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Abstract. Let M be a finitely generated module over a Noetherian local

ring R. The sequential polynomial type sp(M) of M was recently introduced
by Nhan, Dung and Chau, which measures how far the module M is from the
class of sequentially Cohen–Macaulay modules. The present paper purposes
to give a parametric characterization for M to have sp(M) ≤ s, where s ≥ −1

is an integer. We also study the sequential polynomial type of certain specific
rings and modules. As an application, we give an inequality between sp(S)
and sp(SG), where S is a Noetherian local ring and G is a finite subgroup of

AutS such that the order of G is invertible in S.

1. Introduction.

The motivation of the present research comes from and dates back to a naive but

fundamental question of what non-Cohen–Macaulay rings are. There are at least two

different ways to generalize the notion of Cohen-Macaulayness; one is the generalized

Cohen-Macaulayness and the other one is the sequential Cohen-Macaulayness. Our

practical purpose is to find effective invariants which enable us to stratify non-Cohen–

Macaulay rings and modules, describing the distance of given rings and modules from

the class of Cohen–Macaulay rings and modules. For the purpose the polynomial type

and the sequential polynomial type introduced by Cuong [C1] in 1992 and Nhan, Dung

and Chau [NDC] in 2016 respectively are good candidates of these invariants. In the

present paper we succeed to the research [NDC]. Our aim is to deepen the theory of the

polynomial and sequential polynomial types of modules, investigating basic properties of

the invariants.

Throughout this paper let (R,m) be a Noetherian local ring and M a finitely gen-

erated R-module with dimR M = d. We denote by R̂ and M̂ the m-adic completion

of R and M respectively. For an ideal I of R let V(I) be the set of the prime ideals

of R containing I. The polynomial type p(M) of M is defined to be the largest value

among the dimension of the local cohomology modules Hi
m(M) (i < d) over the ring R̂.

In general

p(M) ≥ max{dimnCM(M), dimR D1}

and one has the equality when R is a quotient of a Cohen–Macaulay local ring, where
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nCM(M) is the non-Cohen–Macaulay locus of M and D1 is the largest R-submodule of

M with dimR D1 < d. Therefore p(M) naturally measures the non-Cohen-Macaulayness

and the mixedness of the module M . The notion is originated also in the paper of

Cuong [C2], where he developed a deep theory of p-standard systems of parameters.

The celebrated theorem of Kawasaki [K] on the existence of arithmetic Macaulayfication

is based on the research [C2]. The reader may consult [CC] for further developments of

the theory in connection with arithmetic Macaulayfication and the annihilator theorem

of Faltings.

The notion of sequential polynomial type sp(M) was recently defined by [NDC]

in order to understand the structure of M in connection with the sequential Cohen-

Macaulayness of modules. Let

H0
m(M) = Dt ⊂ · · · ⊂ D1 ⊂ D0 = M

be the dimension filtration of M . Hence for all 1 ≤ i ≤ t Di is the largest R-submodule

of M such that dimR Di < dimR Di−1. Then M is said to be a sequentially Cohen–

Macaulay R-module, if each Di/Di+1 is a Cohen–Macaulay R-module. This notion was

given in the local case by Schenzel [Sch] as a generalization of the concept of Cohen-

Macaulayness. A sequentially Cohen–Macaulay R-module M is necessarily Cohen–

Macaulay once dimR/p = dimR M for all p ∈ AssR M , which shows the concept of

sequential Cohen-Macaulayness is substantially unlike from the notion of Buchsbaum-

ness or generalized Cohen-Macaulayness of rings and modules.

In the present research we are interested to see the difference of given R-modules M

from the class of sequentially Cohen–Maculay modules. To do this let us set

sp(M) = max
1≤i≤t

p(Di−1/Di)

and call it the sequential polynomial type of M . Therefore M is a sequentially Cohen–

Macaulay R-module if and only if sp(M) = −1 and M is a sequentially generalized

Cohen–Macaulay R-module in the sense of [CN, Definition 4.3] if and only if sp(M) ≤ 0.

In general

p(M) ≥ sp(M) ≥ dimnSCM(M)

(Proposition 2.9 and [NDC, Proposition 3.2]), where

nSCM(M) = {p ∈ SuppR M | Mp is not a sequentially Cohen–Macaulay Rp-module}.

One has the equality sp(M) = dimnSCM(M) also, when R is a quotient of a Cohen–

Macaulay local ring. Thus the invariant sp(M) measures well the non-sequential-Cohen-

Macaulayness of M .

The reader may consult [NDC] for several basic properties of sp(M). The question

of whether the invariant sp(M) is preserved under localization, completion, and being

divided by a single parameter is closely studied in [NDC]. The authors gave among

other results also the following practical method of computation.
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Theorem 1.1 ([NDC, Theorem 4.7]). Suppose that R is a quotient of a Goren-

stein local ring and let Kj(M) be the j-deficiency module of M . We set q1 =

maxj /∈D(M) dimR Kj(M) and q2 = maxj∈D(M) p(K
j(M)), where D(M) = {dimR/p | p ∈

AssR M}. Then

sp(M) = max{q1, q2}.

It is well-known that M is a Cohen–Macaulay R-module (i.e., p(M) = −1) if and

only if every system of parameters of M is an M -sequence. Our Theorem 3.7 generalizes

this fact, showing for every integer s ≥ −1 that p(M) ≤ s if and only if every system

of parameters of M is an M -sequence in dimension > s, provided R is a quotient of

a Cohen–Macaulay local ring. Here a sequence x1, x2, . . . , xn ∈ m is said to be an

M -sequence in dimension > s, if for each 1 ≤ i ≤ n one has xi /∈ p for any p ∈
AssR M/(x1, x2, . . . , xi−1)M such that dimR/p > s ([BN2, Definition 2.1]).

According to Theorem 3.7, it seems natural to ask for such a parametric charac-

terization for modules M to have sp(M) ≤ s. The first main result of this paper is

an answer to the problem in terms of distinguished systems of parameters of M/Di and

strict M/Di-sequences in dimension > s. See Definitions 3.4 and 4.1 for the definition of

the terminology and let us note here only the fact that for a finitely generated R-module

M every strict M -sequence in dimension > s is always an M -sequence in dimension > s.

We then have the following, which we shall prove in Section 4.

Theorem 1.2 (Theorem 4.3). Assume that R is a quotient of a Cohen–Macaulay

local ring and let s ≥ 0 be an integer. Then sp(M) ≤ s if and only if for all 1 ≤ i ≤ t every

distinguished system of parameters of M/Di is a strict M/Di-sequence in dimension > s.

The second main topic of this paper is to study the sequential polynomial type of

certain specific rings and modules such as the direct sum of a finite collection of modules,

the formal power series extensions, and the localization of the polynomial rings, which

we shall perform in Section 5. We will firstly apply the results in order to describe the

relationship between sp(S) and sp(SG), where S is a Noetherian local ring and G is a

finite subgroup of Aut S such that the order of G is invertible in S (Corollary 5.3). As

the second application of the results we will show the following, which is the goal of the

this paper.

Theorem 1.3 (Theorem 5.7). Let q1, q2 ≥ −1 be given integers and choose an

integer d so that d ≥ max{q1, q2} + 3. Then there exists a finitely generated module M

over a Noetherian local ring R which is a quotient of a Gorenstein local ring such that

dimR M = d, q1 = max
j /∈D(M)

dimR Kj(M), and q2 = max
j∈D(M)

p(Kj(M)).

Hence sp(M) = max{q1, q2}.

Let us now briefly explain how this paper is organized. Section 2 is devoted to some

preliminaries, where we summarize some basic results on the invariants p(M) and sp(M).

In Section 3 we study p(M) in connection with the behavior of systems of parameters,
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which plays a key role to prove Theorem 1.2. The proof of Theorem 1.2 (resp. Theorem

1.3) shall be given in Section 4 (resp. Section 5).

In what follows, unless otherwise specified, (R,m) denotes a Noetherian local ring

and M a finitely generated R-module. Let d = dimR M .

2. Preliminaries.

The purpose of this section is to summarize some preliminaries which we need

throughout this paper.

For an Artinian R-module A the set AttRA of the attached primes of A defined

by MacDonald [Mac] is almost the dual concept of the set of the associated primes for

finitely generated modules. Let dimR A = dimR/AnnRA. We then have MinAttRA =

MinV(AnnRA), so that

dimR A = max{dimR/p | p ∈ AttRA}.

When we naturally regard A as an Artinian R̂-module, we have

AttRA = {P ∩R | P ∈ AttR̂A}

([BS, 8.2.4, 8.2.5]). Hence dimR A ≥ dimR̂ A in general.

Remark 2.1. Let i ≥ 0 be an integer and let Hi
m(M) denote the i-th local co-

homology module of M with respect to m. Then Hi
m(M) is an Artinian R-module and

Hi
m(M) ∼= Hi

mR̂
(M̂) as R̂-modules. If R is a quotient of a Cohen–Macaulay local ring,

then dimR Hi
m(M) ≤ i ([NH, Lemma 4.1]) and

AttR̂H
i
m(M) =

∪
p∈AttRHi

m(M)

AssR̂ R̂/pR̂

([NQ, Theorem 1.1]). Under the same assumption as above we always have

dimR Hi
m(M) = dimR̂ Hi

m(M),

which is however not the case in general, although dimR̂ Hi
m(M) ≤ i since Hi

m(M) ∼=
Hi

mR̂
(M̂) as R̂-modules.

The notion of polynomial type was introduced by Cuong [C1]. Let x = x1, x2, . . . , xd

be a system of parameters of M and n = n1, n2, . . . , nd a sequence of positive integers.

Set

IM,x(n) = ℓR
(
M/(xn1

1 , xn2
2 , . . . , xnd

d )M
)
− n1n2 . . . nd·e(x;M),

where e(x;M) denotes the multiplicity of M with respect to the system x. Then in

general IM,x(n) which is considered as a function in n1, n2, . . . , nd is not a polynomial in

n1, n2, . . . , nd ≫ 0 but it takes non-negative values and bounded above by polynomials.

Definition 2.2. The least degree of the polynomials bounding above the function
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IM,x(n) does not depend on the choice of systems x of parameters of M ([C1, Theorem

2.3]), which is called the polynomial type of M and denoted by p(M).

Here we stipulate the degree of the zero polynomial to be −1.

It is clear that M is a Cohen–Macaulay R-module if and only if p(M) = −1 and M

is a generalized Cohen–Macaulay R-module if and only if p(M) ≤ 0. Let us denote by

nCM(M) the non-Cohen–Macaulay locus

nCM(M) = {p ∈ SuppR M | Mp is not a Cohen–Macaulay Rp-module}

of M . Then nCM(M) is not necessarily a closed subset of SpecR but stable under

specialization (it is actually a closed subset of SpecR, when R is a quotient of a Cohen–

Macaulay local ring), so that we can define its dimension dimnCM(M). With this nota-

tion we have the following, which show that p(M) measures the non-Cohen-Macaulayness

and the mixedness of M .

Proposition 2.3 ([C1], [NNK]). Let D1 be the largest R-submodule of M of

dimension less than d. Then the following assertions hold true.

(1) p(M) = p(M̂) = maxi<d dimR̂ Hi
m(M). Hence p(M) ≤ d− 1.

(2) p(M) ≥ max{dimnCM(M), dimR D1}, where the equality holds when R is a quotient

of a Cohen–Macaulay local ring. If in addition M is equi-dimensional, then p(M) =

dimnCM(M).

Lemma 2.4. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of finitely

generated R-modules and suppose that dimR M ′′ ≤ s. Then p(M) > s if and only if

p(M ′) > s.

Proof. Set dimR M ′ = d. We may assume d > s. Hence dimR M = d and

Hj
m(M) ∼= Hj

m(M
′) for all j ≥ s+ 2. Consider the exact sequence

Hs
m(M

′′) → Hs+1
m (M ′) → Hs+1

m (M) → 0

and remember that dimR̂ Hj
m(M) ≤ j for all j (Remark 2.1). Consequently

dimR̂ Hj
m(M) > s for some s < j < d if and only if dimR̂ Hj

m(M
′) > s for some s < j < d.

Hence by Proposition 2.3 p(M) > s if and only if p(M ′) > s. □

The notion of dimension filtration was introduced by Schenzel [Sch]. Removing the

repeated components, Cuong and the second author [CN] have modified his definition.

Let us maintain throughout this paper the following definition given by [CN].

Definition 2.5. A filtration H0
m(M) = Dt ⊂ · · · ⊂ D1 ⊂ D0 = M of M is said to

be the dimension filtration of M , if for each 1 ≤ i ≤ t Di is the largest R-submodule of

M such that dimR Di < dimR Di−1.

We then have the following.
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Proposition 2.6 ([Sch]). Set di = dimR Di for 0 ≤ i ≤ t− 1. Then the following

assertions hold true.

(1) AssR Di =
{
p ∈ AssR M | dimR/p ≤ di

}
for 0 ≤ i ≤ t− 1.

(2) AssR Di−1/Di =
{
p ∈ AssR M | dimR/p = di−1

}
for 1 ≤ i ≤ t.

(3) Di = H0
ai
(M), where ai is the intersection of the associated primes p of M such that

dimR/p ≤ di.

Let us recall the definition of sequential polynomial type.

Definition 2.7 ([NDC]). The sequential polynomial type sp(M) of M is defined

by

sp(M) = max
1≤i≤t

p(Di−1/Di).

We have sp(M) = −1 if and only if M is a sequentially Cohen–Macaulay R-module,

while sp(M) ≤ 0 if and only if M is a sequentially generalized Cohen–Macaulay R-

module. In this sense the sequential polynomial type sp(M) measures how far the R-

module M is from the class of sequentially Cohen–Macaulay R-modules. Let

nSCM(M) = {p ∈ Spec(R) | Mp is not a sequentially Cohen–Macaulay Rp-module}.

Then nSCM(M) is stable under specialization and we consider its dimension. If R is

a catenary ring, then sp(M) ≥ dimnSCM(M). The equality holds and nSCM(M) is

a closed subset of SpecR, if R is a quotient of a Cohen–Macaulay local ring ([NDC,

Proposition 3.2]).

From now on, throughout this paper let us maintain the following notation and

assumptions.

Setting 2.8. Let

H0
m(M) = Dt ⊂ · · · ⊂ D1 ⊂ D0 = M

denote the dimension filtration of M . Set di = dimR Di for 0 ≤ i ≤ t, where dimR Dt =

−1 if Dt = 0. Let D(M) = {d0, d1, . . . , dt}. Hence

D(M) \ {−1} = {dimR/p | p ∈ AssR M}.

Let s ≥ −1 be an integer. We denote by D(s) the largest R-submodule of M of dimension

at most s. If s ≥ 0, then there exists an integer t(s) ≤ t such that D(s) = Dt(s). By

removing the submodules Dt(s)+1, . . . , Dt from the dimension filtration of M , we obtain

the subfiltration

D(s) = Dt(s) ⊂ · · · ⊂ D1 ⊂ D0 = M,

which we call the dimension filtration of M in dimension > s.



15-7535: 2017.12.26

The sequential polynomial type 371

We note the following.

Proposition 2.9. sp(M) ≤ p(M).

Proof. Set sp(M) = h. If h ≤ dimR D1, then h ≤ p(M) by Proposition 2.3 (2).

Assume that h > dimR D1. Then by Proposition 2.3 (1)

sp(D1) = max
2≤i≤t

p(Di−1/Di) ≤ max
2≤i≤t

dimR Di−1 − 1 ≤ d1 − 1.

Hence h = p(M/D1), so that by Proposition 2.3 (1)

dimR̂ Hj
m(M/D1) = h

for some j < d. Notice that j ≥ h > dimR D1 by Remark 2.1 and we have

Hj
m(M/D1) ∼= Hj

m(M).

Thus p(M) ≥ h by Proposition 2.3 (1). □

The following two results play an important role throughout this paper.

Proposition 2.10 ([NDC, Proposition 3.3]). sp(M) ≤ s if and only if there exists

a filtration

D(s) = Nk ⊂ · · · ⊂ N1 ⊂ N0 = M

of M such that dimNi < dimNi−1 and p(Ni−1/Ni) ≤ s for all 1 ≤ i ≤ k. When this is

the case, the following assertions hold true.

(1) k = t(s) and dimR Di/Ni ≤ s for all i ≤ t(s).

(2) maxi≤t(s) p(Ni−1/Ni) = s if and only if maxi≤t(s){sp(M), dimR Di/Ni} = s.

Theorem 2.11 ([NDC, Theorem 4.7, Corollary 4.8]). Suppose that R is a quo-

tient of a Gorenstein local ring (S, n) with dimS = n. Let Kj(M) = Extn−j
S (M,S) (j ∈

Z) be the j-deficiency module of M and set q1 = maxj /∈D(M) dimR Kj(M), q2 =

maxj∈D(M) p(K
j(M)). Then

sp(M) = max{q1, q2}.

Therefore sp(M) ≤ s if and only if for all j ∈ Z

(1) dimR Kj(M) ≤ s if j /∈ D(M) and

(2) dimR Kj(M) = j and p(Kj(M)) ≤ s if j ∈ D(M).

3. Strict M-sequences in dimension > s.

The purpose of this section is to summarize some basic results on strict M -sequences

in dimension > s. We firstly consider M -sequences in dimension > s. For a subset T of

SpecR and an integer i we set
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(T )i = {p ∈ T | dimR/p = i} and (T )>i = {p ∈ T | dimR/p > i}.

Let s ≥ −1 be an integer.

Definition 3.1 ([BN2]). An element x ∈ m is said to be M -regular in dimension

> s, if x /∈ p for any p ∈ (AssR M)>s. A sequence x1, x2, . . . , xn ∈ m is said to be an

M -sequence in dimension > s, if xi is M/(x1, x2, . . . , xi−1)M -regular in dimension > s

for all 1 ≤ i ≤ n.

We then have the following.

Proposition 3.2. Suppose that p(M) ≤ s. Let x ∈ m be a parameter of M . Then

the following assertions hold true.

(1) Either dimR/p = d or dimR/p ≤ s for all p ∈ AssR M.

(2) x is M -regular in dimension > s and p(M/xM) ≤ s.

Proof. (1) Let p ∈ AssR M and set dimR/p = r. Suppose that r < d. We choose

P ∈ AssR̂ R̂/pR̂ so that dim R̂/P = r. Then P ∈ AssR̂ M̂ , whence P ∈ AttR̂H
r
m(M)

([BS, 11.3.3]). Therefore dimR̂ Hr
m(M) = r by Remark 2.1, so that r ≤ p(M) ≤ s by

Proposition 2.3.

(2) By assertion (1) x is M -regular in dimension > s; hence dimR(0 :M x) ≤ s.

Consequently Hi
m(M) ∼= Hi

m(M/(0 :M x)) for all i > s, so that by the exact sequence

0 → M/(0 :M x)
.x→ M → M/xM → 0,

we have the exact sequence

0 → Hi
m(M)/xHi

m(M) → Hi
m(M/xM) → (0 :Hi+1

m (M) x) → 0

for all i > s. Because p(M) ≤ s, by Proposition 2.3 and the above exact sequence we get

dimR̂ Hi
m(M/xM) ≤ s

for all s < i < d− 1. Therefore by Remark 2.1

dimR̂ Hi
m(M/xM) ≤ s

for all i ≤ s, whence p(M/xM) ≤ s by Proposition 2.3. □

We need the following fact in Section 4.

Lemma 3.3. With the notation of Setting 2.8 let i ∈ {0, 1, . . . , t} such that di ≥ s.

If x ∈ m is M -regular in dimension > s, then Di ∩ xDj = xDi for all j ≤ i.

Proof. We may assume j < i. Let m ∈ Di∩xDj and we will show m ∈ xDi. We

write m = xm′ for some m′ ∈ Dj and set dimR Rm′ = r. If r = 0, then m′ ∈ Dt ⊆ Di.

Hence m ∈ xDi. Assume that r > 0 and that m′ /∈ Di; hence di < r. Then because

xm′ ∈ Di, we get dimR x(Rm′) ≤ di < r, so that the exact sequence
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0 → x(Rm′) → Rm′ → Rm′/x(Rm′) → 0

shows dimR Rm′/x(Rm′) = r. Since AssR Rm′ ⊆ AssR M and x is M -regular in di-

mension > s, we have x /∈ p for any p ∈ AssR Rm′ with dimR/p > s. Hence

dimR Rm′/x(Rm′) = r − 1 as r > s, which is a contradiction. Thus m′ ∈ Di, whence

Di ∩ xDj = xDi. □

Let us recall the notion of strict M -sequence in dimension s > 0.

Definition 3.4 ([NH]). An element x ∈ m is called strictly M -regular in di-

mension > s, if x /∈ p for any p ∈
∪d

i=0 AttRH
i
m(M) with dimR/p > s. A sequence

x1, x2, . . . , xn of elements in m is said to be a strict M -sequence in dimension > s, if for

all 1 ≤ i ≤ n xi is strictly M/(x1, x2, . . . , xi−1)M -regular in dimension > s.

A strict M -sequence in dimension > s is naturally an M -sequence in dimension

> s, because AssR N ⊆
∪ℓ

i=0 AttRH
i
m(N) for every finitely generated R-module N of

dimension ℓ ([BS, 11.3.9]). Notice that the converse is not true in general. In fact,

consider the formal power series ring R = K[[x, y, z]] over a field K and set p = (x, y),

m = (x, y, z). We choose M = p. Then p = (x, y) ∈ AttRH
2
m(M) and x ∈ p, so that x is

M -regular in dimension > 0 but not strictly M -regular in dimension > 0.

Assume that R is a quotient of a Gorenstein local ring. Then the local duality

theorem says that

Hj
m(M) ∼= HomR(K

j(M),ER(R/m)),

where ER(R/m) denotes the injective hull of R/m. Hence

AssR Kj(M) = AttRH
j
m(M)

for all j ∈ Z ([BS, 10.2.20]). We furthermore have the following.

Theorem 3.5. Let R be a quotient of a Gorenstein local ring. A sequence

x1, x2, . . . , xn of elements in m is a strict M -sequence in dimension > s if and only

if it is a Kj(M)-sequence in dimension > s for all 0 ≤ j ≤ d.

Proof. Suppose that x1, x2, . . . , xn is a strictM -sequence in dimension> s. Then

for each 0 ≤ j ≤ d and 1 ≤ k ≤ n we have by [NH, Theorem 1.2 (ii)] and by the local

duality theorem that d∪
j=0

AttRH
j
m(M/(x1, x2, . . . , xk−1)M)


>s

=

 d∪
j=0

AttR
(
0 :Hj+k−1

m (M) (x1, x2, . . . , xk−1)R
)

>s
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=

 d∪
j=0

AssR Kj+k−1(M)/(x1, x2, . . . , xk−1)K
j+k−1(M)


>s

.

Hence x1, x2, . . . , xn is a Kj(M)-sequence in dimension > s for all 0 ≤ j ≤ d.

Conversely, suppose that x1, x2, . . . , xn is a Kj(M)-sequence in dimension > s for

all 0 ≤ j ≤ d. Then since AssR Kj(M) = AttRH
j
m(M) for all j, x1 is strictly M -regular

in dimension > s. Therefore similarly as above, thanks to [NH, Theorem 1.2 (ii)] and

the local duality theorem, we get d∪
j=0

AttRH
j
m(M/x1M)


>s

=

 d∪
j=0

AttR
(
0 :Hj+1

m (M) x1

)
>s

=

 d∪
j=0

AssR Kj+1(M)/x1K
j+1(M)


>s

.

Hence x2 /∈ p for any p ∈
(∪d

j=0 AttRH
j
m(M/x1M)

)
>s

. Therefore x1, x2 is a strict M -

sequence in dimension > s. Repeating this procedure, by [NH, Theorem 1.2 (ii)] we

readily get that x1, x2, . . . , xn is a strict M -sequence in dimension > s. □

We are now interested in the question of what happens when sp(M) ≤ s. We need

the following result later in Section 4.

Proposition 3.6. Let R be a quotient of a Gorenstein ring and suppose that

sp(M) ≤ s. Let x ∈ m be M -regular in dimension > s. Then the following assertions

holds true.

(1) Either dimR/p = j or dimR/p ≤ s for all p ∈ AssR Kj(M) and j ≥ 0.

(2) x is strictly M -regular in dimension > s and sp(M/xM) ≤ s.

Proof. (1) Let j ≥ 0 be an integer and p ∈ AssR Kj(M). We set dimR/p = r.

Then r ≤ j by Remark 2.1. If j /∈ D(M), then by Theorem 2.11

r = dimR/p ≤ dimR Kj(M) ≤ sp(M) ≤ s.

Suppose that j ∈ D(M). Then Theorem 2.11 shows that dimR Kj(M) = j and

p(Kj(M)) ≤ sp(M) ≤ s. Therefore p ∈ (AssR Kj(M))r, so that by [BS, 11.3.3]

p ∈ AttRH
r
m(K

j(M)). Suppose r < j. Then since dimR Kj(M) = j,

s ≥ p(Kj(M)) ≥ dimR̂ Hr
m(K

j(M)) = dimR Hr
m(K

j(M)) ≥ dimR/p = r

by Remark 2.1 and Proposition 2.3.

(2) Let j ≥ 0 be an integer and choose p ∈ (AssR Kj(M))>s. Then dimR/p = j by

assertion (1). Hence p ∈ (AssR Kj(M))j , so that p ∈ (AssR M)j by [Sch, Proposition

3.2]. Since j > s and x is M -regular in dimension > s, we have x /∈ p. Thus by Theorem

3.5 x is strictly M -regular in dimension > s. Therefore dimR(0 :M x) ≤ s, since x is
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M -regular in dimension > s. Hence

Hj
m(M) ∼= Hj

m(M/(0 :M x))

for all j > s, so that by the local duality theorem and the exact sequence

0 → M/(0 :M x)
·x→ M → M/xM → 0

we get the exact sequence

(♯) 0 → Kj+1(M)/xKj+1(M) → Kj(M/xM) → (0 :Kj(M) x) → 0

for all j > s. Let j ≤ d − 1 be an integer such that dimR Kj(M/xM) > s. Then j > s

by Remark 2.1. Because x is strictly M -regular in dimension > s, it is Kj(M)-regular in

dimension > s, whence dimR(0 :Kj(M) x) ≤ s. Therefore exact sequence (♯) above shows

dimR Kj+1(M) > s. Since sp(M) ≤ s, it follows by Theorem 2.11 that j + 1 ∈ D(M);

hence dimR Kj+1(M) = j + 1. Since j > s, x is a parameter of Kj+1(M), whence

dimR Kj+1(M)/xKj+1(M) = j. Therefore exact sequence (♯) shows j > s, so that

dimR Kj(M/xM) = j. Thus (AssR(M/xM))j ̸= ∅ and j ∈ D(M/xM). Because j + 1 ∈
D(M), we get p(Kj+1(M)) ≤ s by Theorem 2.11, whence p(Kj+1(M)/xKj+1(M)) ≤ s by

Proposition 3.2. Therefore Lemma 2.4 shows p(Kj(M/xM)) ≤ s. Thus sp(M/xM) ≤ s

by Theorem 2.11. □

We close this section with the following characterization for M to have p(M) ≤ s.

Theorem 3.7. Assume that R is a quotient of a Cohen–Macaulay local ring. Then

the following conditions are equivalent.

(1) p(M) ≤ s.

(2) Every system of parameters of M is a strict M -sequence in dimension > s.

(3) Every system of parameters of M is an M -sequence in dimension > s.

Proof. (1) ⇒ (2) We assume that d = dimR M > 0 and that our implication

holds true for d − 1. Let x1, x2, . . . , xd be a system of parameters of M . Then by

Proposition 3.2 x1 is M -regular in dimension > s and p(M/x1M) ≤ s. Hence x1 is

M̂ -regular in dimension > s. Because sp(M̂) = sp(M) ([NDC, Theorem 3.5]), we get

by hypothesis (1) and Proposition 2.9 that sp(M̂) ≤ s. Therefore by Proposition 3.6

x1 is strictly M̂ -regular in dimension > s, so that x1 is strictly M -regular in dimension

> s. Because p(M/x1M) ≤ s, the hypothesis of induction shows x2, x3, . . . , xd is a

strict M/x1M -sequence in dimension > s, whence x1, x2, . . . , xd is a strict M -sequence

in dimension > s.

(2) ⇒ (3) This is clear; see [BS, 11.3.9].

(3) ⇒ (1) Assume that d > 0 and that the implication holds true for d−1. Therefore

for every parameter x ∈ m of M , every system of parameters of M/xM is an M/xM -

sequence in dimension > s, so that p(M/xM) ≤ s. We must show p(M) ≤ s. Assume

the contrary. Then since R is a quotient of a Cohen–Macaulay ring, by Remark 2.1 and
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Proposition 2.3 we have i ≥ dimR Hi
m(M) > s for some i < d. Set dimR Hi

m(M) = r.

Then since r < d, we can choose a parameter x of M so that x ∈ AnnRH
i
m(M). Because

x /∈ q for all q ∈ (AssR M)>s by the hypothesis of induction, we get dimR(0 :M x) ≤ s,

whence Hj
m(M) ∼= Hj

m(M/(0 :M x)) for all j > s. Therefore because i ≥ r > s, the exact

sequence

0 → M/(0 :M x)
.x→ M → M/xM → 0

gives rise to the exact sequence

Hi−1
m (M) → Hi−1

m (M/xM) → (0 :Hi
m(M) x) → 0.

We now notice that (0 :Hi
m(M) x) = Hi

m(M) by our choice of x and get

dimR Hi−1
m (M/xM) ≥ dimR Hi

m(M) = r > s.

Hence p(M/xM) ≥ r > s by Proposition 2.3 because i− 1 < d− 1, which is a required

contradiction. □

4. A parametric characterization.

The purpose of this section is to prove Theorem 1.2. To begin with let us recall the

following.

Definition 4.1 ([Sch]). A system of parameters x1, x2, . . . , xd of M is called a

distinguished system of parameters of M , if (xdi+1, xdi+2 . . . , xd)Di = 0 for all 1 ≤ i ≤ t.

Thanks to the prime avoidance theorem, distinguished systems of parameters of M

exist. Notice that if x1, x2, . . . , xd is a distinguished system of parameters of M , then

x1, x2, . . . , xdi is a distinguished system of parameters of Di for all 0 ≤ i ≤ t− 1.

Let us start from the following.

Theorem 4.2. Let R be a quotient of a Gorenstein local ring and let s ≥ 0 be an

integer. If sp(M) ≤ s, then every distinguished system of parameters of M is a strict

M -sequence in dimension > s.

Proof. Suppose that sp(M) ≤ s. Let x1, x2, . . . , xd be a distinguished system of

parameters of M . For each 1 ≤ n ≤ d we set M (n) = M/(x1, x2, . . . , xn)M . Let H(n) be

the largest R-submodule of M (n) of dimension at most s. Let

H(n) = H(n)
rn ⊂ · · · ⊂ H

(n)
1 ⊂ H

(n)
0 = M (n)

be the dimension filtration of M (n) in dimension > s and let

D(s) = Dt(s) ⊂ · · · ⊂ D1 ⊂ D0 = M

be the dimension filtration of M in dimension > s. For each integer i ≤ t(s) we set
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D
(n)
i = (Di + (x1, x2, . . . , xn)M)/(x1, x2, . . . , xn)M

and r0 = t(s). We will prove by induction on n (1 ≤ n ≤ d) that the following assertions

hold true.

(a) x1, x2, . . . , xn is a strict M -sequence in dimension > s.

(b) sp(M/(x1, x2, . . . , xn)M) ≤ s.

(c) D
(n)
i ⊆ H

(n)
i , dimR H

(n)
i /D

(n)
i ≤ s, and dimR H

(n)
i−1 = dimR D

(n)
i−1 = di−1 −n for all

i ≤ rn.

(d) rn = rn−1 if dimR D
(n−1)
rn−1−1 > s+ 1 and rn = rn−1 − 1 if dimR D

(n−1)
rn−1−1 = s+ 1.

Step 1: Let n = 1. Notice that (AssR M)>s =
∪r0−1

i=0 (AssR Di)di . Since

x1, x2, . . . , xd is a distinguished system of parameters of M , x1 is a parameter of Di

for all i such that di > 0. As s ≥ 0, x1 is M -regular in dimension > s. By Proposition

3.6 (2), x1 is strictly M -regular in dimension > s and sp(M/x1M) ≤ s. Let i ≤ r0 − 1.

Then di > s. Since s ≥ 0 and Di+1 ⊆ Di, we get by Lemma 3.3

dimR D
(1)
i = dimR Di/(Di ∩ x1M) = dimR Di/x1Di = di − 1

and

D
(1)
i /D

(1)
i+1

∼= (Di + x1M)/(Di+1 + x1M)

∼= Di/ (Di ∩ (Di+1 + x1M))

∼= Di/(Di+1 + x1Di)

∼= (Di/Di+1)/x1(Di/Di+1).

On the other hand, because sp(M)≤ s, we have p(Di/Di+1)≤ s. As di>s and s ≥ 0, x1

is a parameter of Di/Di+1. Hence p(D
(1)
i /D

(1)
i+1) ≤ s, thanks to the above isomorphisms

and Proposition 3.2. We now consider the filtration

H(1) = H(1) +D(1)
p ⊂ · · · ⊂ H(1) +D

(1)
1 ⊂ D

(1)
0 = M/x1M,

where p = r0 − 1 if dr0−1 = s+ 1 and p = r0 if dr0−1 > s+ 1. Then since dimR H(1) ≤ s

and p(D
(1)
i /D

(1)
i+1) ≤ s for each i ≤ p− 1, it follows by Lemma 2.4 that

p
(
(D

(1)
i +H(1))/(D

(1)
i+1 +H(1))

)
≤ s.

Consequently Proposition 2.10 shows that r1 = p and that D
(1)
i ⊆ H

(1)
i possessing

dimR H
(1)
i /(D

(1)
i +H(1)) ≤ s

for all i ≤ r1. Therefore since dimR H(1) ≤ s, we have

dimR H
(1)
i /D

(1)
i ≤ s



15-7535: 2017.12.26

378 S. Goto and L. T. Nhan

for all i ≤ r1. If i ≤ r1 − 1, then dimR H
(1)
i > s and hence

dimR H
(1)
i = dimR D

(1)
i = di − 1.

Thus the assertion follows.

Step 2: Let n ≥ 2 and assume that our assertion holds true for n− 1. Hence

(a′) x1, x2, . . . , xn−1 is a strict M -sequence in dimension > s.

(b′) sp(M/(x1, x2, . . . , xn−1)M) ≤ s.

(c′) D
(n−1)
i ⊆ H

(n−1)
i , dimR H

(n−1)
i /D

(n−1)
i ≤ s, and dimR H

(n−1)
i−1 = dimR D

(n−1)
i−1 =

di−1 − n+ 1 for all i ≤ rn−1.

(d′) rn−1 = rn−2 if dimR D
(n−2)
rn−2−1 > s+1 and rn−1 = rn−2−1 if dimR D

(n−2)
rn−2−1 = s+1.

Let i ≤ rn−1−1. Then dimR H
(n−1)
i = dimR D

(n−1)
i = di−n+1. Since dimR H

(n−1)
i > s

and dimR H
(n−1)
i /D

(n−1)
i ≤ s, we have di − n+ 1 > s and(
AssR H

(n−1)
i

)
di−n+1

=
(
AssR D

(n−1)
i

)
di−n+1

.

Since s ≥ 0, we have di > n− 1. Notice that x1, x2, . . . , xdi is a system of parameters of

Di; hence xn is a parameter of Di/(x1, x2, . . . , xn−1)Di. Therefore because

dimR D
(n−1)
i = di − n+ 1 = dimR Di/(x1, x2, . . . , xn−1)Di

and D
(n−1)
i is a quotient module of Di/(x1, . . . , xn−1)Di, the element xn is a parameter

of D
(n−1)
i . Hence xn /∈ p for any p ∈ (AssR D

(n−1)
i )di−n+1, so that xn /∈ p for any

p ∈ (AssR H
(n−1)
i )di−n+1. On the other hand, since dimR H

(n−1)
i = di − n+ 1 > s for

all i ≤ rn−1 − 1 and dimR H
(n−1)
rn−1 ≤ s, we have

(
AssR M (n−1)

)
>s

=

rn−1−1∪
i=0

(
AssR H

(n−1)
i

)
di−n+1

,

whence xn is M (n−1)-regular in dimension > s. Therefore since sp(M (n−1)) ≤ s by

assertion (b′), Proposition 3.6 shows that xn is strictly M (n−1)-regular in dimension > s.

Consequently by assertion (a′) x1, x2, . . . , xn is a strict M -sequence in dimension > s,

whence assertion (a) follows. Thanks to Step 1 and assertions (b′), (c′), and (d′) for the

module M (n−1), we readily get assertions (b), (c), and (d). Thus x1, x2, . . . , xd is a strict

M -sequence in dimension > s. □

The following is the main result of this paper, which gives a parametric characteri-

zation for M to have sp(M) ≤ s.

Theorem 4.3. Let R be a quotient of a Cohen–Macaulay local ring and let s ≥ 0

be an integer. Then sp(M) ≤ s if and only if for all 1 ≤ i ≤ t every distinguished system

of parameters of M/Di is a strict M/Di-sequence in dimension > s.
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Proof. Assume that sp(M) ≤ s. Let x1, x2, . . . , xd be a distinguished system of

parameters of M . Then since R is a quotient of a Cohen–Macaulay local ring, sp(M̂) =

sp(M) ≤ s and

H0
m(M) = D̂t ⊂ · · · ⊂ D̂1 ⊂ D̂0 = M̂

is the dimension filtration of M̂ ([NDC, Theorem 3.5]). Therefore x1, x2, . . . , xd is

a distinguished system of parameters of M̂ . Hence by Theorem 4.2 x1, x2, . . . , xd

is a strict M̂ -sequence in dimension > s. Let i ∈ {1, 2, . . . , d} and p ∈(
AttRH

j
m(M/(x1, x2, . . . , xi−1)M)

)
>s

. Choose P ∈ AssR̂ R̂/pR̂ so that dim R̂/P =

dimR/p. Then by [NQ, Theorem 1.1] (see Remark 2.1 also)

P ∈
(
AttR̂H

j
m(M/(x1, x2, . . . , xi−1)M)

)
>s

=
(
AttR̂H

j

mR̂
(M̂/(x1, x2, . . . , xi−1)M̂)

)
>s

,

whence xi /∈ P. Thus xi /∈ p, as p = P ∩R. Hence x1, x2, . . . , xd is a strict M -sequence

in dimension > s.

Let i ∈ {1, 2, . . . , t}. Then since sp(M) ≤ s and

0 ⊂ Di−1/Di ⊂ · · · ⊂ D1/Di ⊂ M/Di

is the dimension filtration of M/Di, we get sp(M/Di) ≤ s. Hence every distinguished

system of parameters of M/Di is a strict M/Di-sequence in dimension > s.

Conversely, assume that for all 1 ≤ i ≤ t every distinguished system of parameters

of M/Di is a strict M/Di-sequence in dimension > s. Suppose that sp(M) > s and

we will produce a contradiction. Since sp(M) > s ≥ 0 and dimR Dt ≤ 0, there exists

k ∈ {1, 2, . . . , t} such that p(Dk−1/Dk) > s. Remember that R is a quotient of a Cohen–

Macaulay local ring and we get by Proposition 2.3 and Remark 2.1 that

j ≥ dimR Hj
m(Dk−1/Dk) > s

for some integer j < dk−1. We consider the exact sequence

Hj−1
m (M/Dk−1) → Hj

m(Dk−1/Dk) → Hj
m(M/Dk)

induced from the exact sequence

0 → Dk−1/Dk → M/Dk → M/Dk−1 → 0.

Then since dimR Hj
m(M/Dk) > s or dimR Hj−1

m (M/Dk−1) > s, there exists p ∈
AttRH

j
m(M/Dk) or p ∈ AttRH

j−1
m (M/Dk−1) such that dimR/p > s. If p ∈

AttRH
j
m(M/Dk), then dk−1 > j ≥ dimR/p by Remark 2.1. If p ∈ AttRH

j−1
m (M/Dk−1),

then dk−1 > j > j − 1 ≥ dimR/p. So, in any case we have dimR/p < dk−1. There-

fore, thanks to the prime avoidance theorem, there exists a part xdk−1+1, xdk−1+2, . . . , xd

of a system of parameters of M such that (xdi+1, xdi+2, . . . , xd)Di = 0 for all

1 ≤ i ≤ k − 1, while there exists a system x1, x2, . . . , xdk−1
of parameters of

M/(xdk−1+1, xdk−1+2, . . . , xd)M such that x1 ∈ p. Notice that since
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0 ⊂ Dk−1/Dk ⊂ · · · ⊂ D1/Dk ⊂ M/Dk

is the dimension filtration ofM/Dk, x1, x2, . . . , xd is a distinguished system of parameters

of M/Dk. We similarly have that x1, x2, . . . , xd is a distinguished system of parameters

of M/Dk−1. Therefore by our assumption x1, x2, . . . , xd is a strict M/Dk-sequence and

M/Dk−1-sequence in dimension > s, which is impossible since x1 ∈ p. □

5. The sequential polynomial type of some specific rings and modules.

In this section we study the sequential polynomial type of certain specific rings and

modules. Our goal is Theorem 5.7 below.

Firstly we study the sequential polynomial type of finite direct sums. Let {Mi}1≤i≤n

be a family of finitely generated R-modules. If each Mi is sequentially Cohen–Macaulay

(resp. sequentially generalized Cohen–Macaulay), then so is
⊕n

i=1 Mi ([CN, Proposition

4.5]). We generalize this result in the following form.

Lemma 5.1. Let {Mi}1≤i≤n be a family of finitely generated R-modules.

(1) p(
⊕n

i=1 Mi) = max1≤i≤n p(Mi), if dimR M1 = · · · = dimR Mn.

(2) sp(
⊕n

i=1 Mi) = max1≤i≤n sp(Mi).

Proof. We may assume n = 2. Set M = M1 and N = M2. Assertion (1) is a

direct consequence of Proposition 2.3, since Hi
m(M⊕N) ∼= Hi

m(M)⊕Hi
m(N) for all i ≥ 0.

To prove assertion (2), we may assume that d = dimM ≥ dimN. Let

H0
m(M)⊕H0

m(N) = Dt ⊂ · · · ⊂ D1 ⊂ D0 = M ⊕N

be the dimension filtration of M ⊕N . Set dimR Di = di for each i. Then

D(M ⊕N) = D(M) ∪D(N) = {d0, d1, . . . , dt},

where dt ≤ 0 and d0 = d. If t = 0, then d ≤ 0, whence sp(M ⊕ N) =

max{sp(M), sp(N)} = −1. Suppose t = 1. Then d > 0 and dimR D1 ≤ 0. There-

fore by Proposition 2.3 we have

sp(M ⊕N) = p((M ⊕N)/D1) = max
i>0

dimR̂ Hi
m(M ⊕N)

= max
i>0

{dimR̂ Hi
m(M), dimR̂ Hi

m(N)}

= max{p(M/H0
m(M)), p(N/H0

m(N))}.

Notice that D(M) ∪ D(N) ⊆ {d, 0,−1}. As t = 1 and d > 0, we readily get sp(M) =

p(M/H0
m(M)). Moreover, if dimN > 0, then sp(N) = p(N/H0

m(N)). If dimN ≤ 0, then

N/H0
m(N) = 0, so that sp(N) = −1 = p(N/H0

m(N)).

Let t > 1 and assume that our assertion holds true for t−1. Notice that Di = Ei⊕Fi

for all i ∈ {0, 1, . . . , t}, where Ei (resp. Fi) is the largest submodule of M (resp. N) of

dimension at most di. We set M ′ = M/Et−1 and N ′ = N/Ft−1. Then
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D(M ′ ⊕N ′) = {−1, dt−2, . . . , d1, d0 = d},

so that

sp((M ⊕N)/Dt−1) = sp(M ′ ⊕N ′) = max{sp(M ′), sp(N ′)}

by the hypothesis of induction, while because Dt−1 = Et−1 ⊕Ft−1 and Dt ⊂ Dt−1 is the

dimension filtration of Dt−1, we have

sp(Dt−1) = max{sp(Et−1), sp(Ft−1)}

by the case where t = 1. Thus

sp(M ⊕N) = max{sp(M), sp(N)}

as wanted. □

Assume that R is a subring of a Noetherian local ring S such that S is a finitely

generated R-module. Let M be a finitely generated S-module. Then M is a finitely

generated R-module with dimS M = dimR M and the dimension filtration of the S-

module M is also the dimension filtration of the R-module M (cf. e.g., [TPDA, Section

3]). Hence

spR(M) = spS(M),

where spR(M) (resp. spS(M)) denotes the sequential polynomial type of M as an R-

module (resp. as an S-module). Therefore by Lemma 5.1 we readily get the following.

Proposition 5.2. Let S be a Noetherian local ring and let R be a subring of S such

that S is a finitely generated R-module. If R is a direct summand of S as an R-module,

then sp(S) ≥ sp(R).

Let S be a Noetherian local ring and let G be a finite subgroup of AutS. Assume

that the order g = |G| of G is invertible in S and let R = SG denote the ring of invariants.

Then R is a Noetherian local ring and S is a module-finite extension of R (see [Br] and

reduce the general case to the case where S is a reduced ring) such that R is a direct

summand of S. Hence we have the following.

Corollary 5.3. Suppose that S is a Noetherian local ring and G is a finite sub-

group of AutS such that the order of G is invertible in S. Then sp(S) ≥ sp(SG).

Secondly, we study the sequential polynomial type of canonical modules.

Proposition 5.4. Suppose that R is a quotient of a Gorenstein local ring. Denote

by K(M) the canonical module of M . Then p(K(M)) ≤ p(M) and sp(K(M)) ≤ sp(M).

Proof. Set d = dimR M and N = M/D1, where D1 is the largest R-submodule

of M with dimR D1 < d. Then K(M) ∼= K(N) and AssR K(N) = (AssR M)d. Let

p ∈ nCM(K(N)); hence (K(N))p is not a Cohen–Macaulay Rp-module. Choose q ∈
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AssR K(N) so that q ⊆ p. Then since dimR/q = d and the ring R is catenary, we have

d = dimR/p+ dimRp
Np.

Hence (K(N))p ∼= K(Np), so that K(Np) is not a Cohen–Macaulay Rp-module. Conse-

quently Np cannot be Cohen–Macaulay, whence p ∈ nCM(N), which shows

nCM(K(N)) ⊆ nCM(N).

Therefore because the R-module K(N) is equi-dimensional, by Proposition 2.3 we get

sp(K(M)) = sp(K(N)) = p(K(N)) = dimR nCM(K(N))

≤ dimR nCM(N) ≤ p(N) ≤ sp(M).

Thus p(K(M)) = sp(K(M)) ≤ sp(M) ≤ p(M), which proves the assertion. □

We now study the sequential polynomial type of polynomial extensions and formal

power series extensions. We begin with the following.

Lemma 5.5. Let T = R[x1, x2, . . . , xr] be the polynomial ring. Set n =

(m, x1, x2, . . . , xr) in T . If sp(R) ≥ 0, then sp(Tn) = sp(R) + r.

Proof. We may assume r = 1. Let x1 = x and S = (R[x])n, where n = (m, x).

Then the canonical map R → S is a flat local homomorphism and every fiber ring S/pS

with p ∈ SpecR is an integral domain. Hence the dimension filtration H0
m(M) = Dt ⊂

· · · ⊂ D1 ⊂ D0 = R of R induces the dimension filtration

H0
m(R)⊗R S = Dt ⊗R S ⊂ · · · ⊂ D1 ⊗R S ⊂ D0 ⊗R S = S

of S (cf. e.g., [GHS, Proposition 2.6]). We need the following.

Claim 1. Let k ∈ {0, 1, . . . , t−1}. If p(Dk/Dk+1) ≥ 0, then p((Dk/Dk+1)⊗RS) =

p(Dk/Dk+1) + 1.

Proof of Claim. Let L = Dk/Dk−1. Then dimR L = dk. Since S/mS is a

Cohen–Macaulay ring, there exists a system a1, a2, . . . , adk
of parameters of L such that

x, a1, a2, . . . , adk
is a system of parameters of the S-module L⊗R S and

e(xn, an1
1 , an2

2 , . . . , a
ndk

dk
;L⊗R S) = n · e(x;S/mS) · e(an1

1 , an2
2 , . . . , a

ndk

dk
;L);

ℓS
(
L⊗R S

/
(xn, an1

1 , an2
2 , . . . , a

ndk

dk
)L⊗R S

)
= n · e(x;S/mS) · ℓR(L/an1

1 , an2
2 , . . . , a

ndk

dk
L)

for all positive integers n, n1, . . . , ndk
([CCT, Lemmas 6.2, 6.3]). Then the difference

ℓR(L/(a
n1
1 , an2

2 , . . . , a
ndk

dk
)L)− e(an1

1 , an2
2 , . . . , a

ndk

dk
;L)

considering as a function in n1, n2, . . . , ndk
is bounded above by polynomials and the least

degree of those polynomials is p(L) ([C1, Theorem 2.3]). Since p(L) ≥ 0, the difference
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ℓR(L⊗R S/(xn, an1
1 , an2

2 , . . . , a
ndk

dk
)(L⊗R S))− e(xn, an1

1 , an2
2 , . . . , a

ndk

dk
;L⊗R S)

considering as a function in n, n1, n2, . . . , ndk
is bounded above by polynomials and the

least degree of such polynomials is equal to p(L) + 1. Thus

p(L⊗R S) = p(L) + 1

as claimed. □

Let X = {k ≤ t | p(Dk−1/Dk) ≥ 0}. Then since sp(R) ≥ 0, X ̸= ∅ and therefore

sp(S) = max
1≤k≤t

p
(
(Dk−1 ⊗R S)/(Dk ⊗R S)

)
= max

k∈X
p
(
(Dk−1/Dk)⊗R S

)
= max

k∈X
p(Dk−1/Dk) + 1 = sp(R) + 1

by Claim 1. □

Let us use Proposition 5.5 to study the sequential polynomial type of the formal

power series ring R[[x1, x2, . . . , xr]].

Proposition 5.6. Suppose that R is a quotient of a Cohen–Macaulay local ring.

If sp(R) ≥ 0, then sp(R[[x1, x2, . . . , xr]]) = sp(R) + r.

Proof. We may assume r = 1. Since R is a quotient of a Cohen–Macaulay local

ring, we get sp(R) = sp(R̂) and sp(R[[x]]) = sp(R̂[[x]]) ([NDC, Theorem 3.5]). Let

n = (m, x) be the maximal ideal of R[x]. We then have extensions

R[x] ⊂ (R[x])n ⊂ R[[x]]

of rings and when R is a complete local ring, R[[x]] is exactly the completion of the local

ring (R[x])n. Hence sp(R[[x]]) = sp(R̂) + r = sp(R) + r by Lemma 5.5. □

Suppose that R is a quotient of a Gorenstein local ring and let M be a finitely

generated R-module. We write D(M) = {d0, d1, . . . , dt} and set

q1 = max
j ̸∈D(M)

dimKj(M) and q2 = max
j∈D(M)

p(Kj(M)).

We then have by [NDC, Theorem 4.7] that

sp(M) = max{q1, q2}.

It seems natural to ask whether for given integers q1, q2 ≥ −1, there always exists a finitely

generated module M over a Noetherian local ring R which is a quotient of a Gorenstein

local ring, possessing q1 = maxj /∈D(M) dimR Kj(M) and q2 = maxj∈D(M) p(K
j(M)). We

close this paper with an affirmative answer to this question.

Theorem 5.7. Let q1, q2 ≥ −1 be given integers and choose an integer d so that

d ≥ max{q1, q2}+ 3. Then there exists a finitely generated module M over a Noetherian

local ring R which is a quotient of a Gorenstein local ring such that
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dimM = d, q1 = max
j /∈D(M)

dimR Kj(M), and q2 = max
j∈D(M)

p(Kj(M)).

Hence sp(M) = max{q1, q2}.

Proof. We consider two cases.

(1) The case where q1 = q2. If q1 = q2 = −1, we have nothing to prove, because every

sequentially Cohen–Macaulay module of dimension d satisfies our requirements. Assume

that q1 = q2 ≥ 0 and set k = d − q1. Let us choose a Buchsbaum complete local ring

(R,m) such that dimR = k, H0
m(R) = 0, and Hj

m(R) ̸= 0 for some j ∈ {2, . . . , k−1} (this

choice is possible; see [G, Theorem 1.1]), whence sp(R) = p(R) = 0 and dimR Kj(R) = 0

for some j ∈ {2, . . . , k − 1}. Therefore the canonical module K(R) of R is not a Cohen–

Macaulay R-module ([BN1, Corollary 2.7]); hence p(K(R)) = 0. If q1 = 0, the ring R

satisfies our requirements. Assume that q1 ≥ 1. Let S = (R[x1, x2, . . . , xq1 ])n, where

R[x1, x2, . . . , xq1 ] is the polynomial ring and n = (m, x1, x2, . . . , xq1). Then dimS = d

and sp(S) = q1 by Lemma 5.5. Since 0 ⊂ R is the dimension filtration of R, 0 ⊂ S is

the dimension filtration of S; hence D(S) = {−1, d}. As p(R) = 0, we have p(S) = q1
(see Claim 1 in the proof of Lemma 5.5), whence by Proposition 2.3 and Remark 2.1 we

get dimR Kt(S) = q1 for some t < d such that t /∈ D(S). Thus the ring S satisfies all our

requirements.

(2) The case where q1 ̸= q2. Let R = K[[x1, x2, . . . , xd]] be the formal power series

ring over a field K and m = (x1, x2, . . . , xd). For i ∈ {1, 2} satisfying qi ≥ 0, we set Mi =

(x1, x2, . . . , xd−qi)R, Ni = R/(x1, x2, . . . , xd−qi−1)R, and pi = (x1, x2, . . . , xd−qi−1)R.

Then Ni is a Cohen–Macaulay R-module of dimension qi+1 with AssR Ni = {pi}, while
R/Mi is a Cohen–Macaulay local ring of dimension qi with AssR Mi = {0}. Therefore

Kj(Ni) = 0 for all j ̸= qi + 1, while Kqi+1(Ni) is a Cohen–Macaulay R-module of

dimension qi + 1. Besides, thanks to the exact sequence

0 → Mi → R → R/Mi → 0,

we get Kj(Mi) = 0 for all j ̸= qi + 1, d, Kqi+1(Mi) ∼= Kqi(R/Mi), and Kd(Mi) ∼=
Kd(R). Hence Kqi+1(Mi) is a Cohen–Macaulay R-module of dimension qi and Kd(Mi)

is a Cohen–Macaulay R-module of dimension d.

Let us now consider the following three cases separately. Firstly suppose that q2 =

−1. Then q1 ≥ 0. Let M = M1. Then AssR M = {0}. We have Kj(M) = 0 for all

j ̸= q1 + 1, d and dimR Kq1+1(M) = q1, dimR Kd(M) = d, and p(Kd(M)) = −1. Hence

M satisfies our requirements.

Suppose that q1 = −1. Then q2 ≥ 0. Let M = M2 ⊕ N2. Then dimM = d and

AssR M = {0, p2}. We have Kj(M) = 0 for all j ̸= q2 + 1, d, Kd(M) ∼= K(R), and

Kq2+1(M) ∼= Kq2(R/M2)⊕Kq2+1(N2).

Hence dimR Kq2+1(M) = q2 + 1 and p(Kq2+1(M)) = q2, while dimR Kd(M) = d and

p(Kd(M)) = −1. Thus M satisfies our requirements.

Let us consider the last case where q1 ≥ 0 and q2 ≥ 0. Let M = M1 ⊕ M2 ⊕ N2.

Then AssR M = {0, p2}. As q1 ̸= q2, we have Kj(M) = 0 for j ̸= q1 + 1, q2 + 1, d.

Notice that dimR Kq1+1(M) = q1, dimR Kq2+1(M) = q2 + 1, and p(Kq2+1(M)) = q2,
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while dimR Kd(M) = d and p(Kd(M)) = −1. Thus M satisfies our requirements, which

completes the proof of Theorem 5.7. □
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