (p), wup (·), Γu(p, J), Γu1 (p, J), γ⊥p,J , γ0p,J , γsp,J , ψsp,J (2.18)

in such argument will be denoted respectively by

| · |W s(p), W s
J (p), wsp(·), Γs(p, J), Γs1(p, J), γ̂⊥p,J , γ̂0p,J , γup,J , ψup,J . (2.19)

2.5. The non-integrability condition.

Now we put the following definition.

Definition 2.11. Let 0 < ρ < 1. We say that a C3 Anosov flow f t onM preserving

a smooth volume µ satisfies the non-integrability condition (NI)ρ if, for sufficiently large

b > 0, the estimate ∣∣∣∣∫ 1

−1

exp (ib (ψ(τ) + ατ)) dτ

∣∣∣∣ < b−ρ (2.20)

holds for all s-templates ψ ∈ T (f t) and α ∈ R.

Remark 2.12. From (2.13) (or (2.3)), the s-templates ψ ∈ T (f t) are Hölder

continuous with any exponent 0 < β < 1 and the corresponding Hölder coefficients are

bounded by a uniform constant Cβ,∗. Hence, for each 0 < ρ < 1, the condition (2.20)

holds for free if |α| > b and b is sufficiently large. (For instance, we can check this by

using “regularized” integration by parts given in Lemma 6.12.)

Remark 2.13. From Lemma 2.9, the non-integrability condition (NI)ρ remains

unchanged even if we replace the Riemann metric on M by another Riemann metric and

the volume µ by its scalar multiple.

Remark 2.14. In the case of contact Anosov flows (see [15] for the definition),

the set T of s-templates consists of a single trivial equivalence class [0] modulo affine

functions. (To check this, observe that γs(q, J) is given by the contact form restricted to

Wu
J (p) and is straight because the contact form is preserved by the flow.) Therefore our

non-integrability condition (NI)ρ excludes the case of contact Anosov flows!

The main theorem, Theorem 1.1, follows if we prove the following two theorems.
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Theorem 2.15. Let 3 ≤ r <∞. If we let 0 < ρ < 1 be sufficiently small depending

only on r, the set of flows that satisfy the non-integrability condition (NI)ρ is dense in FrA.

Theorem 2.16. If a flow f t0 ∈ F3
A satisfies the non-integrability condition (NI)ρ

for some 0 < ρ < 1, there exists an open neighborhood V of f t0 in F3
A such that all f t ∈ V

are exponentially mixing and further that the decay estimate (1.1) holds for all f t ∈ V
with uniform constants cα and Cα.

We prove Theorem 2.15 in the next section, Section 3. We prove Theorem 2.16 in

Section 6, after preparations in Section 4 and Section 5.

2.6. Approximate non-integrability.

We finish this section by a discussion on another important idea about joint non-

integrability of the stable and unstable foliation, which is closer to the ideas of Frobenius

non-integrability and the uniform non-integrability condition introduced by Chernov [4].

Let us consider how the flow f t twists the tangent bundle along local unstable (resp.

stable) manifolds (in a more literal sense). Consider a point q ∈ M and a positive

number 0 < δ < 1. Recall that we have specified the straight sections γ0q,J uniquely when

J = (−1, 1) by the condition (2.12), but not yet for the case J = (−δ, δ) with 0 < δ < 1.

There are two natural but different ways to choose a straight section in Γu1 (q, (−δ, δ)):

(a) we take it as a restriction of γ0q,(−1,1) to W
u
(−δ,δ)(q) ⊂Wu

(−1,1)(q), or

(b) we take t > 0 such that f t(Wu
(−δ,δ)(q)) = Wu

(−1,1)(p) with p = f t(q) and let it be

the pull-back of γ0p,(−1,1) ∈ Γu1 (p, (−1, 1)) by f t.

Let us denote the straight sections obtained in (a) and (b) by γ0q,(−δ,δ) and γ†q,(−δ,δ)
respectively. They are both straight sections and hence affine equivalent, that is,

γ†q,(−δ,δ)(τ) = γ0q,(−δ,δ)(τ) + ψ†
q,δ(τ) · γ

⊥
q,(−δ,δ)(τ) (2.21)

for an affine function ψ†
q,(−δ,δ)(τ). The linear part of ψ†

q,(−δ,δ)(τ) may be understood as

the torsion that f t (with t in (b) above) makes along Wu
(−δ,δ)(q). This motivate us to

define

Tors(q, δ) := (ψ†
q,δ)

′(0). (2.22)

As we noted in Remark 2.10, we can apply the parallel argument to the time-reversed

flow f−t and define

γ̂†q,(−δ,δ), ψ̂†
q,δ, Toru(q, δ) (2.23)

as the objects corresponding to

γ†q,(−δ,δ), ψ†
q,δ, Tors(q, δ). (2.24)

These extends the correspondence between (2.18) and (2.19).
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Recall that there are options of choosing signs in the definitions of γ⊥q,(−δ,δ) and

γ̂⊥q,(−δ,δ). In the following definition, we suppose that the signs are chosen so that

⟨γ⊥q,(−δ,δ)(0), (w
s
q,(−δ,δ))

′(0)⟩ > 0, ⟨γ̂⊥q,(−δ,δ)(0), (w
u
q,(−δ,δ))

′(0)⟩ > 0.

Definition 2.17. For q ∈M and 0 < δ < 1, we set

∆(q, δ) = Toru(q, δ)− Tors(q, δ) (2.25)

and call it the approximate non-integrability at q ∈M in the scale δ.

Remark 2.18. We regard the quantity ∆(q, δ) as an approximation of Frobenius

non-integrability between stable and unstable foliation at q ∈ M viewed in the scale

δ > 0. It is natural to expect that ∆(q, δ) will take large values for most of small δ > 0

and most points q ∈M in generic cases. However the problem with the quantity ∆(q, δ)

is its dependence on the scale δ. When we perturb the flow, it is difficult to see how the

quantity ∆(q, δ) varies for small δ > 0. On the contrary, our non-integrability condition

(NI)ρ is formulated in terms of s-templates and does not involve the scale δ. This is

the main technical advantage of the notion of s-templates. Note however that we will

make use of the quantity ∆(q, δ) in the proof of Theorem 2.16. In fact, we will use

the non-integrability condition (NI)ρ only in the situation where |∆(q, δ)| is not large

enough.

The next lemma gives a few basic properties of the quantities we have introduced.

Lemma 2.19. For σ = s, u, 0 < δ, δ′ < 1, q ∈M and t ∈ R, we have

|Torσ(q, δ)− Torσ(q, δ′)| < C∗

⟨
log

δ′

δ

⟩
and hence |Torσ(q, δ)| < C∗⟨log δ⟩, (2.26)

|Torσ(f t(q), δ)− Torσ(q, δ)| ≤ C∗⟨t⟩, and hence |∆(f t(q), δ)−∆(q, δ)| ≤ C∗⟨t⟩ (2.27)

and

|Torσ(q′, δ)− Torσ(q, δ)| ≤ C∗ if d(q, q′) < δ. (2.28)

Proof. We prove the claims in the case σ = s. We can prove those in the case

σ = u in the parallel manner considering the time reversed flow f−t. Note first of all

that Tors(q, 1) = 0 by definition. From the definition of Tors(q, δ), it is easy to see that,

for fixed t0 > 0, there exist C∗ = C∗(t0) > 0 satisfying

|Tors(q, δ)− Tors(f t(q), ∥Df tq |Eu∥ · δ)| ≤ C∗

for 0 ≤ t ≤ t0, q ∈ M and 0 < δ ≤ ∥Df tq |Eu
∥−1. Recursive application of this estimate

yields

|Tors(q, δ)− Tors(f t(q), ∥Df tq |Eu∥ · δ)| ≤ C∗⟨t⟩ for t > 0 and 0 < δ ≤ ∥Df tq |Eu∥−1.

(2.29)
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In particular, letting t ≥ 0 be such that ∥Df tq |Eu∥ · δ = 1, we get

|Tors(q, δ)| ≤ C∗⟨log δ⟩ for 0 < δ ≤ 1.

For 0 < δ ≤ δ′ ≤ 1 and t ≥ 0 such that ∥Df tq |Eu∥ · δ′ = 1, we have

|Tors(q, δ)− Tors(q, δ′)| =
∣∣∣∣Tors(f t(q), δδ′

)
− Tors(f t(q), 1)

∣∣∣∣ = ∣∣∣∣Tors(f t(q), δδ′
)∣∣∣∣
(2.30)

where the first equality is a consequence of the definition of Tors(q, δ) and Lemma 2.5.

The last two estimates yield (2.26). Then (2.27) follows from (2.26) and (2.29). To prove

the last claim (2.28), it is enough to show the claim

|Tors(q′, δ)− Tors(q, δ)| ≤ C∗

for sufficiently small δ > 0 and for any q, q′ ∈M satisfying either

(i) q′ ∈Wu
(−δ,δ)(q), (ii) q′ ∈W s

(−δ,δ)(q) and (iii) q′ ∈ fτ (q) for some τ ∈ (−δ, δ).

In the case (i), each straight section onWu
(−δ,δ)(q) extends uniquely to that onWu

(−δ,δ)(q
′).

In the case (iii), the flow fτ brings each straight section on Wu
(−δ,δ)(q) to that on

Wu
(−δ′,δ′)(q

′) with δ′ = ∥Dfτq |Eu∥ · δ, which extends (or restricts) uniquely to that on

Wu
(−δ,δ)(q

′). Therefore we obtain the claim in these two cases by comparing the defi-

nitions of Tors(q, δ) and Tors(q′, δ) through such correspondences. In the case (ii), the

claim is obvious because the distance between f t(q) and f t(q′) decreases exponentially

as t→ ∞. □

3. Proof of Theorem 2.15.

In this section, we prove Theorem 2.15. We consider an arbitrary C∞ flow f t ∈ F∞
A

and deform its s-templates, perturbing the flow by time-changes. The problem is how

often the condition (2.20) in the non-integrability condition (NI)ρ holds when b is large.

Roughly speaking, the point of the argument below is that, for some R > 0, we can

change the values of s-templates ψsp,(−1,1) on each of disjoint subintervals in (−1, 1) with

size b−1/R almost independently with amplitude proportional to b−1. This together with

the large deviation argument enable us to show that the condition (2.20) with large b is

violated only with very small possibility bounded by a stretched exponential rate in b.

Remark 3.1. After time changes, the flow will no longer preserve the Riemann

volume m though it will preserve a smooth volume close to m. We will resolve this

problem by using a result of Moser [17] on deformation of smooth volumes on a manifold.

See the last part of Subsection 3.2.

3.1. Exceptional set E(b).
In order to avoid technical problems caused by interference of perturbations, we will

regard the s-templates for points in some subset E(b) as exceptions and treat them in

a different manner. The definition of the exceptional set E(b) in the next paragraph is
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motivated as follows. In order to modify the values of the s-template ψsp,(−1,1) for p ∈M ,

we will perturb the flow f t in a small neighborhood N of the subset f t∗(Wu
(−1,1)(p)) with

some t∗ > 0. In such perturbation, the problem of interference arises when f t(N )∩N ̸= ∅
for some t > 0 that is not large enough. (As we will see, the interference is negligible

if t > 0 is large enough.) This is the situation that we would like to avoid. Note that,

in such situation, there exists a periodic orbit with period ≲ t that passes through a

neighborhood of N , by the pseudo-orbit tracing property of Anosov flow (or Anosov

closing lemma [13, Corollary 18.1.8]).

Below we give the precise definition of the exceptional set E(b). We denote the prime

period of a periodic point w ∈M by per(w) and take and fix a constant τ∗ > 0 such that

10τ∗ < min{per(w) | w is a periodic point of f t}. (3.1)

Then we set

λ∗ := e10χ∗τ∗ > 1 and c∗ =
2

1− λ−1
∗

so that the modulus of hyperbolicity ∥Dfper(w)
w |Eu∥ of a periodic point w ∈M is always

greater than λ∗. Let R > 0 be an integer constant that we will take soon in the next

subsection. (One may suppose R = r + 11 if one likes.) For b > 1 and p ∈M , we set

T (p, b) = inf{t ≥ 0 | ∥Df−tp |Eu
∥ ≤ b−1/(4R)}. (3.2)

Definition 3.2 (The exceptional set E(b)). The exceptional set E(b) ⊂ M for

b > 1 is the open set of points p ∈ M such that there exits a periodic orbit γ whose

prime period is less than T (p, b) and whose (minimum) distance from Wu
[−c∗,c∗](p) is less

than b−2/(3R).

The next lemma tells that the periodic orbit γ in the definition above is unique for

each p ∈ E(b), provided that b is sufficiently large.

Lemma 3.3. For any C > 1, there exists b0 > 0 such that, for b ≥ b0 and p ∈ M ,

there exists at most one periodic orbit γ satisfying both of the following conditions :

1. the prime period of γ is bounded by T (p, b) + C, and

2. the (minimum) distance from γ to Wu
[−c∗,c∗](p) is less than b−3/(5R).

Further, if such periodic orbit γ exists, it passes through the b−3/(5R)-neighborhood of

Wu
[−c∗,c∗](p) only once. More precisely, if there are two points p1, p2 on γ that belongs

to the b−3/(5R)-neighborhood of Wu
[−c∗,c∗](p), there exists t with |τ | < b−1/(3R) such that

f t(p1) = p2.

Proof. Suppose that a periodic orbit γ satisfies the conditions 1 and 2 in the

lemma for some b ≥ b0 and p ∈ M . Let p1 be a point on the periodic orbit γ that

belongs to the b−3/(5R)-neighborhood of Wu
[−c∗,c∗](p). By a crude estimate we see that

the backward orbit f−t(p) of the point p traces that of p1 as far as
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∥Df−tp ∥ ∼ ∥Df−tp |Eu∥−1 ≪ b3/(5R).

Hence, for any ε > 0, we can take t(ε) > 0 and let b0 large so that the distance between

f−t(p) and f−t(p1) ∈ γ is bounded by ε for t ∈ [t(ε), t(ε) + T (p, b) + C]. That is, the

orbit f−t(p) for t ∈ [t(ε), t(ε) + |γ|] traces the periodic orbit |γ| within distance ε. By

uniform hyperbolicity of the flow f t, this implies uniqueness of the periodic orbit γ and

also the last claim of the lemma because b−1/(3R) ≫ b−3/(5R). □

3.2. A probability measure on the space of functions.

Let 3 ≤ r <∞ and let Cr(M) be the Banach space of Cr functions. Let us consider

the translations on Cr(M):

τφ : Cr(M) → Cr(M), τφ(u) = u+ φ.

In the following, we fix some R > r and a Borel probability measure µ on Cr(M) such

that

exp(−∥φ∥CR) ≤
∣∣∣∣d((τφ)∗µ)dµ

∣∣∣∣ ≤ exp(∥φ∥CR) for any φ ∈ CR(M). (3.3)

From [20, Lemma E], such a measure µ exists provided that we let R > r be sufficiently

large, say R = r+ 11. Note that, from (3.3), we have µ(U) > 0 for any non-empty open

subset U ⊂ Cr(M).

We suppose that W is a small neighborhood of the origin 0 in Cr(M) and will let it

be smaller in the course of the argument if necessary. Let v be the generating vector field

of the flow f t. For φ ∈ W, let f tφ be the flow generated by the vector field vφ = (1+φ) ·v.
Note that, since the flow f tφ preserves the Cr volume mφ = (1 + φ)−1 ·m, we can apply

the argument in Section 2 to the flow f tφ with setting µ = mφ. For 0 < ρ < 1, p ∈ M ,

α ∈ R and b > 0, let

Xρ(p, α; b) ⊂ W

be the set of functions φ ∈ W such that the condition (2.20) with these ρ, α and b fails

for the s-template at p for the flow f tφ. As the main step in the proof of Theorem 2.15,

we show the following proposition.

Proposition 3.4. If ρ > 0 is sufficiently small, then, for sufficiently large b > 0,

we have

µ(Xρ(p, α; b)) < exp(−b ρ)

for any p ∈M \ E(b) and α ∈ R.

The proof of this proposition will be given in the following subsections. Below we

deduce Theorem 2.15 from this proposition. Note that we have Xρ(p, α; b) = ∅ for α with

|α| ≥ b from Remark 2.12, provided that b is sufficiently large. Take small ρ > 0 so that

the conclusion of Proposition 3.4 holds and let ρ′ be a real number such that 0 < ρ′ < ρ.
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Corollary 3.5. For sufficiently large b > 0, we have

µ

 ∪
p∈M\E(b)

∪
α∈R

Xρ′(p, α; b)

 < exp

(
−b

ρ

2

)
.

Proof. If we take a finite but sufficiently dense subset of points {(pi, αi)}Ii=1 in

(M \ E(b))× {α ∈ R | |α| < b}

depending on b, then, by approximation, the union of the subsets Xρ(pi, αi; b) will cover∪
p∈M\E(b)

∪
α∈RXρ′(p, α; b). By crude estimate, we can see that the cardinality I of the

finite set necessary for this to be true is bounded by a polynomial order in b. Therefore

we obtain the conclusion from Proposition 3.4. □

Next we prove the following lemma which tells roughly that if the condition (2.20)

holds for all p /∈ E(b), it also holds for p ∈ E(b) with slightly smaller ρ. Let us say that

a flow f tφ satisfies the condition (NI)ρ,b for b > 0 and ρ > 0 if the condition (2.20) with

these b and ρ holds for all the s-templates (for f tφ) and α ∈ R. Let ρ′′ be a real number

such that

0 < ρ′′ < ρ′(1− ρ′) < ρ′.

Lemma 3.6. If b > 0 is sufficiently large and if φ ∈ W does not belong to the subset∪
p∈M\E(b′)

∪
α∈RXρ′(p, α; b

′) for any integer b′ with b1−ρ
′ ≤ b′ ≤ ⌈b⌉, then the flow f tφ

satisfies the condition (NI)ρ′′,b.

Proof. We henceforth write Wu
J (p;φ), w

u
p (τ ;φ) and ψsJ (τ ;φ) respectively for

Wu
J (p), w

u
p (τ) and ψsJ (τ) defined for the flow f tφ, with setting f t = f tφ and µ = mφ

in the argument in Section 2. Note that, since f tφ is a time change of the flow f , the

projection of Wu
J (p;φ) along the flow line (to some transversal section) coincides with

that of Wu
J (p) =Wu

J (p; 0). Below we always suppose that b is sufficiently large.

From the assumptions, the condition (2.20) with ρ replaced by ρ′ holds for the

s-templates at any point in M \ E(b) and for any α. It is therefore enough to prove the

condition (2.20) with ρ replaced by ρ′′ for the s-template at p ∈ E(b) and α ∈ R with

|α| < b. For the proof, we will use the following simple relation that follows from (2.15):

for q ∈M and 0 < δ < 1, let t > 0 be such that ∥(Df tφ)q|Eu∥ = δ−1, then

1

2δ

∣∣∣∣∣
∫ δ

−δ
exp(ib(ψsq,(−δ,δ)(τ ;φ) + ατ))dτ

∣∣∣∣∣ = 1

2

∣∣∣∣∫ 1

−1

exp(iδb(ψsq′,(−1,1)(τ ;φ) + α′τ))dτ

∣∣∣∣
(3.4)

for q′ = f tφ(q) and some α′ ∈ R depending on α.

Suppose that p ∈ E(b). From the definition of the set E(b), there exists a periodic

orbit γ for f t whose prime period is less than T (p, b) and whose distance fromWu
[−c∗,c∗](p)

is less than b−2/(3R). Note that γ is a periodic orbit also for the flow f tφ and the distance
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between γ and Wu
[−c∗,c∗](p;φ) is bounded by C∗b

−2/(3R) provided that W is sufficiently

small.

We will estimate the integral on the right-hand side of (2.20) by estimating its

restrictions to subintervals using (3.4). To this end, we divide Wu
[−1,1](p;φ) into finitely

many pieces

Wk =Wu
[−δ(k),δ(k)](q(k);φ) for 0 ≤ k ≤ k(p)

with choosing q(k) ∈Wu
[−1,1](p;φ) and δ(k) > 0 appropriately. (We allow the pieces Wk

to meet each other only at their end points.) Let us write q = wup (τγ ;φ) for the point in

Wu
[−c∗,c∗](p;φ) that is closest to the periodic orbit γ. We take Wk, 1 ≤ k ≤ k(p), in the

following manner:

• W0 is taken as an exceptional piece that covers the intersection of Wu
[−1,1](p;φ)

with a neighborhood of q of size proportional to b−ρ
′
. More precisely, we take q(0)

and δ(0) so that 0 ≤ δ(0) ≤ 4c∗b
−ρ′ and that W0 covers the intersection

wup ([τγ − 2c∗b
−ρ′ , τγ + 2c∗b

−ρ′ ];φ) ∩Wu
[−1,1](p;φ).

• For 1 ≤ k ≤ k(p), the length of Wk is proportional to its distance from the point

q = wup (τγ ;φ) in Wu(p;φ). More precisely, we take q(k) = wup (τk;φ) and δ(k) so

that

C−1
∗ |τk − τγ | ≤ δ(k) ≤ c−1

∗ |τk − τγ |
2

and b−ρ
′
≤ δ(k) ≤ c∗ − 1

c∗
.

Clearly such construction is possible. Further we may and do suppose that δ(k)b for k ̸= 0

are integers, by adjusting the non-exceptional piece Wk with k ̸= 0 and incorporating

the remnants in the exceptional piece W0.

Below we are going to consider the non-exceptional piece Wk with 1 ≤ k ≤ k(p).

Take tk > 0 so that ∥(Df tkφ )q(k)|Eu∥ = δ(k)−1 or, in other words, that

f tkφ (Wu
[−δ(k),δ(k)](q(k);φ)) =Wu

[−1,1](f
tk
φ (q(k));φ).

We claim that f tkφ (q(k)) for 1 ≤ k ≤ k(p) does not belong to E(δ(k)b). Set q′(k) :=

f tkφ (q(k)) for brevity. To prove the claim, let us suppose that q′(k) belongs to E(δ(k)b)
and show that the periodic orbit γ is too close toWk, which contradicts the fact thatWk is

a non-exceptional piece. Note, first of all, that we may suppose the ratio tk/T (p, b) to be

close to 0 because ρ′ < ρ are assumed to be small. From the definition of E(δ(k)b), there
exists a periodic orbit γ′ for the flow f t whose period |γ′| is less than T (q′(k), δ(k)b) and
whose distance from Wu

[−c∗,c∗](q
′(k)) is bounded by (δ(k)b)−2/(3R). The backward orbit

f−tφ (q′(k)) of q′(k) traces the periodic orbit γ′ as far as ∥Df−tq′(k)∥ ∼ ∥Df−tq′(k)|Eu
∥−1 ≪

(δ(k)b)2/(3R) and hence for 0 ≤ t ≤ T (q′(k), δ(k)b). Therefore we have that

∥Df−|γ′|
q′′ |Eu∥ > C−1

∗ ∥Df−T (q′(k),δ(k)b)
q′(k) |Eu∥ ≥ C−1

∗ (δ(k)b)−1/(4R) ≫ b−1/(4R) (3.5)

for any point q′′ on the orbit γ′. Since f−tkφ preserves the periodic orbit γ′, the distance
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between γ′ and Wk =Wu
[−c∗δ(k),c∗δ(k)](q(k);φ) ⊂Wu

[−c∗,c∗](p;φ) is less than

C∗δ(k)
−1 · (δ(k)b)−2/(3R) ≪ b−1/(2R).

This and the fact that q(k) ∈ Wu
[−1,1](p, φ) imply that the backward orbit f−t(p) of p

also traces γ′ as far as ∥Df−tp ∥ ∼ ∥Df−tp |Eu∥−1 ≪ b1/(2R). Hence, from (3.5), the period

|γ′| of γ′ is bounded by T (p, b)+C. This and Lemma 3.3 imply γ′ = γ. But the estimate

above on the distance between γ′ = γ and Wk clearly contradicts the fact that Wk is a

non-exceptional piece.

Now we can apply (3.4) to the non-exceptional pieces Wk for 1 ≤ k ≤ k(p) and find

1

|Ik|

∣∣∣∣∫
Ik

exp(ib(ψsp,(−1,1)(τ ;φ) + ατ))dτ

∣∣∣∣ = 1

2

∣∣∣∣∫ 1

−1

exp(iδ(k)b(ψsq′(k),(−1,1)(τ ;φ) + α′τ))dτ

∣∣∣∣
where Ik ⊂ [−1, 1] is the interval such that Wk = Wu

Ik
(p;φ). Since q′(k) = f tkφ (q(k))

for 1 ≤ k ≤ k(p) does not belong to E(δ(k)b) as we have proved above, the assumption

of the lemma tells that the right-hand side is bounded by (δ(k)b)−ρ
′ ≪ b−ρ

′′
. Since the

length of the exceptional piece W0 is bounded by C∗b
−ρ′ ≪ b−ρ

′′
, we obtain the required

estimate (2.20) with ρ replaced by ρ′′. □

From Lemma 3.6, we see that, if φ ∈ W does not belong to the subset

∩
B

∪
b≥B,b∈N

 ∪
p∈M\E(b)

∪
α∈R

Xρ(p, α; b)

 ,

the flow f tφ satisfies the condition (NI)ρ′ for ρ
′ < ρ(1 − ρ). Since the µ-measure of the

set above is 0 from Corollary 3.5 and Borel–Cantelli lemma, we can find φ ∈ Cr(M) ar-

bitrarily close to 0 such that the flow f tφ satisfies the non-integrability condition (NI)ρ/2.

By a theorem of Moser [17], there is a Cr diffeomorphism Φφ :M →M which transfers

the volume mφ = (1 + φ)−1m to m, and Φφ converges to the identity in Cr sense as φ

converges to 0 in Cr(M). Therefore, taking conjugation of f tφ by such a diffeomorphism

Φφ and recalling Remark 2.13, we obtain a Cr flow in FrA which is arbitrarily close to f t

in the Cr sense and satisfies the non-integrability condition (NI)ρ/2. We have finished

the proof of Theorem 2.15.

3.3. Perturbation family.

In this subsection, we explain the scheme of perturbation for the proof of Proposition

3.4. Recall that we write v for the generating vector field of the flow f t. Suppose that

b > 0 is large and that a point p ∈M \ E(b) and α ∈ R with |α| < b are given arbitrarily.

Below we set up functions φj ∈ C∞(M) for 1 ≤ j ≤ ⌈b1/R⌉. Then, for arbitrary φ0 ∈ W
and a subset J ⊂ {1, 2, . . . , ⌈b1/R⌉} of integers, we consider the family of vector fields

vt = (1 + φt) · v where φt = φ0 +
∑
j∈J

tj · φj and t = (tj) ∈ [−4, 4]J . (3.6)

Once we fix such family of vector fields, we write f tt = f tφt
for the flow generated by vt.
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Figure 1. A picture of the flow f t in a section parallel to the flow that

contains the unstable manifold Wu
(−1,1)(p).

Recall the constant τ∗ > 0 taken so that the condition (3.1) holds and set q = f4τ∗(p).

We take the points

s(j) = −1 + (2j − 1) · b−1/R for 1 ≤ j ≤ ⌈b1/R⌉

so that

s(1) = −1 + b−1/R, s(i+ 1)− s(i) = 2b−1/R and s(⌈b1/R⌉) ∈ [1, 1 + b−1/R].

Then we put, for 1 ≤ j ≤ ⌈b1/R⌉,

p(j) = wup (s(j)), q(j) = f4τ∗(p(j)) = wuq (λs(j))

where we set λ = ∥Df4τ∗p |Eu∥. (See Figure 1.)

To proceed, we take a C∞ local coordinate chart

κp : U → V × [−τ∗, 6τ∗] ⊂ R2 × R, κp(m) = (x, y, z)

on a neighborhood U of Wu
[−2,2](p), so that

• it is a flow box coordinate charts for the flow f t, that is, (κp)∗(v) = ∂z,

• it transfers the Riemann volume m to the standard volume dxdydz on R3, and

• κp(w
u
p (τ)) = (τ, 0, 0) if τ ∈ [−2, 2].

We may and do assume that the coordinate charts κp for p ∈M are bounded uniformly

in C∞ sense. (Recall that we are assuming f ∈ F∞
A .) Note that we have

κp(p(j)) = (s(j), 0, 0), κp(q(j)) = κp(f
4τ∗(p(j))) = (s(j), 0, 4τ∗).

Next we take and fix a C∞ functions h0 : R2 → [0, 1] supported on the disk |(x, y)| ≤
3/2 such that h0(x, y) = y if |(x, y)| ≤ 1. Also let χ : R → [0, 1] be a C∞ function such

that χ(s) = 1 if |s| ≤ 1 and χ(s) = 0 if |s| ≥ 3/2. Then we define

φj :M → [0, 1] for 1 ≤ j ≤ ⌈b1/R⌉
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by

φj(m) = −b−1−1/R · χ
(
z − 4τ∗
τ∗

)
· h0

(
b1/R(x− s(j)), b1/Ry

)
(3.7)

if m ∈ U , where κp(m) = (x, y, z), and set φj(m) = 0 if m /∈ U .

Remark 3.7. The motivation for the choice of φj above is explained as follows.

Consider the family f tt defined by (3.6) with J = {j} and φ0 ≡ 0. Then, in the local

chart κp, the vector field vt looks

(κp)∗vt(x, y, z) =

(
1− tj · b−1−1/R · χ

(
z − 4τ∗
τ∗

)
· h0

(
b1/R(x− s(j)), b1/Ry

))
· ∂z.

A simple computation tells that, if w = (x, y) satisfies |w − (s(j), 0)| ≤ b−1/R, the map

f−6τ∗
t takes the point (w, 6τ∗) to (w, a0b

−1tjy +O∗(|b−1tjy|2)) where a0 =
∫
χ(z/τ∗)dz.

Therefore, by varying the parameter tj , we will be able to rotate the stable subspace

Es(w) around the unstable manifold by the rate proportional to b−1.

Below we discuss about the perturbation family f tt = f tφt
defined in (3.6). First of

all, note that the functions φj satisfy

∥Dkφj∥∞ ≤ C∗b
((k−1)/R)−1 for 0 ≤ k ≤ R. (3.8)

The intersection multiplicity of suppφj for 1 ≤ j ≤ ⌈b1/R⌉ is bounded by 2. Hence,

regardless of the choice of J , we have that, for t ∈ [−4, 4]J ,

∥φt − φ0∥CR < C∗b
−1/R, ∥∂tφt∥C1 ≤ C∗b

−1 and ∥φt − φ0∥C0 < C∗b
−1−1/R. (3.9)

As we explained in Remark 3.7, our aim is to modify the s-template ψsp,(−1,1) on the

intervals

J(j) := [s(j)− b−1/R, s(j) + b−1/R] ∩ [−1, 1] for j ∈ J

almost independently by varying the parameters tj for j ∈ J . To realize this, we have

to choose the subset J carefully. Let us make two observations: The first one is that

(Ob1) f t(suppφi) ∩ suppφj = ∅ for 1 ≤ i, j ≤ ⌈b1/R⌉ and 4τ∗ ≤ t ≤ T (p, b)− 4τ∗.

This is a consequence of the fact that p does not belong to E(b). Indeed, if this were not

true, we could find a periodic orbit with period < T (p, b) in the C∗b
−1/R-neighborhood

of Wu
[−c∗,c∗](p) by the pseudo-orbit tracing property and hence the point p would belong

to E(b), provided that b is sufficiently large.

The second observation below is somewhat similar to the first one but makes use of

the fact that the curve f−t(Wu
[−1,1](p)) shrinks exponentially fast as t increases:

(Ob2) Let E(p, b) be the set integers 1 ≤ j ≤ ⌈b1/R⌉ such that the support of φj meets

f−t(Wu
[−1,1](p)) for some t ≥ 0 with ∥Df−tp |Eu∥ ≥ b−1. Then ♯E(p, b) ≤ C∗b

3/(4R).
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Indeed, by the similar reason as that for (Ob1), we can find a sequence of real numbers

t0 = 0 < t1 < t2 < · · · < tk < · · · such that the curve f−t(Wu
(−1,1)(p)) meets suppφj for

some 1 ≤ j ≤ ⌈b1/R⌉ only if t ∈
∪∞
i=1[ti − 2τ∗, ti + 2τ∗] and that ti+1 − ti > T (p, b)− 4τ∗

for i ≥ 0, provided that b is sufficiently small. Then (Ob2) follows since the length of

f−ti(Wu
[−1,1](p)) is bounded by (C∗b

−1/(4R))i from the definition of T (p, b).

In the following, we let the subset J be either of Jeven and Jodd that consist of even

and odd integers 1 ≤ j ≤ ⌈b1/R⌉ respectively, but we exclude

• those j in E(p, b) given in (Ob2), and

• those j for which J(j − 1) ∪ J(j) ∪ J(j + 1) contains either of −1 or 1.

Remark 3.8. The cardinality of 1 ≤ j ≤ ⌈b1/R⌉ that does not belong to Jeven ∪
Jodd is bounded by C∗b

3/(4R) from (Ob2) and hence the Lebesgue measure of the union

of J(j) for such j’s is bounded by C∗b
−1/(4R). With this reason, these exceptions will

turn out to be negligible when we prove the estimate (2.20) in the following subsections,

provided that ρ is so small that ρ < 1/(4R).

3.4. Deformation of s-templates.

In this subsection, we suppose that J is either of the subsets Jeven and Jodd de-

fined above and observe how the s-template ψsp,(−1,1) at the point p is deformed in the

perturbation family (3.6) with arbitrary φ0 ∈ W.

Let us write TqM = E0(q; t)⊕ Es(q; t)⊕ Eu(q; t) for the hyperbolic decomposition

at q ∈M for the flow f tt , correspondingly to (2.1). Let

γ0p,t, γ
⊥
p,t, γ

s
p,t :Wu

(−1,1)(p;φt) → T ∗M

be the sections γ0p,(−1,1), γ
⊥
p,(−1,1), γ

s
p,(−1,1) considered in Section 2 but defined for the

perturbed flow f tt . Then, by definition, the s-template ψsp,(−1,1)(τ ;φt) for the flow f tt at

p is the function satisfying

γsp,t(z) = ψsp,(−1,1)(τ ;φt) · γ⊥p,t(z) + γ0p,t(z) for z = wup (τ ;φt). (3.10)

Actually it is not a very simple task to observe how the s-template ψsp,(−1,1)(·;φt)

depends on the parameter t, because the frames γ⊥p,t and γ0p,t also depend on t. In order

to simplify the argument, we consider an intermediate approximation of ψsp,(−1,1)(·;φt),

which is defined in a similar manner as ψsp,(−1,1)(τ ;φt) but with the fixed frames defined

for t = 0. Let us define γ̃sp,t : Wu
(−1,1)(p;φ0) → T ∗M as the unique continuous section

in Γu1 (p, (−1, 1)) for the flow f t0 (with t = 0!) such that γ̃sp,t(z) is normal to Eu(z;0) ⊕
Es(z; t) for each z ∈ Wu

(−1,1)(p;φ0). Notice that this is a section not on Wu
(−1,1)(p;φt)

but on Wu
(−1,1)(p;φ0). We can express it as

γ̃sp,t(z) = ψ̃sp,(−1,1)(τ ; t) · γ
⊥
p,0(z) + γ0p,0(z) for z = wup (τ ;φ0) (3.11)

using a unique continuous function ψ̃sp,(−1,1)(·; t) : (−1, 1) → R. In the next lemma, we

show that ψ̃sp,(−1,1)(·; t) is a nice approximation of ψsp,(−1,1)(·;φt). Before stating the
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lemma, we note that there exist unique functions

h : [−4, 4]J → R and H : (−1, 1)× [−4, 4]J → R

such that h(0) = 1, H(τ,0) = 0, H(0, t) = 0 and that

wup (h(t) · τ ;φt) = fH(τ,t)(wup (τ ;φ0)) for τ ∈ (−1, 1) and t ∈ [−4, 4]J .

This is a consequence of the definition of the intrinsic metric (2.5) and the fact that our

perturbation does not change the flow line.

Lemma 3.9. For t ∈ [−4, 4]J , we have |h(t)− 1| ≤ C∗b
−2 and

|ψ̃sp,(−1,1)(τ ; t)− ψsp,(−1,1)(h(t) · τ ;φt)| < C∗b
−1−(1/(4R)) for τ ∈ (−1, 1).

Proof. From the observation (Ob2) in the last subsection and the definitions of

Jodd and Jeven, the backward orbit f−t(Wu
[−1,1](p)) of Wu

[−1,1](p), which shrinks expo-

nentially fast as t increases, does not meet the domain of perturbation
∪
j∈J suppφj

until the condition ∥Df−tp |Eu∥ < b−1 is fulfilled. Therefore, from the basic estimate (3.9)

and the construction of the unstable manifold by the graph transform method, we see

that the C1 distance betweenWu
(−1,1)(p;φt) andW

u
(−1,1)(p;φ0) is bounded by C∗b

−2 and

consequently

|h(t)− 1| ≤ C∗b
−2 and ∥∂τH(τ ; t)∥∞ ≤ C∗b

−2. (3.12)

Next we consider the sections γsp,t(·), γ⊥p,t(·) and γ0p,t(·). For convenience, we look them

in the flow box coordinate chart κp considered in the last subsection and regard them as

mappings from (−1, 1) to R3. From (3.12), we have

γ⊥p,t(w
u
p (h(t) · τ ;φt)) =

(
1 +O∗(b

−2)
)
· γ⊥p,0(wup (τ ;φ0)) (3.13)

and

γsp,t(w
u
p (h(t) · τ ;φt)) = γ̃sp,t(w

u
p (τ ;φ0)) +O∗(b

−2). (3.14)

To compare γ0p,t(·) and γ0p,0(·), we recall that they are specified by the condition (2.12).

For the point z = wup (±1;φ0), we see, from the choice of the subsets Jodd and Jeven and

from the observation (Ob1), that its forward orbit f t(z) for 0 ≤ t ≤ T (p, b) − 4τ∗ does

not pass through the domain of perturbation. Hence, from the construction of the stable

subspace,

∥γsp,t(wup (±h(t);φt))− γsp,0(w
u
p (±1;φ0))∥ < C∗b

−1−(1/(4R)).

This together with (3.12) and the C2 boundedness of γ0p,t imply

∥γ0p,t(wup (±h(t);φt))− γ0p,0(w
u
p (±1;φ0))∥ < C∗b

−1−(1/(4R)).

Let us recall, from the proof of Lemma 2.5, how the straight sections are determined as
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limits in terms of the time evolution along the orbit of Wu
(−1,1)(p) in the negative time

direction. Then, from disjointness of the backward orbit of Wu
(−1,1)(p) with the domain

of perturbation, mentioned in the beginning of this proof, and also from the estimate

above at the end points, we see that

∥γ0p,t(wup (h(t) · τ ;φt))− γ0p,0(w
u
p (τ ;φ0))∥ < C∗b

−1−(1/(4R)) for τ ∈ (−1, 1). (3.15)

We can now conclude the lemma by comparing (3.10) and (3.11) and using (3.13), (3.14),

(3.15). □

From Lemma 3.9, we have∣∣∣∣∫
I

exp
(
ib
(
ψ̃sp,(−1,1)(τ ; t) + ατ

))
dτ −

∫
I

exp
(
ib
(
ψsp,(−1,1)(τ ;φt) + ατ

))
dτ

∣∣∣∣ < C∗b
−1/(4R)

for any Borel subset I ⊂ [−1, 1]. Therefore, in proving (2.20), we may consider

ψ̃sp,(−1,1)(τ ; t) in the place of ψsp,(−1,1)(τ ;φt), provided that 0 < ρ < 1/(4R).

To proceed, we introduce the mapping

Ψτ = Ψτ,p,α,b : [−4, 4]J → RJ

defined for each τ ∈ (−b−1/R, b−1/R) by

Ψτ (t) = b ·
(
ψ̃sp,(−1,1)(s(j) + τ ; a−1

0 t) + α(s(j) + τ)

)
j∈J

where a0 =
∫
χ(z/τ∗)dz. (The factor a−1

0 before t above is thrown-in just for normaliza-

tion. See Remark 3.7.) For φ0 ∈ W in (3.6), let A(φ0) be the diagonal matrix of size ♯J
with the diagonal elements

aj(φ0) = a−1
0 ·

∫
(1 + φ0(f

t(q(j))))−2 · χ
(
t

τ∗

)
dt

where χ(·) is the function that appeared in the definition (3.7) of φj . Clearly we have

C−1
∗ < aj(φ) < C∗ for φ ∈ W and

|aj(φ̃)− aj(φ)| < C∗∥φ̃− φ∥∞ for φ, φ̃ ∈ W. (3.16)

The next lemma realize the idea explained in Remark 3.7.

Proposition 3.10. If b > 0 is sufficiently large, we have∥∥DΨτ (t)−A(φ0) : RJ → RJ ∥∥
max

≤ C∗b
−1/(4R)

for any t ∈ [−4, 4]J , p ∈ M \ E(b), α ∈ R and τ ∈ (−b−1/R, b−1/R), where we consider

the operator norm with respect to the norm ∥(sj)∥max = maxj |sj | on RJ . This implies in

particular that the mapping Ψτ restricted to [−4, 4]J is a diffeomorphism onto its image.

In addition, for the Jacobian determinant, we have
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| log detDΨτ (t)− log detA(φ0)| ≤ C∗b
−1/(4R) · ♯J . (3.17)

Proof. The stable subspace at w ∈M for f tt is given as the limit

Es(w; t) = lim
t→∞

Df−tt (E(f tt(w)))

where E(w) is the one dimensional subspace in TwM which is orthogonal to Eu(w) ⊕
E0(w). Thus we can compute the differentials of Es(w; t) and ψ̃

s
p,(−1,1)(w; t) with respect

to the parameter t as an integral of the infinitesimal contribution of the perturbation at

f tt(w) for t ≥ 0. It is not difficult to see that the differential is given in the form

∂tj ψ̃
s
p,(−1,1)(τ ; t) =

∫ ∞

0

|Df t0|Eu(wup (τ ;φ0))|−1 ·Xj(τ, p, t, t) dt

where Xj(τ, p, t, t) satisfies |Xj(τ, p, t, t)| < C∗b
−1 from (3.9) and vanishes if

f t0(w
u
p (τ ;φ0)) does not belong to suppφj . (Here we use the fact that our perturba-

tion does not change the flow lines. Though we can express Xj(τ, p, t, t) explicitly by

preparing some definitions, this is not necessary in the following.) From the construction

of φj and Remark 3.7, we have∫ 6τ∗

0

|Df t0|Eu(w
u
p (τ ;φ0))|−1Xj(τ, p, t, t)dt =

{
b−1aj(φ0) +O∗(b

−2), if τ ∈ J(j);

0, if τ ∈ J(i) for i ̸= j.

From the observation (Ob1) in the last subsection, we have∫ ∞

6τ∗

|Df t0|Eu(wup (τ ;φ0))|−1 ·Xj(τ, p, t, t) dt ≤ C∗b
−1−(1/(4R)) for all τ ∈ (−1, 1).

(3.18)

Further we can strengthen the last estimate (3.18) for most of j ∈ J . Indeed, from the

definition of Jodd and Jeven and from the observation (Ob1), we see that

• each point w ∈M belongs to the support of φj for at most one j ∈ J ,

• if w ∈ suppφj for some j ∈ J , the orbit f t0(w) for t ∈ [4τ∗, T (p, b)− 4τ∗] does not

meet
∪
i∈J suppφi, and

• if w ∈ suppφj and f tt(w) ∈ suppφj′ for some j, j′ ∈ J and t ≥ T (p, b) − 4τ∗, we

have |Df t0|Eu(w)| ≥ C−1
∗ b1/(4R).

Therefore the forward orbit of wup (τ ;φ0) passes through the region
∪
i∈J suppφi in some

intervals in time and, in between such intervals, the factor |Df t0|Eu(wup (τ ;φ0))| grows by a

rate greater than C−1
∗ b1/(4R). In particular, within the time when |Df t0|Eu(wup (τ ;φ0))| ≤

b2, the number of such intervals in time is bounded by 4R + 1. This implies that, for

each τ ∈
∪
i∈J J(i), we have∫ ∞

6τ∗

|Df t0|Eu(wup (τ ;φ0))|−1 ·Xj(τ, p, t, t)dt ≤ C∗b
−2 (3.19)
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except for a subset of j ∈ J (depending on τ) whose cardinality is bounded by 4R + 1.

This and the estimates above give the first claim of the proposition.

In order to prove the second claim, let us define the |J | × |J | matrix M by

M = DΨτ (t) ·A(φ0)
−1 − 1

where 1 at the end denotes the |J | × |J | identity matrix. From (3.18), each component

mij of M is bounded by C∗b
−1/(4R) and, for each i ∈ J , the cardinality of j ∈ J such

that |mij | ≥ C∗b
−1 is bounded by 4R+ 1. From these estimates, we can deduce

∥M∥max ≤ C∗b
−1/(4R)(4R+ 1) + C∗b

−1 · ♯J ≤ C∗b
−1/(4R).

From this, we obtain

|TrMn| ≤
(
C∗b

−1/(4R)
)n

· ♯J for n ≥ 1

by estimating the diagonal entries. Now we can deduce the latter claim of the proposition:

| log detDΨτ (t)− log detA(φ0)| = | log det(1+M)| = |Tr log(1+M)|

=

∣∣∣∣∣
∞∑
n=1

1

n
TrMn

∣∣∣∣∣ ≤
∞∑
n=1

C∗♯J
n

(C∗b
−1/(4R))n ≤ C∗b

−1/(4R) · ♯J

provided that b is sufficiently large. □

3.5. Proof of Proposition 3.4.

Let J be either of Jeven and Jodd. Below we follow a standard argument in the large

(or moderate) deviation theory [5]. First, by using the fact that 1+s ≤ exp(s) ≤ 1+s+s2

when |s| ≪ 1 and that
∫ π
−π Re (exp(is))ds = 0, we see∫

[−π,π]J
exp

(
b−1/(8R) · Re

(∑
j∈J

exp(ixj)

)) ∏
j∈J

dxj
2π

=

(∫ π

−π
exp

(
b−1/(8R) · Re

(
exp(ix)

))dx
2π

)♯J
≤

(
1 + b−1/(8R)

∫ π

−π
Re (exp(ix))

dx

2π
+

∫ π

−π
b−1/(4R) dx

2π

)♯J
< exp(b−1/(4R) · ♯J ).

(3.20)

Let us recall the mapping Ψτ : [−4, 4]J → RJ . From the former claim of Proposition

3.10, we can take a constant K∗ > 0 so that the subset

Y = Y (φ0) =
{
(xj)j∈J ∈ [−4, 4]J

∣∣∣ aj(φ0) · |xj |+K∗b
−1/(4R) < π, ∀j ∈ J

}
(3.21)

satisfies

Ψτ (Y ) ⊂ [−π, π]J for τ ∈ (−b−1/R, b−1/R). (3.22)
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Hence, by the latter claim of Proposition 3.10 and the inequality (3.20) above, we see∫
Y

exp

(
b−1/(8R) · Re

∑
j∈J

exp (iΨτ (t)j)

)
dt

=

∫
Ψτ (Y )

exp

(
b−1/(8R) · Re

(∑
j∈J

exp(ixj)

))
· | det(DΨτ )(Ψ

−1
τ ((xj)j∈J ))|−1

∏
j∈J

dxj

≤
∫
[−π,π]J

exp

(
b−1/(8R) · Re

(∑
j∈J

exp(ixj)

)) ∏
j∈J

dxj

× exp
(
C∗b

−1/(4R) · ♯J
)
· | detA(φ0)|−1

≤ (2π)#J exp
(
C∗b

−1/(4R) · ♯J
)
· | detA(φ0)|−1

≤ exp
(
C∗b

−1/(4R) · ♯J
)
· Leb(Y )

where Ψτ (t)j denotes the j-th component of Ψτ (t). (In the above, we have used (3.22)

and Proposition 3.10 in the first inequality, the estimate (3.20) in the second and the

definition (3.21) in the third.) Taking average of the both sides of the inequality above

with respect to τ on [−b−1/R, b−1/R] and noting ♯J ≤ b1/R, we find

1

2b−1/R

∫
Y

∫ b−1/R

−b−1/R

exp

(
b−1/8R

∑
j∈J

Re ei(ψ̃
s
p,(−1,1)(s(j)+τ ;a

−1
0 t)+α(s(j)+τ))

)
dτdt

< exp
(
C∗b

3/(4R)
)
· Leb(Y ).

Then, applying Jensen’s inequality for the exponential function (outside) to the integral

with respect to τ , we deduce∫
Y

exp

(
b7/(8R)

2

∫
I

Re exp
(
i
(
ψ̃sp,(−1,1)(τ ; a

−1
0 t) + ατ

))
dτ

)
dt < exp

(
C∗b

3/(4R)
)
· Leb(Y )

where I(J ) :=
∪
j∈J J(j). This implies

Leb

{
t ∈ Y

∣∣∣∣∣Re
∫
I(J )

exp
(
i
(
ψ̃sp,(−1,1)(τ ; a

−1
0 t) + ατ

))
dτ > b−1/(16R)

}

< exp

(
C∗b

3/(4R) − 1

2
b13/(16R)

)
· Leb(Y ) < exp(−b3/(4R)) · Leb(Y )

provided that b is large enough.

In the argument above, we considered only the real part of exp(i(ψ̃sp,(−1,1)(τ ; t) +

ατ)). But we can argue in parallel also for either of

−Re exp(i(ψ̃sp,(−1,1)(τ ; t) + ατ)) or ± Im exp(i(ψ̃sp,(−1,1)(τ ; t) + ατ)).

Therefore we obtain
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1

Leb(Y )
·Leb

{
t ∈ Y

∣∣∣∣∣
∣∣∣∣∣
∫
I(J )

exp
(
i
(
ψ̃sp,(−1,1)(τ ; a

−1
0 t) + ατ

))
dτ

∣∣∣∣∣ > b−1/(16R)

}
< exp(−b3/(4R)).

Note that this estimate is uniform for φ0 ∈ W. Letting W be slightly smaller, we may

and do suppose that this estimate is true for all φ0 ∈ Cr(M) such that

φ0 +
∑
j∈J

tjφj ∈ W for some t = (tj)j∈J ∈ [−4, 4]J .

Therefore, if we define a measure ν on W by setting

ν(X) =

∫
Cr(M)

(
1

Leb(Y (φ0))

∫
Y (φ0)

1X

(
φ0 +

∑
j∈J

a−1
0 tjφj

)
dt

)
dµ(φ0)

for measurable subsets X ⊂ W, where Y (φ0) is that in (3.21), it holds

ν

{
φ ∈ W

∣∣∣∣ ∫
I

∣∣∣exp(i(ψ̃sp,(−1,1)(τ ;φ) + ατ
))∣∣∣ dτ > b−1/(16R)

}
< exp(−b3/(4R)).

(3.23)

For the proof of Proposition 3.4, we need to show the inequality similar to the

above, but for the measure µ in the place of ν. To this end, we show that the measure µ

restricted toW is absolutely continuous with respect to ν with bounded Radon–Nikodym

derivative. This is basically a simple consequence of the property (3.3) of the measure µ.

But, since Y (φ) depends on the function φ ∈ W, we need a little argument. Let us take

the following approximations of Y (φ) from inside and outside:

Y ±(φ) =
{
(xj)j∈J ∈ [−4, 4]J

∣∣∣ aj(φ) · |xj |+K∗b
−1/(4R) < π ± b−1, ∀j ∈ J

}
so that Y −(φ) ⊂ Y (φ) ⊂ Y +(φ). If we write Φ(t) =

∑
j∈J a

−1
0 tjφj for t = (tj)j∈J for

brevity, we have ∥Φ(t)∥∞ < C∗b
−1−1/R for t ∈ [−4, 4]J from (3.9). Hence, from (3.16),

we have

Y −(φ) ⊂ Y (φ0) ⊂ Y +(φ) whenever φ = φ0 +Φ(t) for some t = (tj)j∈J ∈ Y (φ0).

For any measurable subset X ⊂ W, we have

ν(X) =

∫
Cr(M)×Y (φ0)

1X(φ0 +Φ(t))

Leb(Y (φ0))
(dµ(φ0)× dt)

≥
∫
W×Y −(φ)

1X(φ)

Leb(Y +(φ))
dµ(φ− Φ(t))dt

where, in the second line, we changed the variable (φ0, t) to (φ = φ0 + Φ(t), t). Then,

by using the property (3.3) of µ and (3.9), we deduce
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ν(X) ≥
∫
W×Y −(φ)

(1− C∗b
−1/R) · 1X(φ)

Leb(Y +(φ))
dµ(φ)dt ≥ 1

2

Leb(Y −(φ))

Leb(Y +(φ))
µ(X) ≥ µ(X)

4
.

By the claim proved in the last paragraph and (3.23), we deduce

µ

{
φ ∈ W

∣∣∣∣∣
∫
I(J )

exp
(
i
(
ψ̃sp,(−1,1)(τ ;φ) + ατ

))
dτ > b−1/(16R)

}
< 4 exp(−b3/(4R)).

With this inequality for the cases J = Jeven,Jodd and Remark 3.8, we complete the

proof of Proposition 3.4, letting 0 < ρ < 1/(16R).

4. Local charts.

In the proof of Theorem 2.16, which will be carried out in Section 6, we study the

semigroup of transfer operators (or Perron–Frobenius operators)

Lt : L2(M) → L2(M), Ltu = u ◦ f−t (4.1)

associated to a flow f t ∈ F3
A. For analysis of the action of Lt, we will decompose functions

on M with respect to the frequency in the flow direction and then investigate the action

on each of the components. Since the operator Lt virtually preserves the frequency in

the flow direction, this method is natural and works efficiently. (See [21], [22] for the

corresponding argument in the case of contact Anosov flows.)

In this section, we present preliminary arguments for the proof of Theorem 2.16. We

henceforth consider a C3 flow f t ∈ F3
A generated by a vector field v. We consider a large

constant t♯ > 0 that will be specified later in the course of the argument. Roughly the

constant t♯ > 0 will be taken so that the flow f t with t ≥ t♯ exhibits sufficiently strong

hyperbolicity. Also we set

κ♯ = exp(t♯
2) (4.2)

so that we may suppose ∥Df t♯∥∞ ≤ C∗ exp(C∗t♯) ≪ κ♯.

Remark 4.1. The constant t♯ (as well as the constants ω♯ and m♯ which will be

introduced later) will turn out to be the kind of constants that are denoted by symbols

with subscript ∗. (See the beginning of Section 2.) But we use symbols with subscript ♯

for them because the choice will be made much later.

4.1. Local charts depending on ω ∈ Z.
We are going to take a finite system of local charts on M and a partition of unity

subordinate to it, depending on an integer parameter ω ∈ Z. These will be used when

we consider the action of transfer operators Lt on components of functions that have

frequency around ω in the flow direction. We will take them so that their sizes are

proportional to κ♯⟨ω⟩−1/2 (resp. 1) in the directions transversal (resp. parallel) to the

flow. Also we will let them satisfy a few preferable properties in relation to the flow f t.

To begin with, we take and fix a finite system of C3 flow box local charts for f t,
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κa : Ua → B(0, 2r∗)× (−r∗, r∗) ⊂ R3, κa(m) = (x, y, z)

for a ∈ A with #A < ∞, where B(w, r) denotes the open disk in R2 with radius r > 0

centered at w ∈ R2 and r∗ > 0 is a small real number. We write π : R3 → R2 for the

projection to the first two components (x, y) in (x, y, z) ∈ R3.

Remark 4.2. By “flow box local chart”, we mean that (κa)∗v = ∂z holds for the

generating vector field v. Since the flow f t is assumed to be only C3, we can not expect

that the flow box local charts κa is smoother than C3.

Also we take C3 functions ρa, ρ̃a : R3 → [0, 1] for a ∈ A so that

• the supports of ρa and ρ̃a are contained in B(0, r∗)× (−r∗, r∗),

• {ρa ◦ κa | a ∈ A} is a partition of unity on M , that is,
∑
a∈A ρa ◦ κa ≡ 1, and

• ρ̃a ≡ 1 on the support of ρa.

By applying a mollifier along the flow, we can and do assume that ρa are C∞ with

respect to the variable z and each of the partial derivatives ∂kx∂
ℓ
y∂

m
z ρa and ∂kx∂

ℓ
y∂

m
z ρ̃a

with k + ℓ ≤ 3 are continuous and therefore bounded.

Next, depending on ω ∈ Z, we construct a finer system of local charts and a partition

of unity subordinate to it. The construction of the local charts is done in two steps as

follows. For the first step, we take a finite subset N(a, ω) ⊂ B(0, r∗) and, for each

n ∈ N(a, ω), we take its neighborhood Va,ω,n ⊂ B(0, 2r∗) and a C3 diffeomorphism

ga,ω,n : Va,ω,n × R → Da,ω,n × R ⊂ B(0, 2κ♯⟨ω⟩−1/2)× R

of the form

ga,ω,n(x, y, z) = (ĝa,ω,n(x, y), z + ǧa,ω,n(x, y)).

We suppose that N(a, ω) contains many points so that Va,ω,n for n ∈ N(a, ω) cover

B(0, r∗). For the diffeomorphisms ga,ω,n, we may and do assume the following conditions:

(G0) the C3 norms of ga,ω,n and those of their inverses are bounded by C∗,

(G1) ga,ω,n(n, 0) = (0, 0, 0) and the differential D(ga,ω,n ◦ κa) at pa,ω,n := κ−1
a (n, 0)

carries Eu(pa,ω,n), Es(pa,ω,n), E0(pa,ω,n) to the x-axis, y-axis, z-axis respectively,

(G2) there exists ω0 > 0 such that, if |ω| ≥ ω0, we have Da,ω,n = B(0, 2κ♯⟨ω⟩−1/2) and

ga,ω,n ◦ κa(wupa,ω,n
(τ)) = (τ, 0, 0), ga,ω,n ◦ κa(wspa,ω,n

(τ)) = (0, τ, 0)

for τ ∈ [−2κ♯⟨ω⟩−1/2, 2κ♯⟨ω⟩−1/2], where wspa,ω,n
(·) and wupa,ω,n

(·) are the intrinsic

parametrization of the stable and unstable manifolds introduced in Section 2.2,

(G3) (ga,ω,n ◦ κa)∗m = ca,ω,n · dxdydz for some constant ca,ω,n.

Remark 4.3. The constant ca,ω,n in (G3) is determined by the angles between the

subspaces E0(pa,ω,n), Es(pa,ω,n) and Eu(pa,ω,n). Clearly we have C−1
∗ ≤ |ca,ω,n| ≤ C∗.
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For the second step, we first recall the argument in Subsection 2.6 and, especially,

the definition of the quantity Tors(q, δ) in (2.22). We define a non-linear diffeomorphism

ba,ω,n : R3 → R3, ba,ω,n(x, y, z) = (x, y, z + β(a, ω, n) · xy)

where

β(a, ω, n) = ca,ω,n · Tors
(
pa,ω,n,κ♯⟨ω⟩−1/2

)
with pa,ω,n = κ−1

a (n, 0) (4.3)

if |ω| ≥ ω0 and β(a, ω, n) = 0 otherwise. Note that

|β(a, ω, n)| < C∗⟨log⟨ω⟩⟩ for any a ∈ A, ω ∈ Z, n ∈ N (a, ω) (4.4)

from (2.26) in Lemma 2.19. Then we set Ua,ω,n = Ua ∩ κ−1
a (Va,ω,n × R) and regard

κa,ω,n := ba,ω,n ◦ga,ω,n ◦κa : Ua,ω,n → U ′
a,ω,n ⊂ Da,ω,n×R, for (a, n) ∈ A×N(a, ω)

as the system of local charts on M defined for ω ∈ Z. These are flow box local charts

and satisfies κa,ω,n(pa,ω,n) = (0, 0, 0) and

κa,ω,n(w
u
pa,ω,n

(τ)) = (τ, 0, 0),

κa,ω,n(w
s
pa,ω,n

(τ)) = (0, τ, 0) for τ ∈ [−2κ♯⟨ω⟩−1/2, 2κ♯⟨ω⟩−1/2].

Also we have (κ−1
a,ω,n)

∗m = ca,ω,n · dxdydz from (G2) and (G3) above.

Remark 4.4. The motivation to compose ba,ω,n in the second step can be explained

as follows. Recall the argument in Subsection 2.6 and, in particular, the definitions of

the sections γ†p,(−δ,δ) and γ̂†p,(−δ,δ). Suppose that |ω| ≥ ω0. From (G2), we can express

γ†p,(−δ,δ) and γ̂
†
p,(−δ,δ) for p = pa,ω,n and δ = κ♯⟨ω⟩−1/2 (viewed in the local chart κa,ω,n) as

(κ−1
a,ω,n)

∗ ◦ γ†p,(−δ,δ)(w
u
p (τ)) = (0, φ(τ), 1), (κ−1

a,ω,n)
∗ ◦ γ†p,(−δ,δ)(w

s
p(τ)) = (φ̂(τ), 0, 1)

with C2 functions φ, φ̂ : (−δ, δ) → R. Also note that we have

(κ−1
a,ω,n)

∗ ◦ γ⊥p,(−δ,δ)(pa,ω,n) = (0, ca,ω,n, 1), (κ−1
a,ω,n)

∗ ◦ γ̂⊥p,(−δ,δ)(pa,ω,n) = (ca,ω,n, 0, 1).

If we did not have the post-composition of ba,ω,n, we would have

|φ′(τ)− ca,ω,n · Tors(p,κ♯⟨ω⟩−1/2)| < C∗, |φ̂′(τ)− ca,ω,n · Toru(p,κ♯⟨ω⟩−1/2)| < C∗

because the C2 norms of γ0p,(−δ,δ) and γ̂0p,(−δ,δ) are bounded by a uniform constant C∗.

Hence, with the post-composition of ba,ω,n, we have

|φ′(τ)| < C∗ and |φ̂′(τ)− ca,ω,n ·∆(p,κ♯⟨ω⟩−1/2)| < C∗. (4.5)

That is to say, by the post-composition of ba,ω,n, we stabilize the rotation of the stable

subbundle Es along Wu
(−δ,δ)(p). Consequently the unstable subbundle Eu will look

rotating along W s
(−δ,δ)(p) by a rate proportional to ∆(p,κ♯⟨ω⟩−1/2).
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We next construct a partition of unity associated to the systems of local charts

{κa,ω,n}a,n for ω ∈ Z. Let ϱa,ω,n, ϱ̃a,ω,n : R2 → [0, 1] for n ∈ N(a, ω) be C3 functions

such that

1. supp ϱa,ω,n ⊂ supp ϱ̃a,ω,n ⊂ Va,ω,n,

2.
∑
n∈N(a,ω) ϱa,ω,n = 1 on B(0, r∗), and ϱ̃a,ω,n ≡ 1 on supp ϱa,ω,n,

3. max{∥∂αϱa,ω,n∥∞, ∥∂αϱ̃a,ω,n∥∞} ≤ C∗(α)(κ−1
♯ ⟨ω⟩1/2)|α| for any multi-index α

with |α| ≤ 3, where C∗(α) does not depend on ω.

For each ω ∈ Z, we consider the family of functions

ρa,ω,n = (ρa · ϱa,ω,n) ◦ g−1
a,ω,n ◦ b−1

a,ω,n, ρ̃a,ω,n = (ρ̃a · ϱ̃a,ω,n) ◦ g−1
a,ω,n ◦ b−1

a,ω,n

defined for a ∈ A and n ∈ N(a, ω), where we regard ϱa,ω,n as a function on R3 by

reading ϱa,ω,n(x, y, z) = ϱa,ω,n(x, y). The set of functions ρa,ω,n ◦ κa,ω,n for a ∈ A and

n ∈ N(a, ω) is a partition of unity subordinate to the system of local charts {κa,ω,n} and

the function ρ̃a,ω,n ◦ κa,ω,n takes the constant value 1 on supp (ρa,ω,n ◦ κa,ω,n).

Remark 4.5. Since we have wide choices in the definitions above, we may and do

put the following additional assumptions without loss of generality:

• For each ω ∈ Z, the intersection multiplicity of the 8κ♯⟨ω⟩−1/2-neighborhoods of the

subsets π(supp ρ̃a,ω,n) ⊂ R2 for n ∈ N(a, ω) is bounded by an absolute constant.

• The diameters of the supports supp ϱ̃a,ω,n are bounded uniformly by any given

constant.

For the second condition, we will specify the bound later in the course of the argument.

4.2. The central bundle E∗
0 viewed in the local charts.

In this subsection, we consider how the central subbundle E∗
0 = (Es⊕Eu)⊥ looks in

the local charts κa,ω,n. Since E
∗
0 is invariant with respect to the flow f t and since κa,ω,n

is a flow box local chart, the subspace E∗
0 viewed in those local charts does not depend

on the variable z. That is to say, there is a unique continuous mapping

ea,ω,n : Da,ω,n → R2, ea,ω,n(w) = (θua,ω,n(w), θ
s
a,ω,n(w)) (4.6)

such that

(Dκa,ω,n)
∗
p(ea,ω,n(w), 1) ∈ E∗

0 (p) when κa,ω,n(p) = (w, z) and p ∈ Ua,ω,n.

From the assumption (G2) on the choice of ga,ω,n, we have

θua,ω,n(τ, 0) = θsa,ω,n(0, τ) = 0 for τ ∈ [−2κ♯⟨ω⟩−1/2, 2κ♯⟨ω⟩−1/2].

By slight abuse of notation, we will sometimes regard the functions ea,ω,n, θ
u
a,ω,n and

θsa,ω,n above as functions on R3 by letting ea,ω,n(x, y, z) = ea,ω,n(x, y) and so on.
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Remark 4.6. The function ea,ω,n is not smooth in general, but satisfies

∥ea,ω,n(w′)− ea,ω,n(w)∥ ≤ C∗∥w′ − w∥ ·
⟨
log ∥w′ − w∥

⟩
for w,w′ ∈ Da,ω,n (4.7)

from (2.3) and (2.26). In particular,

∥ea,ω,n(w)∥ = ∥ea,ω,n(w)− ea,ω,n(0)∥ ≤ C∗κ♯⟨ω⟩−1/2 log⟨ω⟩ for w ∈ Da,ω,n. (4.8)

The next lemma gives estimates on the variation of the functions θσa,ω,n(w), σ = s, u.

The former statement is a consequence of the construction of the local charts (see Remark

4.4), and the latter is that of the definition of the s-templates and the non-integrability

condition (NI)ρ. We take and fix a constant 0 < θ∗ < 1/2. (One may suppose θ∗ = 1/4,

say.)

Lemma 4.7. There exists a constant ω♯ > ω0 depending on t♯ such that, for any

a ∈ A, ω ∈ Z, n ∈ N (a, ω) with |ω| ≥ ω♯, the following holds true. For a point

w ∈ B(0,κ♯⟨ω⟩−1/2) and h ∈ [⟨ω⟩−1+θ∗ , κ♯⟨ω⟩−1/2], we consider the segments

ℓ, ℓ̂ : (−h, h) → R2, ℓ(τ) = w + (τ, 0), ℓ̂(τ) = w + (0, τ)

parallel to the x-axis and y-axis respectively. Then, for −h ≤ τ ≤ h, we have∣∣∣θua,ω,n ◦ ℓ̂(τ)− θua,ω,n ◦ ℓ̂(0)− ca,ω,n∆(pa,ω,n,κ♯⟨ω⟩−1/2) · τ
∣∣∣ < C∗h

⟨
log

(
κ♯⟨ω⟩−1/2

h

)⟩
,

(4.9)∣∣∣θsa,ω,n ◦ ℓ̂(τ)− θsa,ω,n ◦ ℓ̂(0)
∣∣∣ < C∗κ2

♯ ⟨ω⟩−1 log⟨ω⟩ (4.10)

and similarly

∣∣θsa,ω,n ◦ ℓ(τ)− θsa,ω,n ◦ ℓ(0)
∣∣ < C∗h ·

⟨
log

(
κ♯⟨ω⟩−1/2

h

)⟩
, (4.11)∣∣(θua,ω,n ◦ ℓ(τ)− θua,ω,n ◦ ℓ(0))

∣∣ < C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩. (4.12)

If the non-integrability condition (NI)ρ holds, we have, for sufficiently large b0 > 0, that

1

2h

∣∣∣∣∣
∫ h

−h
exp

(
ibh−1

(
θsa,ω,n(ℓ(τ)) + ατ

))
dτ

∣∣∣∣∣ < b−ρ/2 (4.13)

for any b0 ≤ b ≤ κ♯, α ∈ R and any h, w as above.

Proof. We prove the claims (4.9) and (4.10). Let q = κ−1
a,ω,n(w, 0). We first see

that how the segments ℓ and ℓ̂ approximate local unstable and stable manifolds on the

local charts respectively. From the definition of local charts κa,ω,n, (2.3) and (4.4), we

see that

∥(κa,ω,n ◦ wsq)′(τ)− (0, 1, 0)∥ ≤ C∗κ♯⟨ω⟩−1/2 log⟨ω⟩ for − h < τ < h. (4.14)
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Further, from the fact noted in Remark 2.1, we actually have better estimate if we

consider the image by the projection π : R3 → R2, π(x, y, z) = (x, y) along the z-axis:

∥π ◦ (κa,ω,n ◦ wsq)′(τ)− (0, 1)∥ ≤ C∗κ♯⟨ω⟩−1/2 for − h < τ < h. (4.15)

For the second derivative, we can prove the following estimate:

∥(κa,ω,n ◦ wsq)′′(τ)∥ < C∗κ♯⟨ω⟩−1/2 log⟨ω⟩ for − h < τ < h. (4.16)

Indeed, at the origin, we have (κa,ω,n ◦wsp)′′(0) = 0 with p = pa,ω,n from the choice of the

local chart κa,ω,n. Hence, if we disregard the composition of ba,ω,n in the construction of

the local chart κa,ω,n, we obtain (4.16) by a simple estimate on continuity of the 2-jets

of the stable manifolds. Then, by using (4.4) and (4.15), we can check that the estimate

remains valid when we restore the composition of ba,ω,n. Note that the estimates (4.14),

(4.15) and (4.16) above imply respectively

∥κa,ω,n ◦ wsq(τ)− ℓ̂(τ)∥ ≤ C∗κ♯⟨ω⟩−1/2 log⟨ω⟩ · τ, (4.17)

∥π ◦ κa,ω,n ◦ wsq(τ)− π ◦ ℓ̂(τ)∥ ≤ C∗κ♯⟨ω⟩−1/2 · τ, and (4.18)

∥(κa,ω,n ◦ wsq)′(τ)− (κa,ω,n ◦ wsq)′(0)∥ ≤ C∗κ♯⟨ω⟩−1/2 log⟨ω⟩ · τ (4.19)

for −h < τ < h. Putting (4.18) in (4.7), we find that

∥ea,ω,n(ℓ̂(τ))− ea,ω,n(κa,ω,n ◦ wsq(τ))∥ ≤ C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩ for − h < τ < h. (4.20)

The right hand side above is so small that the claims (4.9) and (4.10) follow if we prove

them with the segment ℓ̂ replaced by the curve κa,ω,n ◦ wsq .
Let ex be the vector field on Ua,ω,n ⊂ M defined by ex = (κ−1

a,ω,n)∗(∂x). From the

definition of γ̂†q,(−h,h) and the relation (2.8), it holds, for −h < τ < h,

∥γuq,(−h,h)(w
s
q(τ))− γ̂†q,(−h,h)(w

s
q(τ))∥

≤ C∗h · ∥γuq′,(−1,1)(w
s
q′(h

−1τ))− γ̂0q′,(−1,1)(w
s
q′(h

−1τ))∥
< C∗h

where we take t > 0 so that ∥Df−tq |Es∥ = 1/h and set q′ = f−t(q). Hence

θua,ω,n(κa,ω,n(w
s
q(τ))) = ⟨γuq,(−h,h)(w

s
q(τ)), ex(w

s
q(τ))⟩

= ⟨γ̂†q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))⟩+O∗(h)

=
⟨
Toru(q, h) · τ · γ̂⊥q,(−h,h)(w

s
q(τ)) + γ̂0q,(−h,h)(w

s
q(τ)), ex(w

s
q(τ))

⟩
+O∗(h)

(4.21)

for −h < τ < h. For the term ⟨γ̂0q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))⟩ on the last line, we show

⟨γ̂0q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))⟩−⟨γ̂0q,(−h,h)(w

s
q(0)), ex(w

s
q(0))⟩ = β(a, ω, n)τ+O∗(h) (4.22)
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for −h < τ < h. To this end, we first disregard the composition of ba,ω,n in the construc-

tion of the local chart κa,ω,n and check the inequality (4.22) without the term β(a, ω, n)τ

on the right-hand side. This is rather obvious because γ̂0q,(−h,h) is a restriction of γ̂0q,(−1,1)

and hence bounded uniformly in the C2 norm. Then the term β(a, ω, n)τ appears on the

right-hand side when we restore the composition of ba,ω,n.

For the other terms on the last line of (4.21), we have that

⟨γ̂⊥q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))⟩ = ca,ω,n +O∗(κ♯⟨ω⟩−1/2) for − h < τ < h (4.23)

from (4.15), and also that

|Toru(q, h)− Toru(pa,ω,n,κ♯⟨ω⟩−1/2)| < C∗ log

⟨
κ♯⟨ω⟩−1/2

h

⟩
(4.24)

from Lemma 2.19. Therefore we obtain the first claim (4.9) with ℓ̂ replaced by κa,ω,n◦wsq ,
if we rewrite the left-hand side of (4.9) using (4.21) and then apply the estimates (4.22),

(4.23) and (4.24) above.

We next prove (4.10) with ℓ̂ replaced by κa,ω,n ◦wsq . Note that we have the relation

(θu(κa,ω,n ◦wsq(τ)), θs(κa,ω,n ◦wsq(τ)), 1) · (κa,ω,n ◦wsq)′(τ) ≡ 0 for −h < τ < h (4.25)

from the definition (4.6). It follows from (4.8) and (4.15) that

|(θu(κa,ω,n◦wsq(τ)), θs(κa,ω,n◦wsq(τ)))·(π◦(κa,ω,n◦wsq)′(τ)−(0, 1))| ≤ C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩.

This together with (4.25) gives

|θs(κa,ω,n ◦ wsq(τ)) + (0, 0, 1) · (κa,ω,n ◦ wsq)′(τ)| ≤ C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩).

But, for the second term on the left-hand side, we have

|(0, 0, 1) · (κa,ω,n ◦ wsq)′(τ)− (0, 0, 1) · (κa,ω,n ◦ wsq)′(0)| ≤ C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩

from (4.19). Therefore the required estimate (4.10) follows.

We have finished the proofs of (4.9) and (4.10). We omit the proofs of (4.11) and

(4.12) because they are obtained by translating the argument above to the time-reversed

flow f−t through obvious correspondences. Let us proceed to the proof of the last claim

(4.13). From (4.20) for the time-reversed flow f−t, it is enough to prove the claim (4.13)

with ℓ(τ) in it replaced by κa,ω,n ◦ wup (τ) with p = pa,ω,n. (Notice that b ≤ κ♯ from the

assumption.) From the non-integrability condition (NI)ρ, there exists some b0 > 0 such

that the estimate (2.20) holds for any ψ ∈ T , α ∈ R and b ≥ b0. Then, by (2.15), we have

1

2h

∣∣∣∣∣
∫ h

−h
exp(ibh−1(ψsq,(−h,h)(τ) + ατ)) dτ

∣∣∣∣∣ < b−ρ for q ∈M , α ∈ R and b ≥ b0.

(4.26)

Below we consider the relation between ψsq,(−h,h)(τ) and θ
s
a,ω,n(κa,ω,n ◦wup (τ)). Similarly
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to the argument in the proof of former claims, with setting ey = (κ−1
a,ω,n)∗(∂y), we find

θsa,ω,n(κa,ω,n(w
u
q (τ))) = ⟨γsq,(−h,h)(w

u
q (τ)), ey(w

u
q (τ))⟩

= ψsq,(−h,h)(τ) · ⟨γ
⊥
q,(−h,h)(w

u
q (τ)), ey(w

u
q (τ))⟩

+ ⟨γ0q,(−h,h)(w
u
q (τ)), ey(w

u
q (τ))⟩

for −h < τ < h. Further we write the first term on the last line as

ψsq,(−h,h)(0) · ⟨γ
⊥
q,(−h,h)(w

u
q (τ)), ey(w

u
q (τ))⟩

+ (ψsq,(−h,h)(τ)− ψsq,(−h,h)(0)) · ⟨γ
⊥
q,(−h,h)(w

u
q (τ)), ey(w

u
q (τ))⟩.

Notice that the terms ⟨γ0q,(−h,h)(w
u
q (τ)), ey(w

u
q (τ))⟩ and ψsq,(−h,h)(0) · ⟨γ

⊥
q,(−h,h)(w

u
q (τ)),

ey(w
u
q (τ))⟩ are of class C2 with respect to τ (at least) and their second derivatives are

bounded by C∗, so that we can approximate the sum of them by an affine function, say

ατ + β, with an error term bounded by C∗κ2
♯ ⟨ω⟩−1. For the remaining term on the last

line, we have

|ψsq,(−h,h)(τ)− ψsq,(−h,h)(0)| ≤ C∗κ♯⟨ω⟩−1/2 log⟨ω⟩

from (2.13) and also

⟨γ⊥q,(−h,h)(w
u
q (τ)), ey(w

u
q (τ))⟩ = ca,ω,n +O∗(κ♯⟨ω⟩−1/2)

correspondingly to (4.23). Hence, with some α′, β′ ∈ R, it holds

|θsa,ω,n(κa,ω,n ◦ wup (τ))− ca,ω,n · ψsq,(−h,h)(τ)− α′τ − β′| < C∗κ2
♯ ⟨ω⟩−1 log⟨ω⟩

for −h < τ < h. Since we assume b0 ≤ b ≤ κ♯ in the claim (4.13), we may suppose that

the right-hand side above is much smaller than b−1−ρh > κ−1−ρ
♯ ⟨ω⟩−1+θ∗ by letting ω♯

be larger if necessary. Therefore we obtain the claim (4.13) from (4.26) with b replaced

by ca,ω,n · b, noting that C−1
∗ < |ca,ω,n| < C∗ from Remark 4.3. □

Remark 4.8. From Lemma 4.7 and from the definition of κ♯ in (4.2), we have

∥∆−1
a,ω,n(ea,ω,n(w

′)− ea,ω,n(w))∥ ≤ C∗t
2
♯ · ⟨ω⟩−1/2 · ⟨⟨ω⟩1/2∥w′ − w∥⟩ (4.27)

where ∆a,ω,n is the 2× 2 matrix defined by

∆a,ω,n =

(
∆a,ω,n 0

0 1

)
, ∆a,ω,n := ⟨∆(pa,ω,n, κ♯⟨ω⟩−1/2)⟩. (4.28)

(Recall that ∆(q, δ) is the approximate non-integrablity defined in Definition 2.17.) For

a technical reason to be explained in Remark 5.5, we will need to extend the functions

ea,ω,n(·) to R2. Though the choice of the extension is rather arbitrary, we will suppose

that the extension is continuous and satisfies (4.27) for all w,w′ ∈ R2.
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4.3. The flow f t viewed in the local charts.

In this subsection, we consider how the flow f t looks in the local charts κa,ω,n.

Below we consider (a, ω, n) and (a′, ω′, n′) with a, a′ ∈ A, ω, ω′ ∈ Z and n ∈ N (a, ω),

n′ ∈ N (a′, ω′) and suppose

t♯ ≤ t ≤ 2t♯ and U = Ua,ω,n ∩ f−t(Ua′,ω′,n′) ̸= ∅. (4.29)

Then the flow f t viewed in the local charts κa,ω,n and κa′,ω′,n′ is

f := κa′,ω′,n′ ◦ f t ◦ κ−1
a,ω,n : κa,ω,n(U) → κa′,ω′,n′(f(U)).

Since κa,ω,n are flow box local charts, this diffeomorphism f is written in the form

f(x, y, z) = (f̂(x, y), z + f̌(x, y)) (4.30)

and therefore we may extend it naturally to

f : V × R → V ′ × R, with setting V := π ◦ κa,ω,n(U), V ′ := π ◦ κa′,ω,n(f(U))

where π : R3 → R2 denotes the projection to the first two components. Before proceeding

further, beware that we dropped dependence on t♯ ≤ t ≤ 2t♯ and a, ω, n, a
′, ω′, n′ from

the notation above. We use this simplified notation only in the following part of this

subsection.

Letting χ∗ in (2.2) be slightly smaller and choosing the local charts κa a little more

carefully (see Remark 4.5), we may and do assume that the diffeomorphism f given as

above is uniformly hyperbolic in the sense that

Df∗p (C(2)) ⊂ C

(
1

2

)
for p ∈ V × R (4.31)

where C(θ) = {(ξx, ξy, 0) ∈ R3 | |ξy| ≤ θ|ξx|} and that

∥Df∗p (v)∥ ≥ eχ∗t♯∥v∥ if v ∈ C(2) and ∥(Df−1)∗f(p)(v)∥ ≥ eχ∗t♯∥v∥ if v /∈ C

(
1

2

)
.

(4.32)

For the higher order derivatives, we will use a crude estimate

∥Dkf∥∞ ≤ C∗ exp(C∗t♯) · (logmax{⟨ω⟩, ⟨ω′⟩})2 for k = 2, 3 (4.33)

where the last factor appears as a consequence of the composition of ba,ω,n and ba′,ω′,n′

in the definition of the local charts κa,ω,n and κa′,ω′,n′ .

When |ω| and |ω′| are large, the domain V of f is small in the directions transversal

to the flow and hence f will be well approximated by its linearization. In the next lemma,

we give a statement along this idea. Let A : R3 → R3 be the mapping defined by

A(x, y, z) =
(
λx, λ̃y, z +ϖ · (x, y) + βxy

)
+ f(0, 0, 0) (4.34)

where
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λ = ±∥Df̂0(∂x)∥, λ̃ = ±∥Df̂0(∂y)∥, ϖ =
(
∂xf̌(0, 0), ∂y f̌(0, 0)

)
, β = ∂xy f̌(0, 0)

(4.35)

and the signs of λ and λ̃ are chosen so that A approximates f better at the origin. Then

we write the diffeomorphism f as the composition

f = A ◦G with setting G = A−1 ◦ f . (4.36)

The diffeomorphism G is written in the form

G(x, y, z) =
(
Ĝ(x, y), z + Ǧ(x, y)

)
. (4.37)

In the next lemma, we let 0 < θ∗ < 1/2 be the constant taken just before the statement

of Lemma 4.7 and let the constant ω♯ taken in Lemma 4.7 be larger if necessary.

Lemma 4.9. For any t♯ ≤ t ≤ 2t♯ and any combination of (a, ω, n) and (a′, ω′, n′)

satisfying |ω| > ω♯ and 1/2 ≤ |ω′|/|ω| ≤ 2 , we have the following estimates :

For the diffeomorphism G : V ×R → Ĝ(V )×R defined in (4.36), we have G(0) = 0 and

∥Id−DG∥∞ < ⟨ω⟩−1/2+θ∗ and ∥DkG∥∞ < ⟨ω⟩θ∗ for k = 2, 3, (4.38)

and also

∥DǦ∥∞ < ⟨ω⟩−1+θ∗ and ∥D2Ǧ∥∞ < ⟨ω⟩−1/2+θ∗ . (4.39)

For the diffeomorphism A defined in (4.34), we have

∥ϖ∥ < ⟨ω⟩−1/2+θ∗ and |β| < C∗t♯. (4.40)

Further,

∥Df̌∥∞ < ⟨ω⟩−1/2+θ∗ and ∥D2f̌∥∞ < C∗t♯. (4.41)

Remark 4.10. If we use the local chart κa,ω,n and consider the scale ⟨ω⟩−1

(resp. ⟨ω⟩−1/2) in the z direction (resp. the xy direction) and if ω′ = ω, the claims

(4.38) and (4.39) in the last lemma implies that the rescaled map of G,

(w̃, z̃) 7→
(
⟨ω⟩1/2 · Ĝ

(
⟨ω⟩−1/2w̃, ⟨ω⟩−1z̃

)
, z̃ + ⟨ω⟩ · Ǧ(⟨ω⟩−1/2w̃)

)
,

tends to identity in C3 sense as |ω| → ∞, uniformly in a, n and t♯ ≤ t ≤ 2t♯. This tells

roughly that the non-linearity of G will be negligible when |ω| is large. Note that this

would not be true if we did not put the nonlinear factor βxy in A. We will see that the

decomposition (4.36) enables us to concentrate on the essential part A of f by separating

the negligible non-linearity in the factor G.

Proof. Since we may choose large ω♯ depending on t♯ and θ∗ and since we are

assuming 1/2 ≤ |ω′|/|ω| ≤ 2, some of the claims are obtained easily by bounding some

factors depending on t♯ by ω
ϵ
♯ with small ϵ > 0. For instance, the latter claim of (4.38)
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follows immediately from (4.33). In the following, we argue in parallel for every value

of θ∗ ∈ (0, 1/2). Thus, when we refer previous estimates, we will actually refer them for

different (or slightly smaller) values of θ∗.

By the estimates (4.14) and (4.16) in the beginning of the proof of Lemma 4.7 and

by the corresponding ones for the time reversed flow f−t, we obtain that, for q ∈ U ,

∥(κa,ω,n ◦ wuq )′(0)− (1, 0, 0)∥ < ⟨ω⟩−1/2+θ∗ , ∥(κa,ω,n ◦ wsq)′(0)− (0, 1, 0)∥ < ⟨ω⟩−1/2+θ∗

and also

∥(κa,ω,n ◦ wuq )′′(0)∥ < ⟨ω⟩−1/2+θ∗ , ∥(κa,ω,n ◦ wsq)′′(0)∥ < ⟨ω⟩−1/2+θ∗ .

Of course we have the same estimates for the local chart κa′,ω′,n′ . Hence, from the fact

that f t preserves the (un)stable manifolds, we obtain

∥Df̌∥∞ < ⟨ω⟩−1/2+θ∗ , ∥∂xxf̌∥∞ < ⟨ω⟩−1/2+θ∗ , ∥∂yy f̌∥∞ < ⟨ω⟩−1/2+θ∗

and also the former claim of (4.40) on ϖ. From these and the definitions of A and G, it

is not difficult to see

∥(DG)0 − Id∥ < ⟨ω⟩−1/2+θ∗ and ∥(DǦ)0∥ < ⟨ω⟩−1+θ∗ , ∥(D2Ǧ)0∥ < ⟨ω⟩−1/2+θ∗ .

These estimates at the origin and the latter claim of (4.38) that we mentioned in the

beginning yield

∥DG− Id∥∞ < ⟨ω⟩−1/2+θ∗ , ∥DǦ∥∞ < ⟨ω⟩−1+θ∗ , ∥D2Ǧ∥∞ < ⟨ω⟩−1/2+θ∗ .

(As we mentioned in the beginning, we argue in parallel for different values of θ∗, so that

we may and do suppose that the previous estimates are valid for any θ∗ > 0.)

To prove the latter claim of (4.40) on β, we recall the construction of the local chart

κa,ω,n. If we ignore the compositions of ba,ω,n and ba′,ω′,n′ in the local charts κa,ω,n
and κa′,ω′,n′ , we can get this claim just by simple application of the chain rule. Then,

restoring the compositions of ba,ω,n and ba′,ω′,n′ , we find the additional term

(λλ̃) · β(a′, ω′, n′)− β(a, ω, n) = ca,ω,n ·
(
β(a′, ω′, n′)

ca′,ω′,n′
− β(a, ω, n)

ca,ω,n

)
with an error term bounded by C∗. By the definition (4.3) and Lemma 2.19, this is

bounded by C∗t♯, so that we obtain the required estimate. The latter claim of (4.41)

then follows. □

We finish this subsection with the following crude estimate.

Lemma 4.11. If 0 ≤ t ≤ 2t♯, we have, for integers k, ℓ,m ≥ 0 with k + ℓ ≤ 3, that

∥∂kx∂ℓy∂mz (ρa,ω,n · (ρa′,ω′,n′ ◦ f))∥∞ ≤ C∗ · (eC∗t♯ · κ−1
♯ max{⟨ω⟩, ⟨ω′⟩}1/2)(k+ℓ).
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We omit the proof since it is straightforward. We just note that, in the case k = ℓ =

0, the right hand side in the estimate above is just C∗ and does not depend on the choice

of t♯. This is because the function ϱa,ω,n in the definition of ρa,ω,n is the functions of

(x, y) and does not depend on z. (Recall that ρa are C∞ in the variable z and we have

∂zf ≡ (0, 0, 1).)

5. The anisotropic Sobolev space.

As the next step towards the proof of Theorem 2.16, we introduce the Hilbert space

H, called the anisotropic Sobolev space, and consider the action of the transfer operator

Lt on it. The argument in this subsection is a modification of that in the previous papers

[9], [22].

5.1. Partial Bargmann transform.

The purpose of the following construction is to consider the action of the transfer

operator Lt in the frequency space (that is, through Fourier transform on local charts).

But, one because the direction of E∗
0 depends on the base point sensitively, we need to

consider the action in the real space simultaneously. The partial Bargmann transform,

introduced below, meets these demands. We refer [22, Sections 4–5], [9, Sections 4.2–

3] and [10, Sections 3–4] and the references therein for more detailed accounts on the

(partial) Bargmann transform (or more generally on wave packet transforms).

For (w, ξ, η) ∈ R2+2+1 with w, ξ ∈ R2 and η ∈ R, we define ϕw,ξ,η : R3 → C by

ϕw,ξ,η(w
′, z′) = 2−3/2π−2⟨η⟩1/2 · exp

(
iη · z′ + iξ ·

(
w′ − w

2

)
− ⟨η⟩∥w′ − w∥2

2

)
.

The partial Bargmann transform B : L2(R2+1) → L2(R2+2+1) is defined by

Bu(w, ξ, η) =

∫
ϕw,ξ,η(w′, z′) · u(w′, z′) dw′dz′. (5.1)

Remark 5.1. In the above and also henceforth, we write R2+1 (resp. R2+2+1)

for the Euclidean space of dimension 3 (resp. 5) equipped with the standard coordinate

(w, z) = (x, y, z) (resp. (w, ξ, η) = (x, y, ξx, ξy, η)) where w = (x, y) ∈ R2 and ξ =

(ξx, ξy) ∈ R2. We regard ξ = (ξx, ξy) and η as the dual variables of w = (x, y) and z

respectively.

The L2-adjoint B∗ : L2(R2+2+1) → L2(R2+1) of the partial Bargmann transform

B is

B∗v(w′, z′) =

∫
ϕw,ξ,η(w

′, z′) · v(w, ξ, η)dwdξdη. (5.2)

Lemma 5.2 ([22, Proposition 5.1]). The partial Bargmann transform B is an L2-

isometric injection and B∗ is an L2-bounded operator such that B∗ ◦ B = Id. The

composition

P := B ◦B∗ : L2(R2+2+1) → L2(R2+2+1) (5.3)
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is the L2 orthogonal projection onto the image of B. The (Schwartz ) kernel of P is

written in the form

KP(w, ξ, η;w′, ξ′, η′) = δ(η′ − η) exp

(
i(ξw′ − ξ′w)

2
− ⟨η⟩∥w − w′∥2

4
− ⟨η⟩−1∥ξ − ξ′∥2

4

)
.

5.2. Decomposition of functions in the phase space.

We introduce a few C∞ partitions of unity. Let χ : R → [0, 1] be a C∞ function

such that χ(s) = 1 if |s| ≤ 1 and χ(s) = 0 if |s| ≥ 3/2, which we have already introduced

in Subsection 3.3.

1. a partition of unity on the projective space: {χσ : P1 → [0, 1] | σ = +,−} such that

χ+([(x, y)]) =

{
1, if |x| ≥ 2|y|;
0, if |y| ≥ 2|x|,

and χ−([(x, y)]) = 1− χ+([(x, y)]),

2. a periodic partition of unity on the real line R: {qω : R → [0, 1] | ω ∈ Z} such that

supp qω ⊂ [ω − 1, ω + 1], qω(s) = q0(s− ω),

3. a Littlewood–Paley type partition of unity: {χm : R2 → [0, 1] | m ∈ Z,m ≥ 0}
defined by

χm(w) =

{
χ(∥w∥), if m = 0;

χ(e−m∥w∥)− χ(e−m+1∥w∥), if m > 0.

We define also the (anisotropic) partition of unity {ψm : R2 → [0, 1] | m ∈ Z} by

ψm(x, y) = χsgn(m)([(x, y)]) · χ|m|(x, y)

where we ignore the first factor on the right-hand side when m = 0.

We next introduce partitions of unity on the phase space R2+2+1. For a ∈ A, ω ∈ Z,
n ∈ N(a, ω) and m ∈ Z, we define the function ψa,ω,n,m : R2+2+1 → [0, 1] by

ψa,ω,n,m(w, ξ, η) = qω(η) · ψm
(
⟨ω⟩−1/2∆−1

a,ω,n(ξ − η · ea,ω,n(w))
)

(5.4)

where ∆a,ω,n is the 2 × 2 matrix defined in (4.28). Then we have, for each a ∈ A and

n ∈ N (a, ω), that∑
m

ψa,ω,n,m(w, ξ, η) = qω(η) and hence
∑
ω

∑
m

ψa,ω,n,m(w, ξ, η) ≡ 1.

Remark 5.3. Note the factor ∆−1
a,ω,n in the definition (5.4), which did not appear

in [21], [22], [9] when we studied contact Anosov flows using a parallel method. We

put this factor because, as we observed in Lemma 4.7, the direction of E∗
0 viewed in

the local chart κa,ω,n, varies with resect to its base point at a rate proportional to

∆(pa,ω,n,κ♯⟨ω⟩−1/2), which is not uniform in a, ω, n and can be as large as O∗(log⟨ω⟩)
in absolute value.
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Remark 5.4. For the argument in the proofs in the next section, we define the

(enveloping) family of functions ψ̃a,ω,n,m : R2+2+1 → [0, 1] by

ψ̃a,ω,n,m(w, ξ, η) = q̃ω+1(η) · ψ̃m
(
⟨ω⟩−1/2Am ·∆−1

a,ω,n(ξ − η · ea,ω,n(w))
)

(5.5)

where

q̃ω = qω−1 + qω + qω+1, ψ̃m = ψm−1 + ψm + ψm+1 (5.6)

and

Am(ξx, ξy) =



(
2ξx,

ξy
2

)
, if m > 0;

(ξx, ξy), if m = 0;(
ξx
2
, 2ξy

)
, if m < 0.

From the definition, we have ψ̃a,ω,n,m = 1 on the support of ψa,ω,n,m.

For each Cr function u onM , we define a family of functions ûa,ω,n,m : R2+2+1 → C
for a ∈ A, ω ∈ Z, n ∈ N(a, ω) and m ∈ Z, by

ûa,ω,n,m(w, ξ, η) = ψa,ω,n,m(w, ξ, η) ·B(ρa,ω,n · (u ◦ κ−1
a,ω,n))(w, ξ, η).

We regard this correspondence u 7→ (ua,ω,n,m) as an operator

I : C∞(M) →
∏

a,ω,n,m

C∞
0 (suppψa,ω,n,m), I(u) = (ûa,ω,n,m)a∈A,ω∈Z,n∈N(a,ω),m∈Z.

Remark 5.5. Since B(ρa,ω,n · (u ◦ κ−1
a,ω,n)) is real-analytic, its support is R2 ⊕R3

unless ua,ω,n ≡ 0. Thus, in order that the definitions above make good sense, we have to

extend the mapping ea,ω,n from Da,ω,n to R2. (Recall Remark 4.6.) Note however that

the functions B(ρa,ω,n · (u◦κ−1
a,ω,n)) decays extremely fast on the outside of supp ρa,ω,n×

R3, so that we can basically neglect its part on the outside of Da,ω,n × R3.

The next lemma tells that the operator I∗ :
⊕

a,ω,n,m C
∞
0 (suppψa,ω,n,m) → C3(M),

I∗((ua,ω,n,m)a∈A,ω∈Z,n∈N(a,ω),m∈Z) =
∑

a,ω,n,m

(ρ̃a,ω,n ·B∗ua,ω,n,m) ◦ κa,ω,n,

gives a construction reverse to the decomposition in I.

Lemma 5.6. I∗ ◦ I = Id on C∞(M).

Proof. The claim is not trivial but can be checked by simple computations. Just

note that, since the function ϱa,ω,n in the construction of ρa,ω,n in Subsection 4.1 does

not depend on the variable z and since B ◦M(qω) ◦B∗ is a convolution operator that

involves only the z-variable, we have the commutative relation
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(B ◦M(qω) ◦B∗) ◦M(ϱa,ω,n) = M(ϱa,ω,n) ◦ (B ◦M(qω) ◦B∗)

where M(φ) denotes the multiplication operator by φ. We refer [9, Lemma 6.5] for the

detail. □

We can now define the Hilbert space H of distributions. We henceforth fix α0 ∈
(0, 1/6). To simplify the notation, we set

J = {(a, ω, n,m) | a ∈ A,ω ∈ Z, n ∈ N(a, ω),m ∈ Z}

and refer the components of j = (a, ω, n,m) ∈ J as a(j) = a, ω(j) = ω and so on. (Of

course, J here is different from that in Section 3.) Also, for j = (a, ω, n,m) ∈ J , we set

κj := κa,ω,n, ρj := ρa,ω,n, ψj := ψa,ω,n,m, ∆j := ∆a,ω,n, ∆j := ∆a,ω,n (5.7)

and so on. It will be useful to remember that the components a and n are related to the

position, ω to the frequency in the flow direction and m to the frequency in the directions

transversal to the subspace E∗
0 .

Definition 5.7. We define H as the Hilbert space obtained as the completion of

the direct sum
⊕

j∈J L
2(suppψj) with respect to the norm

∥(uj)j∈J ∥H =

(∑
j∈J

eα0·m(j)∥uj∥2L2

)
. (5.8)

We define H as the Hilbert space of distributions onM that is obtained as the completion

of C∞(M) with respect to the norm ∥u∥H = ∥I(u)∥H. Then we have

Cα0(M) ⊂ Hα0(M) ⊂ H ⊂ H−α0(M) ⊂ (Cα0(M))′ (5.9)

where Hr(M) denotes the Sobolev space of order r. (For this relation, we refer [18,

Chapter 1] and [19, Appendix A].) By definition, the operator I extends to an isometric

injection I : H → H.

We define the operator Lt formally by Lt = I◦Lt ◦ I∗, so that the following diagram

commutes:

H Lt

−−−−→ H

I

x I

x
H Lt

−−−−→ H

Remark 5.8. At this moment, we only know that the operator Lt is defined as an

operator from
⊕

j C
∞
0 (suppψj) to

∏
j C

∞
0 (suppψj). We will see that it extends naturally

to a bounded operator on H and consequently that Lt extends to a bounded operator on

H when t ≥ t♯.
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6. Proof of Theorem 2.16.

We henceforth assume that f t ∈ F3
A satisfies the non-integrability condition (NI)ρ

for some ρ > 0 and suppose t♯ ≤ t ≤ 2t♯. Most part of the argument below is devoted to

show that f t itself is exponentially mixing. In the last subsection, we complete the proof

of Theorem 2.16 by examining dependence of the argument on the flow f t. For this last

part of the argument, we emphasize at this moment that, for the proof of exponential

mixing for f t, we actually need the estimate (2.20) in the non-integrability condition

(NI)ρ only for b in some bounded range. (See Remark 6.10.) This is crucial when we

prove stability of exponential mixing.

In the following, we suppose that ω♯ > ω0 is the constant in Lemma 4.9, but will

let it be larger if necessary. We will also introduce a large constant m♯ > 0 depending

on t♯ and ω♯. Below we will ignore some absolute constants, such as 2π, that appear in

Fourier transform and partial Bargmann transform, since they are not essential at all in

our argument.

6.1. Estimates on the components of Lt.

Below we will use the notations prepared in the last section, especially (5.7). We

write Ltj→j′ : C∞
0 (suppψj) → C∞

0 (suppψj′) for the component of Lt that sends the

j-component to the j′-component. It is written as

Ltj→j′u = M(ψj′) ◦B ◦ Ltj→j′ ◦B∗u (6.1)

where Ltj→j′ is the transfer operator on the local charts defined by

Ltj→j′v = (ρtj→j′ · v) ◦ (f tj→j′)
−1 (6.2)

with setting

f tj→j′ = κj′ ◦ f t ◦ κ−1
j and ρtj→j′ = (ρj′ ◦ f tj→j′) · ρ̃j.

As we noted in Subsection 4.3, the diffeomorphism f tj→j′ is written

f tj→j′(x, y, z) = (f̂ tj→j′(x, y), z + f̌ tj→j′(x, y)).

This extends naturally to

f tj→j′ : V
t
j→j′ × R → Ṽ tj→j′ × R

where, with setting Uj := Ua(j),ω(j),n(j), we define

V tj→j′ = π ◦ κj(Uj ∩ f−t(Uj′)) and Ṽ tj→j′ = f̂ tj→j′(V
t
j→j′).

Since the differential of f tj→j′ at a point (w, z) ∈ V tj→j′ does not depend on the variable

z, we will write (Df tj→j′)w for it. The natural action of f tj→j′ on the cotangent bundle is

written

(Df tj→j′)
∗ : Ṽ tj→j′ × R3 → V tj→j′ × R3, (Df tj→j′)

∗(w, ξ, η) = (w′, (Df tj→j′)
∗
w′(ξ, η))
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where w′ = (f̂ tj→j′)
−1(w).

From the definitions of the partial Bargmann transform P and its adjoint P∗ given

in Subsection 5.1, the operator Ltj→j′ is written as an integral operator with smooth

rapidly decaying kernel

K(w, ξ, η;w′, ξ′, η′) = ψj′(w
′, ξ′, η′) ·

∫
(ρj→j′ ·ϕw,ξ,η)◦ (f tj→j′)

−1(z) ·ϕw′,ξ′,η′(z) dz, (6.3)

so that it is a compact operator from L2(suppψj) to L
2(suppψj′).

We take a large constant m♯ > 0, which will be specified in the course of the

argument, and let K : H → H be the part of the operator Lt that consists of the

components Ltj→j′ with

max{|ω(j)|, |ω(j′)|} ≤ ω♯ and max{|m(j)|, |m(j′)|} ≤ m♯. (6.4)

This operator K consists of finitely many non-vanishing components and therefore com-

pact regardless of the choice of ω♯ and m♯. Let Πω : H → H be the projection operator

that extracts the components with ω(j) = ω. We are going to prove the following propo-

sition.

Proposition 6.1. There exists a constant c > 0 (independent of the choice of t♯)

such that

∥Πω′ ◦ (Lt −K) ◦Πω∥H→H ≤ exp(−ct) · ⟨ω′ − ω⟩−1 for ω, ω′ ∈ Z and t♯ ≤ t ≤ 2t♯.

This proposition implies that f t is exponentially mixing. Indeed, from the proposi-

tion, we have ∥Lt−K∥H→H < e−(c/2)t for t♯ ≤ t ≤ 2t♯, by letting t♯ be larger if necessary.

Since K is compact as we noted above, the essential spectral radius of Lt is bounded by

e−(c/2)t and so is that of Lt : H → H. Since f t is mixing, there is a unique eigenvalue

1 on the region |z| ≥ 1, which is simple and the corresponding spectral projector is the

averaging with respect to the volume m; The other part of the spectrum is contained in

the region |z| < e−c
′t < 1 for some c′ > 0. Therefore, letting H0 = {u ∈ H |

∫
u dm = 0},

we have

∥Lt∥H0→H0 ≤ Ce−c
′t for t ≥ 0.

This and (5.9) give the required decay estimate:∣∣∣∣∫ φ · (ψ ◦ f t) dm
∣∣∣∣ = ∣∣∣∣∫ ψ · Ltφdm

∣∣∣∣ ≤ ∥ψ∥H′∥Ltφ∥H ≤ Ce−c
′t∥ψ∥Cα0 (M)∥φ∥Cα0 (M)

for φ,ψ ∈ Cα0(M) with
∫
φdm = 0.

6.2. Estimates on components Lt
j→j′ .

In this subsection, we present a few statements on the components Ltj→j′ with respect

to the L2 norm and deduce Proposition 6.1 from them. The proofs of the estimates (pre-

cisely, Lemma 6.3, Lemma 6.6 and Proposition 6.8) are deferred to the subsections that

follow. Since our task is the proof of Proposition 6.1, we will disregard the components



799(377)

Exponential mixing for Anosov flows 799

Ltj→j′ (or suppose Ltj→j′ = 0) for which (6.4) holds.

We begin with a few simple estimates and then proceed to more involved ones. The

most important statement is Proposition 6.8, in which we give a consequence of the

non-integrability condition (NI)ρ. First of all, we note that

∥Ltj→j′∥L2→L2 ≤ 1 for any t ≥ 0 and j, j′ ∈ J . (6.5)

This is obvious because neither of B, B∗ and Lt increases the L2 norm.

Observe that the operator Ltj→j′ is localized in the space from the expression (6.3)

of its kernel. In order to give quantitative estimates related to this observation, we

introduce a few definitions. Let π : R2+1 → R2 and π̃ : R2+2+1 → R2 be the projections

to the first two components, that is, we set π(w, z) = w, π̃(w, ξ, η) = w. In order to cut

off the tail part of the operator Ltj→j′ , we introduce the C∞ function

Xj→j′ : R2 → [0, 1] ( resp. X ′
j→j′ : R2 → [0, 1] )

so that it takes the constant value 1 on the κ1/2
♯ ⟨ω(j)⟩−1/2-neighborhood of π(supp ρj→j′)

(resp. π(f tj→j′(supp ρj→j′))), while it is supported in the 2κ1/2
♯ ⟨ω(j)⟩−1/2-neighborhood

of the same subset. Further we may and do suppose that

∥DαXj→j′∥ ≤ C∗(α)(κ−1/2
♯ ⟨ω(j)⟩1/2)|α|, ∥DαX ′

j→j′∥ ≤ C∗(α)(κ−1/2
♯ ⟨ω(j)⟩1/2)|α|

(6.6)

for any multi-index α. For brevity, we will write Xj→j′ and X ′
j→j′ also for the functions

Xj→j′ ◦ π̃ and X ′
j→j′ ◦ π̃ on R2+2+1, abusing the notation slightly. With this convention,

we define

L̂tj→j′ : L
2(suppψj) → L2(suppψj′), L̂tj→j′u = X ′

j→j′ · Ltj→j′(Xj→j′ · u). (6.7)

Remark 6.2. From Remark 4.5, we may assume that, for any ω, ω′ ∈ Z and

m,m′ ∈ Z and for each j ∈ J with ω(j) = ω (resp. j′ ∈ J with ω(j′) = ω′), the

intersection multiplicity of

{suppXj→j′ | j′ ∈ J , ω(j′) = ω′,m(j′) = m′}
(resp. {suppX ′

j→j′ | j ∈ J , ω(j) = ω,m(j) = m})

is bounded by an absolute constant.

From the observation on Ltj→j′ mentioned above, it is not difficult to get the estimate

∥Ltj→j′ − L̂tj→j′∥L2→L2 ≤ C∗(ν)κ−ν
♯ for t♯ ≤ t ≤ 2t♯ and j, j′ ∈ J (6.8)

for arbitrarily large ν > 0. Actually the next lemma gives a little more precise estimates,

making use of the fact that the flow f t viewed in our local charts is just a translation in

each of the flow lines. (The proof is not difficult but deferred to Subsection 6.4.)

Lemma 6.3. For any ν > 0, there exists a constant C∗(ν) > 0 such that
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∥Ltj→j′∥L2→L2 ≤ C∗(ν)⟨ω(j)− ω(j′)⟩−ν

and further

∥Ltj→j′ − L̂tj→j′∥L2→L2 ≤ C∗(ν)κ−ν
♯ ⟨ω(j)− ω(j′)⟩−ν

for t♯ ≤ t ≤ 2t♯ and j, j′ ∈ J .

Next we give estimates on Lt obtained as consequences of the hyperbolic properties

(4.31) and (4.32) of the flow f t. We first introduce the following definition. This definition

is motivated by a simple geometric observation on the position of (Df tj→j′)
∗(supp ψ̃j′)

relative to supp ψ̃j in the phase space. (See Remark 6.5 below.)

Definition 6.4. For two pairs (m,ω) and (m′, ω′) of integers and a positive real

number t > 0, we write (m,ω) ↪→t (m′, ω′) if either

1. m ≥ 0 and m′ ≤ 0, or

2. m > 0, m′ > 0 and m′ ≤ m− [χ∗t/2] + | log(⟨ω′⟩/⟨ω⟩)|+ 10, or

3. m < 0, m′ < 0 and m′ ≤ m− [χ∗t/2] + | log(⟨ω′⟩/⟨ω⟩)|+ 10.

We write(m,ω) ̸↪→t (m′, ω′) otherwise. We write j ↪→t j′ (resp. j ̸↪→t j′) for (j, j′) ∈ J ×J
if and only if (m(j), ω(j)) ↪→t (m(j′), ω(j′)) (resp. (m(j), ω(j)) ̸↪→t (m(j′), ω(j′))).

Remark 6.5. The definition above is given so that subsets (Df tj→j′)
∗(supp ψ̃j′) and

supp ψ̃j are separated in the case j ̸↪→t j′. The terms | log(⟨ω′⟩/⟨ω⟩)| in the conditions 2

and 3 above are put in order to deal with technical problems in the case where the ratio

between ⟨ω(j′)⟩ and ⟨ω(j)⟩ is not close to 1. (But such technical problems will turn out

to be far from essential.) At this moment, we ask the readers to observe that disjointness

between (Df tj→j′)
∗(supp ψ̃j′) and supp ψ̃j would follow from the condition j ̸↪→t j′ by

simple geometric argument, if we assumed 1/2 ≤ ⟨ω(j′)⟩/⟨ω(j)⟩ ≤ 2 and ignored the

factor ∆j and the variation of ej in the definition of the function ψ̃j. In the next lemma,

we give a related more quantitative estimate.

We henceforth consider two small constants

0 < δ∗ < ρ∗

whose choices are independent of t♯, ω♯, m♯ and made later in Lemma 6.8. In the lemma

below (and henceforth), the constants t♯ and ω♯ are suppose to be taken according to the

choice of δ∗ and ρ∗. Let us recall the definition of ∆j from (4.28).

Lemma 6.6. There exists a constant C∗ > 0 such that, if j, j′ ∈ J satisfy j ̸↪→t j′

for t♯ ≤ t ≤ 2t♯ and if we have in addition that

|m(j)| ≥ δ∗t♯ (resp. |m(j′)| ≥ δ∗t♯ ) (6.9)

then we have
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⟨⟨ω(j)⟩1/2∥w′ − w∥⟩2 ·
⟨
⟨ω(j)⟩−1/2∥∆−1

j (ξ′ − ξ)∥
⟩
≥ C−1

∗ e|m(j)| (6.10)

for (w, ξ, η) ∈ supp ψ̃j and (w′, ξ′, η′) ∈ (Df tj→j′)
∗(supp ψ̃j′) with w

′ ∈ V tj→j′ (resp.

⟨⟨ω(j′)⟩1/2∥w′ − w∥⟩2 ·
⟨
⟨ω(j′)⟩−1/2∥∆−1

j′ (ξ′ − ξ)∥
⟩
≥ C−1

∗ e|m(j′)| (6.11)

for (w, ξ, η) ∈ ((Df tj→j′)
∗)−1(supp ψ̃j) and (w′, ξ′, η′) ∈ supp ψ̃j′ with w ∈ f tj→j′(V

t
j→j′)).

Proof. We are going to prove the former claim (6.10). The other claim (6.11)

is proved in a parallel manner replacing f tj→j′ by its inverse. First of all, note that the

ratio between ∆j′ ≥ 1 and ∆j ≥ 1 is bounded by C∗(t♯ + | log⟨ω(j′)⟩/⟨ω(j)⟩|) because so

is |∆j′ −∆j| from Lemma 2.19. Also note that, from the assumption (6.9), we may and

do suppose

e|m(j)| ≥ eδ∗t♯ ≫ t4♯ . (6.12)

To fix ideas, let us start with considering the case w = w′. In this case the points

(w, ξ, η) and (w′, ξ′, η′) belongs to the same cotangent space {w} × R3 and we have

(Df tj→j′)
∗(ej′(f̂

t
j→j′(w))) = ej(w).

By geometric consideration using (4.31) and (4.32), it is easy to see that images of the

subsets

supp ψ̃j ∩ ({w} × R3) and (Df tj→j′)
∗(supp ψ̃j′) ∩ ({w} × R3)

projected to the ξ-plane along the direction of ej(w) and mapped by ∆j are separated

by the distance C−1
∗ e|m(j)| · ⟨ω(j)⟩1/2 at least and hence the claim (6.10) holds in this

case. (To see this, we first consider the simple case where 1/2 ≤ ⟨ω(j′)⟩/⟨ω(j)⟩ ≤ 2 and

then note that, in the other case, the term | log(⟨ω′⟩/⟨ω⟩)| in Definition 6.4 and also the

estimate on the ratio ∆j′/∆j mentioned above help.) Next we extend this estimate to

the case w′ ̸= w. To this end, we have to consider the difference between η · ej(w) and

η · ej(w′). If w and w′ are so close that ⟨ω(j)⟩1/2∥w′ − w∥ ≤ c∗e
|m(j)|/2 with sufficiently

small c∗ > 0, we have

|∆−1
j (η · ej(w′)− η · ej(w))| ≪ e|m(j)| · ⟨ω(j)⟩1/2

from (4.27) and (6.12) and, therefore, (6.10) remains valid. Otherwise, the required

estimate (6.10) is trivial because of the first factor on its left-hand side. □

The next lemma is a consequence of the observation made in the last lemma. The

proof will be given in Subsection 6.7.

Lemma 6.7. For any ν > 0, there exists a constant C∗(ν) > 0, which is independent

of t♯, such that, for t♯ ≤ t ≤ 2t♯ and j, j′ ∈ J satisfying j ̸↪→t j′ and (6.9), we have

∥Ltj→j′∥L2→L2 ≤ C∗(ν)e
−max{|m(j)|,|m(j′)|}/2 · ⟨ω(j′)− ω(j)⟩−ν (6.13)
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and further

∥Ltj→j′ − L̂tj→j′∥L2→L2 ≤ C∗(ν)e
−max{|m(j)|,|m(j′)|}/2 · κ−ν

♯ · ⟨ω(j)− ω(j′)⟩−ν .

The next proposition is the key to the proof of Proposition 6.1, which gives an

estimate on the components Ltj→j′ for which max{|m(j)|, |m(j′)|} is relatively small. The

proof of this proposition is the main ingredient of this section and will be given in the

next subsection.

Proposition 6.8. There exist constants 0 < δ∗ < ρ∗ such that, if we let the

constants t♯ and ω♯ be large depending on δ∗, then, for all j, j′ ∈ J satisfying

max{|m(j)|, |m(j′)|} ≤ δ∗t♯, |ω(j)| ≥ ω♯
2

and |ω(j′)−ω(j)| ≤ exp

(
ρ∗t♯
10

)
, (6.14)

we have

∥L̂tj→j′∥L2→L2 ≤ exp(−ρ∗t♯) for t♯ ≤ t ≤ 2t♯.

Now we deduce Proposition 6.1 from the estimates on the norms of the components

Ltj→j′ given Lemma 6.3, Lemma 6.7 and Proposition 6.8.

Proof of Proposition 6.1. Let 0 < δ∗ < ρ∗ be those constants in Proposition

6.8. Note that we may and do suppose that δ∗ is much smaller than ρ∗, because the

claims of Proposition 6.8 remains valid when we let δ∗ be smaller (and Lemma 6.6 holds

for any choice δ∗). Below we suppose t♯ ≤ t ≤ 2t♯ and proceed with the assumption

|ω| ≥ ω♯
2

and |ω′ − ω| < exp

(
α0δ∗t♯
10

)
(6.15)

for ω, ω′ ∈ Z, where α0 ∈ (0, 1/6) is that in the definition of the anisotropic Sobolev

space H. The argument in the remaining case is much simpler and will be mentioned at

the end.

Let us take m,m′ ∈ Z and consider the components Ltj→j′ for j, j
′ ∈ J satisfying

ω(j) = ω, m(j) = m, ω(j′) = ω′, m(j′) = m′. (6.16)

Note that, for each j (resp. j′ ∈ J ), the cardinality of the set

{j′ ∈ J | ρtj→j′ ̸= 0, ω(j′) = ω′,m(j′) = m′}
(resp. {j ∈ J | ρtj→j′ ̸= 0, ω(j) = ω,m(j) = m})

may be large (i.e. grow exponentially with respect to t). This causes a problem when

we sum the estimates for the components Ltj→j′ for j, j′ ∈ J . Our idea to do with this

problem is as follows:

(A) if we consider the operator L̂tj→j′ defined in (6.7) instead of Ltj→j′ , we will not have

this problem by virtue of the assumption noted in Remark 6.2, and
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(B) the norm ∥L̂tj→j′ − Ltj→j′∥L2→L2 of the difference is very small and dominates the

cardinalities of the sets above, which is bounded by C∗ exp(C∗t♯) ≪ κ♯.

Below we consider the following three cases for the combination (m,m′) ∈ Z2, but note

that we continue to assume (6.15) for (ω, ω′) ∈ Z2:

(i) those (m,m′) satisfying max{|m|, |m′|} ≤ δ∗t♯,

(ii) those (m,m′) not in (i), but satisfies (m,ω) ̸↪→t (m′, ω′), or

(iii) those (m,m′) not either in (i) and (ii).

We first consider the case (i). If we consider L̂tj→j′ in the places of Ltj→j′ , then, by

Proposition 6.8 and the idea (A) mentioned above, the operator norm (with respect to the

norm on H) of the totality of components satisfying (6.16) is bounded by C∗e
2α0δ∗t♯ ·e−ρ∗t,

where the first factor e2α0δ∗t♯ comes from the weight in the definition of H. For the

differences between L̂tj→j′ and Ltj→j′ , we apply the second claim of Lemma 6.3 and, by

the idea (B), find that the last estimate remains valid when we replace L̂tj→j′ by Ltj→j′ .

Next we consider the case (ii). If we consider L̂tj→j′ in the places of Ltj→j′ , then,

from the first claim of Lemma 6.7 and the idea (A), the operator norm of the totality of

components satisfying (6.16) is bounded by C∗e
−((1/2)−2α0)max{|m|,|m′|}. We apply the

second claim of Lemma 6.7 for the differences between L̂tj→j′ and Ltj→j′ and, by the idea

(B), find that the last estimate remains valid when we restore Ltj→j′ .

Finally we consider the case (iii). In this case, the weight in the definition on the

Hilbert space H plays its roll. Suppose that Ltj→j′ are replaced by L̂tj→j′ . Then we can

apply the first claim of Lemma 6.3 to each of the components and, by the idea (A), show

that the operator norm of the totality of components satisfying (6.16) is bounded by

C∗(ν)e
α0(m

′−m)⟨ω′ − ω⟩−ν . Then, applying the second claim of Lemma 6.3, we check

that this estimate remains valid when we restore Ltj→j′ . Note that, since (m,ω) ↪→t

(m′, ω′) and max{|m|, |m′|} > δ∗t♯ in this case, the factor eα0(m
′−m) is bounded by

C∗ max{e−α0(χ∗/2)t♯⟨ω′ − ω⟩, e−α0δ∗t♯}.
Collecting the estimates in the cases (i), (ii) and (iii) above and taking sum with

respect to the combinations (m,m′) ∈ Z2, we see that the operator norm of Πω′ ◦ (Lt −
K) ◦Πω on H is bounded by

C∗ max{ δ∗t♯ · e(2α0δ∗−ρ∗)t♯ , e−((1/2)−2α0)δ∗t♯ , δ∗t♯ · e−α0δ∗t♯ , e−α0(χ∗/2)t♯ }.

Since we are assuming that |ω′ − ω| < exp(α0δ∗t♯/10), this implies the conclusion of

Proposition 6.1, provided that δ∗ is sufficiently small and t♯ is sufficiently large.

In the case where the assumption (6.15) does not hold, the proof is parallel to the

argument above but it becomes much simpler. Indeed,

• In the case where |ω| < ω♯/2 and |ω′| ≤ ω♯, we may assume max{|m|, |m′|} ≥ m♯

since we subtract the compact part K from Lt. Since we can choose large m♯

depending on t♯ and ω♯, we need not consider the case (i). Then the proof goes as

well as the argument above for the cases (ii) and (iii).
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• In the remaining case, we may suppose that the factors ⟨ω′ − ω⟩−ν that appear

in the claims of Lemma 6.3 and Lemma 6.7 are small enough by letting ω♯ and

ν be large. Therefore we can go through the argument above with much cruder

estimates. (In the case (i), we use Lemma 6.3 instead of Proposition 6.8.)

We therefore obtain the conclusion of Proposition 6.1. □

In the following subsections, we prove Lemma 6.3, Lemma 6.7 and Proposition 6.8.

We present the proof of Proposition 6.8 first.

6.3. Proof of Proposition 6.8.

Let us consider the operator L̂tj→j′ for j, j′ ∈ J satisfying (6.14) and set ω = ω(j),

ω′ = ω(j), m = m(j) and m′ = m(j) for brevity. Recall the argument in Subsection 4.3,

we express the diffeomorphism f tj→j′ as

f tj→j′ = Atj→j′ ◦Gtj→j′

in parallel to (4.36). Accordingly we write L̂tj→j′ as

L̂tj→j′ = M(ψj′ · X ′
j→j′) ◦ A ◦G (6.17)

where M(φ) denotes the multiplication operator by φ and we set

G : L2(suppψj) → L2(R2+2+1), Gu = B
((
ρtj→j′ ·B∗(Xj→j′ · u)

)
◦ (Gtj→j′)

−1
)

and

A : L2(R2+2+1) → L2(R2+2+1), Au = B((B∗u) ◦ (Atj→j′)
−1).

Below we disregard the part G for a while and concentrate on the part M(ψj′ ·X ′
j→j′)◦A.

In the last part of this proof, we will show that the pre-composition of G is negligible.

The operator A is a rather simple integral operator and its kernel can be presented

explicitly by computing Gaussian integrals. (See [16, Chapter 3].) But our main concern

in the argument below is actually the variations of the functions ψj and ψ̃j with respect

to the space variable w. Recall from (5.4) and (5.5) that their definitions involve the

mapping ej(w) : ea(j),ω(j),n(j)(w). To proceed, we introduce the functions

Ψ0
j : R2+2+1 → [0, 1], Ψ0

j (w, ξ, η) = χ

(
4−1e−δ∗t♯ |ω|−1/2 · ∥∆−1

j (ξ − η · ej(w))∥
)
(6.18)

and

Ψj : R2+2+1 → [0, 1], Ψj(w, ξ, η) = qω(j)(η) ·Ψ0
j (w, ξ, η) (6.19)

where qω is the function defined in (5.6). We prove the following lemma as the main step

of the proof of Proposition 6.8.



805(383)

Exponential mixing for Anosov flows 805

Lemma 6.9. Under the assumptions as above, we have

∥M(Ψj′ · X ′
j→j′) ◦ A : L2(supp (Ψ0

j · Xj→j′)) → L2(supp (Ψj′ · X ′
j→j′))∥ ≤ e−ρ∗t♯ . (6.20)

In the following, we prove this lemma by showing that the operator norm of

A∗ ◦M(Ψj′ · X ′
j→j′)

2 ◦ A : L2(supp (Ψj · Xj→j′)) → L2(supp (Ψj · Xj→j′)) (6.21)

is bounded by e−2ρ∗t♯ . (Notice that we suppose the image of this operator to be restricted

to supp (Ψj · Xj→j′).) Let us recall the expression (4.34) of the diffeomorphism Atj→j′ .

Below we suppose Atj→j′(0) = 0 by shifting the coordinates, hence

Atj→j′(x, y, z) =
(
λx, λ̃y, z +ϖ · (x, y) + βxy

)
where λ, λ̃ and ϖ are those given in (4.35) for f = f tj→j′ . The inverse of Atj→j′ is then

written

(Atj→j′)
−1(x, y, z) =

(
Λ−1

(
x

y

)
, z −ϖ · Λ−1

(
x

y

)
− σ(x, y)

)
(6.22)

where

Λ =

(
λ 0

0 λ̃

)
and σ(x, y) = βλ−1λ̃−1xy.

We write the operator A as an integral operator

Au(w′′, ξ′′, η) =

∫
KA(w, ξ;w

′′, ξ′′; η)u(w, ξ, η) dwdξ

with the kernel

KA(w
′′, ξ′′;w, ξ; η) = e−iξw/2−iξ

′′w′′/2 · kA(w′′, ξ′′;w, ξ; η)

where

kA(w
′′, ξ′′;w, ξ; η) = eiξw/2+iξ

′′w′′/2

∫
ϕw′′,ξ′′,η(w̃, z) ·ϕw,ξ,η((Atj→j′)

−1(w̃, z)) dw̃. (6.23)

(Note that the right-hand side of (6.23) does not depend on z. We separated the term

e−iξw/2−iξ
′′w′′/2 in order to simplify the expressions below.) Using the expression (6.22)

of (Atj→j′)
−1 and changing the variable w̃ to w̃ + w′′, we rewrite the last expression as

kA(w, ξ;w
′′, ξ′′; η)

= ⟨η⟩
∫
dw̃ exp(i(ξ(Λ−1(w̃ + w′′))− ξ′′w̃ − ηϖ · Λ−1(w̃ + w′′)− η · σ(w̃ + w′′)))

· exp
(
−⟨η⟩∥Λ

−1(w̃ + w′′)− w∥2

2
− ⟨η⟩∥w̃∥

2

2

)
.
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Then we can write the operator (6.21) as

(A∗ ◦M(Ψj′ ·X ′
j→j′)

2 ◦A)u(w′, ξ′, η) =

∫
e−iξw/2+iξ

′w′/2 ·K(w′, ξ′;w, ξ; η)u(w, ξ, η) dwdξ

(6.24)

where, introducing the variable ζ = ξ′′ − ηej′(w
′′), we set

K(w′, ξ′;w, ξ; η) = qω′(η)2
∫
dζ

∫
dw′′ · χ

(
4−1e−δ∗t♯ |ω|−1/2 · ∥∆−1

j′ ζ∥
)2

· X ′
j→j′(w

′′)2

× kA(w
′′, ζ + ηej′(w

′′);w, ξ; η) · kA(w′′, ζ + ηej′(w′′);w′, ξ′; η).

(6.25)

In the integral on the right-hand side of (6.25), we are going to compute the integration

with respect to the variable w′′ = (x′′, y′′). If we write the integral by putting (6.23) and

extract the parts that involve the variable w′′ = (x′′, y′′), then, setting

ej′(w) := (θu(w), θs(w)),

we find

I(w, ξ;w′, ξ′; w̃, w̃′; η) :=

∫
dx′′dy′′ · X ′

j→j′(x
′′, y′′)2

· exp(−iη(ỹ − ỹ′) · θs(x′′, y′′) + i(ξx − ξ′x)λ
−1x′′ − iβλ−1λ̃−1η(ỹ − ỹ′)x′′)

· exp(−iη(x̃− x̃′) · θu(x′′, y′′))× exp(i(ξy − ξ′y)λ̃
−1y′′ − iηβλ−1λ̃−1(x̃− x̃′)y′′)

· exp
(
− ⟨η⟩ |λ

−1(x̃+ x′′)− x|2

2
− ⟨η⟩ |λ

−1(x̃′ + x′′)− x′|2

2

)
· exp

(
− ⟨η⟩ |λ̃

−1(ỹ + y′′)− y|2

2
− ⟨η⟩ |λ̃

−1(ỹ′ + y′′)− y′|2

2

)
(6.26)

and (6.25) is written as

K(w′, ξ′;w, ξ; η) = qω′(η)2 · ⟨η⟩2 ·
∫
dζdw̃dw̃′ · I(w, ξ;w′, ξ′; w̃, w̃′; η)

· χ
(
4−1e−δ∗t♯ |ω|−1/2∥∆−1

j′ ζ∥
)2

· exp
(
−⟨η⟩∥w̃∥

2 + ∥w̃′∥2

2

)
· exp

(
i(ξΛ−1w̃ − ξ′Λ−1w̃′ − ζ(w̃ − w̃′)− ηϖΛ−1(w̃ − w̃′)− η(σ(w̃)− σ(w̃′)))

)
.

(6.27)

In the following, we consider the following two cases separately:

(I) ∆j < e3δ∗t♯ , (II) ∆j ≥ e3δ∗t♯ .

In the case (I), we will use the non-integrability condition (NI)ρ to deduce the required

estimate. In the case (II), we will use the fact that the approximate non-integrability

∆j = ∆(p,κ♯⟨ω(j)⟩) is sufficiently large. In the following, we suppose that

(w, ξ, η), (w′, ξ′, η) ∈ supp (Ψj · Xj→j′). (6.28)
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Note that this implies in particular that ∥w∥ and ∥w′∥ are bounded by C∗κ♯⟨ω⟩1/2.

Case (I).

We consider the integration in (6.26) with respect to the variable x′′. Notice that

the factor on the second line of the right-hand side of (6.26) is of the form to which we

can apply (4.13) in Lemma 4.7 with setting

h = λ1/2|ω|−1/2, b = −h · η(ỹ − ỹ′), α =
(ξx − ξ′x)λ

−1 − βλ−1λ̃−1η(ỹ − ỹ′)

bh−1
(6.29)

provided that b > b0. For the remaining part on the right-hand side of (6.26), observe

that

• the factor on the third line is almost constant as a function of x′′ in the scale

|ω|−1/2 from (4.12) in Lemma 4.7. (We may suppose that |x̃| and |x̃′| are bounded

by κ2
♯ ⟨ω⟩−1/2 because otherwise the factors on the fourth and fifth lines are very

small.)

• the factor on the fourth line is also almost constant in x′′ viewed in the scale |ω|−1/2,

precisely, its derivative with respect to x′′ is bounded by λ−1⟨η⟩1/2 ≤ 2λ−1|ω|1/2,

• the factor on the fifth line does not depend on x′′.

These observations motivate us to divide the domain of integration with respect to x′′

(i.e. the real line R) into intervals with length 2h = 2λ1/2|ω|−1/2 and apply (4.13) in

Lemma 4.7 to the integral (6.26) with respect to x′′ on each of those intervals with the

setting (6.29). We approximate the remaining parts (i.e. the factor X ′
j→j′(x

′′, y′′)2 on the

first line and those on the third to fifth lines) on the right-hand side of (6.26) by their

averages on the interval and, to ensure the assumption of Lemma 4.7, we suppose

b0 ≤ |b| = |h · η(ỹ − ỹ′)| = λ1/2|ω|−1/2 · |η(ỹ − ỹ′)| ≤ κ♯. (6.30)

Then we see that the integral (6.26) with resect to x′′ on each of the intervals of length

2h = 2λ1/2|ω|−1/2 is bounded by

C∗(b0) · 2h ·
(
⟨λ1/2|ω|1/2(ỹ − ỹ′)⟩−ρ/2 + λ−1/2

)
.

Hence, evaluating the factors on the fourth and fifth lines of (6.26), we conclude

|I(w, ξ;w′, ξ′; w̃, w̃′; η)|

≤ C∗(ν, b0) |ω|−1 · (⟨λ1/2|ω|1/2|ỹ − ỹ′|⟩−ρ/2 + λ−1/2)

·⟨|ω|1/2|λ−1(x̃− x̃′)− (x− x′)|⟩−ν · ⟨|ω|1/2|λ̃−1(ỹ − ỹ′)− (y − y′)|⟩−ν (6.31)

for arbitrarily large ν, under the condition (6.30).

We put the last estimate into the expression (6.27) of the kernel K(·). And, for the

integration with respect to ζ, we apply a simple estimate about Fourier transform to see
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(
4−1|ω|−1/2e−δ∗t♯ · ∥∆−1

j′ ζ∥
)2

exp(−iζ(w̃ − w̃′))dζ

∣∣∣∣ ≤ C∗(ν) · e2δ∗t♯ ·∆j′ · |ω|
⟨eδ∗t♯ |ω|1/2∥∆j′(w̃′ − w̃)∥⟩ν

(6.32)

for arbitrarily large ν > 0. Therefore we see that (6.27) is bounded by

C∗(ν, b0)qω′(η)2 · e2δ∗t♯∆j′ |ω|2
∫
dw̃dw̃′

× (⟨λ1/2|ω|1/2|ỹ − ỹ′|⟩−ρ/2 + λ−1/2) · ⟨|ω|1/2∥Λ−1(w̃′ − w̃)− (w′ − w)∥⟩−ν

× ⟨eδ∗t♯ |ω|1/2∥∆j′(w̃
′ − w̃)∥⟩−ν · ⟨|ω|1/2∥w̃∥⟩−ν⟨|ω|1/2∥w̃′∥⟩−ν (6.33)

in absolute value. Notice that, in the last claim, we actually had to restrict the domains

of integrations in (6.27) and (6.33) by the condition (6.30). However, since the factor

exp(−⟨η⟩(∥w̃∥2 + ∥w̃′∥2)/2) on the second line of (6.27) is very small in the case where

the right inequality of (6.30) fails, the claim remains valid without such restrictions.

Inspecting the integral (6.33) with respect to w̃ and w̃′ above, we conclude

|K(w′, ξ′;w, ξ; η)| ≤ C∗(ν, b0) qω′(η)2λ−1 · (⟨λ−1/2|ω|1/2|y − y′|⟩−ρ/2 + λ−1/2)

⟨|ω|1/2∥(Λ−2 + 1)−1/2(w − w′)∥⟩ν
. (6.34)

Finally note that (6.20) is an operator on L2(supp (Ψj · χj→j′)) and that the 2d-

dimensional Lebesgue measure of suppΨj∩ ({w}×R2×{η}) for w ∈ R2 and η ∈ supp qω
is bounded by C∗e

2δ∗t♯∆j|ω| ≤ C∗e
8δ∗t♯ |ω|. (Note that we have the last inequality since

we are considering the case (I).) Hence, by simple estimate using Schur test([16, p.50]),

we conclude that the operator norm of (6.21) is bounded by

C∗(b0)e
8δ∗t♯λ−ρ/4 ≤ C∗(b0) e

−ρχ∗t♯/6 ≤ C∗(b0) e
−2ρ∗t♯ (6.35)

provided that we let the constants 0 < δ∗ < ρ∗ be sufficiently small. This gives the

required estimate (6.20) as we noted in the beginning.

Remark 6.10. In the argument above for the case (I), we actually used the es-

timate (4.13) only for b (which was the same as that in (2.20) in the non-integrability

condition (NI)ρ) in a bounded interval contained in [b0,κ♯]. And we will not use the

non-integrability condition (NI)ρ in the argument for the case (II) below.

Remark 6.11. It is natural to think that we may be able to apply the argument

above also to the case (II), one because the case (II) should be simpler and one because

the estimate (4.13) holds for any α. But the author found a technical problem in such

argument and had to argue about the case (II) separately. The problem will be presented

in the argument for the case (II) below.

Case (II).

We now consider the case (II) where the approximate non-integrability ∆j is large.

Let us begin with a preliminary discussion. Observe that, from (4.9) and (4.12) in Lemma

4.7, the unstable subspace Eu viewed in the local chart κj twists along segments parallel

to the y-axis by the rate proportional to ∆j ≥ e3δ∗t♯ ≫ 1, while it is almost constant on

segments parallel to the x-axis. Hence, recalling the definition (6.19) of Ψj, we see that
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|ξx − ξ′x| ≥ C−1
∗ ∆j · |ω| · |y − y′| ≫ 1 (6.36)

for (x, y, ξx, ξy, η), (x
′, y′, ξ′x, ξ

′
y, η) ∈ suppΨj ∩Uj→j′ , provided |y′ − y| ≥ C∗e

δ∗t♯⟨ω⟩−1/2.

This motivate us to regard the integral with respect to x′′ in (6.26) as an oscillatory

integral with the oscillating factor exp(i(ξx − ξ′x)λ
−1x′′). To estimate that oscillatory

integral, we need the following formula of regularized integration by parts because the

function ej′(w
′′) = (θu(w′′), θs(w′′)) is not differentiable. (The proof is obtained by a

simple computation.)

Lemma 6.12 ([3, p.137]). Let ρ : R → R be a C∞ function supported on [−1, 1]

such that
∫
ρ(s)ds = 1. Let ϑ ∈ C2(R) and g ∈ C0

c (R). If ϑ′(s) ̸= 0 on a neighborhood

of supp g, then we have, for sufficiently small ε > 0, that∫
eiϑ(s)g(s)ds = i

∫
eiϑ(s) ·

(gε
ϑ′

)′
(s)ds+

∫
eiϑ(s)(g(s)− gε(s))ds (6.37)

where gε = ρε ∗ g and ρε(s) = ε−1ρ(ε−1s).

Now we start the proof in the case (II). As in the case (I), we estimate the integral

(6.26). To fix ideas, we first proceed with the assumption that

|ω|1/2|y − y′| ≥ λ1/2 for w = (x, y) and w′ = (x′, y′) (6.38)

and also

1

2
≤ λ̃−1|ỹ − ỹ′|

|y − y′|
≤ 2 for w̃ = (x̃, ỹ) and w̃′ = (x̃′, ỹ′). (6.39)

We are going to apply Lemma 6.12 to the integral (6.26) with respect to x′′, with setting

ϑ(x′′) = (ξx − ξ′x)λ
−1x′′, ε =

λ

∆j · |ω|1/2|y − y′|
· |ω|−1/2.

In order to evaluate the result of integration by parts, we prepare a few simple estimates.

First we note that, from (6.28) and (6.38), we can estimate ε from above and below as

|ω|−1+θ∗ ≪ C−1
∗ λ ·∆−1

j · κ−1
♯ |ω|−1/2 ≤ ε ≤ λ1/2∆−1

j |ω|−1/2 ≪ κ♯|ω|−1/2.

(For the left-most inequality, recall that we have |ω| > ω♯ and take large ω♯ depending

on t♯.) Hence we can apply (4.11) of Lemma 4.7 with setting h = ε and get

|θs(x′′ + ετ, y′′)− θs(x′′, y′′)| ≤ C∗ε log(κ♯∆j) for τ ∈ [−1, 1].

This together with (6.39) and the fact C−1
∗ < |λλ̃| < C∗ yield that, for τ ∈ [−1, 1],

| exp(iη(ỹ − ỹ′)θs(x′′ + ετ, y′′))− exp(iη(ỹ − ỹ′)θs(x′′, y′′))|

≤ C∗⟨ω⟩ · λ̃|y − y′| · ε log(κ♯∆j) ≤ C∗∆
−1
j · log(κ♯∆j) < C∗∆

−1/2
j .

Similarly we get, from (4.12) in Lemma 4.7, that, for τ ∈ [−1, 1],
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| exp(iη(x̃− x̃′)θu(x′′ + ετ, y′′))− exp(iη(x̃− x̃′)θu(x′′, y′′))|

< C∗κ3
♯ ⟨ω⟩−1/2 · log |ω| < C∗∆

−1/2
j .

From (6.39) and (4.40), we have also

|βλ−1λ̃−1η(ỹ − ỹ′) · ε| ≤ C∗t♯∆
−1
j < C∗∆

−1/2
j .

On the other hand, from (6.28), (6.36) and (6.38), we have

λ−1|ξx − ξ′x| ≥ C−1
∗ λ−1∆j |ω| · |y − y′| ≥ C−1

∗ λ−1/2∆j |ω|1/2.

Now we can apply Lemma 6.12 to the integral in (6.26) with respect to the variable

x′′. We write g(x′′) = g(x′′; y′′;w, ξ;w′, ξ′; w̃, w̃′; η) for the part of the integrand of (6.26)

other than the factor eiϑ(x
′′). Note that the factors on the last two lines of (6.26) vary

relatively slowly with respect to x′′ as well as the factor X ′
j→j′(x

′′, y′′)2 on the first line.

Hence, if we put

hν(w
′′) = hν(w

′′;w,w′, w̃, w̃′) = ⟨|ω|1/2|Λ−1(w̃+w′′)−w|⟩−ν ·⟨|ω|1/2|Λ−1(w̃′+w′′)−w′|⟩−ν

for ν > 0 and let t♯ and ω♯ be larger if necessary, the resulting terms are estimated as

∥gε − g∥∞ ≤ C∗(ν)∆
−1/2
j · hν(w′′)

and∥∥∥∥(gεϑ′ )′
∥∥∥∥
∞

=

∥∥∥∥g′εϑ′
∥∥∥∥
∞

= C∗(ν)∆
−1/2
j · ε−1

λ−1|ξx − ξ′x|
· hν(w′′) ≤ C∗(ν)∆

−1/2
j · hν(w′′)

for arbitrarily large ν > 0. Therefore, integrating the result with respect to w′′, we obtain

|I(w, ξ;w′, ξ′; w̃, w̃′; η)| ≤
C∗(ν)∆

−1/2
j |ω|−1

⟨|ω|1/2|Λ−1(w̃ − w̃′)− (w − w′)|⟩ν
(6.40)

for arbitrarily large ν > 0, under the assumptions (6.38) and (6.39).

The last estimate (6.40) corresponds to (6.31) in the case (I). But we can not conclude

the required estimate from (6.40) in the case (II) because ∆j may be large and hence we

can not follow the argument in the last part of the proof in the case (I) using the Schur

test. In order to resolve this problem, we actually need a little more information on the

result of (regularized) integration by parts. As the result of (regularized) integration by

parts, the integral I(w, ξ;w′, ξ′; w̃, w̃′; η) is written in the form∫
exp(i(ξ − ξ′)Λ−1w′′) · I0(w′′;w, ξx;w

′, ξ′x; w̃, w̃
′; η)dw′′ (6.41)

where, correspondingly to the two terms on right-hand side of (6.37), I0(·) is of the form

I0(w
′′;w, ξx;w

′, ξ′x; w̃, w̃
′; η) =

I1(w
′′;w,w′; w̃, w̃′; η)

λ−1(ξx − ξ′x)
+ I2(w

′′;w,w′; w̃, w̃′; η).
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From the argument above, we already have

|I0(w′′;w, ξx;w
′, ξ′x; w̃, w̃

′; η)| ≤ C∗(ν)∆
−1/2
j hν(w

′′),

|I1(w′′;w,w′; w̃, w̃′; η)| ≤ C∗(ν)∆
−1/2
j ε−1hν(w

′′), and

|I2(w′′;w,w′; w̃, w̃′; η)| ≤ C∗(ν)∆
−1/2
j hν(w

′′).

Note that the dependence of I0(·) on the variables ξ and ξ′ is rather simple. Indeed,

using (6.36) and the assumption (6.38), it is easy to see

|∂kξx∂
k′

ξ′x
I0(w

′′;w, ξx;w
′, ξ′x; w̃, w̃

′; η)| ≤ C∗(ν, k, k
′) (λ1/2∆j|ω|1/2)−k−k

′
hν(w

′′) (6.42)

for any k, k′ ≥ 0 with (k, k′) ̸= (0, 0). This together with the estimate on I0(·) above

gives

|∂kξx∂
k′

ξ′x
I0(w

′′;w, ξx;w
′, ξ′x; w̃, w̃

′; η)| ≤
C∗(ν, k, k

′)max{λ−1/4,∆
−1/2
j } · hν(w′′)

(eδ∗t♯∆j|ω|1/2)k+k′
(6.43)

for any k, k′ ≥ 0.

Remark 6.13. Notices that the estimates above are obtained under the assump-

tions (6.38) and (6.39). For the proof of the next lemma we note that, in the case where

the condition (6.39) fails while (6.38) remains valid, we have the estimate (6.40) with

∆
−1/2
j replaced by λ−1, that is,

|I(w, ξ;w′, ξ′; w̃, w̃′; η)| ≤ C∗(ν)λ
−1 |ω|−1

⟨|ω|1/2|Λ−1(w̃ − w̃′)− (w − w′)|⟩ν
. (6.44)

Indeed it is easy to see that simple estimates without using integration by parts yield

this estimate (6.44) without the factor λ−1 (or the estimate (6.40) without the factor

∆
−1/2
j ). But, if the condition (6.39) fails while (6.38) remains valid, we have

|(λ̃−1(ỹ+y′′)−y)−(λ̃−1(ỹ′+y′′)−y′)| ≥ |λ̃−1(ỹ− ỹ′)−(y−y′)| ≥ |y − y′|
2

≥ |ω|−1/2λ1/2

and therefore we can get the estimate (6.44), making use of arbitrariness of ν. Let us

note also that, in such argument without using integration by parts, we may express

(6.26) in the form (6.41) with the function I0(·) independent of the variables ξ and ξ′.

The next lemma is our remedy to the problem in the case (II) mentioned above. Re-

call the definition of the function Xj→j′ and consider another C∞ function X̃j→j′ : R2 →
[0, 1] that takes value 1 on the 4κ1/2

♯ ⟨ω(j)⟩−1/2-neighborhood of the subset π̃(supp ρj→j′)

and is supported in the 8κ1/2
♯ ⟨ω(j)⟩−1/2-neighborhood of that subset. Clearly the esti-

mate parallel to (6.6) holds for this function. Let Ψ̃j : R2+2+1 → [0, 1] be the function

defined by
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Ψ̃0
j (w, ξ, η) = χ

(
8−1e−δ∗t♯ |ω|−1/2∥∆−1

j (ξ − η · ej(w))∥
)
· X̃j→j′(w).

Notice that this function differs from Ψj in (6.19) only in the factor 8−1 and the multi-

plication by the function X̃j→j′(w).

Lemma 6.14. We have

∥B∗ ◦ Ψ̃0
j ◦A∗ ◦M(Ψj′ · X ′

j→j′)
2 ◦A ◦ Ψ̃0

j ◦B∥L2(R2+1)→L2(R2+1) ≤ C∗ max{λ−1/8,∆
−1/4
j }.

Before proving this lemma, let us see that Lemma 6.9 follows from it. Letting 1j→j′

be the multiplication by the characteristic function of the support of Ψ0
j · Xj→j′ and

writing,

D = (1− Ψ̃0
j ◦B ◦B∗) ◦ 1j→j′ and D∗ = 1j→j′ ◦ (1−B ◦B∗ ◦ Ψ̃0

j ),

we see

1j→j′ ◦ A∗ ◦M(Ψj′ · X ′
j→j′)

2 ◦ A ◦ 1j→j′

− 1j→j′ ◦B ◦
[
B∗ ◦ Ψ̃0

j ◦ A∗ ◦M(Ψj′ · X ′
j→j′)

2 ◦ A ◦ Ψ̃0
j ◦B

]
◦B∗ ◦ 1j→j′

= D∗ ◦ A∗ ◦M(Ψj′ · X ′
j→j′)

2 ◦ A ◦ 1j→j′

+ 1j→j′ ◦B ◦B∗ ◦ Ψ̃0
j ◦ A∗ ◦M(Ψj′ · X ′

j→j′)
2 ◦ A ◦D.

From the estimate on the kernel of P = B◦B∗ in Lemma 5.2, it is clear that the operator

norms of D and D∗ with respect to the L2 norm are bounded by

C∗ exp(−eδ∗t♯) ≪ λ−1/8.

Since the operators A, B and B∗ do not increase the L2 norm, the same estimate holds

for the operator norms of the two operators on the right-hand side above. Therefore the

required estimate (6.20) follows from Lemma 6.14.

Proof of Lemma 6.14. The proof is easy once we have the estimate (6.43) and

note Remark 6.13. Let us write the operator under consideration as an integral operator

(B∗ ◦ Ψ̃0
j ◦A∗ ◦M(Ψj′ · Xj→j′)

2 ◦A ◦ Ψ̃0
j ◦B)u(w′

†, z
′) =

∫
K̃(w′

†, z
′;w†, z)u(w†, z) dw†dz.

From the description (6.24) of A∗ ◦ (Ψj′ · Xj→j′)
2 ◦ A, we can write the kernel as

K̃(w′
†, z

′;w†, z) =

∫
dwdξdw′dξ′dη · e−iξw/2+iξ

′w′/2 · K(w′, ξ′;w, ξ; η) (6.45)

· Ψ̃0
j (w, ξ, η) · Ψ̃0

j (w
′, ξ′, η) · ϕw,ξ,η(w†, z) · ϕw′,ξ′,η(w

′
†, z

′)

where
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K(w′, ξ′;w, ξ; η) = qω′(η)2⟨η⟩2 ·
∫
dζdw̃dw̃′dw′′ · exp

(
−⟨η⟩(∥w̃∥2 + ∥w̃′∥2)

2

)
· exp(iζ(w̃ − w̃′)) · χ

(
8−1e−δ∗t♯ |ω|−1/2 · ∥∆−1

j′ ζ∥
)2

· Xj→j′(w
′′)2

· exp(i(ξ · Λ−1(w′′ + w̃)− ξ′ · Λ−1(w′′ + w̃′))) · I0(w′′;w, ξ;w′, ξ′; w̃, w̃′; η)

· exp(−iηϖΛ−1(w̃ − w̃′)− iη(σ(w̃)− σ(w̃′))). (6.46)

For a while we restrict the domain of integration (6.45) to the region where the condition

(6.38) holds. We are going to estimate the integration with respect to the variables ζ, ξ,

ξ′ and η. For the integration with respect to ζ, we apply the plane estimate (6.32) on

Fourier transform. For the integration with respect to the other variables ξ, ξ′ and η, we

apply similar estimates, making use of the estimates (6.40) and (6.42) if the condition

(6.39) holds and recalling Remark 6.13 otherwise. Then we find

|K̃(w′
†, z

′;w†, z)| ≤ C∗(ν)max{λ−1/4,∆
−1/2
j } · ⟨z − z′⟩−ν · |ω|3 ·

∫
dwdw′dw′′dw̃dw̃′

· ⟨|ω|1/2∥w̃∥⟩−ν · ⟨|ω|1/2∥w̃′∥⟩−ν · (eδ∗t♯∆1/2
j′ |ω|1/2)2 · ⟨eδ∗t♯ |ω|1/2∥∆j′(w̃ − w̃′)∥⟩−ν

· ⟨eδ∗t♯ |ω|1/2∥∆j(Λ
−1(w′′ + w̃)− w†)∥⟩−ν · ⟨eδ∗t♯ |ω|1/2∥∆−1

j (Λ−1(w′′ + w̃′)− w′
†)∥⟩−ν

· (eδ∗t♯∆1/2
j |ω|1/2)4 · ⟨|ω|1/2∥w − w†∥⟩−ν · ⟨|ω|1/2∥w′ − w′

†∥⟩−ν .

By estimating the integral above with respect to w, w′, w′′, we continue

|K̃(w′
†, z

′;w†, z)| ≤ C∗(ν)max{λ−1/4,∆
−1/2
j } · ⟨z − z′⟩−ν · |ω|

∫
dw̃dw̃′

· ⟨|ω|1/2∥w̃∥⟩−ν⟨|ω|1/2∥w̃′∥⟩−ν(eδ∗t♯∆1/2
j′ |ω|1/2)2⟨eδ∗t♯ |ω|1/2∥∆j′(w̃ − w̃′)∥⟩−ν

· (eδ∗t♯∆1/2
j |ω|1/2)2 · ⟨eδ∗t♯ |ω|1/2∥∆j(Λ

−1(w̃ − w̃′)− (w† − w′
†))∥⟩−ν .

Further, changing variables (w̃, w̃′) to (w̃, w̃′′ := w̃′ − w̃) and computing the integral

above with respect to w̃ and then to w̃′′, we reach the estimate

|K̃(w′
†, z

′;w†, z)| ≤ C∗(ν)max{λ−1/4,∆
−1/2
j } · ⟨z − z′⟩−ν

∫
dw̃′′

· (eδ∗t♯∆1/2
j′ |ω|1/2)2 · ⟨eδ∗t♯ |ω|1/2∥∆j′w̃

′′∥⟩−ν

· (eδ∗t♯∆1/2
j |ω|1/2)2 · ⟨eδ∗t♯ |ω|1/2∥∆j(Λ

−1w̃′′ − (w† − w′
†))∥⟩−ν

≤ C∗(ν) t
ν+2
♯ ·max{λ−1/4,∆

−1/2
j } · ⟨z − z′⟩−ν

· λ−1(eδ∗t♯∆
1/2
j |ω|1/2)2 · ⟨eδ∗t♯ |ω|1/2∥∆j(Λ

2 + 1)−1/2(w† − w′
†)∥⟩−ν .
(6.47)

In the last inequality, we have used the fact that the ratio between ∆j and ∆j′ is bounded

by C∗t♯, as we noted in the proof of Lemma 6.6.

Now recall that we have restricted the domain of the integration by the condition

(6.38) in the argument above. For the integral on the remaining region where (6.38)

does not hold, we can argue in parallel without using integration by parts and get the
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corresponding estimates without the term max{λ−1/4,∆
−1/2
j }. But, since we have the

restriction |ω|1/2|y−y′| < λ1/2 in this case, we restore the additional factor C∗λ
−1/2 when

we estimate the integral with respect to w and w′. Therefore we obtain the estimate (6.47)

without the restriction of the domain. Finally we conclude the required estimate from

(6.47) by using Schur test, provided that t♯ is sufficiently large. □

We have finished the proof of Lemma 6.9. To complete the proof of Proposition 6.8,

we recall the expression (6.17) of L̂tj→j′ and consider the effect of the pre-composition

of G.

Remark 6.15. As we will see, the estimates given below are rather crude and

can be obtained in many different ways. But one have to be attentive to the fact that

f tj→j′ and Gtj→j′ are assumed to be only Cr with some r ≥ 3. It makes the argument

below a little technical. This remark applies also to the proof of Lemma 6.7 in the next

subsection.

Let ρ̂tj→j′ : R2+1 → C be the Fourier transform of ρtj→j′ solely in the variable z:

ρ̂tj→j′(w, η) =

∫
e−iηz · ρtj→j′(w, z)dz.

In the next lemma, we compare G with the operator

P : L2(suppψj) → L2(R2+2+1), Pu(w, ξ, η) =
∫
ρ̂tj→j′(w, η−η′)·P(Xj→j′ ·u)(w, ξ, η′)dη′

where P = B ◦B∗ is the Bargmann projection operator in (5.3).

Lemma 6.16. ∥G− P∥L2(suppψj)→L2(R2+2+1) ≤ κ−1/2
♯ .

Before proving this lemma, we finish the proof of Proposition 6.8 using it. Since the

operator A does not increase the L2 norm of functions, the lemma above implies

∥M(ψj′ · X ′
j→j′) ◦ A ◦ (G− P)∥L2(suppψj)→L2(suppψj′ )

≤ κ−1/2
♯ ≪ e−ρ∗t♯ .

Let 1j→j′ : R2+2+1 → [0, 1] be the characteristic function that we have introduced in (the

last part of) the proof of Lemma 6.9 and write

M(ψj′ ·X ′
j→j′)◦A◦P = M(ψj′ ·X ′

j→j′)◦A◦1j→j′ ◦P+M(ψj′ ·X ′
j→j′)◦A◦ (1−1j→j′)◦P.

From Lemma 6.9 on A, the operator norm of the former part on the right-hand side is

bounded by C∗e
−ρ∗t♯ . From the localized property of the kernel of P as a consequence of

Lemma 4.11 and Lemma 5.2, we also see that the operator norm of the latter is (much)

smaller than e−ρ∗t♯ . We therefore obtain Proposition 6.8.

Proof of Lemma 6.16. As an intermediate approximation, we consider the op-

erator

P̃ := B ◦M(ρtj→j′) ◦B∗ ◦M(Xj→j′) : L
2(suppψj) → L2(R2+2+1)
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which is obtained by letting Gtj→j′ be the identity map in the definition of G. The

operator norm of G− P̃ : L2(suppψj) → L2(R2+2+1) coincides with that of

B∗ ◦ (G− P̃) : L2(suppψj) → L2(R2+1) (6.48)

because B∗ ◦ B = Id and B is an isometric embedding with respect to the L2 norms.

We may write this operator as an integral operator

B∗ ◦ (G− P̃)u(w′, z′) =

∫
K(w′, z′;w, ξ, η)u(w, ξ, η) dwdξdη. (6.49)

From Lemma 4.9 and Lemma 4.11 (see also Remark 4.10), the kernel satisfies

|K(w′, z′;w, ξ, η)| ≤
∣∣∣∣(ρtj→j′ · ϕw,ξ,η)((Gtj→j′)

−1(w′, z′))− (ρtj→j′ · ϕw,ξ,η)(w′, z′)

∣∣∣∣
≤ C∗(ν) |ω|−1/2+2θ∗ ·

(
|ω|1/2 ·

⟨
|ω|1/2(w − w′)

⟩−ν) · ⟨z′⟩−ν

and vanishes unless (w′, z′) ∈ supp ρtj→j′ and (w, ξ, η) ∈ suppψj. Hence we have

sup
w,ξ,η

∫
|K(w′, z′;w, ξ, η)|dw′dz′ < C∗|ω|−1+2θ∗

and

sup
w′,z′

∫
suppψj

|K(w′, z′;w, ξ, η)|dwdξdη < C∗e
2|m|∆j|ω|2θ∗ .

By Schur test, the operator norm of (6.48) (and hence that of G− P̃ ) is bounded by

C∗e
|m|∆

1/2
j |ω|−1/2+2θ∗ ≤ C∗e

δ∗t♯ · ω−1/2+3θ∗
♯ ≪ κ−1/2

♯ , (6.50)

where we used the estimate ∆j ≤ C∗ log⟨ω⟩, which follows from Lemma 2.19, in the left

inequality. (For the right inequality, recall that we choose large ω♯ depending on t♯.)

Next we consider the difference P− P̃. Its kernel K ′(w, ξ, η;w′, ξ′, η′) is written

ei(ξw−ξ′w′)/2⟨η⟩1/2
∫
dw′′ · ei(ξ−ξ

′)w′′−⟨η⟩|w′−w′′|2/2

·
(
⟨η′⟩1/2e−⟨η′⟩∥w−w′′∥/2ρ̂tj→j′(w

′, η′ − η)− ⟨η⟩1/2e−⟨η⟩∥w−w′′∥/2ρ̂tj→j′(w
′′, η′ − η)

)
.

By integration by parts using the estimate in Lemma 4.11, we obtain that

|K ′(w, ξ, η;w′, ξ′, η′)| ≤ C∗(ν) e
C∗t♯ κ−1

♯ · ⟨|ω|1/2|w−w′|⟩−ν · ⟨|ω|−1/2|ξ−ξ′|⟩−ν · ⟨η′−η⟩−ν

for arbitrarily large ν > 0. Therefore the operator norm of P − P̃ : L2(suppψj) →
L2(R2+2+1) is bounded by C∗(e

C∗t♯ · κ−1
♯ ) ≪ κ−1/2

♯ .

From the estimates on the differences G−P̃ and P−P̃ above, we obtain the conclusion
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of the lemma, provided that we take sufficiently large t♯ and then take sufficiently large

ω♯ according to the choice of t♯. □

6.4. Proof of Lemma 6.3 and Lemma 6.7.

The proofs of Lemma 6.3 and Lemma 6.7 presented below are based on straightfor-

ward estimates on the kernels of the operators using integration by parts. (But recall

Remark 6.15.) Below we will prove the claims for Ltj→j′ in the conclusions, and those for

the difference Ltj→j′ − L̂tj→j′ will follow immediately from that proof if we note that the

kernel of the operator Ltj→j′ is localized in the space.

Proof of Lemma 6.3. The operator norm of Ltj→j′ is bounded by that of

(B∗ ◦M(q̃ω(j′)) ◦B) ◦ Ltj→j′ ◦ (B∗ ◦M(q̃ω(j)) ◦B)

because we have (B∗ ◦M(q̃ω(j′)) ◦ B) ◦B∗ = B∗ on L2(suppψj) ⊂ L2(supp qω(j)). As

we noted in the proof of Lemma 5.6, the operators on the both sides of Ltj→j′ above are

convolution operators that involve solely the variable z. Thus it is easy to prove the

claims using the estimate on ρtj→j′ in Lemma 4.11 (with the note that followed it) and

the fact that the map f tj→j′ is just a translation on each of the lines parallel to the z-axis.

We omit the details of the proof since the argument is simple and will be clear from the

next proof where we consider a parallel but more involved situations. □

Proof of Lemma 6.7. Let us set ω = ω(j), ω′ = ω(j′),m = m(j) andm′ = m(j′)

for brevity. We proceed with the assumption

|ω′ − ω| ≤ emax{|m|,|m′|}/10 (6.51)

because the claims follow from Lemma 6.3 otherwise. Below we consider the operator

Ľtj→j′ := (B∗ ◦M(ψ̃j′) ◦B) ◦ Ltj→j′ ◦ (B∗ ◦M(ψ̃j) ◦B) : L2(R2+1) → L2(R2+1)

and show that

∥Ľtj→j′∥L2→L2 ≤ C∗(ν) e
−max{m,m′}/2⟨ω′ − ω⟩−ν . (6.52)

Let us write the operator Ľtj→j′ above as an integral operator:

Ľtj→j′u(w
′, z′) =

∫
K(w′, z′;w, z)u(w, z)dwdz

where the kernel is written explicitly as an integral

K(w′, z′;w, z) =

∫
dw′′dz′′ dw̃dξdη dw̃′dξ′dη′ · ρtj→j′(w

′′, z′′)

· ϕw̃′,ξ′,η′(w
′, z′) · ψ̃j′(w̃

′, ξ′, η′) · ϕw̃′,ξ′,η′(f tj→j′(w
′′, z′′))

· ϕw̃,ξ,η(w′′, z′′) · ψ̃j(w̃, ξ, η) · ϕw̃,ξ,η(w, z). (6.53)

We estimate this integral, regarding it as an oscillatory integral with the oscillatory term
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exp
(
i
(
(ξ′, η′) · f tj→j′(w

′′, z′′)− (ξ, η) · (w′′, z′′)
))
.

More concretely, we apply the formula of integration by parts to the integral above, once

by using the differential operator D1 below and several times using D2 in addition:

D1 =
1− i

(
(Df tj→j′)

∗
w′′(ξ′, η′)− (ξ, η)

)
· ∂w′′

1 + ∥(Df tj→j′)
∗
w′′(ξ′, η′)− (ξ, η)∥2

, D2 =
1− i (η′ − η) · ∂z′′
1 + ∥η′ − η)∥2

.

Further we apply integration by parts several times regarding the terms

exp(iξ′(w′ − f̂ tj→j′(w
′′))) and exp(iξ(w′′ − w))

as the oscillatory term and using the differential operators

D3 =
1− i e|m

′|⟨ω′⟩1/2∆j′(w
′ − f̂ tj→j′(w

′′)) · e|m′|⟨ω′⟩1/2∆j′∂ξ′

1 + ∥e|m′|⟨ω′⟩1/2∆j′(w′ − f̂ tj→j′(w
′′))∥2

and

D4 =
1− i e|m|⟨ω⟩1/2∆j(w

′′ − w) · e|m|⟨ω⟩1/2∆j∂ξ
1 + ∥e|m|⟨ω⟩1/2∆j(w′′ − w)∥2

.

To evaluate the result, we use the basic estimates (4.33) and (4.41) for f tj→j′ , Lemma

4.11 for ρtj→j′ and also (6.10) in Lemma 6.6. Then we can deduce

|K(w, z;w′, z′)| ≤
(
C∗(ν) + C∗(ν, t♯) e

−|m|∆−1
j · ⟨e|m

′|∆j′ · ⟨ω′⟩−1/2⟩
)
· e−|m| ⟨z′ − z⟩−ν

·
∫
dw′′ · e2|m

′|∆j′ ⟨ω′⟩ · ⟨e|m
′|⟨ω′⟩1/2∥∆j′(w

′ − f̂j→j′(w
′′))∥⟩−ν

· e2|m|∆j ⟨ω⟩ · ⟨e|m|⟨ω⟩1/2 · ∥∆j(w
′′ − w)∥⟩−ν (6.54)

for arbitrarily large ν, provided that we let the constant t♯ and ω♯ be large enough.

Remark 6.17. The estimate to get (6.54) is demanding but straightforward and

not too difficult. Note that we get the factor Dw′′((Dw′′f tj→j′)
∗
w′′(ξ′, η′)) in the (first)

integration by parts using D1, which is bounded as

∥Dw′′((Dw′′f tj→j′)
∗
w′′(ξ′, η′))∥ ≤ C∗(ν, t♯) ∥(ξ′, η′)∥ ≤ C∗(ν, t♯) ⟨em

′
∆j′ · ⟨ω′⟩−1/2⟩ · ⟨ω′⟩.

The term C∗(ν, t♯) ⟨em
′
∆j · ⟨ω′⟩−1/2⟩ in (6.54) is put in order to bound the terms related

to this factor. The estimates on the other terms are simple.

If we consider the change of variables w′′ to w′′′ = f tj→j′(w
′′) in (6.53) and proceed

in parallel to the argument above, replacing f tj→j′ by its inverse in some places and using

(6.11) in the place of (6.10), then we reach the following estimate similar to (6.54),
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|K(w, z;w′, z′)| ≤
(
C∗(ν) + C∗(ν, t♯) e

−|m′|∆−1
j′ · ⟨e|m|∆j · ⟨ω⟩−1/2⟩

)
· e−|m′| ⟨z′ − z⟩−ν

·
∫
dw′′ · e2|m

′|∆j′ ⟨ω′⟩ · ⟨e|m
′|⟨ω′⟩1/2∥∆j′(w

′ − f̂j→j′(w
′′))∥⟩−ν

· e2|m|∆j ⟨ω⟩ · ⟨e|m|⟨ω⟩1/2 · ∥∆j(w
′′ − w)∥⟩−ν . (6.55)

If we assume the conditions

min{ω, ω′} ≥ ω♯
2

and emax{|m|,|m′|} ≤ ⟨ω⟩1/10, (6.56)

the ratio between |ω| and |ω′| are close to 1, since we are assuming (6.51), and the second

term C∗(ν, t♯) e
−|m|∆−1

j · ⟨e|m′|∆j′ · ⟨ω′⟩−1/2⟩ in the parentheses on the right-hand side of

(6.54) and (6.55) is bounded by C∗(ν). Hence, applying either (6.54) or (6.55) according

to whether |m| > |m′| or not, the claim (6.52) on Ľtj→j′ follows immediately from Schur

test.

Suppose on the other hand that the condition (6.56) does not hold. Then we have

emax{|m|,|m′|} ≥ min{em♯ , ω
1/10
♯ } (6.57)

because, if the former condition in (6.56) fails, we have max{|m|, |m′|} ≥ m♯ as we are

assuming (6.51) and disregarding the case where (6.4) holds. Hence, letting the constant

m♯ be large according to ω♯ and t♯, we again see that (6.54) and (6.55) yield (6.52).

Finally we deduce the required estimate (6.13) from (6.52). Note that (6.52) implies

∥P ◦M(ψ̃j′) ◦ Ltj→j′ ◦M(ψ̃j) ◦P∥L2→L2 ≤ C∗(ν) e
−max{|m|,|m′|}/2 · ⟨ω′ − ω⟩−ν

where P = B ◦ B∗ is the (partial) Bargmann projector. Our task is to eliminate the

terms P ◦ M(ψ̃j′) and M(ψ̃j) ◦ P on the both sides of Ltj→j′ . From the description of

the kernel of P in Lemma 5.2, it is easy to see that

∥(1−M(ψ̃j)) ◦P∥L2(suppψj)→L2(R2+2+1) < exp(−e|m|/2)

and the same estimate with j and m replaced by j′ and m′ respectively. Thus we obtain

the required estimate (6.13) provided that max{e|m|/2, e|m
′|/2} ≥ max{|m|, |m′|}. Un-

fortunately, the last condition fails if the ratio between |m| and |m′| is extremely large.

However the problem in such case is superficial and it is easy to provide a simple remedy

for it. Indeed, the argument above remains valid as far as ψ̃j and ψ̃j′ fulfill the conditions

that they are sufficiently smooth functions taking constant value 1 on a (scaled) neigh-

borhood of the supports of ψ̃j and ψ̃j′ respectively, and that the conclusion of Lemma

6.6 holds for them. Thus, modifying the definitions of ψ̃j and ψ̃j′ appropriately, we

can get the conclusion (6.13). (For instance, when m > 0 and m′ > 0, the problem

happens when m is much smaller than m′ and the remedy is to enlarge the support of

ψ̃j = ψ̃a(j),n(j),ω(j),m(j) so that its size is comparable to that of ψ̃j′ .) □

6.5. Local uniformity of exponential mixing.

Finally we prove Theorem 2.16. Let us write f t0 for the flow f t that we have consid-

ered in the previous subsections. We first show that, if we take a sufficiently small C3
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neighborhood V of f t0 in F3
A, each of the flows in V is exponentially mixing. To this end,

we recall the arguments in the previous subsections and check dependence of objects on

the flow. We can construct the local charts κa,ω,n and the functions ρa,ω,n so that each

of them depend on the flow continuously in C3 sense. Then we can define the Hilbert

space H and H and also the operator Lt : H → H in a parallel manner so that each of

the components Ltj→j′ depend on the flow continuously. Recall from Remark 6.10 that,

to go through the arguments in the previous subsections, we actually needed the esti-

mate (2.20) only for b in a bounded interval [b0,κ♯]. And, letting the neighborhood V
be smaller if necessary, we may assume that this is true for all f t ∈ V. (Recall Remark

2.12 for the case |α| > b.) Therefore one can check that all the arguments in the previous

subsections remains valid for each f t ∈ V and the constants denoted by the symbols with

the subscript ∗ and also t♯, ω♯, m♯ can be taken uniformly. That is, each of the flows in

V is exponentially mixing.

We next consider uniformity of the constants cα and Cα in the decay estimate

(1.1). This is not very simple to see because continuity in the dependence of the local

charts κj and the operators Ltj→j′ on the flow in V is not uniform (especially in the limit

|ω(j)| → ∞). To do with this problem, we use an indirect argument by contradiction. Let

H(f) be the anisotropic Sobolev space H defined for a flow f = {f t} ∈ V and consider its

subspace H0(f) = {u ∈ H(f) |
∫
udm = 0}. Let Ltf be the transfer operator Lt defined

for f ∈ V. To obtain the conclusion, it is enough to show, for some T > 0 and δ > 0, that

∥LTf ∥H0(f)→H0(f) < 1− δ for all f ∈ V

provided that V is a sufficiently small neighborhood of f0 = {f t0}. Suppose that this

assertion is not true, that is, for an arbitrarily large T > 0, we can find a sequence of flows

fk which converges to f0 in C
3 sense and a sequence of distributions uk ∈ H0(fk) such that

∥uk∥H(fk)→H(fk) = 1 and ∥LTfkuk∥H(fk)→H(fk) ≥ 1− 1

k
.

Notice that the conclusion of Proposition 6.1 is valid uniformly for f ∈ V, so that the

operators LTfk contract the high frequency parts of functions (i.e. the components uj
with |ω(j)| ≥ ω♯ or |m| ≥ m♯) by a uniform rate < 1. Hence, for the assumption above

on uk to be true, the high frequency part of uk must be relatively small uniformly in

k. This implies that there exists a subsequence uk(ℓ) of uk which converges to some

u∞ ∈ H0(f0) satisfying

∥u∞∥H(f0)→H(f0) = lim
ℓ→∞

∥uk(ℓ)∥H(fk)→H(fk) = 1

and

∥LTf0u∞∥H(f0)→H(f0) = lim
ℓ→∞

∥LTfkuk(ℓ)∥H(fk)→H(fk) ≥ 1.

Clearly this conclusion for arbitrarily large T > 0 contradicts what we have proved for f0.

Remark 6.18. The argument in the proof of local uniformity of the constants cα
and Cα in the decay estimate (1.1) is indirect and not very satisfactory. It would be
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much better if we could apply the perturbation theory of transfer operator developed by

Keller and Liverani [14] (see also [12]). But, for the moment, it seems that the theory in

[14] is not applicable (at least, directly) to our setting because the anisotropic Sobolev

space H(f) depends sensitively on the flow f through the choice of infinitely many local

charts κj.
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Astérisque, 375 (2015), ix+222 pages.

[11] M. Field, I. Melbourne and A. Török, Stability of mixing and rapid mixing for hyperbolic flows,

Ann. of Math. (2), 166 (2007), 269–291.
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