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Abstract. There is a one-to-one correspondence between associated
families of generic conformally flat (local-)hypersurfaces in 4-dimensional space
forms and conformally flat 3-metrics with the Guichard condition. In this

paper, we study the space of conformally flat 3-metrics with the Guichard
condition: for a conformally flat 3-metric with the Guichard condition in the
interior of the space, an evolution of orthogonal (local-)Riemannian 2-metrics
with constant Gauss curvature −1 is determined; for a 2-metric belonging to

a certain class of orthogonal analytic 2-metrics with constant Gauss curvature
−1, a one-parameter family of conformally flat 3-metrics with the Guichard
condition is determined as evolutions issuing from the 2-metric.

Introduction.

The aim of this paper is to study the space of generic conformally flat (local-)

hypersurfaces of dimension 3 in 4-dimensional space forms via conformally flat 3-metrics

with the Guichard condition. Here, a hypersurface is called generic if it has distinct prin-

cipal curvatures at each point.

A complete local classification of conformally flat hypersurfaces in n-dimensional

space forms, n ≥ 5, was given by Cartan[4]: a hypersurface in an n-dimensional space

form, n ≥ 5, is conformally flat if and only if it is a branched channel hypersurface, i.e.,

if and only if it is quasi-umbilic. 3-dimensional branched channel hypersurfaces in a 4-

dimensional space form are known to be conformally flat as well, but there are also generic

3-dimensional conformally flat hypersurfaces. To find the complete (local) classification

of these hypersurfaces is an open problem. However, several partial classification results

of generic conformally flat hypersurfaces were given in [8], [9], [13] (and see also [14]

and [15]). In this paper, we relate generic conformally flat hypersurfaces to families of

orthogonal (local-)Riemannian 2-metrics with constant Gauss curvature −1.

Any generic conformally flat hypersurface in a 4-dimensional space form has a special

curvilinear coordinate system (x, y, z) satisfying the following conditions:

(1) all coordinate lines are principal curvature lines.
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(2) its first fundamental form I is expressed as

I = l21(dx)
2 + l22(dy)

2 + l23(dz)
2.

(3) the functions l2i (i = 1, 2, 3) satisfy a Guichard condition l2i + l
2
j = l2k, where {i, j, k}

is some permutation of {1, 2, 3}.

Such a coordinate system is called a principal Guichard net of a generic conformally

flat hypersurface. We note that the Guichard condition ((2) and (3)) is conformally in-

variant, that is, it is preserved under conformal changes of the induced metric. Therefore,

a principal Guichard net of a generic conformally flat hypersurface in a 4-dimensional

space form can be mapped to Euclidean 3-space R3 using a conformal coordinate sys-

tem of the hypersurface to obtain a Guichard net in R3, which is unique up to Möbius

transformation. Thus, we can recognise that a Guichard net is a pair {(x, y, z), [g]} of

a coordinate system (x, y, z) on a simply connected domain U in R3 and the conformal

class [g] of a conformally flat metric g satisfying the Guichard condition with respect to

the coordinate system.

Conversely, for a given Guichard net {(x1, x2, x3), [g]}, there exists a generic con-

formally flat hypersurface with its canonical principal Guichard net in a 4-dimensional

space form, uniquely up to Möbius transformation (cf. [7] Section 2.4.6). Here, the term

“canonical Guichard net” refers to the conditions θ1 = dx, θ2 = dy and θ3 = dz for the

conformal fundamental 1-forms θi (i = 1, 2, 3) of the hypersurface (cf. [7] Section 2.3.3).

Then, the coordinates x, y, z are determined up to sign and constant of integration, as

θi (i = 1, 2, 3) are only determined up to sign. Here, we assume that the domain U ,

where g is defined, intersects the plane z = 0 for the sake of simplicity for the description

later. This existence theorem was obtained by study of the integrability condition on a

generic conformally flat hypersurface with the canonical principal Guichard net in the

conformal 4-sphere. A method to determine the first and the second fundamental forms

for a generic conformally flat hypersurface realised in R4 from a Guichard net has been

provided in [10].

Certain non-trivial transformations (resp. deformations) act on the space of generic

conformally flat hypersurfaces: each hypersurface has an associated family, which is a

one-parameter family of non-equivalent generic conformally flat hypersurfaces with the

same Guichard net (cf. [5], see also [9] and [14], or [3] for a more general statement);

each hypersurface in R4 has its dual generic conformally flat hypersurface in R4, which

generally belongs to a different conformal class (or has a different Guichard net) from the

one of the original hypersurface (cf. [11], [2]), but, as to its principal coordinate system

determined from the Guichard net, we can take the same coordinate system as in the

original hypersurface (cf. [11]).

Let ιp be an inversion acting on R4 with respect to 3-sphere S3
p of radius 1 and

center p. For a generic conformally flat hypersurface f in R4, both duals (ιpf)
∗ and

(ιqf)
∗ of ιpf and ιqf , respectively, are generally non-equivalent if p ̸= q (cf. [11]).

Hence, a five dimensional set of generic conformally flat hypersurfaces is constructed

from one hypersurface (see [2] for another proof of this fact). When we further consider

(ιq(ιpf)
∗)∗ and so on, the space of generic conformally flat hypersurfaces seems to be
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very large.

Let κi (i = 1, 2, 3) be the principal curvatures corresponding to the coordinate lines

x, y and z, respectively, of a generic conformally flat hypersurface, and for the sake of

simplicity suppose that κ3 is the middle principal curvature for the hypersurface, i.e.,

κ1 > κ3 > κ2 or κ1 < κ3 < κ2. Then, by the Guichard condition there is a function

φ = φ(x, y, z) such that a metric g,

g = cos2 φ(dx)2 + sin2 φ(dy)2 + (dz)2, (1)

together with the coordinate system (x, y, z) is a representative of the Guichard net

determined by the hypersurface.

Thus, the existence problem of generic conformally flat hypersurfaces is reduced to

that of conformally flat metrics g (resp. functions φ) given by (1).

Now, we assume that all metrics g given by (1) (resp. all hypersurfaces) are of

C∞-class. Let φz (resp. φxz) be the first derivative (resp. the second derivative) of φ

with respect to z (resp. with respect to x and z). Our main Theorem 1 is as follows (see

Theorem 1 in Section 1 and Theorem 2 in Section 2.1):

Main Theorem 1. Let g be a conformally flat 3-metric defined by (1) from a

function φ(x, y, z). Then, we have the following facts (1) and (2):

(1) There is a function ψ(x, y, z) such that ψxz = −φxz cotφ, ψyz = φyz tanφ.

(2) Suppose that φxz ̸= 0 and φyz ̸= 0 are satisfied. Let us define functions Â(x, y, z)

and B̂(x, y, z) by

Â := − φxz

φz sinφ
=

ψxz

φz cosφ
, B̂ :=

φyz

φz cosφ
=

ψyz

φz sinφ
.

Then, the Riemannian 2-metric ĝ(z) := Â2(x, y, z)(dx)2 + B̂2(x, y, z)(dy)2 for any z has

constant Gauss curvature Kĝ(z) ≡ −1.

When φ in a conformally flat 3-metric g satisfies the conditions φxz = φyz = 0,

g leads to a generic conformally flat hypersurface either of product-type or with cyclic

Guichard net. For hypersurfaces of product-type, see [14, Section 2.2] and [12]. All

generic conformally flat hypersurfaces with cyclic Guichard net were explicitly realised

in 4-dimensional space forms and completely classified in [8]. By the Main Theorem 1,

we know that two kinds of hypersurfaces of product-type and with cyclic Guichard net

determined from φ satisfying φxz = 0 and φyz = 0 lie in the boundary of the space of

generic conformally flat hypersurfaces.

Next, let ĝ = Â2(x, y)(dx)2+ B̂2(x, y)(dy)2 be a Riemannian 2-metric with constant

Gauss curvature −1 defined on a simply connected domain V in the (x, y)-plane. Then,

there are three functions φ(x, y), φz(x, y) and ψz(x, y) on V satisfying the following

condition:

Â = − φzx

φz sinφ
=

ψzx

φz cosφ
, B̂ =

φzy

φz cosφ
=

ψzy

φz sinφ
.
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In these equations, φ(x, y) is uniquely determined from ĝ by giving φ(0, 0) = λ, but

φz(x, y) and ψz(x, y) are only determined up to the same constant multiple c ̸= 0 even

if we assume ψz(0, 0) = 0, that is, φz(x, y) = φc
z(x, y) := cφ1

z(x, y) and ψz(x, y) =

ψc
z(x, y) := cψ1

z(x, y) (see Theorem 3 in Section 2.2).

In Section 4, we study the following system of evolution equations in z,

ψzz = (φxx − φyy) sin 2φ− (ψxx − ψyy) cos 2φ,

φzz = (φxx − φyy) cos 2φ+ (ψxx − ψyy) sin 2φ.
(2)

In Section 1, Theorem 1, we show that the functions φ, ψ arising from a Guichard net as

in Main Theorem 1 are solutions of the system (2) and investigate whether the converse

is true. The Cauchy–Kovalevskaya theorem ensures that solutions of (2) exist for given

real-analytic initial data φ(x, y), φz(x, y), ψ(x, y) and ψz(x, y) on the coordinate surface

z = 0. As we have seen, this data gives rise to a constant Gauss curvature metric ĝ but

additional equations are required on that data for the corresponding solution of (2) to

give rise to a Guichard net (see Section 4, Proposition 4.2) and so an evolution ĝ(z) of

constant curvature 2-metrics. In particular, not all such ĝ can serve as the initial metric

for such an evolution (see Example 2 in Section 3.2).

In general, the necessary equations on initial data are complicated and difficult

to understand (see Proposition 3.2). However, some simplification can be achieved by

requiring that these equations are satisfied for all initial data giving rise to the same

2-metric ĝ, that is, for φ(x, y), φc
z(x, y) and ψ

c
z(x, y), for all c ̸= 0. In this situation, we

can describe the requirements on initial conditions to get an evolution on 2-metrics and

then a 1-parameter family gc of 3-metrics providing Guichard nets. This is the content

of Main Theorem 2 which we now state.

Let Lf = (Lf)(x, y) = (fxx − fyy)(x, y) for a function f = f(x, y) and φz(x, y) =

φc
z(x, y) := cφ1

z(x, y). Our main Theorem 2 is as follows (see Theorems 5, 6 in Section 3.2

and Theorem 7 in Section 4).

Main Theorem 2. Let two classes (A) and (B) of pairs of functions φ(x, y) and

φ1
z(x, y) be defined as follows :

(A) φ(x, y) and φ1
z(x, y) are given by

cos2 φ(x, y) :=
1

1 + eD(y)
, (φ1

z)
2(x, y) := ζ(x) sin2 φ(x, y),

respectively, with non-constant analytic functions ζ(x), D(y) of one-variable. Sim-

ilarly, functions φ(x, y) determined by cos2 φ(x, y) := 1/(1+eC(x)) are also included

in this class, then the partners φ1
z(x, y) are given in a similar form.

(B) For (φ1
z)

2(x, y) = ζ(x) sin2 φ(x, y) − η(y) cos2 φ(x, y) with analytic functions ζ(x)

and η(y), φ(x, y) and φ1
z(x, y) are given, if there is an analytic function φ(x, y)

such that it satisfies the following conditions (1) and (2):

With

Â := − 1

2(φ1
z)

2
(ζ ′ sinφ+ 2(ζ + η)φx cosφ) and B̂ :=

1

2(φ1
z)

2
(−η′ cosφ+ 2(ζ + η)φy sinφ),
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(1) (ζ + η)φxy + (η′φx + ζ ′φy)/2 = −ÂB̂(φ1
z)

2 holds.

(2) There are functions S = S(x, y), T = T (x, y) such that Sx = φx(Lφ), Ty =

φy(Lφ) and Lφ = S cotφ− T tanφ.

Then, for any pair φ(x, y) and φ1
z(x, y) in the class (A) or (B), an analytic 2-metric

ĝ := Â2(dx)2 + B̂2(dy)2 with constant Gauss curvature −1 is determined and a one-

parameter family gc of conformally flat 3-metrics given by (1) is obtained via evolution

of orthogonal 2-metrics with constant Gauss curvature −1 issuing from ĝ.

Conversely, let ĝ be an orthogonal analytic 2-metric with constant Gauss curvature

−1. If there is a one-parameter family gc, c ∈ R\{0}, of conformally flat 3-metrics given

by (1) such that their evolutions determined by gc satisfy ĝc(0) = ĝ, then ĝ is determined

from some φ(x, y) and φ1
z(x, y) in (A) or (B).

In this case, gc and gc
′
give distinct Guichard nets if c ̸= c′ (Theorem 7 in Section 4).

The class (A) (resp. (B)) is characterised by the condition on φ(x, y) such that

(φxy−2φxφy cot 2φ)(x, y) = 0 (resp. (φxy−2φxφy cot 2φ)(x, y) ̸= 0) (see Corollary 3.3 in

Section 3.2). Main Theorem 2 proceeds by applying the Cauchy–Kovalevskaya Theorem

(which is why our data must be real-analytic) to solve the system (2) with initial data

at z = 0. For φ(x, y) and φ1
z(x, y) in (A), respectively (B), we have (Lψc)(x, y) =

(1/2)[c2ζ(x)− φ2
y/ cos

2 φ]− φyy tanφ and (Lψc)(x, y) = (c2/2)(ζ(x) + η(y)) + S(x, y) +

T (x, y), respectively, and these equations determine the initial ψc(x, y) by solving a wave

equation. From Main Theorem 2, we obtain many initial metrics ĝ belonging to (A) by

taking arbitrary ζ(x) and D(y), and we shall also obtain many examples of ĝ belonging

to (B) (see Section 2.2 and Section 3.2).

Finally, remark that this analysis starts by distinguishing the principal coordinate

direction z. However, a completely analogous account may be given after distinguishing

either the x- or the y-direction although, in these cases, the 2-metrics will have indefinite

signature and constant curvature 1.

1. Existence condition for generic conformally flat hypersurfaces.

The existence of generic conformally flat hypersurfaces in 4-dimensional space forms

is equivalent to that of functions φ = φ(x, y, z) such that the following Riemannian

3-metric g determined from φ are conformally flat:

g = cos2 φdx2 + sin2 φdy2 + dz2. (1.1)

Then, two conformally flat 3-metrics g determined from φ(x, y, z) and φ̃(x, y, z) define

the same Guichard net if and only if there are three constants a1, a2 and a3 such that

φ̃(x, y, z) = φ(±x+ a1,±y + a2,±z + a3), as mentioned in the introduction. That is, φ

is determined up to parameter shifts. Furthermore, such a 3-metric g is conformally flat

if and only if the covariant derivative ∇S of the Schouten tensor S is totally symmetric,

where S = Ric − (R/4)g for the Ricci curvature Ric and the scalar curvature R of g.

In terms of φ, the condition for g to be conformally flat reads (see [8, Lemma 1 in

Section 3]):
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Proposition 1.1. A metric g given by (1.1) is conformally flat if and only if the

function φ satisfies the following four equations :

(1) φxyz + φxφyz tanφ− φyφxz cotφ = 0,

(2)
φxxx − φyyx + φzzx

2
− (φxx − φyy) cos 2φ− φzz

sin 2φ
φx − φxzφz cotφ = 0,

(3)
φxxy − φyyy − φzzy

2
− (φxx − φyy) cos 2φ− φzz

sin 2φ
φy − φyzφz tanφ = 0,

(4)
φxxz + φyyz + φzzz

2
+
φxx − φyy − φzz cos 2φ

sin 2φ
φz − φxφxz cotφ+ φyφyz tanφ = 0.

The four equations in Proposition 1.1 are equivalent to the fact that the following

two differential 1-form α and 2-form β determined from φ are closed:

α = −φxz cotφdx+ φyz tanφdy +
φxx − φyy − φzz cos 2φ

sin 2φ
dz,

β = φxz cotφdy ∧ dz + φyz tanφdz ∧ dx− (φxx − φyy) cos 2φ− φzz

sin 2φ
dx ∧ dy.

More precisely, α is closed if and only if the first three equations (1)–(3) for φ in Proposi-

tion 1.1 hold, and β is closed if and only if the last equation (4) holds. Thus, the problem

to find a generic conformally flat hypersurface is reduced to that of finding a function φ

such that the two differential forms α and β are closed.

From now on, let us assume that all functions are defined on a simply connected

domain U = D × I in R3 = R2 ×R, where 0 ∈ I.

Theorem 1. For a given φ(x, y, z) such that dα = dβ = 0, there is a function

ψ(x, y, z) satisfying the following four equations :

(1) ψxz = −φxz cotφ, (2) ψyz = φyz tanφ,

(3) ψzz = (φxx − φyy) sin 2φ− (ψxx − ψyy) cos 2φ,

(4) φzz = (φxx − φyy) cos 2φ+ (ψxx − ψyy) sin 2φ.

Conversely, if there are two functions φ and ψ satisfying these four equations, then

the 1-form α and 2-form β determined by φ are closed.

In this case, we can assume that ψ does not have any linear term for x, y, z.

By Theorem 1, the system of the third order differential equations for φ in Propo-

sition 1.1 are reduced to the system of the second order differential equations for two

functions φ and ψ. However, ψ is not uniquely determined by φ even if we insist on van-

ishing linear term since, as we see in equations (3) and (4), ψ(x, y, z) has the ambiguity

of terms k(x + y) and k̂(x − y) of 1-variable functions. We shall investigate this fact in

Section 4, where we impose additional constraints (in Proposition 4.1) after which ψ is

uniquely determined by φ.

Theorem 1 is obtained from the following Proposition 1.2:
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Proposition 1.2. The existence of a function φ(x, y, z) such that dα = dβ = 0 is

equivalent to the existence of functions φ(x, y, z) and ψ = ψ(x, y, z) such that φ and ψ

satisfy the following four equations :

(1) ψxz = −φxz cotφ, (2) ψyz = φyz tanφ,

(3) ψzz =
φxx − φyy − φzz cos 2φ

sin 2φ
, (4) ψxx − ψyy = − (φxx − φyy) cos 2φ− φzz

sin 2φ
.

Then, we can choose the function ψ such that it does not have any linear term for x, y, z.

We can rewrite (3) and (4) in Proposition 1.2 to (3) and (4) in Theorem 1, in

particular, Theorem 1-(3) is obtained by substituting φzz in Proposition 1.2-(4) into (3).

Proof of Proposition 1.2. Firstly, we assume dα = 0.

dα = 0 is equivalent to the existence of a function p = p(x, y, z) which satisfies the

following three equations:

px = −φxz cotφ, py = φyz tanφ, pz =
φxx − φyy − φzz cos 2φ

sin 2φ
.

Such a function p is determined up to a constant term. We choose the constant as zero,

then p is uniquely determined from φ. We define a function ψ̂ = ψ̂(x, y, z) by

ψ̂(x, y, z) :=

∫ z

0

p(x, y, z)dz.

Then ψ̂ satisfies ψ̂(x, y, 0) = 0 and

(1) ψ̂xz = −φxz cotφ (2) ψ̂yz = φyz tanφ (3) ψ̂zz =
φxx − φyy − φzz cos 2φ

sin 2φ
.

We note that, even if we replace ψ̂ by ψ(x, y, z) = ψ̂(x, y, z) + f(x, y) with function

f(x, y), ψ also satisfies the equations (1), (2), (3) and ψ(x, y, 0) = f(x, y), that is, dα = 0

determines ψz (not ψ).

Next, we express the 2-form β by using ψ̂ as follows:

β = −ψ̂xzdy ∧ dz + ψ̂yzdz ∧ dx− (φxx − φyy) cos 2φ− φzz

sin 2φ
dx ∧ dy.

The condition dβ = 0 is equivalent to the equation

(ψ̂xx − ψ̂yy)z = −
[
(φxx − φyy) cos 2φ− φzz

sin 2φ

]
z

.

Thus, there exists a function f̂(x, y) such that

ψ̂xx − ψ̂yy + f̂(x, y) = − (φxx − φyy) cos 2φ− φzz

sin 2φ
.
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We find a function f(x, y) by solving the wave equation fxx − fyy = f̂ . However, such a

function f(x, y) is not unique, i.e., we can replace f(x, y) by f(x, y) + k(x, y) with any

function k(x, y) satisfying kxx − kyy = 0. Here, we may assume that f(x, y) does not

have any linear term for x, y. Even under this assumption, f(x, y) still has the ambiguity

of terms k(x+ y) and k̂(x− y) of 1-variable functions.

Since ψ̂ vanishes on z = 0, f(x, y) satisfies

(fxx − fyy)(x, y) = − (φxx − φyy) cos 2φ− φzz

sin 2φ
(x, y, 0). (1.2)

We now define the required function ψ = ψ(x, y, z) by

ψ(x, y, z) := ψ̂(x, y, z) + f(x, y), (ψ(x, y, 0) = f(x, y)). (1.3)

Then, we obtain (4) in the Proposition.

In particular, we can express α and β in terms of the function ψ as follows:

α = d(ψz) = ψxzdx+ ψyzdy + ψzzdz,

β = d(ψydx+ ψxdy) = −ψxzdy ∧ dz + ψyzdz ∧ dx+ (ψxx − ψyy)dx ∧ dy.

This fact shows that the converse of the statement in the Proposition is also true. □

For dβ = 0, we also have the following fact:

Proposition 1.3 ([9]). Suppose dα = 0. Then, dβ = 0 holds if and only if the

following equation is satisfied :

[ψzz]z = [−∆ψ + {(φx)
2 + (φy)

2 + (φz)
2}]z,

where ∆ψ = (∂2/∂x2 + ∂2/∂y2)ψ.

Proof. We firstly note that dβ = 0 is equivalent to Proposition 1.1-(4). With

respect to the coefficients of α, Proposition 1.1-(4) is formulated as the following:

(−φxz cotφ)x + (φyz tanφ)y +

(
φxx − φyy − φzz cos 2φ

sin 2φ

)
z

= (φ2
x + φ2

y + φ2
z)z.

In fact, for the equation, we have

0 = (the left side)− (the right side) = −2 cos 2φ

sin 2φ
× (the left side of Proposition.1.1-(4)).

Hence, under the condition dα = 0, (ψxz)x + (ψyz)y + (ψzz)z = (φ2
x + φ2

y + φ2
z)z is

satisfied. The proposition now follows. □

2. Geometrical meaning of functions φ and ψ.

In this section, in particular, in Section 2.1, we study a geometrical meaning of the

equations (1) and (2) in Theorem 1 (resp. Proposition 1.2). In Section 2.2, we study the
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converse proposition of the result in Section 2.1.

In Section 2.1, we assume that g given by (1.1) is conformally flat and that φ satisfies

φxz ̸= 0 and φyz ̸= 0. We recall that, in the case φxz = φyz = 0, the metric g determined

by φ leads to a generic conformally flat hypersurface either of product-type or with cyclic

Guichard net.

2.1. Evolution of metrics on surfaces with constant Gauss curvature −1.

Let us define the functions Â(x, y, z) and B̂(x, y, z) from (1) and (2) in Theorem 1 by

Â := − φxz

φz sinφ
=

ψxz

φz cosφ
, B̂ :=

φyz

φz cosφ
=

ψyz

φz sinφ
.

Then, we have the following Theorem:

Theorem 2. Suppose that φ(x, y, z) and ψ(x, y, z) satisfy the equations (1), (2)

in Theorem 1. Let Â and B̂ be defined as above. Then, for each z, the Riemannian

2-metric ĝ(z) on the (x, y )-plane,

ĝ(z) := Â2(x, y, z)dx2 + B̂2(x, y, z)dy2, (2.1)

has constant Gauss curvature Kĝ(z) ≡ −1.

Proof. Firstly, we have the following equations from the definitions of Â and B̂:

φxz = −Âφz sinφ, φyz = B̂φz cosφ, ψxz = Âφz cosφ, ψyz = B̂φz sinφ.

Then, by the integrability condition (φxz)y = (φyz)x, we have

(Ây − B̂φx) sinφ+ (B̂x + Âφy) cosφ = 0. (2.2)

By the integrability condition (ψxz)y = (ψyz)x, we have

(Ây − B̂φx) cosφ− (B̂x + Âφy) sinφ = −ÂB̂. (2.3)

When we substitute (2.2) into (2.3), we obtain

B̂x + Âφy = ÂB̂ sinφ, Ây − B̂φx = −ÂB̂ cosφ. (2.4)

The integrability condition (φx)y = (φy)x implies[
B̂x

Â

]
x

+

[
Ây

B̂

]
y

= (B̂ sinφ)x− (Â cosφ)y = (B̂x+ Âφy) sinφ− (Ây− B̂φx) cosφ = ÂB̂,

which shows Kĝ ≡ −1.

In this construction, we note that, for each z0, the metric ĝ(z0) is defined so long

as (1) and (2) of Theorem 1, viewed as equations on ϕz|z=z0 , ψz|z=z0 are satisfied along

z = z0. □

In the proof of Theorem 2, we have obtained the following Corollary.
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Corollary 2.1. We have

(a) φx =
Ây

B̂
+ Â cosφ, φy = − B̂x

Â
+ B̂ sinφ,

(b) (log |φz|)x = −Â sinφ, (log |φz|)y = B̂ cosφ,

(c) ψxz = −φxz cotφ, ψyz = φyz tanφ.

Now, when we regard φz(x, y, z) and ψz(x, y, z) as 2-variable functions of x and y

with parameter z, we also have the following Corollary of Theorem 2.

Corollary 2.2. We have

ĝ(z) =
1

φ2
z(x, y, z)

{
(dφz)

2(x, y, z) + (dψz)
2(x, y, z)

}
.

Proof. We have the following two equations:

dφz = φxzdx+ φyzdy = −Âφz sinφdx+ B̂φz cosφdy,

dψz = ψxzdx+ ψyzdy = Âφz cosφdx+ B̂φz sinφdy.

Hence, we have (dφz)
2 + (dψz)

2 = φ2
z(Â

2dx2 + B̂2dy2). □

Remark. When we define

Ā := − φxz

sinφ
=

ψxz

cosφ
and B̄ :=

φyz

cosφ
=

ψyz

sinφ
,

a metric ḡ(z) := Ā2(x, y, z)(dx)2+ B̄2(x, y, z)(dy)2 is flat for each z. In this case, we also

have a similar fact to Corollary 2.1 and, in particular, (b) is replaced by the following

(b′):

(b′) φzx = −Ā sinφ, φzy = B̄ cosφ.

There is a crucial difference between (b) and (b′), and it is essential for our study to

consider metrics ĝ(z) with constant Gauss curvature −1 (see Theorem 3-(2) below and

Theorem 5, Proposition 3.4 in Section 3.2).

2.2. Characterization of 2-metrics with constant Gauss curvature −1.

Let ĝ(z) be an evolution of orthogonal 2-metrics with constant Gauss curvature −1,

given in Theorem 2. Then, for each z = z0, ĝ(z0) has been defined from φ(x, y, z0),

φz(x, y, z0) and ψz(x, y, z0). Here, we study the converse construction.

Let ĝ be a (local-)Riemannian 2-metric of C∞ with constant Gauss curvature −1,

defined by

ĝ := Â2(x, y)(dx)2 + B̂2(x, y)(dy)2. (2.5)

In the following Theorem 3, we show that three functions φ(x, y, 0), φz(x, y, 0) and

ψz(x, y, 0) are determined from ĝ. Our notation anticipates that, in arguments to follow,
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φz(x, y, 0) and ψz(x, y, 0) will be the z-derivatives on z = 0 of functions φ(x, y, z) and

ψ(x, y, z). However, in Theorem 3, we do not assume the existence of such extensions

and work only with φ(x, y, 0), φz(x, y, 0) and ψz(x, y, 0).

Theorem 3. Let a 2-metric ĝ given by (2.5) have constant Gauss curvature −1.

Then :

(1) A function φ(x, y, 0) is well-defined by the equations (a)

(a)
φx(x, y, 0) := (Ây/B̂)(x, y) + Â(x, y) cosφ(x, y, 0),

φy(x, y, 0) := −(B̂x/Â)(x, y) + B̂(x, y) sinφ(x, y, 0),

i.e., (φx)y(x, y, 0) = (φy)x(x, y, 0) is satisfied. In particular, for any given λ ∈ R,

φ(x, y, 0) satisfying φ(0, 0, 0) = λ is uniquely determined.

(2) Functions φz(x, y, 0) and ψz(x, y, 0) are also well-defined by the following equations

(b) and (c), respectively :

(b)
(log |φz|)x(x, y, 0) := −Â(x, y) sinφ(x, y, 0),

(log |φz|)y(x, y, 0) := B̂(x, y) cosφ(x, y, 0),

(c) ψzx(x, y, 0) := −(φzx cotφ)(x, y, 0), ψzy(x, y, 0) := (φzy tanφ)(x, y, 0),

i.e., (φzx)y = (φzy)x and (ψzx)y = (ψzy)x are satisfied. In particular, φz(x, y, 0)

and ψz(x, y, 0) are determined up to the same constant multiple c ̸= 0, if ψz(x, y, 0)

has no constant term. Furthermore, ψzxy(x, y, 0) = (φzxφy + φxφzy)(x, y, 0) and

φzxy(x, y, 0) = −(φxψzy + φyψzx)(x, y, 0) hold.

Proof. The statement (1) is obtained by direct calculation from the assumption

that ĝ has constant Gauss curvature −1. Here, we only show the statement (2).

By (a), we have

(Ây − B̂φx) sinφ+ (B̂x + Âφy) cosφ = 0, (2.6)

(Ây − B̂φx) cosφ− (B̂x + Âφy) sinφ = −ÂB̂. (2.7)

We may define φz(x, y, 0) and ψz(x, y, 0) by

φzx := −Âφz sinφ, φzy := B̂φz cosφ and ψzx := Âφz cosφ, ψzy := B̂φz sinφ,

respectively, as (φzx)y = (φzy)x (resp. (ψzx)y = (ψzy)x) is satisfied by (2.6) (resp. (2.7)).

Then, these definitions imply (b) and (c), respectively. Thus, we have shown that (b)

and (c) are well-defined for φz(x, y, 0) and ψz(x, y, 0), respectively.

The last two equations of (2) follow from (c) by (φzx)y(x, y, 0) = (φzy)x(x, y, 0) and

(ψzx)y(x, y, 0) = (ψzy)x(x, y, 0), respectively.

The theorem now follows. □

In general, it seems difficult to solve the initial condition (a), (b), (c) from a metric

ĝ with constant Gauss curvature −1. Here, we study the problem for the hyperbolic
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2-metric on the upper half plane.

Example 1. Let ĝ = (dx2+dy2)/(y+b)2 with a constant b(> 0). Then, we obtain

the following functions from ĝ: For the sake of simplicity, we denote x + a (a: const.),

y + b and φ(x, y, 0) by x, y and φ, respectively.

cosφ =
x2 − y2

x2 + y2
, sinφ =

2xy

x2 + y2
,

(
i.e., φ = arctan

(
2xy

x2 − y2

)
, λ = arctan

(
2ab

a2 − b2

))
,

φx = − 2y

x2 + y2
, φy =

2x

x2 + y2
, φz =

cy

x2 + y2
, ψz =

−cx
x2 + y2

(c ̸= 0 : const.).

For the study in Section 3.2, we list other equations obtained in this case. Let

φz(x, y, 0) = φc
z(x, y, 0) := cφ1

z(x, y, 0) and ψz(x, y, 0) = ψc
z(x, y, 0) := cψ1

z(x, y, 0) by

Theorem 3-(2). We define functions ζ = ζ(x) := 1/4x2, S = S(x, y) := 4y2/(x2 + y2)2

and T = T (x, y) := −4x2/(x2 + y2)2 + 1/x2. Then, we have

Sx = φx(Lφ), Ty = φy(Lφ),

(φ1
z)

2 = ζ sin2 φ, Lφ(:= φxx − φyy) =
8xy

(x2 + y2)2
, Lφ = S cotφ− T tanφ.

Next, ψ(x, y, 0) is not determined from a metric ĝ in Theorem 3. However, we can

determine ψ(x, y, 0) for this metric under the assumption that the following equations

(d) and (e) are satisfied:

(d) ψxy = φxφy, (e) −∆ψ + φ2
x + φ2

y + φ2
z = (Lφ) sin 2φ− (Lψ) cos 2φ.

Furthermore, ψc(x, y, 0) := ψ(x, y, 0) for each c is uniquely determined

ψc = log(x2 + y2)− (1 +
c2

8
) log x.

under the additional condition for ψc(x, y, 0) not to have linear terms with respect to x

and y. The meaning of (d) and (e) becomes clear in the next section and these facts

are verified in Section 4 in a general situation. In particular, (d) and (e) in this case are

given as follows:

ψc
xy = φxφy = − 4xy

(x2 + y2)2
.

−∆ψc + φ2
x + φ2

y + (φc
z)

2 = (Lφ) sin 2φ− (Lψc) cos 2φ

= −
(
1 +

c2

8

)
1

x2
+

4

x2 + y2
+

c2y2

(x2 + y2)2
.

Proof. Here, we only show that ψ is uniquely determined as above by (d), (e) and

the additional condition, as other functions are directly obtained from the definitions.

We firstly have

ψ = log(x2 + y2) +X(x) + Y (y)
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with suitable functions X and Y of one variable, by (d). Then, from (e), we obtain

8X ′′x2y2 + 2Y ′′(x2 − y2)2 = (8 + c2)y2. (2.8)

Taking first and second derivatives of (2.8) with respect to x, we have

(X ′′x2)′

x
y2 + Y ′′x2 = Y ′′y2 and

1

x

(
(X ′′x2)′

x

)′

= −2Y ′′

y2
= c1 (const.).

Substituting 2Y ′′ = −c1y2 into (2.8), we have 8X ′′x2 − c1(x
4 − 2x2y2 + y4) = 8 + c2.

This equation implies c1 = 0. Then, we have X ′′ = (1 + c2/8)/x2. Thus, ψ has been

determined for each c. □

3. Choice of initial data.

We firstly study the integrability conditions on φz and ψz in Theorem 1, in Sec-

tion 3.1. Next, in Section 3.2, we study the relation between the equations (3), (4) of

Theorem 1 and orthogonal 2-metrics ĝ with constant Gauss curvature −1. Through these

studies, we determine a class of initial data ĝ for our system of evolution equations (2)

mentioned in the introduction.

3.1. Integrability condition on φz and ψz.

The following Theorem 4 and Proposition 3.1 are fundamental for our study.

Theorem 4. Let φ(x, y, z) and ψ(x, y, z) satisfy all equations (1), (2), (3) and (4)

in Theorem 1. Then, we have the following facts (1) and (2):

(1) The conditions of (ψzx)y = (ψzy)x and (φzx)y = (φzy)x, respectively, are given by

φzxy + φxψzy + φyψzx = 0, (3.1)

ψzxy = φxφzy + φyφzx. (3.2)

(2) The equations obtained from (ψxz)z = (ψzz)x and (ψyz)z = (ψzz)y, respectively,

are the same as those obtained from (φxz)z = (φzz)x and (φyz)z = (φzz)y. Fur-

thermore, these equations imply that there are two 1-variable functions k(x + y)

and k̂(x − y) such that ψ̃(x, y, z) := ψ(x, y, z) + k(x + y) + k̂(x − y) satisfies the

following (3.3) and (3.4):

ψ̃xy = φxφy, (3.3)

(Lφ) sin 2φ− (Lψ̃) cos 2φ = −∆ψ̃ + (φx)
2 + (φy)

2 + (φz)
2. (3.4)

We note that ψ̃(x, y, z) in Theorem 4-(2) also satisfies the all equations of Theorem

1, (3.1) and (3.2). Hence, the equation (3.4) means that the equation

ψ̃zz = (φxx − φyy) sin 2φ− (ψ̃xx − ψ̃yy) cos 2φ = −∆ψ̃ + (φx)
2 + (φy)

2 + (φz)
2

is satisfied, by Theorem 1-(3).
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Proof. The statement (1) is obtained by direct calculation. In this proof, we

only verify the statement (2), in particular, as the parameter z varies on some interval,

then, for the first statement of (2), we only study the equations induced from (ψxz)z =

(ψzz)x and (ψyz)z = (ψzz)y, as we can obtain the equations from (φxz)z = (φzz)x and

(φyz)z = (φzz)y in the same way.

Before proceeding, we pause to consider that our goal in Section 3.2 is to view

φ, φz, ψ, ψz as initial data along a hypersurface z = z0 and we want to know under

what conditions the conclusions of the present theorem hold in that setting. We shall

therefore attempt to confine and pinpoint our use of the equations of Theorem 1 and the

integrability conditions (ψzx)z = (ψzz)x and so on.

Let Lφ := φxx − φyy. Using (ψzx)z = (ψzz)x and (1), (3), (4) of Theorem 1, we

firstly have

2φxzφz = 2{(Lφ)x + 2φx(Lψ)} sinφ cosφ+ 2{(Lψ)x − 2φx(Lφ)} sin2 φ (3.5)

= [(Lφ) sin 2φ− (Lψ) cos 2φ]x + {(Lψ)x − 2φx(Lφ)}.

For the second term of the last equation in (3.5), we have:

(Lψ)x − 2φx(Lφ) = [∆ψ − (φ2
x + φ2

y)]x − 2[ψxy − φxφy]y.

By (3.5), we obtain the equation

[(Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φ2
x + φ2

y + φ2
z)]x − 2[ψxy − φxφy]y = 0. (3.6)

Similarly, using (ψyz)z = (ψzz)y and (2), (3), (4) of Theorem 1, we have

2φzφyz = 2[(Lφ)y + 2φy(Lψ)] sinφ cosφ− 2{(Lψ)y − 2φy(Lφ)} cos2 φ (3.7)

= [(Lφ) sin 2φ− (Lψ) cos 2φ]y − {(Lψ)y − 2φy(Lφ)}.

and

−{(Lψ)y − 2φy(Lφ)} = [∆ψ − (φ2
x + φ2

y)]y − 2[ψxy − φxφy]x.

Hence, we obtain

[(Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φ2
x + φ2

y + φ2
z)]y − 2[ψxy − φxφy]x = 0. (3.8)

Remark that the equivalence of (3.5), (3.7) with (3.6), (3.8) uses only differentiations

in x, y and so is valid along z = z0.

Furthermore, we have

[(Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φ2
x + φ2

y + φ2
z)]z = 0

by Proposition 1.3. However, for this equation, our argument can not be restricted to

z = z0.

The equations (3.6) and (3.8) imply that there are two 1-variable functions l(x+ y)

and l̂(x− y) such that
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[(Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φ2
x + φ2

y + φ2
z)](x, y, z) = −l(x+ y)− l̂(x− y),

2[ψxy − φxφy](x, y, z) = −l(x+ y) + l̂(x− y),

as px(x, y) = qy(x, y) and py(x, y) = qx(x, y) imply pxx − pyy = 0 and qxx − qyy = 0.

Finally, when we define 2k′′(x + y) := l(x + y) and 2k̂′′(x − y) := l̂(x − y) and

ψ̃(x, y, z) := ψ(x, y, z) + k(x+ y) + k̂(x− y), the function ψ̃ satisfies (3.3) and (3.4).

Remark again that this argument uses only (3.6) and (3.8) and differentiations along

x, y and so hold on a fixed coordinate surface z = const.

We have therefore proved the Theorem. □

Equation (3.2) means that ψxy(x, y, z) = (φxφy)(x, y, z) is satisfied for any (x, y, z)

if ψxy(x, y, 0) = (φxφy)(x, y, 0) holds at any (x, y, 0).

In the following proposition, we give another proof of the fact that (3.5) and (3.7),

respectively, are induced from (ψxz)z = (ψzz)x and (ψyz)z = (ψzz)y, then it will be

clear how (3.5), (3.7) are related with the equations in Proposition 1.1. Furthermore, we

summarise equations equivalent to (3.5) and (3.7), which we have obtained in the proof

of Theorem 4-(2).

In particular, (1) of the following Proposition 3.1 has an interesting geometric inter-

pretation, that we shall come back to in Section 3.2; the other equations (2)-(5) provide

analytic conditions on φ and ψ. We shall come back to these results in Section 3.2 and

Section 4.

Proposition 3.1. Suppose that all equations of Theorem 1 are satisfied. Then,

the equation (3.9) below is satisfied for any z. Furthermore, suppose that all equations

of Theorem 1 are satisfied at arbitrarily fixed z = z0. Then, the following five statements

(1), (2), (3), (4) and (5) are equivalent to each other at z = z0.

(1) The following equations are satisfied :

[ψxz + φxz cotφ]z = 0, [ψyz − φyz tanφ]z = 0. (3.9)

(2) The following equations from (3.5) and (3.7) are satisfied :

ψxzz +(Lψ)x−2φx(Lφ)−2φzφxz = 0, ψyzz − (Lψ)y +2φy(Lφ)−2φzφyz = 0.

(3) The following equations from (3.5) and (3.7) are satisfied :

(Lψ)x =
φxzφz

sin2 φ
− {(Lφ)x + 2φx(Lψ)} cotφ+ 2φx(Lφ),

(Lψ)y = −φyzφz

cos2 φ
+ {(Lφ)y + 2φy(Lψ)} tanφ+ 2φy(Lφ).

(4) (2) and (3) in Proposition 1.1 are satisfied :

φxzz +(Lφ)x+2φx(Lψ)+2φzψxz = 0, φyzz − (Lφ)y −2φy(Lψ)+2φzψyz = 0.
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(5) There are two 1-variable functions k(x + y) and k̂(x − y) such that ψ̃(x, y, z) :=

ψ(x, y, z) + k(x+ y) + k̂(x− y) satisfies (3.3) and (3.4):

ψ̃xy = φxφy, (Lφ) sin 2φ− (Lψ̃) cos 2φ = −∆ψ̃ + (φx)
2 + (φy)

2 + (φz)
2.

In particular, the first (resp. second) equations of (1), (2), (3) and (4) are equivalent

to each other.

Proof. It follows from (1) and (2) of Theorem 1 that (3.9) is satisfied for any z.

From now on, let us fix z = z0. Here, we only prove the equivalence between (1),

(2) and (4) at z = z0 simultaneously, as we showed other equivalences in the proof of

Theorem 4.

Firstly, we study the equation

0 = (ψxz sinφ+ φxz cosφ)z

= (ψxzz − φzφxz) sinφ+ (φxzz + φzψxz) cosφ. (3.10)

When we substitute (3) and (4) of Theorem 1 into (3.10), we have

0 = (ψxz sinφ+ φxz cosφ)z

= {(Lφ)x + 2φx(Lψ) + φzψxz} cosφ+ {(Lψ)x − 2φx(Lφ)− φzφxz} sinφ. (3.11)

From these equations, we have

0 = (3.10) + (3.11) =

{φxzz + (Lφ)x + 2φx(Lψ) + 2φzψxz} cosφ+ {ψxzz + (Lψ)x − 2φx(Lφ)− 2φzφxz} sinφ.
(3.12)

Now, in the equation (3.12), we have

the coefficient of sinφ = tanφ× (the coefficient of cosφ), (3.13)

which shows that both sides of the equation (3.13) vanish.

In fact, we consider the right hand side of (3.13):

the coefficient of cosφ = 2

(
(φxx − φyy + φzz)x

2
+ φxL(ψ)− φzφxz cotφ

)
, (3.14)

where L(ψ) is given by Proposition 1.2-(4) from Theorem 1-(4), then the right hand side

of (3.14) is same as the left hand side of Proposition 1.1-(2).

Next, we shall prove the equality of (3.13): Substitute Theorem 1-(3) into ψzz and

express ψ by φ, then we have

ψxzz + (Lψ)x − 2φx(Lφ)− 2φzφxz

= (Lψ)x(1− cos 2φ) + (Lφ)x sin 2φ+ 2φxφzz − 2φx(Lφ)− 2φzφxz
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=

[
φzz − (Lφ) cos 2φ

sin 2φ

]
x

(1− cos 2φ) + (Lφ)x sin 2φ+ 2φx(−(Lφ) + φzz)− 2φzφxz

= tanφ

[
(φxx − φyy + φzz)x − 2φx

(Lφ) cos 2φ− φzz

sin 2φ
− 2φzφxz cotφ

]
,

which shows the equality of (3.13).

Thus, we have that (3.10) holds if and only if

ψxzz + (Lψ)x − 2φx(Lφ)− 2φzφxz = 0,

which is (3.5) by the proof of Theorem 4. In consequence, the first equation of (1) is

equivalent to the first equations of (2) and (4), respectively.

By starting from [ψyz cosφ−φyz sinφ]z(x, y, z) = 0, we also have that the equation

is equivalent to

the left hand side of (3) in Proposition1.1 = ψyzz − (Lψ)y + 2φy(Lφ)− 2φzφyz = 0.

Hence, the second equation of (1) is equivalent to the second equations of (2) and (4),

respectively. □

We shall study more an interesting condition induced from (3.9), in the following

section.

3.2. Infinitesimal deformation of 2-metrics with constant Gauss curva-

ture −1.

Let ĝ be a (local-)Riemannian 2-metric of C∞ with constant Gauss curvature −1,

given by

ĝ := Â2(x, y)(dx)2 + B̂2(x, y)(dy)2,

as in Section 2.2. We now study the relation between such metrics ĝ and the equations

(3) and (4) of Theorem 1. In particular, we study an infinitesimal deformation of ĝ in

the z-direction of orthogonal metrics with constant Gauss curvature −1.

For such a metric ĝ, we have obtained, in Theorem 3, functions φ(x, y, 0), φz(x, y, 0)

and ψz(x, y, 0) satisfying

ψzx(x, y, 0) = −(φzx cotφ)(x, y, 0), ψzy(x, y, 0) = (φzy tanφ)(x, y, 0). (3.15)

The system is uniquely determined by giving φ(0, 0, 0) = λ and a constant c ̸= 0, where

we assumed that ψz(x, y, 0) has no constant term. We now formally assume the equations

(3), (4) of Theorem 1 along z = 0:

ψzz(x, y, 0) = [(φxx − φyy) sin 2φ− (Lψ) cos 2φ] (x, y, 0),

φzz(x, y, 0) = [(φxx − φyy) cos 2φ+ (Lψ) sin 2φ] (x, y, 0)
(3.16)

with some function (Lψ)(x, y, 0) from which we will recover ψ(x, y, 0) by solving (ψxx −
ψyy) = Lψ.
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Under the preparation above, we recall the fact in Theorem 2 that the existence

of an evolution of orthogonal metrics ĝ(z) with constant Gauss curvature −1 has been

obtained from the equation

ψzx(x, y, z) = −(φzx cotφ)(x, y, z), ψzy(x, y, z) = (φzy tanφ)(x, y, z).

Hence, for any fixed z = z0, the condition for ĝ(z0) to deform infinitesimally in z-direction

to orthogonal metrics with constant Gauss curvature −1, is given by the equations

[ψzx + φzx cotφ]z (x, y, z0) = 0, [ψzy − φzy tanφ]z (x, y, z0) = 0.

Applying the fact above, the condition for ĝ to have infinitesimal deformation in

z-direction to orthogonal metrics with constant Gauss curvature −1, is given by the

equations

[ψzx + φzx cotφ]z (x, y, 0) = 0, [ψzy − φzy tanφ]z (x, y, 0) = 0, (3.17)

where we do not necessarily assume the existence of any extensions of φ(x, y, 0),

φz(x, y, 0) and ψz(x, y, 0) around z = 0, that is, we interpret derivatives in (3.17) as

ψzxz(x, y, 0) := ψzzx(x, y, 0), [cotφ]z(x, y, 0) := −(φz/ sin
2 φ)(x, y, 0) and so on. Hence,

(3.17) means that Proposition 3.1-(1) is satisfied at z = 0. It then follows that statements

(2)–(5) of Proposition 3.1 hold along z = 0.

Our aim here is to study the condition (3.17) for ψ(x, y, 0) only under the conditions

(3.15) and (3.16) at z = 0.

Proposition 3.2. Let ĝ be an orthogonal Riemannian 2-metric with constant

Gauss curvature −1, given as above. Let us take a system of functions φ(x, y, 0),

φz(x, y, 0) and ψz(x, y, 0) determined from ĝ, by arbitrarily fixed λ and c. Suppose that

(3.16) and (3.17) are satisfied with some function (Lψ)(x, y, 0). Then, the following

equation is satisfied :

(Lψ)(x, y, 0)× (φxy sin 2φ− 2φxφy cos 2φ)(x, y, 0) =

[−φzφzxy + φzxφzy − ((Lφ)xy + 4φxφy(Lφ))
sin 2φ

2
− φx(Lφ)y sin

2 φ

+ φy(Lφ)x cos
2 φ](x, y, 0). (3.18)

Proof. We know that (3.17) is equivalent to Proposition 3.1-(3) at z = 0. When

we regard φxz and φyz in two equations of Proposition 3.1-(3) as φzx and φzy, we arrive

at (3.18) by direct calculation from (Lψ)xy(x, y, 0) = (Lψ)yx(x, y, 0). In this calculation,

we note that (Lψ)x and (Lψ)y, respectively, appear again in (Lψ)yx and (Lψ)xy. □

Proposition 3.2 implies a necessary condition for ĝ to arise from a Guichard net:

it is not necessarily the case that Lψ given by (3.18) actually satisfies Proposition 3.1-

(3). In general, this requirement amounts to a very complicated differential equation

for φ(x, y, 0) and φz(x, y, 0). However, we may simplify matters somewhat by requiring

solutions of (3.18) for all c ̸= 0 as we now see.
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We arbitrarily fix λ such that φ(0, 0, 0) = λ from now on: we wish to get conformally

flat metrics with the Guichard condition (or conformally flat metrics given by (1.1)),

then, for φ̄(x, y, z) such that φ̄(x, y, z) := φ(x + a, y + b, z) with constants a and b, φ̄

and φ determine the same Guichard net. Hence, φ(x, y, 0) is uniquely determined from

ĝ. However, φz(x, y, 0) depends on constants c ̸= 0 as well as ĝ by Theorem 3. Let us

denote φz(x, y, 0) = φc
z(x, y, 0) := cφ1

z(x, y, 0). Then, we have the following Corollary of

(3.18):

Corollary 3.3. Let ĝ be an orthogonal Riemannian 2-metric with constant Gauss

curvature −1. Let φ(x, y, 0) and φc
z(x, y, 0) for any c ̸= 0 be functions determined from

ĝ as above. Then, φ(x, y, 0) satisfies one of the following two cases (A) and (B):

(A) (φxy sin 2φ− 2φxφy cos 2φ)(x, y, 0) = 0. Then, for each c we have

[−φc
zφ

c
zxy + φc

zxφ
c
zy − ((Lφ)xy + 4φxφy(Lφ))

sin 2φ

2

− φx(Lφ)y sin
2 φ+ φy(Lφ)x cos

2 φ](x, y, 0) = 0.

(B) (φxy sin 2φ−2φxφy cos 2φ)(x, y, 0) ̸= 0. Then, for each c, (Lψc)(x, y, 0) is uniquely

determined by (3.18).

Remark. Case A has a pretty geometric interpretation: the vanish-

ing of (φxy sin 2φ − 2φxφy cos 2φ)(x, y, 0) is equivalent to the vanishing of

(ln cosφ/sinφ)xy(x, y, 0) which happens precisely when the coordinate surface z = 0

is an isothermic surface in any Guichard net (R3, g) arising from ĝ. We thank the anony-

mous referee for this nice observation.

Theorem 5. Let ĝ be a 2-metric with constant Gauss curvature −1. Suppose that

φ(x, y, 0) and φc
z(x, y, 0) := cφ1

z(x, y, 0) determined by ĝ satisfy the condition of Corollary

3.3-(A) for any c ̸= 0 and that φ(x, y, 0), φc
z(x, y, 0) and (Lψc)(x, y, 0) satisfy Proposition

3.1-(3) at z = 0 for any c ̸= 0. Then, φ(x, y, 0) satisfies either cos2 φ(x, y, 0) = 1/(1 +

eD(y)) or cos2 φ(x, y, 0) = 1/(1 + eC(x)), where C(x) and D(y) are any non-constant

functions of one-variable. Furthermore, in the case of cos2 φ(x, y, 0) = 1/(1 + eD(y)), we

have

(φc
z)

2 = c2ζ(x) sin2 φ, Lψc = (1/2)[c2ζ(x)− φ2
y/ cos

2 φ]− φyy tanφ,

where ζ(x) > 0 is any non-constant one-variable function.

Conversely, if we define φ(x, y, 0), φc
z(x, y, 0) and (Lψc)(x, y, 0) for any D(y) and

ζ(x) > 0 as above, then an orthogonal 2-metric ĝ with constant Gauss curvature −1,

which is independent of c, is determined such that φ(x, y, 0) and φc
z(x, y, 0) for ĝ satisfy

the condition of Corollary 3.3-(A) and that φ(x, y, 0), φc
z(x, y, 0) and (Lψc)(x, y, 0) satisfy

Proposition 3.1-(3) at z = 0.

In the case of cos2 φ(x, y, 0) = 1/(1 + eC(x)), we also have similar results.

We can assume that ψc(x, y, 0) determined from (Lψc)(x, y, 0) in Theorem 5 satisfies

Proposition 3.1-(5) at z = 0, as the statements (1)–(5) at z = 0 in Proposition 3.1 are
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equivalent to each other. Hence, Theorem 5 provides many 2-metrics ĝ of this kind.

Proof. Let ĝ be a 2-metric satisfying the assumption of the Theorem.

We firstly consider the two equations in Corollary 3.3-(A). By the first equation, we

have cos2 φ = 1/(1 + e(C(x)+D(y))) and sin2 φ = e(C(x)+D(y))/(1 + e(C(x)+D(y))), where

C(x) and D(y) are one-variable functions. Since [−φ1
zφ

1
zxy + φ1

zxφ
1
zy](x, y, 0) = 0 by the

first two terms in the left hand side of the second equation, we have φ1
z = ±e(F (x)+G(y)).

Next, let R(x, y, 0, c2) := (Lψc)(x, y, 0) be a solution of Proposition 3.1-(3). Then,

we have

(∂R/∂c2)x = φ1
zxφ

1
z/ sin

2 φ− 2φx(∂R/∂c
2) cotφ,

(∂R/∂c2)y = −φ1
zyφ

1
z/ cos

2 φ+ 2φy(∂R/∂c
2) tanφ

by Proposition 3.1-(3). Hence, there are functions ζ̌(x, c2), η̌(y, c2) such that

(∂R/∂c2) sin2 φ = (1/2)[(φ1
z)

2+ η̌(y, c2)], (∂R/∂c2) cos2 φ = (1/2)[−(φ1
z)

2+ ζ̌(x, c2)],

and we have (φ1
z)

2 = ζ̌(x, c2) sin2 φ− η̌(y, c2) cos2 φ.

Now, we have obtained

ζ̌(x, c2)e(C(x)+D(y)) − η̌(y, c2)

1 + e(C(x)+D(y))
= e2F (x)e2G(y)(= (φ1

z)
2).

If χ(c2) := ζ̌(x, c2) = −η̌(y, c2), then χ(c2) = e2(F (x)+G(y)) = (φ1
z)

2. Since φ1
z is indepen-

dent of c2, χ(c2) is constant and F (x), G(y) are also constants, which is contradiction to

φ1
zx ̸= 0 and φ1

zy ̸= 0. Hence, this case does not occur.

Otherwise, we use (1+e(C(x)+D(y)))−1 =
∑∞

n=0(−e(C(x)+D(y)))n, where we assumed

e(C(x)+D(y)) < 1 in the neighborhood of (0, 0). If e(C(x)+D(y)) > 1, then we can replace

e(C(x)+D(y)) < 1 by {e(C(x)+D(y)) − a}/(1 + a) < 1 with a suitable constant a from

1+e(C(x)+D(y)) = (1+a)[1+{e(C(x)+D(y))−a}/(1+a)]. Then, we have at least C(x) = 0

or D(y) = 0, and may assume C(x) = 0. Indeed, in the case of D(y) = 0, the argument

below proceeds in the same way when we consider (φ1
z)

2 = [ζ̌(x, c2)− η̌(y, c2)e−C(x)]/(1+

e−C(x)) = e2F (x)e2G(y).

Now, let us assume C(x) = 0. Since ζ̌(x, c2)eD(y) − η̌(y, c2) = [ζ̌(x, c2) −
η̌(y, c2)/eD(y)]eD(y), we have η̌(y, c2) = h(c2)eD(y) and that eD(y) really depends on

y since G′(y) ̸= 0. We also obtain ζ̌(x, c2)− h(c2) = ζ(x), where ζ(x) is independent of

c2 from (φ1
z)

2 = e2(F (x)+G(y)). In consequence, we have

(φ1
z)

2 = ζ(x) sin2 φ, ∂R/∂c2 = (1/2)[ζ(x) + h(c2)/ cos2 φ],

that is,

(φc
z)

2 = c2ζ(x) sin2 φ, Lψc = (1/2)[c2ζ(x) +H(c2)/ cos2 φ] + I(x, y),

where H ′(c2) = h(c2) and that I(x, y) is independent of c2.

On the other hand, we consider the equations of Proposition 3.1-(3) under the

condition C(x) = 0, i.e., φx(x, y, 0) = 0 and Lφ = −φyy. Then, there are functions
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ζ̃(x, c2) and η̃(y, c2) such that (Lψc) sin2 φ = (1/2)((φc
z)

2 + η̃(y, c2)) and (Lψc) cos2 φ =

−(1/2)((φc
z)

2 + φ2
y − ζ̃(x, c2))− φyy sinφ cosφ. Hence, we have

Lψc = −(1/2)φ2
y − φyy sinφ cosφ+ (1/2)(ζ̃(x, c2) + η̃(y, c2)),

(φc
z)

2 = ζ̃(x, c2) sin2 φ− η̃(y, c2) cos2 φ− φ2
y sin

2 φ− 2φyy sin
3 φ cosφ.

Then, we have ζ̃(x, c2) = c2ζ(x), η̃(y, c2) =: η(y) and η(y) cos2 φ = −φ2
y sin

2 φ −
2φyy sin

3 φ cosφ by (φc
z)

2. Furthermore, we have h(c2) = H(c2) = 0 by Lψc and

η̃(y, c2) = η(y).

By the argument above, we obtain, with cos2 φ = 1/(1 + eD(y)),

(φc
z)

2 = c2ζ(x) sin2 φ, Lψc = −(1/2)φ2
y − φyy sinφ cosφ+ (1/2)(c2ζ(x) + η(y)),

where η(y) := [−φ2
y sin

2 φ− 2φyy sin
3 φ cosφ]/ cos2 φ and that D(y) and ζ(x) > 0 can be

taken arbitrarily. These are functions φc
z(x, y, 0) and (Lψc)(x, y, 0) in the Theorem.

Conversely, these functions satisfy Proposition 3.1-(3) and determine 2-metrics ĝ

with constant Gauss curvature −1 by Theorem 2, as there is a function ψc
z(x, y, 0) such

that ψc
zx = −φc

zx cotφ and ψc
zy = φc

zy tanφ for each pair of φ and φc
z. Furthermore,

these functions φ(x, y, 0), φc
z(x, y, 0) and ψc

z(x, y, 0) are also defined from such a ĝ, by

Theorem 3.

We can also obtain similar results in the case cos2 φ = 1/(1 + eC(x)). □

Next, we study the condition on ĝ in the case of Corollary 3.3-(B) such that

(Lψc)xy(x, y, 0) = (Lψc)yx(x, y, 0). Then, (Lψc)(x, y, 0) is divided into two terms by

the expression (3.18):

(Lψc)(x, y, 0) = c2P (x, y) +Q(x, y),

where

P (x, y) :=

(
d

dc2
Lψc

)
(x, y, 0)

(
=

−φ1
zφ

1
zxy + φ1

zxφ
1
zy

φxy sin 2φ− 2φxφy cos 2φ
(x, y, 0)

)
,

Q(x, y) :=
−((Lφ)xy + 4φxφy(Lφ))(sin 2φ/2)− φx(Lφ)y sin

2 φ+ φy(Lφ)x cos
2 φ

φxy sin 2φ− 2φxφy cos 2φ
(x, y, 0).

Our assumption for (Lψc)(x, y, 0) of a 2-metric ĝ that Proposition 3.1-(3) is satisfied for

arbitrary c ̸= 0 is equivalent to the following equations at z = 0:

Px =
φ1
xzφ

1
z

sin2 φ
− 2φxP cotφ, Py = −

φ1
yzφ

1
z

cos2 φ
+ 2φyP tanφ, (3.19)

Qx = −{(Lφ)x + 2φxQ} cotφ+ 2φx(Lφ), Qy = {(Lφ)y + 2φyQ} tanφ+ 2φy(Lφ).

(3.20)

Proposition 3.4. Let ĝ be an orthogonal 2-metric with constant Gauss curva-

ture −1. Let us define φ(x, y, 0), φc
z(x, y, 0), (Lψc)(x, y, 0), P (x, y) and Q(x, y) for ĝ

as above under the assumption that (Lψc)(x, y, 0) is expressed by (3.18). Suppose that
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(Lψc)(x, y, 0) with arbitrary c ̸= 0 satisfies Proposition 3.1-(3) at z = 0. Then, we have

the following facts :

(1) There are functions ζ = ζ(x), η = η(y) such that (φ1
z)

2 = ζ sin2 φ − η cos2 φ and

P = (ζ + η)/2.

(2) There are functions S = S(x, y) and T = T (x, y) such that Sx = φx(Lφ), Ty =

φy(Lφ), Lφ(:= φxx − φyy) = S cotφ− T tanφ and Q = S + T .

(3) (Lψc)(x, y, 0) = c2(ζ(x) + η(y))/2 + S(x, y) + T (x, y) is satisfied.

Conversely, suppose that, for φ(x, y, 0) and φ1
z(x, y, 0) determined from ĝ, there

are functions ζ(x), η(y), S(x, y) and T (x, y) satisfying (1) and (2). Then, if we take

(Lψc)(x, y, 0) given in (3), (Lψc)(x, y, 0) satisfies Proposition 3.1-(3) at z = 0, that is, for

such a 2-metric ĝ, (Lψc)(x, y, 0) is determined such that it satisfies Proposition 3.1-(3)

and Corollary 3.3-(B).

Proof. Let us assume that (Lψc)(x, y, 0) is given by (3.18) and (Lψc)(x, y, 0)

with any c ̸= 0 satisfies the equations of Proposition 3.1-(3), that is, P (x, y) and Q(x, y)

satisfy (3.19) and (3.20), respectively. We shall verify that the assumption is equivalent

to (1) and (2).

Now, since we have the following equations from (3.19):[
P sin2 φ− (φ1

z)
2

2

]
x

=

[
P cos2 φ+

(φ1
z)

2

2

]
y

= 0,

there are functions ζ = ζ(x) and η = η(y) such that

P sin2 φ− (φ1
z)

2

2
=
η

2
, P cos2 φ+

(φ1
z)

2

2
=
ζ

2
.

Hence, we obtain P = (ζ + η)/2 and (φ1
z)

2 = ζ sin2 φ− η cos2 φ.

Next, since we have the following equations from (3.20):

[Q sin2 φ+ (Lφ) sinφ cosφ]x = φx(Lφ), [Q cos2 φ− (Lφ) sinφ cosφ]y = φy(Lφ),

there are functions S = S(x, y) and T = T (x, y) such that Sx = φx(Lφ), Ty = φy(Lφ),

Q sin2 φ+ (Lφ) sinφ cosφ = S and Q cos2 φ− (Lφ) sinφ cosφ = T

are satisfied. Hence, we obtain Q = S + T and Lφ = S cotφ− T tanφ.

In each argument above, the converse is also valid. Finally, we obtain Lψc from

Lψc = c2P +Q.

We note about the converse statement: (3.18) has been obtained from the assump-

tion that (Lψc)(x, y, 0) satisfies Proposition 3.1-(3) (resp. Proposition 3.1-(1)). Further-

more, suppose that there is a solution φ(x, y, 0) and φz(x, y, 0) such that φx(x, y, 0) =

η(y) = 0 in this case. Then, Lψc = (1/2)[c2ζ(x) − (φy)
2] + const. is different from the

ones in Theorem 5. This fact implies that there is not such a solution in this case. Hence,

the 2-metrics ĝ obtained here are included in Corollary 3.3-(B). □
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Now, φc
z(x, y, 0) has been determined from ĝ, by Theorem 3. Hence, the property of

φ1
z(x, y, 0) in Proposition 3.4-(1) induces a condition for ĝ. Next, we study this condition.

Let us assume (φ1
z)

2 = ζ sin2 φ − η cos2 φ as in Proposition 3.4. Then, for ĝ =

Â2(dx)2 + B̂2(dy)2, we have

Â = − 1

2(φ1
z)

2
(ζ ′ sinφ+ 2(ζ + η)φx cosφ), B̂ =

1

2(φ1
z)

2
(−η′ cosφ+ 2(ζ + η)φy sinφ)

(3.21)

by Theorem 2 and Corollary 2.1-(b). Furthermore, the condition that ĝ has constant

Gauss curvature −1 is equivalent to the existence of ψ1
z such that ψ1

zx = −φ1
zx cotφ

and ψ1
zy = φ1

zy tanφ, by Theorem 2, Corollary 2.1 and Theorem 3. By the integrability

condition of ψ1
z , we have the following Proposition.

Proposition 3.5. A 2-metric ĝ = Â2(dx)2 + B̂2(dy)2 defined by (3.21) from

(φ1
z)

2 = ζ sin2 φ − η cos2 φ with ζ(x) and η(y) has the constant Gauss curvature −1, if

and only if the following equation is satisfied :

(ζ + η)φxy +
1

2
(η′φx + ζ ′φy) = −ÂB̂(φ1

z)
2.

Proof. We have the equation in Proposition 3.5 from (−φ1
zx cotφ)y =

(φ1
zy tanφ)x by direct calculation. In this calculation, when we multiply both sides

of the equation by 2φ1
z and use (φ1

z)
2
xy = 2φ1

zxφ
1
zy + 2φ1

zφ
1
zxy, we arrive at the desired

equation. □

We have the following Theorem by summarising Propositions 3.4 and 3.5:

Theorem 6. For functions ζ = ζ(x), η = η(y) of one variable, let us set

(φ1
z)

2(x, y, 0) := (ζ sin2 φ − η cos2 φ)(x, y, 0). Suppose that there is a function φ(x, y, 0)

such that it satisfies the following equations (1) and (2):

(1) (ζ + η)φxy + (η′φx + ζ ′φy)/2 = −ÂB̂(φ1
z)

2, where Â and B̂ are given by (3.21).

(2) There are functions S = S(x, y), T = T (x, y) satisfying Sx = φx(Lφ), Ty = φy(Lφ)

and Lφ = S cotφ− T tanφ.

Then, a 2-metric ĝ := Â2(dx)2 + B̂2(dy)2 with constant Gauss curvature −1 and func-

tions (Lψc)(x, y, 0) := (c2/2)(ζ + η) + S + T , φc
z(x, y, 0) := cφ1

z(x, y, 0), ψ
c(x, y, 0) and

ψc
z(x, y, 0) are determined.

Furthermore, let us define φc
zz, ψ

c
zz by (3.16). Then, we can choose a suitable

ψc(x, y, 0) such that the system {φ,ψc, φc
z, ψ

c
zz} of functions with arbitrary c ̸= 0 satisfies

Proposition 3.1-(5) at z = 0.

Conversely, if every one-parameter system {φ,ψc, φc
z, ψ

c
zz} at z = 0 for any c ̸= 0

determined by a metric ĝ with constant Gauss curvature −1 satisfies Proposition 3.1-(5)

and (φxy sin 2φ−2φxφy cos 2φ)(x, y, 0) ̸= 0, then the metric ĝ is obtained from φ(x, y, 0)

and φ1
z(x, y, 0) satisfying (1) and (2).

Proof. The condition (1) determines a 2-metric ĝ with constant Gauss curvature

−1, as in Proposition 3.5. φ(x, y, 0), φc
z(x, y, 0) and ψc

z(x, y, 0) arise from the metric ĝ,
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by Theorem 3. Then, these functions coincide with the ones stated in the Theorem by

the construction of ĝ in (3.21), Theorem 2, Corollary 2.1 and Theorem 3.

Let P := (ζ + η)/2, Q := S + T and Lψc = c2P + Q. For the Lψc, we define φc
zz

and ψc
zz by (3.16). Then, Lψc satisfies the equations of Proposition 3.1-(3) at z = 0, by

Proposition 3.4.

Furthermore, since Lψc = ψc
xx − ψc

yy, we can determine ψc(x, y, 0) up to two 1-

variable functions k(x + y) and k̂(x − y). Taking a suitable ψc(x, y, 0), the system

{φ,ψc, φc
z, ψ

c
zz} of functions satisfies Proposition 3.1-(5) at z = 0.

The converse also follows from Propositions 3.2, 3.4 and 3.5, as (φxy sin 2φ −
2φxφy cos 2φ)(x, y, 0) ̸= 0 is the condition that ĝ belongs to the case of Corollary 3.3-

(B). □

We study some examples of φ(x, y, 0) and φ1
z(x, y, 0) in Theorem 6 (see Example 1

in Section 2.2 and Examples 3, 4 below).

Now, let M be the space of (local) orthogonal 2-metrics ĝ on (x, y)-plane with

constant Gauss curvature −1. Let ĝ be a metric of M given in Theorem 5 or obtained

by the procedure in Theorem 6. Then, ĝ has a z-direction such that, if there is a curve

through ĝ inM which determines a conformally flat metric g with the Guichard condition,

then the curve evolves in the direction at ĝ. Its direction is actually determined by a pair

of φc
zz(x, y, 0) and ψ

c
zz(x, y, 0) (see Theorem 7 in Section 4). In particular, the z-direction

at ĝ is determined by a 1-parameter family with parameter c ̸= 0.

We shall show in Section 4 that such an analytic metric ĝ really extends to an

evolution of 2-metrics ĝ(z) for each c ̸= 0, which determines a conformally flat metric

gc with the Guichard condition. Then, gc and gc
′
have different conformal structures if

c ̸= c′ by the definition. To find generic conformally flat hypersurfaces was the problem to

obtain general solutions φ(x, y, z) of four complicated differential equations of third order

in Proposition 1.1. In consequence, under a generic condition, the problem is reduced

to find functions φ(x, y, 0) and φ1
z(x, y, 0) stated in Theorem 6, as their functions in

Theorem 5 are already obtained explicitly. Here, we used the term “generic” in the

meaning that ĝ gives rise to a one parameter family gc.

We note that the conditions (d) ψxy(x, y, 0) = (φxφy)(x, y, 0) and

(e) ψzz(x, y, 0) = [(Lφ) sin 2φ− (Lψ) cos 2φ](x, y, 0)

= [−∆ψ + (φx)
2 + (φy)

2 + (φz)
2](x, y, 0)

are satisfied, for metrics ĝ given in Theorem 5 and obtained by the procedure in Theorem

6, i.e., Proposition 3.1-(5) is satisfied for such metrics ĝ.

Example 2 (Counter example). On z = 0, we set

φ(x, y) := x+ y, φc
z(x, y) :=

cey−x

2
(cosφ+ sinφ), ψc

z :=
cey−x

2
(− cosφ+ sinφ)

with constant c ̸= 0. Then, for (b) and (c) of Theorem 3, we have

ψc
zx(x, y) = φc

zy(x, y) = cey−x cosφ(x, y), ψc
zy(x, y) = −φc

zx(x, y) = cey−x sinφ(x, y).
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The 2-metric ĝ = 4/(cosφ + sinφ)2 ((dx)2 + (dy)2) defined by the functions above has

the constant Gauss curvature −1. Then, we obtain

(Lψc)(x, y) = − c2e2(y−x)

4 cos 2φ(x, y)

from (3.18) for ĝ. However, this (Lψc)(x, y) does not satisfy Proposition 3.1-(3). Hence,

this metric ĝ does not extend into the z-direction.

In fact, from the first equation of Proposition 3.1-(3) we have

sinφ+ cos 2φ(cosφ+ sinφ) =
cosφ

cos 2φ
,

and from the second equation, we have

cosφ− cos 2φ(cosφ+ sinφ) = − sinφ

cos 2φ
.

If these two equations are satisfied, then we obtain

cos 2φ(cosφ+ sinφ) = cosφ− sinφ

by adding two equations. Then, we simultaneously have cos 2φ = ±1, which can not

occur.

Example 3. Let us take (φ1
z)

2 = c1 sin
2 φ − c2 cos

2 φ, that is, ζ(x) = c1 and

η(y) = c2. Then, the function φ(x, y, 0) such that φx = c3
√
c1 sin

2 φ− c2 cos2 φ, φy =

c4
√
c1 sin

2 φ− c2 cos2 φ satisfies the condition (1) and (2) in Theorem 6, where c1, c2,

c3, c4 are constants. In particular, this case induces the Guichard net of Bianchi-type,

since we have

φxx =
c23(c1 + c2)

2
sin 2φ, φyy =

c24(c1 + c2)

2
sin 2φ, φc

zz =
c2(c1 + c2)

2
sin 2φ

and uniqueness of solutions for the evolution equation in z with respect to the initial

condition, which we shall study in Section 4 (and see Example 5 there).

Proof. Let us set (φ1
z)

2 = c1 sin
2 φ− c2 cos

2 φ. Then, we have

Â = −(c1 + c2)
φx cosφ

(φ1
z)

2
, B̂ = (c1 + c2)

φy sinφ

(φ1
z)

2
.

Then, Theorem 6-(1) is given by φxy(c1 sin
2 φ − c2 cos

2 φ) = (c1 + c2)φxφy sinφ cosφ.

Since (c1 sin
2 φ− c2 cos

2 φ)′ = (c1 + c2)φ
′ sin 2φ, we have

(φx)
2 = ϱ2(x)(c1 sin

2 φ− c2 cos
2 φ), (φy)

2 = σ2(y)(c1 sin
2 φ− c2 cos

2 φ).

Let c3 := ϱ(x) and c4 := σ(y). Then, we have Lφ = (c23− c24)(c1+ c2) sinφ cosφ and
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φx(Lφ) =
(c23 − c24)(c1 + c2)

2
φx sin 2φ =

(
(c23 − c24)

2
(c1 sin

2 φ− c2 cos
2 φ)

)
x

,

φy(Lφ) =
(c23 − c24)(c1 + c2)

2
φy sin 2φ =

(
(c23 − c24)

2
(c1 sin

2 φ− c2 cos
2 φ)

)
y

.

For Theorem 6-(2), we determine

S :=
c23 − c24

2
(c1 sin

2 φ− c2 cos
2 φ+ c2), T :=

c23 − c24
2

(c1 sin
2 φ− c2 cos

2 φ− c1). □

Example 4. Let us take (φ1
z)

2(x, y, 0) = ζ(x) sin2 φ(x, y, 0) with any positive func-

tion ζ(x). Then, the function φ(x, y, 0) such that φx = c1 sinφ and φy = c2 sinφ satisfies

the condition (1) and (2) of Theorem 6, where c1, c2 are constants. In particular, this

case induces many metrics ĝ determined by any c1, c2 and ζ(x), of which (Lψc)(x, y, 0)

satisfies Proposition 3.1-(3).

Proof. Let us set (φ1
z)

2(x, y, 0) = ζ(x) sin2 φ(x, y, 0). Then, we have

Â = − 1

2 sinφ

(
ζ ′

ζ
+ 2φx cotφ

)
, B̂ =

φy

sinφ
.

For Theorem 6-(1), we have φxy = φxφy cotφ. This equation is independent of ζ(x)

and we have φx = ϱ(x) sinφ and φy = σ(y) sinφ.

Now, when we take ζ(x) := 1/4x2, ϱ(x) := −1/x and σ(y) := 1/y, we obtain

φ(x, y, 0) and the metric ĝ of Example 1 in Section 2.2. Then, for any ζ(x), φ(x, y, 0)

satisfies Theorem 6-(2) with respect to S(x, y) and T (x, y) of Example 1, as φ(x, y, 0)

is independent of ζ(x). Hence, in this case we obtain many examples of ĝ, of which

(Lψc)(x, y, 0) satisfies Proposition 3.1-(3), by giving arbitrary ζ(x).

Here, we assume c1 := ϱ(x) and c2 := σ(y). Then, we have

Lφ =
c21 − c22

2
sin 2φ, φx(Lφ) =

(
c21 − c22

2
sin2 φ

)
x

, φy(Lφ) =

(
c21 − c22

2
sin2 φ

)
y

.

Hence, for Theorem 6-(2), we can take

S :=
c21 − c22

2
sin2 φ, T :=

c21 − c22
2

(sin2 φ− 1) = −c
2
1 − c22
2

cos2 φ. □

4. System of evolution equations and construction of Guichard nets.

In this section, we show that a class of functions φ(x, y, z) and ψ(x, y, z) in Theorem 1

is obtained as solutions of a system of evolution equations in z from initial data ĝ at z = 0,

which are orthogonal analytic Riemannian 2-metrics with constant Gauss curvature −1

determined by Theorems 5 and 6. Theorems 3, 5 and 6 will be useful to verify this fact.

Now, we consider the following system of evolution equations in z:

ψzz = (φxx − φyy) sin 2φ− (ψxx − ψyy) cos 2φ, (4.1)

φzz = (φxx − φyy) cos 2φ+ (ψxx − ψyy) sin 2φ, (4.2)
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under a suitable initial condition at z = 0.

Now, for the system of (4.1) and (4.2), the initial condition at z = 0 is obtained

from analytic 2-metrics ĝ determined by Theorems 5 and 6: Let us choose analytic

functions D(y) and ζ(x) > 0 in cos2 φ(x, y, 0) = 1/(1 + eD(y)) and (φc
z)

2(x, y, 0) =

c2ζ(x) sin2 φ(x, y, 0) of Theorem 5 and choose analytic functions ζ(x), η(y) and φ(x, y, 0)

in (φc
z)

2(x, y, 0) = c2(ζ sin2 φ− η cos2 φ)(x, y, 0) of Theorem 6. Then, an analytic metric

ĝ = Â2(x, y)(dx)2 + B̂2(x, y)(dy)2 (4.3)

is defined from these functions such that ĝ is independent of c and has constant Gauss

curvature −1. Furthermore, ψc(x, y, 0) and ψc
z(x, y, 0) are determined for such a metric

ĝ, and all systems of four functions φ(x, y, 0), ψc(x, y, 0), φc
z(x, y, 0) and ψc

z(x, y, 0) de-

pending on c ̸= 0 satisfy (a), (b) and (c) in Theorem 3 and further satisfy the following

(d) and (e):

(d) ψc
xy(x, y, 0) = (φxφy)(x, y, 0),

(e)

[−∆ψc+(φx)
2+(φy)

2+(φc
z)

2](x, y, 0) = [(φxx−φyy) sin 2φ−(ψc
xx−ψc

yy) cos 2φ](x, y, 0).

Conversely, if a metric ĝ defines systems of four analytic functions at z = 0 depending

on c ̸= 0 such that each system satisfies (a), (b), (c), (d) and (e), then ĝ is obtained from

φ(x, y, 0) and φc
z(x, y, 0) as above. We take systems of four functions determined from

such a ĝ and c ̸= 0 as the initial condition for (4.1) and (4.2).

Remark for the Initial Condition. Firstly, we note that all initial functions

at z = 0 are analytic. This analyticity for initial functions is necessary because we will

apply the Cauchy–Kovalevskaya Theorem to obtain existence and uniqueness of solutions

of the system (4.1) and (4.2).

For φ(x, y, 0), we can arbitrarily take φ(0, 0, 0) = λ. However, when we define

φ̄(x, y, z) := φ(x+ a1, y+ a2, z) with any constants a1 and a2, these φ̄ and φ lead to the

same Guichard net. Hence, we may assume φ(0, 0, 0) = π/4.

From φc
z(x, y, 0), we determine ψc

z(x, y, 0) by (c) as follows:

ψc
z(x, y, 0) :=

∫ (x,y,0)

(0,0,0)

{−(φc
xz cotφ)(x, y, 0)dx+ (φc

yz tanφ)(x, y, 0)dy},

that is, ψc
z(0, 0, 0) = 0 and ψc

z(x, y, 0) is determined up to the same constant multiple c

as φc
z(x, y, 0).

ψc(x, y, 0) is determined from (Lψc)(x, y, 0) up to terms of k(x + y) and k̂(x − y)

by Theorem 5 and Proposition 3.4. Then, it will be uniquely determined by (d), (e) and

the condition that it has no linear term for x and y: ψc(x, y, 0) is generally expressed by

(d) in the form

ψc(x, y, 0) =

∫ x

0

∫ y

0

(φxφy)(x, y, 0)dxdy +Xc(x) + Y c(y) (4.4)
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with functions Xc(x), Y c(y), where we choose Xc(x) and Y c(y) such that they do not

have any linear term for x and y. Then, Xc(x) and Y c(y) are uniquely determined by

(e), of which fact will be verified in Proposition 4.1 below.

Thus, we have obtained from an initial data ĝ determined by Theorems 5 and 6 a

one-parameter family {φ(x, y, 0), ψ(x, y, 0), φc
z(x, y, 0), ψ

c
z(x, y, 0)} with parameter c ̸= 0

as the initial condition. Consequently, for a given metric ĝ, there is a one-parameter

family {φc(x, y, z), ψc(x, y, z)} of solutions for the system of equations (4.1) and (4.2),

which will lead to distinct Guichard nets if c ̸= c′ (see Theorem 7 below).

Proposition 4.1. Suppose that ψc(x, y, 0) satisfies (d) and (e). Then, ψc(x, y, 0)

is uniquely determined, if it does not have any linear term for x and y.

Proof. In this proof, we omit the c in ψc(x, y, 0), Xc(x), Y c(y), etc.

Now, let ψ̂(x, y, 0) be the first integral term in the right hand side of (4.4). Suppose

that ψ(x, y, 0) has two expressions of ψ̄(x, y, 0) = ψ̂(x, y, 0)+X̄(x)+Ȳ (y) and ψ̃(x, y, 0) =

ψ̂(x, y, 0) + X̃(x) + Ỹ (y). Then, since

X̄ ′′ sin2 φ+ Ȳ ′′ cos2 φ = X̃ ′′ sin2 φ+ Ỹ ′′ cos2 φ

= −1

2
[∆ψ̂ − φ2

x − φ2
y − φ2

z + (Lφ) sin 2φ− (Lψ̂) cos 2φ]

by (e), we firstly have (X̄ − X̃)′′ sin2 φ+ (Ȳ − Ỹ )′′ cos2 φ = 0 for (x, y, 0).

Next, there are functions k(x + y) and k̂(x − y) such that (ψ̄ − ψ̃)(x, y, 0) = k(x +

y) + k̂(x− y), as ψ(x, y, 0) is determined from (Lψ)(x, y, 0). Taking derivatives of (ψ̄ −
ψ̃)(x, y, 0) by x and y respectively, we have (X̄ − X̃)′′(x) = (Ȳ − Ỹ )′′(y) = k′′(x+ y) +

k̂′′(x− y).

From these two equations, we obtain (X̄ − X̃)′′(x) = (Ȳ − Ỹ )′′(y) = 0, which shows

that ψ(x, y, 0) is uniquely determined up to linear terms.

Finally, we note that, if φ(x, y, 0) is really a function of two variables x and y, then

the conclusion of the Proposition follows from only the first equation. □

Now, we define the functions Ix(x, y, z), Iy(x, y, z), J(x, y, z) and K(x, y, z), respec-

tively, by using the solutions φ(x, y, z) and ψ(x, y, z) for the system (4.1) and (4.2):

Ix := ψxz + φxz cotφ, Iy := ψyz − φyz tanφ, J := ψxy − φxφy,

K := (Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φx)
2 − (φy)

2 − (φz)
2.

(4.5)

Proposition 4.2. We have the following system of equations for any (x, y, z):
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∂

∂z


Ix

Iy

J

K

 =



0 0 − 1

sin2 φ

∂

∂y

1

2 sin2 φ

∂

∂x

0 0 − 1

cos2 φ

∂

∂x

1

2 cos2 φ

∂

∂y

sin2 φ
∂

∂y
cos2 φ

∂

∂x
0 0

2 sin2 φ
∂

∂x
2 cos2 φ

∂

∂y
0 0




Ix

Iy

J

K

 .

Proof. We obtain the equations of (Ix)z and (Iy)z from the proof of Theorem 4,

where we showed that (Ix)z = 0 and (Iy)z = 0, respectively, are satisfied if and only if

the right hand sides of them vanish, by using (4.1) and (4.2).

For the equation of Jz, we firstly define Îx := tanφIx and Îy := cotφIy. We have

(Îx)y + (Îy)x =
1

sinφ cosφ
[Jz + φy Îx − φxÎy],

then we obtain the equation desired.

For the equation of Kz, we have

Kz = [(Lφ) sin 2φ− (Lψ) cos 2φ+∆ψ − (φx)
2 − (φy)

2 − (φz)
2]z

= (Lφ)z sin 2φ− (Lψ)z cos 2φ+∆ψz − 2φxφxz − 2φyφyz

= (φxxz − φyyz) sin 2φ+ 2ψxxz sin
2 φ+ 2ψyyz cos

2 φ− 2φxφxz − 2φyφyz

= 2 sin2 φ(ψxxz + φxxz cotφ) + 2 cos2 φ(ψyyz − φyyz tanφ)− 2φxφxz − 2φyφyz

= 2 sin2 φ(Ix)x + 2 cos2 φ(Iy)y. □

The matrix of the right hand side in Proposition 4.2 is a linear differential operator

of first order with respect to x and y, then the system in Proposition 4.2 is regarded as

an evolution equation in z. Hence, when we take solutions φ(x, y, z) and ψ(x, y, z) of

(4.1) and (4.2) under the initial condition determined as above, we obtain Ix ≡ Iy ≡
J ≡ K ≡ 0 for any (x, y, z) by the uniqueness assertion of the Cauchy–Kovalevskaya, as

Ix(x, y, 0) ≡ Iy(x, y, 0) ≡ J(x, y, 0) ≡ K(x, y, 0) ≡ 0 are satisfied.

In the statement and the proof of Theorem 7 below, we assume that ψ does not

have any linear term for x, y, z, that is, the initial function ψ(x, y, 0) (resp. ψz(x, y, 0))

not only satisfies (d) (resp. (c)) but they, respectively, are also defined by the conditions

given in the Remark above.

Theorem 7. Let us take an analytic 2-metric ĝ given in Theorem 5 or obtained

by the procedure in Theorem 6. Let functions φ(x, y, 0), ψc(x, y, 0), φc
z(x, y, 0) and

ψc
z(x, y, 0) be a system determined by ĝ as above. We take such a system of functions

as the initial condition at z = 0 for the system (4.1) and (4.2). Then, all solutions

φc(x, y, z) and ψc(x, y, z) depending on c satisfy all equations of Theorem 1, that is, each

pair φc(x, y, z) and ψc(x, y, z) defines an evolution of 2-metrics issuing from ĝ, which

corresponds to a conformally flat 3-metric with the Guichard condition.

Conversely, if, for an orthogonal analytic 2-metric ĝ with constant Gauss curvature
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−1, there is a one-parameter family of evolutions of 2-metrics issuing from ĝ such that

each evolution corresponds to a conformally flat 3-metric with the Guichard net, then ĝ

is a metric either in Theorem 5 or obtained by the procedure in Theorem 6.

Proof. Let an analytic 2-metric ĝ and a system of functions φ(x, y, 0), ψ(x, y, 0),

φz(x, y, 0), ψz(x, y, 0) satisfy the hypotheses of the theorem. Since these four functions

given as an initial condition at z = 0 are analytic, a pair of solutions φ(x, y, z) and

ψ(x, y, z) for the system (4.1) and (4.2) uniquely exists for each initial condition depend-

ing on c. Hence, we can assume that φ(x, y, z) and ψ(x, y, z) satisfy (4.1), (4.2) for any

(x, y, z) and also satisfy the initial condition (a), (b), (c), (d) and (e) at z = 0.

Then, we obtain Ix ≡ Iy ≡ J ≡ K ≡ 0 for any (x, y, z) by Proposition 4.2. That

is, φ(x, y, z) and ψ(x, y, z) not only satisfy (4.1), (4.2) but also satisfy the following

equations for any (x, y, z):

ψxz = −φxz cotφ, ψyz = φyz tanφ, (4.6)

ψxy = φxφy, (4.7)

ψzz = (Lφ) sin 2φ− (Lψ) cos 2φ = −∆ψ + (φx)
2 + (φy)

2 + (φz)
2. (4.8)

Thus, since the solutions φ(x, y, z) and ψ(x, y, z) of the system (4.1) and (4.2) under

our initial condition also satisfy (4.6), φ(x, y, z) and ψ(x, y, z) satisfy all equations in

Theorem 1. In particular, each solution {φc, ψc} obtained from ĝ and c ̸= 0 defines an

evolution of 2-metrics issuing from ĝ and the evolution corresponds to a conformally flat

3-metric with the Guichard condition.

Next, we verify the converse. Let us assume that there is a one-parameter family of

evolutions of 2-metrics issuing from a 2-metric ĝ with constant Gauss curvature −1 and

that each evolution corresponds to a conformally flat 3-metric gc with the Guichard net.

Then, ĝ determines systems of functions φ(x, y, 0), ψc(x, y, 0), φc
z(x, y, 0) and ψ

c
z(x, y, 0)

depending on c such that each system satisfies (a), (b), (c), (d) and (e) by Theorems 2

and 4. On the other hand, by Theorem 3, Corollary 3.3, Theorem 5 and Theorem 6,

an orthogonal 2-metric ĝ with constant Gauss curvature −1 defines systems of functions

φ(x, y, 0), ψc(x, y, 0), φc
z(x, y, 0) and ψc

z(x, y, 0) depending on c such that each system

satisfies (a), (b), (c), (d) and (e), if and only if ĝ is a metric given in Theorem 5 or

obtained by the procedure in Theorem 6. Thus, the converse statement has been proved.

By these arguments, we have completely verified the Theorem. □

In general, it seems difficult to solve the system of evolution equations (4.1) and

(4.2). However, in the case of the Bianchi-type Guichard net, we may extract the function

φ(x, y, z) from the initial metric ĝ and then we find ψ(x, y, z) as follows:

Example 5 (Bianchi-type Guichard net). All functions inducing the Bianchi-type

Guichard net are given by φ(x, y, z) = g(ax+ by+ cz), abc ̸= 0, where g(t) is a 1-variable

function such that

g′′ = α sin 2g, (g′)2 = β − α cos 2g (4.9)
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with constants α and β. Here, in this case, we study how φ(x, y, z) and ψ(x, y, z) are

determined from the initial data ĝ.

Firstly, we fix the initial data ĝ: let us take

Â(x, y) := −2aα
cos g

g′
(ax+ by), B̂(x, y) := 2bα

sin g

g′
(ax+ by)

as in Section 2.1. Then, the metric ĝ = Â2(x, y)dx2+B̂2(x, y)dy2 has the constant Gauss

curvature −1. In fact, we can show it from Ây/B̂ = a(α+β)/g′ and B̂x/Â = b(α−β)/g′
by direct calculation.

Next, we study the initial condition. We have φ(x, y, 0) = g(ax+ by) from (a). The

equation (b) implies the following equation:

(log |φz|)x(x, y, 0) = (log |g′|)x(ax+ by), (log |φz|)y(x, y, 0) = (log |g′|)y(ax+ by).

Hence, we have φz(x, y, 0) = cg′(ax+ by) with any constant c( ̸= 0). ψz(x, y, 0) satisfying

ψz(0, 0, 0) = 0 is determined by (c). From ψxy(x, y, 0) = (φxφy)(x, y, 0) = abg′2(ax+ by)

by (d), we have

ψ(x, y, 0) = X(x) + Y (y) +

∫ t

0

ds

∫ s

0

g′2(u)du,

where t = ax+ by. Then, X(x) and Y (y) are determined by (e):

X(x) = (c1/2)x
2, Y (y) = (c2/2)y

2,

where 2c1 = (α+ β)(−a2 + b2 + c2), 2c2 = (α− β)(−a2 + b2 − c2).

Since we have obtained all initial conditions φ(x, y, 0), ψ(x, y, 0), φz(x, y, 0),

ψz(x, y, 0) for the system (4.1) and (4.2), a pair of solutions φ(x, y, z) and ψ(x, y, z)

is uniquely determined. On the other hand, φ(x, y, z) := g(ax + by + cz) satisfies this

initial condition and it is known that g(ax + by + cz) induces a conformally flat 3-

metric with the Guichard condition. Hence, we may obtain a one-parameter family

φ(x, y, z) = g(ax+ by + cz) with parameter c( ̸= 0) from ĝ, as the partner of ψ(x, y, z).

Now, we shall uniquely determine ψ(x, y, z) from (4.1), (4.6), (4.7) and (4.8). Since

ψxz(x, y, z) = −ac(g′′ cot g)(x, y, z) and ψyz(x, y, z) = bc(g′′ tan g)(x, y, z) by (4.6), we

have

ψxz(x, y, z) = −ac[(α+β)−g′2(ax+by+cz)], ψyz(x, y, z) = bc[(α−β)+g′2(ax+by+cz)].

Thus, by (4.7), we firstly define ψ̂, from which ψ will be produced, by

ψ̂(x, y, z) := X(x)+Y (y)+Z(z)− (α+β)(ax)(cz)+(α−β)(by)(cz)+
∫ t

0

ds

∫ s

0

g′2(u)du,

where t = ax+ by + cz. Then, since ψ̂zz = −∆ψ̂ + φ2
x + φ2

y + φ2
z by (4.8) and

ψ̂zz = Z ′′ + c2g′2, −∆ψ̂ + φ2
x + φ2

y + φ2
z = −X ′′ − Y ′′ + c2g′2,
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we have

X ′′+Y ′′+Z ′′ = 0 ⇐⇒ X(x) = (c1/2)x
2, Y (y) = (c2/2)y

2, Z(z) = −[(c1+c2)/2]z
2.

Since [−∆ψ̂ + φ2
x + φ2

y + φ2
z](x, y, z) = [L(φ) sin 2φ − L(ψ) cos 2φ](x, y, z) by (4.1) and

(4.8), we have

−(c1 + c2) + c2(β − α cos 2g) = α(a2 − b2)− [c1 − c2 + β(a2 − b2)] cos 2g.

Hence, we have again

c1 + c2 = −α(a2 − b2) + βc2, c1 − c2 = αc2 − β(a2 − b2).

In consequence, we have obtained

φ(x, y, z) = g(ax+ by + cz),

ψ(x, y, z) = −ac(α+ β)xz + bc(α− β)yz +
c1
2
x2 +

c2
2
y2 +

c3
2
z2 +

∫ t

0

ds

∫ s

0

g′2(u)du,

where 2c1 = (α+ β)(−a2 + b2 + c2), 2c2 = (α− β)(−a2 + b2 − c2) and c1 + c2 + c3 = 0.
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Soc. Math. France, 45 (1917), 57–121.

[ 5 ] D. Ferus and F. Pedit, Curved flats in symmetric spaces, Manuscr. Math., 91 (1996), 445–454.

[ 6 ] U. Hertrich-Jeromin, On conformally flat hypersurfaces and Guichard’s nets, Beitr. Alg. Geom.,

35 (1994), 315–331.
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