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Abstract. The compressible Navier—Stokes equation is considered on
the two dimensional whole space when the external force is periodic in the time
variable. The existence of a time periodic solution is proved for sufficiently
small time periodic external force with antisymmetry condition. The proof is
based on using the time-T-map associated with the linearized problem around
the motionless state with constant density. In some weighted L°° and Sobolev
spaces the spectral properties of the time-7T-map are investigated by a potential
theoretic method and an energy method. The existence of a stationary solution
to the stationary problem is also shown for sufficiently small time-independent
external force with antisymmetry condition on R2.

1. Introduction.

We consider time periodic problem of the following compressible Navier—Stokes equa-
tion for barotropic flow in R?:

Op + div (pv) =0, (1.1)
p(Ov + (v - V)v) — pAv — (p + p/)Vdive + Vp(p) = pg. '

Here p = p(x,t) and v = (v1(z,t), v2(x,t)) denote the unknown density and the unknown
velocity field, respectively, at time ¢ > 0 and position z € R?; p = p(p) is the pressure
that is assumed to be a smooth function of p satisfying

pl(p*) > 07

for a given positive constant p,; p and p’ are the viscosity coefficients that are assumed
to be constants satisfying

p>0, p+p >0

and g = g(x,t) is a given external force periodic in t. We assume that g = g(z, t) satisfies
the condition

gz, t +T)=g(x,t) (r€R? teR), (1.2)
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for some constant T > 0. We also suppose that g has the form g = VG :=
((0/04,)G,—(0/04,)G), where G(z,t) is a scalar function satisfying the following an-
tisymmetry condition for x € R?;

G(_xlax27t) = _G(xlamQat)v
G(z1, —22,t) = —G(21, 72, 1), (1.3)
G($27$1,t) = —G(.’El,l'gﬂf).

The antisymmetry condition (1.3) was used in the stationary problem for imcompressible
Navier—Stokes equation on R? ([12]).

In this paper time periodic problem and stationary problem are considered for the
compressible Navier-Stokes equation (1.1) on R?. Concerning the time periodic problem
for (1.1) on the whole space, Ma, Ukai, and Yang [11] showed the existence and stability
of a time periodic solution on R™ with the space dimension n > 5. In [11] it was shown
that if g € CO(R; HN =1 N L) with g(z,t + T) = g(x,t) and g is sufficiently small, then
there exists a time periodic solution (pper, Vper) around (p«,0), where N € Z satisfying
N > n+ 2. It was also shown that for sufficiently small perturbations the time periodic
solution is stable and it holds that

1(p(8); 0(£)) = (Pper (), vper ()| -
< O(L+6)7"4|(po, v0) — (pper(to), vper(to))llarn-1111,

where t( is a certain initial time and (p,v)|=s, = (po,vo). Here the symbol H* stands
for the L?-Sobolev space on R™ of order k.

In [4] the time periodic problem on R"™ was investigated for n > 3. It was proved
that if g satisfies the following condition for the space variable;

g(—z,t) = —g(x,t) (zeR" teR), (1.4)

and g is sufficiently small in some weighted L2-Sobolev space, then there exists a time
periodic solution (pper, Vper) for (1.1) around (p,0) and wpe,(t) = (Pper(t) — ps, Vper(t))
satisfies

sup ([[uper(t)llz2 + [|[2Vuper ()| L2)
t€[0,T)
<O+ |zDglleqoizrnzzy + 11+ 12))gll20,7;50-1)

where s is an integer satisfying s > [n/2] + 1. Moreover, (pper, Uper) is asymptotically
stable and it holds that

1(p(t), v(1) — (pper (), vper (1))l 22 = O(™™/*) as t — o0 (1.5)

for sufficiently small initial perturbations. In [10], the existence and stability of time
periodic solution were proved for n > 3, without assuming the condition (1.4); it was
shown that if g is small enough in some weighted L> and L? Sobolev spaces then there
exists a time periodic solution (pper, Vper) around (p.,0); and the time periodic solution is



Time periodic problem for the compressible Navier—Stokes equation 245

stable under sufficiently small initial perturbation and the perturbation (p— pper, v —Vper)
satisfies

||(p(t) - pper(t)vv(t) - vper(t))HL‘” —0 (t - OO)

Concerning the stationary problem of (1.1), Shibata and Tanaka [8] showed the existence
and stability of a stationary solution on R?. They showed that if g = g(x) is small enough
in some weighted L> and L? Sobolev spaces then there exists a stationary solution
(p*,v*) around the motionless state (p.,0). Moreover, it was shown that for sufficiently
small initial perturbations the stationary solution is stable and the perturbation (p —
p*,v — v*) satisfies

1(p(t) = p" 0(t) = %)L =0 (£ = 00). (1.6)

In [9], the convergence rate for (1.6) was studied and it was shown if the initial pertur-
bation (p(0) — p*,v(0) — v*) satisfies the estimate ||(p(0) — p*,v(0) — v*)||zrs < 1 and
(p(0) — p*,v(0) — v*) € L5/ then

1(p(t) = p*(8), 0(t) = v (1) [l < =2 (t = o0),

where 0 is any small positive number.

To our knowledge there seems no existence result on time periodic (and stationary)
problem for (1.1) on R?.

In this paper we consider the existence of a time periodic solution for (1.1) on R?
under (1.3). It will be proved that if g = VG satisfies (1.2), (1.3) and the estimate

1+ [zD)glleqom;cry + X+ [2[*)gll e o,r); L)
+[I(1+ |x|2)G”C([O,T];L°°) +[1(1 + |$|2)GHL2(O,T;HS) <1

for an integer s > 3, then there exists a time periodic solution upe, = (Oper — Px, Vper) €
C(R; L) for (1.1), with Vuye, € C(R; H*~') having time period T and u,., satisfies
the estimate

1

1
sup {371+ Jal )0 (per — o) Ol e + D I+ lal )0 e ()] 2 |
§=0

t€[0,T] j=0
< {1+ zNgllcqorszyy + 11+ [2)glleqo,r; L)
+[I(1+ ‘x|2)G||C([O,T];L°°) +[1(1+ |x‘2)G”L2(O,T;HS)}'

Furthermore, we obtain the existence of a stationary solution for the stationary problem
of (1.1). It will be proved that if ¢ = V1@ is time-independent and satisfies (1.3) and
the estimate

(L4 2zDgllzr + (L + |z gl L
+H(1+ [2[*)Glp + |1+ 2G| la < 1
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for an integer s > 3, then there exists a stationary solution u* = (p* — p,, v*) € L* with
Vu* € H*! for the stationary problem for (1.1), and u* satisfies the estimate

1 1
S N+ [2)02(p" = )l + D N1+ [a])dIv* || L
j=0 =0
<A+ |zDgller + 1A+ J2)glle + 11+ 12)Gllze + [|(1+ |2*) Gl z- }-

The existence of a time periodic solution is shown by using time-T-map concerned
with the linearized problem around the constant state. We use a coupled system of
equations for a low frequency part and high frequency part of solution as in [4]. Con-
cerning the low frequency part, we apply the potential theoretic method similar to that
in the study of the stationary problem [8] which controls spatial decay properties for a
solution. The same method was used to study the time periodic problem in [10] for the
space dimension n > 3. The main difference between the analysis in this paper and that
in [10] is stated as follows. We denote by A; the linearized operator around (p.,0) on
the low frequency part. Then we estimate (I — S1(T))~! in some weighted L space,
where S; denotes the semigroup generated by A;. In contrast to [10], since we consider
the problem on R?, the integral kernel (I — S1(T'))~! behaves like O(log |z|) as z — oo,
which is the same as the fundamental solution of the Laplace equation. More precisely,
it follows from the spectral resolution that

v+v ire

F(I=S:1(T)) "t ~ -2 7 ier as £ —0, (1.7)

T e 1 ( , &Q)

NeE VIR P TP
where the superscript '- denotes the transposition, I denotes the 2 x 2 identity matrix
and F denotes the Fourier transform. Then the order log |x| appears from the Stokes
inverse in the right hand side of (1.7). This prevents us from controlling spatial decay
properties for the convection term and the external force. To overcome this difficulty,
since the slowly decaying order appears from the Stokes inverse, we introduce the anti-
symmetry condition which was used in the stationary problem for incompressible flow on
R? ([12]). Moreover, we use the following two key observations to estimate the convection
term v - V.

The one is concerned with the formulation for the low frequency part. Due to the
slow decay of v at spatial infinity, for the low frequency part we formulate the equation
not only using the conservation form with the momentum as in [10] but also rewriting
the convection term into a sum of the incompressible flow part and the potential flow
part. More precisely, we rewrite the convection term as

o, ((W):m(vl)?) 10, (vfm) + V(). (1.8)

This enables us to use of the antisymmetry condition effectively for the low frequency
part. (Cf., Remark 4.7 bellow.) Note that in [12], since the incompressible flow was
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considered, the vorticity formlation was used effectively to estimate the convection term
under the antisymmetry condition (1.3). On the other hand, since we consider the
compressible flow, we use a coupled system of the conservation form of the momentum
and the velocity formulation with (1.8) instead of the vorticity formulation.

Another key observation is concerned with the potential theoretic method on R2. By
making use of the antisymmetry condition (1.3), an estimate for convolution is established
in a weighted L> space on R%. (See Lemma 4.11 bellow.) Using this estimate, we obtain
the estimate for a convolution with the convection term in the weighted L space.

As for the high frequency part, we use the velocity formulation to avoid some deriv-
ative loss by using the energy method as in [4], [10].

The existence of the stationary solution is proved similarly. Since the fundamental
solution for the linearized stationary problem for the low frequency part is the same as
the leading part of (I —S1(T))~!, one can prove the existence of the stationary solution
by similar estimates to those used in the proof of the existence of a time periodic solution.

This paper is organized as follows. In section 2, notations and auxiliary lemmas are
introduced, which are used in this paper. In section 3, main results of this paper are
stated. In section 4, we reformulate the problem. A coupled system with the conserva-
tion of momentum for the low frequency part and the equation of motion for the high
frequency part is introduced; and we will then rewrite by a system of integral equations in
terms of the time-T-map. We also establish some estimates for a convolution which will
appear in the low frequency part. In section 5, we derive estimates for a solution related
to the time-T-map for the low frequency part. In section 6, some spectral properties of
the time-T-map are stated for the high frequency part. In section 7, nonlinear terms are
estimated and we then prove the existence of a time periodic solution by the iteration
argument.

2. Preliminaries.

In this section we introduce notations which will be used throughout this paper. Fur-
thermore, we introduce some lemmas which will be useful in the proof of the main results.

We denote the norm on X by || - ||x for a given Banach space X.

Let 1 £ p £ oco. L? stands for the usual LP space on R2. We denote the inner
product of L2 by (-,-). Let k be a nonnegative integer. H* denotes the usual L2-Sobolev
space of order k. (As usual, we define that H° := L2.)

For simplicity, L? stands for the set of all vector fields w = T (wy,w2) on R? with

wj € LP (j =1,2) and we denote by || - ||z» the norm [ - [|(z»)2 if no confusion will occur.
Similarly, we denote by a function space X the set of all vector fields w = T (wy,ws) on
R? with w; € X (j = 1,2); and we denote the norm || - || x2 on it by || - || x if no confusion
will occur.

We take u = T (¢, w) with ¢ € H*¥ and w = T (w1, ws) € H™. Then the norm of u
on H* x H™ is denoted by ||u|| gx x grm, that is, we define

1/2
[ullzrrsemrm == (10117 + [lwlFrn) "
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When m = k, we simply denote H* x (H*)? by H*. We also denote the norm ||ul| g (srr)2
by ||u|| gx, i-e., we define that

HY = H* x (H")?, g = |lull e (w=T(6,w)).

Similarly, for u = " (¢, w) € X x Y with w = T (w1, ws) , the norm ||u|| x xy stands for

1/2

(u="(¢,w)).

If Y = X2, the symbol X stands for X x X? for simplicity, and we define its norm
l[ullxxx2 by [[ullx;

lullxxy = (lgl1% + llwll5)

X=X x X2 ulx = [lullxxx2 (u="(¢,w)).

A function space with spatial weight is defined as follows. For a nonnegative integer
¢ and 1 < p < oo, the symbol L} denotes the weighted L? space which is defined by

Ly = {u € LP; Ju gy = [|(1 + [2]) ul| 1 < 00}
The notations f and F[f] denote the Fourier transform of f:
fe) = FUn© = [ e =tdr (€ B,
R
In addition, we denote the inverse Fourier transform of f by F~![f]:

FHA@) == (2m)~2 g F(©)erde  (z € R?).

Let k£ be a nonnegative integer and let r; and ro, be positive constants satisfying
71 < T'oo. The symbol H(koo) stands for the set of all u € H¥ satisfying supp @ C {|¢] > 1},
and the symbol L%l) stands for the set of all u € L? satisfying supp @ C {|¢] < roo}. It
follows from Lemma 4.3 (ii) bellow that H* N L%l) = L%l) for any nonnegative integer k.
Let k and ¢ be nonnegative integers. The weighted L2-Sobolev space H f is defined

by
H} := {uc H" l[ull g < +oo},
where

1/2
P /

Z |u|§{k )
J

Jj=0

HU”H;c :

1/2

lulgy = | D I el |z

la| <k

Moreover, H, (koo) , denotes the weighted L2-Sobolev space for the high frequency part
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defined by
Hécoo),é = {U S H(koo), ||u||Hf < +OO}

Let £ be a nonnegative integer. The symbol L%l) , stands for the weighted L? space
for the low frequency part defined by

L%l),é = {f S L?; f S L%l)}.

For —o0 < a < b < oo, the symbol C¥([a,b]; X) denotes the set of all C* functions
on [a,b] with values in X. Similarly, L?(a,b; X) and H*(a,b; X) denote the LP-Bochner
space on (a,b) and the L2-Bochner—Sobolev space of order k respectively.

The time periodic problem is considered in function spaces with the following anti-
symmetry. I'; (j = 1,2,3) are defined by

(Tu)(x) = T(¢(*l’1,$2), —wi(—21,22), w2 (—21,22)),
(Fau)(x) = T(¢(~’C1, —2), w1 (w1, —r2), —wa (w1, —T2)),

(Pau) (1, 22) := T(¢(x27$1)7wQ(anxl)awl(Zanl))

for u(z) = T(¢(x), w1 (z), wa(x)), * € R2. For a function space X on R?, the space Xy,
denotes the set of all u = T (¢, w1, ws) € X satisfying I'ju =u (j = 1,2,3).
Let X be a function space on R?. X denotes the set of all f € X satisfying

f(=x1,22) = f(w1,22), f(w1,—22) = f(71,22),
f(z2,21) = fz1,22).
X4 denotes the set of all f = T(fi, f2) € X satisfying
fil=z1,22) = = fi(z1,22), fi(z1, —22) = fi(z1,22),

f2(*961,$2) = f2($17332)7 f2($1,*1’2) = *f2(901,$2)7

fi(z2, 1) = fa(w1,22), fa(w2,71) = fi(21,22).

Note that if f in X has the form f = VX F = T((0/0,,)F, —(0/0y,)F), where F satisfies
the condition

F(—z1,29) = —F(21,22), F(x1,—22) = —F(x1,22),
F($27x1) = 7F(1‘1,$2)

for R?, then f € X4.
The space %(1) is defined by

'y = 1{p € L N L*supp ¢ C {[¢] < roc}, ||¢||%(1) < +o0},

where the norm is defined by



250 K. Tsuba
= +
19l g, =0l g, .+ 19l g .

1
16l g, = DIV lz,
k=0

1
Il g~ =D 1IV*6l L2
ML 32

On the other hand, @(1) is defined by
g/(l) = {’LU € LTO,V’U} € Hl;supp wC {|£| < Too}a ||w||@( ) < +OO},
1
where

lollgy, = lvllg, . +lvlg .
2

gy, x= D0+l e,

j=1

We define a weighted space for the low frequency part %, 1y(a,b) by
Zy(a,b) = C1([a,b; Z 1)) x [C(1a,b: D) 0 H (0,5 )]

Let s be a nonnegative integer satisfying s > 3. We denote by the space ffw),l(a, b)
(k=s—1,s) the weighted space for the high frequency part defined by

Yooy ala,b) = [C(la,b); HE, ) N C([a,b]; L3)]
X [LQ(a, b; Hf;)l)Q) N C(la, b); H(koo)’z) N Hl(a, b; Hécog)l’z)} .

Let s be a nonnegative integer satisfying s > 3 and let k = s — 1,s. We define a
space X*(a,b) by

Xk(a, b) = {{U(1)7 U(OO)}; U1y € fép(l)(a, b), U(o) € oﬁlép];w),Q(a, b),
Bed(oc) € Clla, bl LY), ugyy = T (¢(5), wz) (7 = 1,00)},
and we define the norm by
e, oo Hixr@n =leoll g, o + el g o
+ 10 d(c0)llc(fa,b:22) + 19eu) le(ap:zz) + 10:Vu) llo(ap;L2)-

Let s be a nonnegative integer satisfying s > 3 and let £k = s — 1,s. We define a
space Y* by

Yhi= {{u(l)vu(oo)}QU(l) € 5{(1) X @(1),u(oo) € H(koo),Q X H(’:g)lz,
ug = (bg),wi) (= 1,00)}
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and we define the norm by

vy ueo e =lluamll g gy lweollme | xmis

1
(00),2 (00),2

Function spaces of time periodic functions with period 1" are introduced as follows.
Cper (R; X) stands for the set of all time periodic continuous functions with values in X
and period T" whose norm is defined by | - || (j0,77;x); Similarly, L?_ (R; X) denotes the

per
set of all time periodic locally square integrable functions with values in X and period

T whose the norm is defined by || - ||12(0,7;x). Similarly, H}.,.(R; X) and X}, (R), and
so on, are defined.
For operators Ly and Lo, we denote by [L1, Lo] the commutator of L; and Lo, i.e.,

(L1, Lol f == L1(Laf) — La(L1 f).

We next state some lemmas which will be used in the proof of the main results.

The following lemma is the well-known Sobolev type inequality.
LEMMA 2.1.  Let s be an integer satisfying s > 2. Then there holds the inequality
[fllze < CIV fllger,
for fe H®.

The following Hardy’s inequality is known for a function satisfying the oddness
conditions in (1.3) on R2.

LEMMA 2.2. Letu € H' and we assume that u satisfies
u(thl’g) = 7u(l’1,£172) or U(l‘l, 71‘2) = 7U(ZL‘1, 132) (21)
for x = T(z1,22). Then there holds the inequality
I
|z|

See, e.g., [1] for the proof of Lemma 2.2.

< OVl g2.
2

We state the following inequalities which are concerned with composite functions.

LEMMA 2.3.  Let s be an integer satisfying s > 2. Let s; and p;y (j = 1,---,)
be nonnegative integers and multiindices satisfying 0 < |pi)| < 55 < s+ |ugl, p =
By oA e, s =814+ 80 > (£ —1)s + ||, respectively. Then there holds

102 free 0 folle< C T 185 llaes (f € H).

1<j<e

See, e.g., [3] for the proof of Lemma 2.3.
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LEMMA 2.4. Let s be an integer satisfying s > 2. Suppose that F is a smooth

function on I, where I is a compact interval of R. Then for a multi-index o with 1 <
|a| < s, there hold the estimates

1102, F(f))fall e < ClFlroicny {1+ IV AT IV Al sl foll e,

for fi € H® with fi(z) € I for all z € R? and f, € H®l; and

1192, F(fallze < CIF oo {1+ IVANE FIV il foll e,

for fi € H**' with fi(x) € I for all x € R? and fo € HI*I-L,

See, e.g., [2] for the proof of Lemma 2.4.

3. Main results.

In this section, we state our main result on the existence of a time periodic solution
for (1.1). We also state our result on the existence of a stationary solution of (1.1)
when g is independent of ¢. To state our results, the following operators are introduced,
which decompose a function into its low and high frequency parts respectively. We define
operators P; and P, on L? by

Pif = F X FIf) (fel?j=1,00),
where
X;i(€) € CX(R?) (j=1,00), 0<X;

ST (e <),
() “{o (€] > 7o),
oel©) = 1= 11 (6),

0<r <reo.

IN
—_
[
Il
—
g

r1 and ro are positive constants satisfying 0 < 1 < 7o, < 27/(v + 7) in such a way that
the estimate (5.6) in Lemma 5.3 below holds for |¢] < ru.

Substituting ¢ = (p — p«)/px and w = v/y with v := /p'(ps) into (1.1), time
periodic problem (1.1) is formulated as

O+ Au = —Blulu + G(u, g), (3.1
where
(0 ydiv ok w+
A= ('yV A f/Vdiv) , V= o U= P (3.2)
Blalu = <‘” A ¢) for u="T(,w), i = (), (33
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and

Glug) = (£, (3.0

F(u,9)
FOu) := —y¢divw, (3.5)
ﬂmm:fwuwmwwmfww—vwmwwfgf% (3.6)

1
p(9) == %/0 (1 —0)p" (p«(1 + 09))do.

We now state our result on the existence of a time periodic solution.

THEOREM 3.1.  Let s be an integer satisfying s > 3. Let g = VG, where G is a
scaler function. Assume that g and G satisfies (1.2), (1.3) and g € Cper(R; LT N L)
with G € Cper(R; L) N L2, (R; H3). We define the norm of g by

per
lg]s :== ||9||C([0,T];L§0L§°) + HG”C([O,T];LS")OLQ(O»T;HS)'

Then there exist constants 61 > 0 and C > 0 such that if [g]s < b1, the problem (3.1)
has a time periodic solution u = w1y + Uiy satisfying {uy, o)} € X3 (R) with

sym,per
[{u1ys o) Hix o0,y < Clgls. Furthermore, the uniqueness of time periodic solutions of
(3.1) holds in the class
{u = T(d)’ w); U = U(1) + U(c0)s {u(l)vu(oo)} € Xiym,per(R)’ H{u(l)au(oo)}HXs(QT) < 051}

We next consider the stationary problem for (1.1). We consider the following sta-
tionary problem on R2:

div (pv) =0,
{p(v -V)v — pAv — (u+ p')Vdive + Vp(p) = pg, (3.7)

where g = g(x) is a given external force satisfying (1.3). Substituting ¢ = (p — p«)/p«
and w = v/ with v = \/p’'(px«) into (3.7), we rewrite (3.7) to

Au = —Blu]u + G(u, g). (3.8)
The existence of the stationary solution is stated as follows.

THEOREM 3.2. Let s be an integer satisfying s > 3. Let g = VG, where G is a
scaler function. Assume that G satisfies (1.3) and g € L1 N L3° with G € L N HS. We
define the norm of g by

Wgllls == llgllzinrg + 1Gllsnm;-

Then there exist constants éo > 0 and C > 0 such that if |||g|||s < d2, the problem
(3.8) has a stationary solution u = u) + U(se) satisfying {ug), Uee)} € Y, with
{uy, uoo) Hiys < Clllgllls. Furthermore, the uniqueness of stationary solutions of (3.8)



254 K. Tsuba

holds in the class {u =T (¢, w);u = u(1) + Uoo), {W(1), U(o)} € Yoms Hw@), tioo) Hlivs <
Céy}.

In this paper we will give a proof of Theorem 3.1 only, since Theorem 3.2 can be
proved in a similar manner to the proof of Theorem 3.1. The only difference appears
in the analysis of the high frequency part. In fact, Theorem 3.2 can be proved in the
following way. As in [10], direct computations show that the low frequency part of
the solution operator for the linearized problem for (3.8) coincides with the leading
part of (I — S1(T))~! which provides the key estimates in the proof of Theorem 3.1.
Here S1(T) = e~ T4 is the low frequency part of the semigroup generated by A. (See
Proposition 5.1 below.) More precisely, it holds that

v+v iTe
ok v[¢1?

R (Iz_ng)
€l vig? €17

and the the right-hand side corresponds to the fundamental solution for the linearized
problem of (3.8) in the Fourier space for the low frequency part. Therefore, one can obtain
the estimates for the low frequency part of the solution operator in (2 (1) X @(1))53,,” as

FI-$uT) "}~ — as €0

in Section 5. The high frequency part is analyzed in a similar manner to the case of time
periodic problem as in Section 6. The desired estimates for the high frequency part can
be obtained by the weighted L? energy method. The only difference from the case of the
time periodic problem appears in proving the existence of the solution operator for the
high frequency part of the linearized problem. In the case of the stationary problem, one
can show the existence of the solution operator by the elliptic regularization method as in
[6], [8]. Although we consider the two dimensional problem, the existence of the solution
operator can be shown more easily than in [6], [8], since 0 belongs to the resolvent sets
of the elliptic operators —eA (e > 0) and —vA — div restricted to the high frequency
part.
In the remaining of this paper we will give a proof of Theorem 3.1.

4. Reformulation of the problem.

In this section, we reformulate (3.1). We begin with to decompose u into a low fre-
quency part u¢;y and a high frequency part u(), and then, we rewrite (3.1) to equations
for w1y and u() as in [4].

Similarly to [4], we define
uy = Pru, Uy = Poou.
Applying the operators P; and Py to (3.1), we see that

Oru(ry + Aury = Frow(u) + Uy, 9), (4.1)
Ort(o0) + At(oo) + Poo (Blu(ry + t(oo)U(oo)) = Frigh(u) + U(oo)s 9)- (4.2)
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Here
Fiow(u) + Uy, 9) := Pi[=Blug) + ()] (u1) + Uoo)) + Gluy + t(oo), 9)],
Frigh(ua) + U(so)s 9) = Poo[=Blug) + i) Juay + Gluay + tso), 9)]-

On the other hand, if some functions u () and u(. satisfy (4.1) and (4.2), then adding
(4.1) to (4.2), we derive that

Ot (u(1) + u(o)) + Alu) + ()
= —Poo(Blu(1) + U(oo)|t(o0)) + (Frow + Frign) () + U(oo); 9)
= —Blug1) + ueo)[(u(1) + u()) + Glu) + (), 9)-

Defining u := u(1) + (o), We get
Oru + Au + Blu]u = G(u, g).

Therefore, in order to obtain a solution u of (3.1), we look for a solution {u(1y, t()}
satisfying (4.1)—(4.2).

Concerning antisymmetry of (3.1) and (4.1)—(4.2), We state the following lemmas.
Recall that T'; (j = 1,2, 3) is defined by

(Tu)(x) = T(éb(*x)v —wi (=), w2(~7)), (T2u)(x):= T(¢(*~’C)aw1(*$), —wz(—1)),
(Pau)(z1, w2) := T(¢($2,$1)7w2(3327331)7w1($2,331))
for u(z) = T(¢(x), w1 (x), wa(z)), © € R2.

LEMMA 4.1.  We define g(z,t) == T(0,9(z,t)) and let g satisfy (U;g)(z,t) =
gz, t)(x eR% teR, j=1,2,3).

(i) Tju (j =1,2,3) is a solution of (3.1) if u=T(¢,w) is a solution of (3.1).

(i) {Tjuay, Tjueeyt (4 = 1,2,3) is a solution of (4.1)-(4.2) if {uq), Uy} 5 a
solution of (4.1)—(4.2).

LEMMA 4.2. Let g satisfy (I'jg)(z,t) = g(z,t) (x € R%, t € R, j =1,2,3).
(i) There holds

[I';(0su+ Au + Blulu — G(u, 9))](x, t) = [Owu + Au + Blu]u — G(u, 9)](z, )

forz e R%t € R, j=1,2,3 if (Dju)(z,t) =u(x,t) (xeR* teR, j=1,2,3).
(ii) There hold

[ (Orury + Augry — Fiow(ug) + tso), 9))] (2, 1)
= [Oruy + Augry — Fiow(u@) + (), 9)(2, 1)

and

(L' (O¢t(o0) + Atoo) + Poo (Blu(1) + U(oo)|U(o)) — Frigh(u(1) + (oo, 9))] (2, 1)
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= [8tu(oc) + A’LL(OO) + POO(B[U(l) + u(oo)]u(oo)) - Fhigh(u(l) + u(oo)vg)](x’ t)

f07” Y 26 RQat € R:j = 172a3 Zf {F]U’(l)(xvt)aF]u(oo)(x7t)} = {U(U(l‘,t),’d(oo)(l‘,t)}
(xeR* teR, j=1,2,3).

Direct computations verify Lemma 4.1 (i) and Lemma 4.2 (i). As for Lemma 4.1
(ii) and Lemma 4.2 (ii), since it holds that FT'; = —I';F (j = 1,2), FI's = T'sF,
Xi(—=€1,&2) = x5 (&1, —&2) = X (&2, &) = x5(&1,&2) (J = 1,00), we find that 'y P; = P;T',
(k=1,2,3, j = 1,00). Hence Lemma 4.1 (ii) and Lemma 4.2 (ii) follow from the above
relation by a direct computation.

Therefore, we consider (4.1)—(4.2) in space of functions satisfying {I'ju(1), I'ju() } =
{uay, 40y} (j = 1,2,3) by Lemma 4.1 and Lemma 4.2.

To prove the existence of time periodic solution on R?, we use the momentum for-
mulation for the low frequency part due to the slow decay of the low frequency part uy)
in a weighted L space as in [10].

Some inequalities are prepared for the low frequency part to state the momentum
formulation. The following lemma is concerned with properties of P;.

LEMMA 4.3. [4, Lemma 4.3] (i) Let k be a nonnegative integer. Then Py is a
bounded linear operator from L* to H*. In fact, it holds that

IV*Pufllie <Cllfllie (F € L)

As a result, for any 2 < p < oo, Py is bounded from L? to LP.
(ii) Let k be a nonnegative integer. Then there hold the estimates

IV*faylle + 1 fyllee < Cllifyllee (fay € L),
where 2 < p < 0.

We state the following inequality for the weighted LP norm of the low frequency
part.

LEMMA 4.4. [10, Lemma 4.3] Let k and £ be nonnegative integers and let 1 < p <
00. Then there holds the estimate

e “V* feylle < Clllzl faylle (faay € Ly N LE).
The following inequality holds for the weighted L? norm of the low frequency part.
LEMMA 4.5. Let ¢ € LY with V¢ € L} and w(y) € @(1). Then, it holds that

||P1(¢w(1))|\g;/(l) L, SCUS N +1Voles)(lwa llzee + Vwwllze)

uniformly for ¢ and w(y).

Lemma 4.5 follows directly from Lemma 4.4.
We introduce m 1y and w1, by
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my = w)y + Pi(gw), umym =" (¢a),m)); (4.3)

where ¢ = @) + ¢y and w = w(1) + W()- The following Lemma is related to
reformulation to the momentum formulation for the low frequency part.

LEMMA 4.6. [10, Lemma 4.5] Assume that {ue), w(c)} satisfies the system (4.1)—
(4.2). Then {u(1),m,u(o)} satisfies the following system:

atu(l),rn + Au(l),m = Flow,m(u(l) + U(c0)s g)a (44)
Ot (o0) + At (oo) + Poo (Blu(1) + U(oo)U(sc)) = Frign(u1) + U(oo); 9)-
Here

Flow,m(u(l) + u(oo)7g) = T(Oa Flow,m(u(l) + u(oo)7g))7
Frowm(u) + o), 9) = —Pi{pA(¢w) + aVdiv (¢pw) + &;V(p<1><¢>¢2)

ydiv (g ® w) — %«1 1 8)9)

wi1w2

+70z, ((w2)2 - (w1)2> + 70y, (wzowl) +V(wi)?}. (4.5)

REMARK 4.7. Here we rewrite the convection term div (w ® w) by
. wiws 0 2
div(w @ w) = 0, ( )—i—(‘?z ( )—l—Vw
( ) 2 (w2)2 _ (w1>2 1 L wowy ( 1)
to use the antisymmetry effectively. See Proposition 7.1.

Similarly to Lemma 4.2, the following lemma follows from direct computations which
implies that the antisymmetry of (4.4) holds.

LeEMMA 4.8. (i) Djucyy,m (J = 1,2,3) is a solution of (4.4) ifucyym = T(QS(l),m(l))
is a solution of (4.4).
(ii) Let g satisfy (Ujg)(z,t) = g(z,t) (x € R?, t €R, j = 1,2,3). Then there hold

(L5 (Oury,m + Auy,m — Flowm(U)m + Uy, 9))] (2, 1)
= [atu(l),m + Au(l)ym - Flow,m(u(l),m + u(oo)7g)](x7 t)

fO?” T e R27t S R) .7 =123 ’Lf {F]u(l),m(xvt)aF]u(oo)(x7t)} = {u(l),m(x7t)7u(oo)(x7t)}
(reR% teR, j=1,2,3).

If ¢ = ¢1) + H(0) is sufficiently small, we obtain the solution {u(1), ()} of (4.1)-
(4.2) from the solution of (4.2), (4.3) and (4.4), i.e., we have the following.

LEMMA 4.9. (i) Let s be an integer satisfying s > 3 and u(1y,m = ' (¢(1),m(1)) and
U(oe) = T(d>(oo),w(oo)) satisfy {u(1),m;, U(oo)} € X5ym(a,b). Then there exists a positive
constant &g such that if ¢ = ¢(1) + P(o0) satisfies supyepq ) ([[@llLze +[[VPllL2) < bo, then
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there uniquely exists w1y € C([a,b]; % (1).2) N H (a,b; % (1y,2) satisfying the following
equation

w1y =my — Pi(o(w) + w(s)))s (4.6)

where ¢ = ¢ (1) + (o). Furthermore, we have the estimates
[ 1)||C([a 0 ) < C(lma ||C([a 0 ) + lwioo) le(lapi;L2))s (4.7)

/ 8101y (7, dr < CUUIBT 00 I oy + 19100 E gy 00 oz

+||8t¢||c (asbl:L2) [0 1)|| et X, LOC))

()Hg + 100011 a1:22) o) (7)1
+||3tw(oo (7113 ) dr. (4.8)
>3

(ii) Let s be an integer satisfying s and uym = (¢, ma)) and ue) =
T(¢(m)7w(m)) satisfy {U(1),m:U(so)} € Xgym(a,b). We suppose that ¢ = ¢y + P(oo)
satisfies subyeia (16l + 1Vl122) < do and {ur) my ooy} satisfies

Oru(1)y,m + Auym = Flowm(u@) + ), 9)
wy = my — Pi(ow),
Oht(o0) + Att(oc) + Poo (Blu(1) + (o) [ti(0)) = Fhigh (1) + (o), 9)-

Here w = w(l) + Wsey and w(yy defined by (4.6). Then {u(),uo)} satisfies (4.1)-(4.2)
with uy = T (b, w( )

By using Lemma 2.1 and Lemma 4.4, Lemma 4.9 can be proved by the same way
as the proof of [10, Lemma 4.6] and we omit the details.

Therefore, we consider (4.2), (4.4) and (4.6) because if we show the existence of a
solution {u(1)m, U(eo) } € X3ym (a,b) satisfying (4.2), (4.4) and (4.6), then by Lemma 4.9,
we obtain a solutlon {u (1), U(oo) } € X5ym(a,b) satisfying (4.1)-(4.2).

As in [10], we formulate (4.2), (4.4) and (4.6) by using time-T-mapping to solve the
time periodic problem. We consider the following linear problems for the low frequency
part and the high frequency part respectively:

{atu(l),m + Auym = Fayms (4.9)
U(1)7m|t=0 = U01,m»
and
{atu(oo) + A(oo) + Poo (Bli]t(o0)) = Floo): (4.10)
U(oo)‘t:O = U0co,

where @ = T(&, W), Uo1,m, Yoo, F(1),m and F are given functions.
The solution operators are introduced as follows. (The precise definition of these
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operators will be given later.) Si(¢) stands for the solution operator for (4.9) with
F1y,;m = 0, and % (t) stands for the solution operator for (4.9) with w1, = 0. On
the other hand, S, 4(t) stands for the solution operator for (4.10) with F ) = 0 and
7 «.a(t) stands for the solution operator for (4.10) with 1 = 0.

As in [10], we will look for {u(1) m, Ui} satisfying

{u(l),m(t) = Sl (t)UOLm + Lyl (t)[Flow,m(uag)]7 (4 11)
U(OO) (t> = Soo,u(t)u()oo + yoo,u(tﬂFhigh(uag)]a '
where
{uOl,m = - S1(1)) 21D [Fiowm(u, 9)], (4.12)
U)o = (I - Soo,u(T))ilyoo,u(T)[Fhigh(uag)]v .
u = T(¢,w) is a function given by w1y, = ' (d(1), 1)) and Uoe) = " (B(oo) W)

through the relation

b =d0) + Px), W=Wa)F W), Wy =mqa) — Pr(ow).

From (4.11) and (4.12), it holds that u(1) m (T") = u(1),m(0), U(se)(T) = U(sc)(0). Hence we
look for a pair of functions {u (1) m, u(c)} satisfying (4.11)—(4.12). The solution operators
S1(t) and .1 (t) are investigated and we state the estimate of a solution for the low
frequency part in Section 5; Some properties of So ., (t) and %« 4 (t) Will be stated and
we estimate a solution for the high frequency part in Section 6.

In the remaining of this section some lemmas are stated which will be used in the
proof of Theorem 3.1.

We will estimate integral kernels which will appear in the analysis of the low fre-
quency part. Then we use the following lemma.

LEMMA 4.10. [10, Lemma 4.8] Let £ be an integer satisfying that £ > 1 and let
E(z) :=®, = F ', (z € R?), where &, € C>°(R? — {0}) is a function satisfying

920, e L' (la] < —1+1),
|06 ®4| < CIEI71P1+E (€#0,15] 2 0).
Then the following estimate holds for x # 0,
|B(2)| < Clz| ™"

The following lemma plays important roles to estimate a convolution with antisym-
metry for the low frequency part.

LEMMA 4.11. Let E(x) (z € R?) be a scalar function satisfying

C

o <

(la] > 0) (4.13)

and let f be a scalar function satisfying f € L°. We assume that f satisfies
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f(_xlaxQ) = _f($17x2) or f(fL'17 —./L'Q) = _f($171'2) or f(m27x1) = _f(x1)$2)~ (414)
Then there holds the following estimate.

Cllfllzse

(4.15)
PrROOF. We first assume that |z| > 1. We set R := |z|/2. Then we see that

Ex f(z) = . E(x —y)f(y)dy

:/ E(z —y) f(y)dy
lz—y|>R, [y|>R
E — d E o d
+~/|w—ySR (x—y)f(y) y+/|y|gR (z —y)f(y)dy
= Il+I2+Ig,
where,
I = E(x - dy, Ip = e — p
1 /Iw—yIZR,IyZR (x —y)f(y)dy, I> /ﬂc—y|§R (x —y) f(y)dy,

I3 := /Iy<RE(a: —y)f(y)dy.

Concerning the estimate for Iy, since |y| < |z|+ |z —y| < 3|z —y| if |t —y| > R and
lyl > R, it follows from (4.13) that

1 Clifllzs
LI <C|f m/ y < s

We next derive the estimate of I. Since it holds that |y| > |z| — |z —y| > R if
|z — y| < R, we obtain from (4.13) that

C\fllLs 1 Cll fllrg
< Wiz ay < Wl

As for the estimate of I3, we consider the case such that f satisfies f(—x1,22) =
—f(x1,22). We define § := T (—y1,92) for y = T (y1,y2) on R? satisfying 31 > 0. Note
that f(§) = —f(y). This implies that

I = /|y|<R7 50 E(r —y)f(y)dy + /|y<R, o E(z —g)f(9)dy
:/ {E(z—y) — E(x =)} (y)dy.
ly|<R,y1>0

In addition, we see from (4.13) that



Time periodic problem for the compressible Navier—Stokes equation 261

Clyl  _ _Clyl

Bz —y) = B =9l < 0 —0m < 0y p

(4.16)

for |y| < R. Hence we arrive at

|I3| <

Clifllzs 1 CllfllLg
(1+R)2/| =

_ y < .
yi<r 1+ 1Yl 1+ ||

Similarly, we obtain (4.15) in the case such that f satisfies f(x1, —z3) = —f(21,22). If

f satisfies f(z2,21) = —f(21,22), by setting § := " (ya,41) for y = T (y1,92) on R?, |I3]
is written as

I) = | /| e Bl @y / E(x - §)f(5)dy

[yI<R, y2>y1

_ ‘ /| B =)~ B D

This together with (4.16) yields the required estimate (4.15). By using the estimates for
I; (j =1,2,3), we get the required estimate (4.15) for |z| > 1.

As for the case |z| < 1, the required estimate (4.15) can be verified by direct com-
putations and we omit the details. This completes the proof. O

In addition, we have the following estimates for a convolution.

LEMMA 4.12. (i) Let E(z) (z € R?) be a scalar function satisfying (4.13) and
let f be a scalar function which is written as f = Oy, f1 for j = 1 or 2 and satisfy
02, fillege + I fillege < oo. We assume that fi satisfies (4.14). Then the following
estimate s true.

C

|E*f(fﬂ)|ﬁm

([10x; fillLge + I f1llLge)-
(ii) Let E(z) (z € R?) be a scalar function satisfying (4.13) and let f be a scalar

function of the form: f = 0., f1 for j = 1 or2 and it holds that ||, f1| Lse 4 f1llLge < 00.
Then we have the following estimate.

02 * f(2)] < —C

> W(HamjleL? + ||f1||Lg°)

Lemma 4.12 yields in a similar manner to the proof of Lemma 4.11 and we omit the
proofs.
The following L? estimates hold for the low frequency part.

LEMMA 4.13. (i) Let E(§) (€ € R?) be a scalar function satisfying supp E C {|¢| <
Too} and

C

92 B < fgmvim

for [€] <ree, €] #0, |a] > 0.
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Let f belong to L%l)’l N L1 and we assume that the following case (1) or (2) hold;

(1) f(=z1,22) = —f(z1,22), [(r1,—22) = f(21,72),
(2) f(=z1,22) = f(z1,22), f(x1,—22) = —f(21,22).

Then we have the estimate
17 Bl , <Ol lzzony-

(ii) We suppose that E(¢) (€ € R?) is a scalar function satisfying supp E C {|¢] <
Too} and

c
0 E(&)| < el for [§l < 7oo, [6] #0, |af = 0.

and f belongs to Lﬁl)’l N L1 which satisfies the following case (1) or (2);

(1) f(—z1,22) = —f(z1,22), [f(w1,—22) = f(21,22),
(2) f(—z1,22) = f(x1,22), f(x1,—22) = —f(21,22).

Then there holds the estimate
17 EPll g, ., <Clflugeny.

PROOF. (i) We assume that f satisfies (1) without loss of generality. Since
f(&1, &) = —f(&1, &), it holds that f(£1,0) = 0. Hence we see that

IV ED e < g ]

L2

1 ~
= CH&%‘ L2(|§|§rw)H/0 852f(£1’ng)dTHLw(\ﬁ\Sroo)
< Cllzf| .

Similarly, we obtain the estimate
IVHF N EN Lz < Cllfllinre-

The assertion (ii) can be proved by the same way as that for (i). This completes the
proof. (]

We find the following estimate for the nonlinear term on the low frequency part in
weighted L2 spaces.

LEMMA 4.14. (i) Let w(y) € % (1),4. Then, it holds that

2 2 s
[(wy)*llez + llwa)dz, w2 < C||w(1)||@(l) (J=1,2).
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(i) Let ¢ € %(1) and w(yy € @(1)’#. Then, there holds the estimate
ldwllze + 10, Gwa)lzz < Clol g7, el (=1,2)
ProoF. Concerning the assertion (i), applying Lemma 2.2, we see that

[(w))?llz2 < Cllweyllze

W) ‘
]

L2 < Clwllze [V [ e
Similarly we derive that
w0z, wayllze < C||w<1)||2g)//(1)-

The assertion (ii) yields similarly to the proof of the estimate for (i). This completes the
proof. O

The following inequalities will be used for the analysis of the high frequency part.

LEMMA 4.15. [4, Lemma 4.4] (i) Let k be a nonnegative integer. Then Pu is a
bounded linear operator on H.
(ii) There hold the inequalities

|Pscfllrz < CIV il (f € HY),
[Foo)llz < ClIVFo) e (Floo) € His))-

LEMMA 4.16. [10, Lemma 4.13] Let £ € N. Then there exists a positive constant
C depending only on £ such that

[Poc fllzz < CIV fllLz.
5. Estimates for solution on the low frequency part.
In this section we estimate a solution wu(q) satisfying u(1)(0) = u(1)(7") and
Orury + Augry = Fuy, (5.1)
where F(;) = T(0,15(1)).

We define A; by the restriction of A on 3{(1) X @(1). The symbol S; and .7 (t)
are defined by S;(t) := e~ *41 and

¢
St Fqy = / S1(t — 7)F1y(7) dr.
0
Recall that T'; (j = 1,2,3) are defined by

(T1u)(z) = T (¢(~2), —wi(~z),we(~x)), T2u)(z):= " (o(~z),wi(~z), ~ws(~2)),

(Tau)(z1,22) = " (¢(w2, 1), wo (w2, 21), w1 (2, 21))
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for u(z) = T (¢(x), w1 (z), w2(z)) and x € R2. We have the following.

PROPOSITION 5.1. (i) Ay is a bounded linear operator on Z (1) x % (1). More-
over, S1(t) is a uniformly continuous semigroup on %(1) X @(1) and S1(t) satisfies the
following estimates for all T" > 0;

S](t)U(l) S Cl([07TI]; %(1) X @(1)), atSl()uu) € C([07Tq, LQ),

OS5y (¢ )U(l) =—A15(t )U(l (: —ASl(t)U(l ) S1(0 ) (1) = U(1) for (1) € % (1) X @

k
197 1wl ooy, 20 x Py < Clell 2 s o
for u() € %‘(1) X @(1), k=0,1,

10eS1()uqyloqo, ey < Cllu)ll g~

xZw’

and

10:VS1(t)uqlle oLy < C||“(1)||=%”(1)X )

forun € %(1) X @(1), where C' is a positive constant depending on T".
(i) It holds for each F(1y € C([0,T); & 1)) x L*(0,T;% 1)) that

F1()Fay € CH([0,T]; Z' 1)) x [C([0,T); (1)) x H'(0,T; % 1)),
and

atyl(t)F(l) +A15/1(t)F(1) = F(l)(t), yl(O)F(l) =0,

”‘%(')F(”cho,T];%l)x%m < C”F(””cuo,T];%U)xLZ(o,T;@m)’

10071 () F < CllFll

(0,1 2L 1)) xL20,1:% 1)) = (0,1 Z 1)) xL2(0,1:% 1))

where C' is a positive constant depending on T'. In addition, 8,1 (-)F(1y € C([0,T]; L?),
OV 1()Fqy € C([0,T); L}) for F1y € C([0,T); L}) and we have

10: 1) Fyleo,ryiz2y < CllEwy lleqo,rice)
and
10:V 1) Fyll o,y < CIVFw o,z

where C' is a positive constant depending on T.
(iii) There holds the following relation between Si and .51 .
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S1(t) 1) Fay = Z1(t)[S1(H) Fruy)

for any t >0, t' €[0,T] and F(1y € C([0,T]; %(1)) x L*(0,T; @(1)),

(iv) T;81(t) = S1(1)T; and T;.71(t) = 1)1 for j = 1,2,3. Therefore the
assertions (i)—(iii) above hold with function spaces Z (1) and %1y replaced by (X (1))o
and (% (1)) 4, respectively.

The assertions (i)—(iii) follows by the same way as that in [10, Proposition 5.1]. The
assertion (iv) is verified by the fact I';A; = A;T';, which derive that I';S1(¢) = S1(¢)T;
for 7 =1,2,3.

We next investigate invertibility of I — S1(T).

PROPOSITION 5.2.  There uniquely exists u € (%(1) X @(1))53",1 that satisfies
I —5,(T))u = F1y and u satisfies the estimate in each (1)—(ii) for F(1y satisfying the
(1) 1)
conditions given in either (i)—(iii), respectively.
(i) Fay =03 fay € LgfsymﬂL%l)’l with fy € L%I)OLSO for some « satisfying |a| =1
and f satisfies the following condition

Jay(—z1,22) = — fry(x1,22) or fay(z1, —22) = —f1) (21, 22)
or fay (w2, 1) = —fa)(z1, 72); (5.2)

lll @ oy, < CUFE g + 1 llzs + 1l + 1 Fwlles - (5.3)
(ii) F(l) = T(O, Vf(l)) € Lg?sym N L%l),l with f(l) € L%l) N L5
il g, o, < IR lss + Il + 1wl +1Fwlizh. (64

(iil) Fuy = 95 fa) € LSym N L%ml with f) € L(Zl) N L3° for some « satisfying
ol > 2;

lll @ oy, < CUFE g + 1 llzs + 1wl + 1 Fwlles - (5.5)
To prove Proposition 5.2, we use the following lemmas.

LEMMA 5.3. [10, Lemma 5.3] (i) The set of all eigenvalues of —Ag consists of
X&) (j =1,4), where

M6 = el 1
Ae(8) = =3 (v + P)IEP + 53/ T IR — HPIEP.

If 1€l < 2v/(v + D), then

(v+1v)?

1 .
Reds = —g(w+2)lf,  Imhs = 29lely /1 - —raIe)
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(ii) For |§] < 2v/(v + D), e~ has the spectral resolution

e~ tAe — Z e OT1(¢),

j=1,%=

where I1;(€) are eigenprojections for X\;(§) (j = 1,=£), and I1;(€) (j = 1,£) satisfy

I, (€) = <8 - §g£/£l2) ’

et (OB
e =52 (5% o)

Furthermore, if 0 < roo < 2v/(v + ), then there exists a constant C' > 0 such that the
estimates

MGl < C G =1+), (5.6)
hold for |£] < Treo-

Hereafter we fix 0 < r1 < 7o < 2v/(v + 7) so that (5.6) in Lemma 5.3 holds for
€] < rec.

LEMMA 5.4. [10, Lemma 5.4] Let « be a multi-index. Then the following estimates
hold true uniformly for & with |§| < ro and t € [0,T].

(i) [0gM] < ClE*71o, ogaL| < ClE*1el (Jal = 0).

(ii) (9T Fy)| < ClE[TIF ], [(08TL) iyl < CIEITINEy| (Ja| > 0), where
Fuqy = T(Fa)aFu))-

(iii) [9g (M) < CIEP (lal > 1).
(iv) [9g (M) < Clel* 1 (Ja| > 1).

(v) [@2e~ ) By < CEIEY | + [ Ew)) (ol > 1), where Fyy =
T(FY), Fay).

(vi) [9g(I — M)~ < ClE[2 10T (Jaf > 0).
(vil) 02(I — e¥) 1] < Clg[ 1ol (ja] > 0).
We define
Byj@) = F (ol — M) 7TL) (j=1,4) (z€R?), (5.7)
where g is a cut-off function defined by xo := F~1xo with Yo satisfying
Xo € CF(R?), 0<X0<1, xo=1 on {|¢| <7}, suppxo C {[¢] < 2rec}. (5.8)

We have the following estimates for Fy ;.
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LEMMA 5.5. There hold
|09 By ()] < C(1 + [a]) =D

Jor|a| > 1,2 € R? and
00 By 4 (z)] < O(1 + |z])~(FleD

for la| >0,z € R?.
By using Lemma 4.10 and Lemma 5.4, Lemma 5.5 can be proved in a similar manner

to the proof of [10, Lemma 5.5] and we omit the details.
Since II; is the projection to the solenoidal vector space on R?, we have the following

property for IT;.
It holds that

IL(EVEE) =0 (€40, €] < 7o),

LEMMA 5.6.

where F is a scalar function in H'.

We are now in a position to prove Proposition 5.2.

PROOF OF PROPOSITION 5.2. (i) We suppose that F(;) = 0., f(1) without loss of

generality. We define u = " (¢, w) by

u:

FHI =) )
FH((i&) (I - efTAg)flfu)) =& x [y,

where

E=FMi& Y, By

Jje{1,£}

E ; are the ones defined in (5.7). We obtain from Lemma 5.5 that
07E ()] < C(L + [af)~H1D (5.9)

for |a| > 0, z € R?. Therefore, by Lemma 4.11, Lemma 4.12 (i) and (5.9), we find that

|wllLee + [[Vwllzge < C{IFayllnge + [ fyllge}- (5.10)

Concerning the weighted L estimate for ¢, We also obtain from Lemma 4.4, Lemma

4.12 (ii) and Lemma 5.5 that
19l + VOl < ClllFwleg + 1fwlles}-

This together with Lemma 5.4 and (5.10), we get that u € %(1) X @(1), (I—-51(T)u=
F(1y and u satisfies the estimate (5.3). By the assumption of F{;) and Proposition 5.1 (i)
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and (iii) we see that I'ju =u (j =1,2,3), i.e., u € (Z 1) X (1)) sym-
(ii) By Lemma 5.6, we derive that

U= ]:_1((1 — e_TAE)_lp(l)) = ]:_1{ Z E17jﬁ(1)}
Jje{=£}

for Fiiy = 7(0,Vfa)) € LEym N L%l)yl with fq) € L?l) N L$°. Tt then follows from

Lemma 4.12 (i), Proposition 5.1, Lemma 5.4 and Lemma 5.5 that u € (2 (1) X %/(1)) sym,
(I = S1(T))u = F(1) and u satisfies the estimate
lull 2w, < ClUFED Iz + I wllzs + 1l + 1 Fwlls}-

We arrive at the assertion (iii) from Lemma 4.12 (ii), Lemma 5.4 and Lemma 5.5
similarly to the assertion (ii). This completes the proof. O

In view of Proposition 5.2, if F{;) satisfies the each condition (i)-(iii) below, the
I—51(T) has bounded inverse (I —S1(T)) ™" in (2 (1) x Z(1)) sym satisfying the estimate
in (i)—(iii) respectively;

(i) Fay =03 fay € ngymmL%m with f1) € L%l)ﬂLgo for some « satisfying || =1
and f(y) satisfies (5.2);

~1
I =5TN" Foyll g, < CUIFw s + I wllzs + 1 wllze + 1Fw iz}

(ii) F(l) = T(O, Vf(l)) € Lg?sym N L%UJ with f(l) € L(21) N Ls°;

10— SO Fooll g, . < CUIFwllzz + Mool +ooles +1Fli)

(iii) Fruy = 05 f) € LSym N L(Ql)’1 with f) € L%l) N L3° for some « satisfying
laf > 2;

1L — Sl(T))‘lF(1)|\%<1)X@(1) < C{IFwllee + Iy llzg + 1 fwllee + 1 Fqyllzz}-

We can write .1 (t)F(1) and S1(¢)1(T)(I — S1(T)) " F1) as
T
Si1() L1 (T — Si(T)) ' Fuy = /0 E\(t,0) * Fqy(o)do, (5.11)

t ¢
() F ) = / Sy(t — 7)Fy(r)dr = / Es(t, ) * Foyy (r)dr, (5.12)
0 0
where F;(t,0) and Es(t,7) are defined by

E1 (t, O') = ‘F_l{)%Oe_tAs (I _ e_TAS)_le_(T_U)AS}’
EQ(]‘," T) = ‘F_l{XOe_(t_T)Ag}

for 0 € [0,T], 0 < 7 <t < T, xo is the cut-off function defined by (5.8). Then
Ey(t,0) x F1y and Eq(t, 7) * Fyqy are estimated as follows.
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LEMMA 5.7. Ej(t,0) * F(l) € (%(1) X @(1))Sym and Es(t,T) * F(l) € (%(1) X
Y 1)) sym (t,0,7 € [0,T),j = 1,2) if Fy) satisfies the conditions given in either (i)-(iii)
and Ey1(t,0) * F(1y, Ex(t,7) * F(1) satisfy the following estimate in each (i)-(iii).
(i) Fy =03 fa) € Lgf’symﬂL%l)’l with f1) € Lfl)ngo for some « satisfying |o| =1
and f(1) satisfies (5.2);
1Bt 0) x Foll g oy +1B2(67) * Fyll g oy
< C{IFwllzge + Ifyllese + 1 fayllze + ||F(1)||L§}

uniformly for o € [0,T] and 0 <7 <t <T.
(ii) Fuay = 0, Vf(l)) e L, N L%l),l with f1) € L%l) N Lse;

3,sym
1Bt o)« Fpll g oo, + 1B 7) « Fgll g oy
< C{IFwllee + 11 fwllege + 1 fllze + [[Fallze}

uniformly for o € [0,T] and 0 <7 <t <T.
(iil) Foy = 95 f(1) € LS%ym N L(21),1 with f) € L%l) N L3 for some o satisfying
ol > 2;

1Bt ) * Eoyll g ooy + B8 T) « Foll g oy
< C{lIFwylleg + 1 foyllege + 1flle + 1Fqllzz}
uniformly for o € [0,T] and 0 <17 <t <T.
Proor orF LEMMA 5.7. It follows from Lemmas 5.3 and 5.4 that
0 (Ro(i€) e~ (I — 7T Ae) e (=) < Ol 1ol 1,
19 (Ro(i€)" e 774 < Clg=1 1,
for 0 €0,7),0<7 <t <T and |a|, |3] > 0. Hence by Lemma 4.10 we see that

|02 B1(2)] < C(1+ [z (la] > 1), (5.13)
|02 Bz ()] < C(1+ |z])~@FeD (ja| > 0). (5.14)

This together with Lemma 4.11 and Lemma 4.12 we obtain the desired estimate in a
similar manner to the proof of Proposition 5.2. This completes the proof. O

The symbol ¥; and ¥s stand for

Uy [Fiyy)(t) = S1.(6)-S1(T)(T — Sy (T)) ™ (F?1)> » ol F)(t) == S (1) (F?l)

> .(5.15)

For ¥, and ¥, we derive the following estimates.

PROPOSITION 5.8. (i) If F(y) satisfies Fo) = 03 fay € L*(0,T; L5, N LY )
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with fy € L*(0,T; L%l) N L§°) for some a satisfying || = 1 and f(1) satisfies (5.2),
then W;[Fy] € CH([0,T); Z'1),0) x [C([0,T); Z 1) 4) N H' (0, T 1) 4)] (j = 1,2) and
W;[F(1)] satisfy the following estimates.

||8£C\I/] [F(l)]HC([O,T];%(U)XLZ(O,T; ) < C(”F(I)HLQ(O,T;LgoﬁLf) + ‘If(l)"LQ(O,T;LgoﬂLQ))

fork=0,1andj=1,2.

(i) We have that ‘Pj[ﬁ(l)] € Cl([O,T};%(l)’O) X [C([O,T];@(l),#) N
HY0,T;% 1)) (3 = 1,2) for Fuy = Vfa) € L2(0,T5 Lg%, N Lfm) with
fay € L*(0,T; L%l) NLL) and ¥; [ﬁ’(l)] satisfy the estimates

|0F; [Fm]Hc([o,ﬂ;ﬂi%)xﬁ(omg/m) < CUIF) lz2o,riegnez) + Ifwllzzoizsnze)

fork=0,1 and j =1,2.

(iii) Let Fi1y = 93 fy € L*(0,T5 LTy N LYy ) with fay € L*(0,T5 L, N LS°) for

some « satisfying || > 2. Then \I/j[ﬁ'(l)] € CH[0,T); X (1y,0) x [C([0,T); Z1).4) N
HY0,T;%1),2)] (j=1,2) and ¥ [ﬁ'(l)] satisfy the estimates

||aé€\:[jj [F(l)] HC([O,T];%(D)XLQ(O,T;%U) < C(”F(l) ”LQ(O,T;LL?’OQLf) + Hf(l) ||L2(O,T;Lg°ﬂL2))
fork=0,1andj=1,2.

PROOF.  As for the assertion (i), it follows from Proposition 5.1 (i), (ii) and Lemma
5.7 that

”\I}j[ﬁ(l)]”c([o,T];%(l))xL?(o,T;@(l)) = C(”El)”L?(O,T;LgOmL{) + ||f(1)||L2(0,T;LgOmL2))

for j =1,2,
‘Iatlpl[ﬁ(l)]||C([O,T];£-(1))XL2(O,T; (1)) S C(Hﬁ(l)HLz(O,T;Lé’OﬂL%) + ||f(1)||L2(O,T;L§°ﬂL2))a
and
”at\IjQ[F(l)]”C([QT]%:%'(U)XLz(O»T;gu))

< CIFwllreompeenesy + 1fwlleeo.riienc) + ||1*:’<1)||L2(07T;@(1)))~

Note that F(l) = Xo *F(l), where xo = F X0, Xo is the cut-off function defined by (5.8).
Since ¥o belongs to the Schwartz space on R?, we get that

102 x0()] < O(L+ [2) =+ for |af > 0.

Therefore, we derive the following estimate for || F, (1) HL2 o) in a similar manner to
I3 (1

the proof of Proposition 5.2.

||F(1)||L2(07T;g(1>) < C(||F(1)||L2(O,T;Lg°ﬂLf) + ||f(1)||L2(O,T;L§°ﬁL2))-



Time periodic problem for the compressible Navier—Stokes equation 271

Consequently, we obtain the desired estimate in (i). Similarly, we can verify the assertion
(ii)—(iii). This completes the proof. O

By using Proposition 5.8, we give estimates for a solution of (5.1) satisfying u(1)(0) =
U(l) (T) .

PROPOSITION 5.9. Set
Y[Fp)]() == O[] + W2l Fy), (5.16)

for Fqy = T(O,Z}(l)), where Uy and Uy were defined by (5.15). If ﬁ'(l satisfies the con-
ditions given in either (1)—(iil), then ¥| (1)] is a solution of (5.1) with F1y = "(0, F(l))
in Z1),5ym (0, T) satisfying | (1)]( ) =] (1)]( ) and V[F ] satisfies the estimate in
each (i)—(iii), respectively.

(i) Fuuy = 09 f) € L*(0,T5 Lg%, N LYy ) with fy € L*(0,T; L) N L5°) for some
a satisfying |af = 1 and fe) satisfies (5.2);

H‘I’[F(l)]” < C(Hﬁ(l)HLZ(o,T;Lgomf) + Ifyllzz0.1iL5nL2))- (5.17)
Qﬁ(l)(o’T)

(i) F1y = Vfa) € L*(0,T5 L, N L?

(1,1 1) with fa) € L?(0,T; L?

) NL);

W [Fy]l < CIFwllzmegenes + I fmlzorgnc).  (5.18)
g(l)(O,T) 3

(iii) F(l) = 0% fy € L*(0, T; L, N L(l) 1) with fa1y € L*(0,T; L%l) N L§°) for some
a satisfying || > 2;

H‘I’[F(l)]Hff LT S ClFwllzzomizzncs) + lfwlzoroear).  (5.19)

PROOF. By Proposition 5.1 (iii) and Proposition 5.2 we see that \II[F(l)] is a solu-
tion of (5.1) with F3y = 7(0, F(l)) and satisfies \I/[F(l)](O) \I![F(l)](T) The estimates
and antisymmetry of \II[ ] in (i)-(iii) are verified by Proposition 5.8. This completes
the proof. O

6. Estimates for solution on the high frequency part.

In this section we estimate a solution for the high frequency part. We begin with
some properties of S z(t) and oo 4 (t).
As for the solvability of (4.10), we state the following proposition.

PROPOSITION 6.1.  Let s be an integer satisfying s > 3. Set k = s—1 or s. Assume
that
v e C([0,T); H*~Y N L*(0,T"; H?),
Uoco = T(¢0007w000) S H(koo)v

T n 2 . k k—1
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Here T' is a given positive number. Then there exists a unique solution () =
T (B(o0) W) of (4.10) satisfying

P(o0) € C[0,T"); H),

wieey € C([0,T]; Hin)) N LA(0, T HEL) N HY (0, T HE ).
One can verify Proposition 6.1 in a similar manner to the proof of [4, Proposition
6.4] and we omit the details.

REMARK 6.2. Concerning the space dimension n, in [4, Proposition 6.4] we assume
that n > 3. But we can replace the space dimension to n = 2 by taking a look at the
fact that [2, Theorem 4.1] holds for the space dimension n = 2 and the proof of [4,
Proposition 6.4]. See also [10, Remark 6.2] for the condition of .

Therefore, it follows from Proposition 6.1 that we can define S () (t > 0) and
S a(t) (t €[0,T)) as follows.
Let an integer s satisfy s > 3 and a function @ = ' (¢, W) satisfy

¢ € Cper(R; H®), Vb € Cper(R; HS 1) N L2, (R; H?). (6.1)

per

Let k = s — 1 or s. We define an operator Sy 4(t) : HF

k
(o) — Hix) (12 0) by

U (o) (t) = Soo,ﬂ(t)UOOO for wpeo = T(¢Oooa“’000) € H(koo)a

where (o) (t) is the solution of (4.10) with F(.) = 0. Moreover, we define an operator
S ooalt): L0, T; HE ) x HE ) — HE ) (t € [0,T]) by

U(oo)(t) = ym’g(t)[F(oo)] for F(OO) = (F(Oo),F( ) € L? (0,T; H(k ) H(koo)l)

where () (t) is the solution of (4.10) with ugee = 0.
We have the following properties for S z(t) and %o a(t) in the weighted L*-
Sobolev spaces.

PROPOSITION 6.3.  Let s be a nonnegative integer satisfying s > 3 and let k = s—1
or s. We suppose that u = T((ﬁ,u?) satisfies (6.1). Then there exists a constant § > 0
such that if |[VO| oo, 155~ 1)nL20,131) < 0, then the following assertions hold true.

(i) For upso = " (Pooos Woss) € H(Oo os there holds Soo i(-)Uose € C’([O,oo);Hé“oom)
and there exist constants a > 0 and C > 0 such that S a(t) satisfies the following
estimate for all t > 0 and ugso € H(koo),2'

HSOO,fL( oo || g1 < Cem ™ HUOOOHHk o,

(c0),2 2’

(ii) For Flo) = T(F(Oo),F(OC)) e L? (()TH(’COC)2 X H(oo) 5), there holds
T ooi(VF) € C([O,T]'H( ),2) and S w.u(t) satisfies the following estimate for
t € [0,T) and Fooy € L2(0,T; H

(60),2 X HZ“ )2) with a positive constant C' depending
onT.
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(00),2

t 1/2
IS sl < O] [ Nl s ar}

(iii) We define Tk 2(SOQJI(T)) by the spectral radius of Seo a(T) on HF
it holds that TH )Q(SOO,Q;)(T)) < 1.
(iv) I — Seo.a(T) has a bounded inverse (I — Soo.a(T))! on H( ),2 Satisfying

(00),2" Then

1T = Sooa(T) Mully_, < Cllulgs_, Jor we HE o

(v) Suppose that T'ju = @ for j = 1,2,3. Then it holds that T'jSs 4(t) = Sec.a(t)T;
and I} S oo ,a(t) = 45”00 ar;. Accordmgly, the assertions (i)— (1v) hold true in function

spaces H o)z and H( X H( .2 replaced by (H(OO) o)sym and (H(OO) o X HI L Yy,

0),2 (0),2

respectwely ifTu=1a (j =1,2,3).

We can verify Proposition 6.3 in a similar manner to the proof of [4, Proposition
6.5] and we omit the proof.

REMARK 6.4. As for the space dimension n, in [4, Proposition 6.5] it is assumed
that n > 3. But it is replaced by n = 2 due to taking a look at the proof of [4, Proposition
6.4]. See also [10, Remark 6.2] for the condition of w.

We are now in a position to give the following estimate for a solution () of (4.10)
satisfying (o0)(0) = t(o0)(T).

PRrROPOSITION 6.5. Let s be a nonnegative integer satisfying s > 3. We suppose
that

with k = s — 1 or s. We also assume that i = | (¢, W) satisfies (6.1). Then there exists
a positive constant 0 such that if

V@ e o195~ 1)nL2 0,13 15) < 05

then the following assertion holds true.
The function

U(o0) (1) = Soo,a () = So0,a(T)) ™' c0a(T)[Floo)] + L .a(O)[Floy]  (6.2)
is a solution of (4.10) in ﬁfk ).2,5ym (0, T') satisfying u(o0)(0) = u(eo)(T') and the estimate

||u ”ffk LO.1) = C||FOO)||L2(OTH XH{

(00),2 )2)

Proposition 6.5 is directly derived by Proposition 6.3.
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7. Proof of Theorem 3.1.

In this section we prove Theorem 3.1.
The estimates for the nonlinear and inhomogeneous terms are established here. We
set Flow,m(u7g) and Fhigh(uvg) by

0
Flow,m(u’ g) = <Fl (u g)) ’

Frign(t, g) = ( Fl,f’iz’(i“; )> P, (—vw s Fo(u>> ,

where u = T (¢, w) is given by U(1),m = T(qb(l),m(l)) and (o) = T(d)(oo),w(oo)) through
the relation

=Py + Do)y W =Wy + Wy, w1y =m) — Pi(ow),
Fiowm(t,g), FO(u) and F(u,g) were given in (4.5), (3.5) and (3.6), respectively,

As for the estimate Foy m(u, g), we use the notation ¥ introduced in section 5, i.e.,

U[F)](t) = $1(0) LD = Su(T) ™! (F?>> +71(1) (F?)) |

We have the following estimate for W[F gy, m(u, g)] in Z(1),5ym (0, 7).

PropPoOSITION 7.1. Let U(1),m = T(gf)(l),mu)) S (%(1) X @(1))sym and U(c0) =

T(¢(oo)7w(oo)) € H(goo)z,sym satisfying

su U t + su u t s
OStETH wmOl g OgthH (o0) ()l 15

. 1
+ sup [[¢(t)]rge + sup [[Vo(t)lz < min{do,d, 5},
0<t<T 0<t<T

where 8,0 are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ¢ =
®(1) + P(s0)- Then we obtain the following estimate

H\I/[ﬁ‘low,m(ua g)] Hg(l)(O,T)
< Cl{t(1y ms o) N 0.1 + C(l + H{U(l)m@yU(oo)}”XS(O,T)) [9]s5

uniformly for w1y m and u(oo)-

PrOOF. Let ut) = T (¢ wW)) (j =1, 00), wl) = T(wy),wéj)) and we define

@,,2) 0
Gy, u®) = —p, 0, o 2 Ds :
1(uM) u?)) 19 YOz, wél)wéw—wgl)w?) + Y0z, wgl)wéz)
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Go(u, u®) = =P (79 (w{Vw(?)),
Gs(ul?, u®) = =Py (uA(¢Mw®) + aVdiv (D w?))),

@@mmw®wa<fV<ww”¢ﬂ)

Gs (¢, uM u?) .= — Py (vdiv (™M @ w?)),
Hp(uV, u?) .= Gp(uV,u?) + Gp(u?,uY), (k=1,2,3),
Hi(¢,uM, ul®) = G, ™, u®) + Gp(¢,u®,uV), (k=4,5).

And we then write \P[Flou,,m(u79)] as

3
U[Fiow,m(u,9)] = Y (W[Gr(uqy, um))] + [Hi (w1, u(oo))] + UGk (th(o0), (o))
k=1

5
k=4

1 1
-HIJ{I—&-(;S g}—i-\lf{qboog].
S 1+ ow) G
Using Lemma 4.14 and (5.17) we have the following estimate for W[G1 (u(1), u())].
19161 ey, w22, oy < ClHtctys o} ooy

Concerning the estimates W[G2(u(1), u1))] and W[G4(d, u(ry, u(1y)], applying Lemma 4.14
and (5.18) with f(1) = (w(1))? and f) = pﬁ(qﬁ)cﬁ%l) we obtain the estimates

191Gy w0l 2, 2y < Oty 1oy} ety
||\II[G4(¢’ u(1)7 u(l))] || g(l)(O,T) —= CH {u(1)7 u(oo) } ||Xg (0,T)"

By using Lemma 4.14 and (5.19) we arrive at the following estimate for W[G'3(u 1), u(1))]-

121Gyl 22, 0.7y < Oy oo} e oy

It follows from Lemma 4.4, Lemma 4.14 and (5.17) that we get
G (uqy, ueeo))lll g2 oy < Cl{uqy, o) Hixs(o,1)>
G (uoo), weo)) 22, (o) = < Cll{uqy, o) Hxs 0,1y

Similarly, by Lemma 4.4, Lemma 4.14, (5.18) and (5.19) we obtain for k = 2,3 that

TGk (), ue)lll g2 o,y T 101G (b uq), weo)lll g2, o 7y

HI (G ey w27, .11 PGty w)ll g2, o
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< ClH{ury, uioo) Hixs 0.1y

G'5(¢,u,u) is estimated by same way as that in the estimate for W[G1(u(1), u(1))] and we
see that

10 (Gs(wwlll g o 7y < Cl{u) o) Hixe 0.1y

As for the estimates for W[(1+¢(1))g] and ¥[¢ (9], it holds from Lemma 4.13 and (5.17)
that

11+ 60)slll g, .z + I¥E00e0181l 21, (0.r) < O+ ), oo} 0)lle

Therefore, we find that
1% [F 10w (u, Mz, or = < Cl{uy, o) H s 0.1) +C<1 + [{u (s ooy Hix= o, T))[ Js-

Consequently, we obtain the desired estimate by applying Lemma 4.9 (i). This completes
the proof. 0

We state the estimates for the nonlinear and inhomogeneous terms of the high fre-
quency part.

PROPOSITION 7.2. Let U(1),m = T(¢(1),m(1)) € (%(1) X @(1))31},“ and U(oo) =
((b(oo)aw(oo)) € H( ),2,sym Sat’LSfyan

su U t + su U t s
OSthII wm®ll g OSthll (o0) () [l 225
. 1
+ sup [|¢(t)]lze + sup [[Vo(t)]|rz < min§do. 0,5 ¢,
0<t<T 0<t<T 2
where dg,0 are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ¢ =
(1) + P(s0)- Then we have the estimate
||th’gh(ua9)||L2(0,T;H5xH5*1)

< Cl{ugwy ms oo W oo,y + € (14 {11y ooy Hlxco 1) ) 9l
uniformly for uym and (o).

Proposition 7.2 follows in a similar manner to the proof of [10, Proposition 7.2] and
we omit the details.

By the same way as that in the proof of Proposition 7.1, we have the following
estimate for Flow,m(u(l), g) — Flow,m(u@), g).

PROPOSITION 7.3.  Let uglf (q&é’f)), (k)) € (X1 X Za))sym and uE )) =
(qﬁgg), (];o)) € H{ ) 2 sym Slisfying
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(k) (k)
t + Ol 7o
S, [[t1y € )II%M@(U Oilnglu(oo)( IS

. 1
+ sup (6 (1)l Le + sup [V (1) 2 < min {5076,2},
0<t<T 0<t<T

where 0y, 0 are the ones in Lemma 4.9 (1) and Proposition 6.5 respectively and o) =

o) + ¢") (k= 1,2). Then it holds that

A (1) _F (2)
||\I’[Flow,m(u 79) Flow,m(u ’g)ng(l)(O,T)

2
(k) (k) ) @ a0
SCkzH{“u)vm’“(ow}Hxsm,T) H{“m ~am o) u(oo)}Hbefl(o,T)
=1

{ (€] (2) (1)

+Cls || 180 m ~ B(1)mr Yoo) ~ <oo>}HXe ‘o)’

uniformly for u ; and ugk)).

We next estimate Fh,»gh(u(l)7g) — Fhigh(u@),g).

PROPOSITION 7.4. Let uE’f (qbglf;, (1)) (Z 1) X Z1))sym and u =
k) (k)
(d)éoi), (oo)) € H{ ) 5 gym Salisfying

(k) (k)
t + t s
S [[tt1y 1 ( )Ilggmxgm Ozgnglu(oo)( M e

. 1
+ sup (6 (t)|lLe + sup VP (1) 2 < min {507572},
0<t<T 0<t<T

where do,0 are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ok =

o) + o)) (k=1,2). Then it holds that

HFhigh(’U,(l), g) — Fhigh(u(2)7 g)] HLQ(O,T;H§_1XH§_2)

2
& (k) M @ D@
SCZH{%W <oo>}Hxs(0T H{ Y(1)m H(o0) (OO)}HXb‘*l(O,T)
k=1
@ o @
{“<1>7m U(1),mr Uoo) ~ <oo>}HXS_1(O7T)’

uniformly for u ; and ugk)),

+Clgls

Proposition 7.4 easily follows from Lemmas 2.1-2.4, Lemma 4.4, Lemma 4.15 and
Lemma 4.16 in a similar manner to the proof of Proposition 7.2.
The following estimate is concerned with Proposition 7.6.

PROPOSITION 7.5. (1) Let U(1),m = T(¢(1),m(1)) S (%(1) X @(1))51”” and U(so) =
T((b(oo)vw(oo)) € H( ),2,sym satzsfymg
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sup [lu)m(@ll g7 ap + sup lugee)(t)llag

0<t<T 0<t<T
. 1
+ sup [[¢(t)]re + sup [[Vo(t)|rz < minqo,d, 5 ¢,
0<t<T 0<t<T

where dg,0 are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ¢ =
®(1) + P(s0)- Then it holds that

”Flow,m(u?g)”C([O,T];L?) + ||VFlow,m(uvg)HC([O,T};L%)
< C”{“(l),m?u(oo)}HQXS(O,T) + C<1 + H{u(l),rmu(oo)}HXS(&T)) l9]s,

uniformly for w1y m and u(o)-

.. k k k k k k
(ii) Let U’El)),m = T(d)gl)),mg )) (Z ) x @/(1))sym and U( ) = (¢EO<)>)’ Eoi)) €

H? satisfying

(00),2,5ym

(k) (k)
su u t + su U t s
Ogth” (1),m( )H%(I)Xg/(l) 0§t£T|| (oo)( M g

. 1
+ sup (6™ (t)]lLe + sup [V (1) 12 Smln{éoﬁ,z},
0<t<T 0<t<T

where 8,8 are the ones in Lemma 4.9 (i) and Proposition 6.5 respectively and ¢F) =
o0) + ok) (k=1,2). Then it holds that

||Flow,m(u(1)ag) - Flow,m(u(2),g)||L2 + ||VFlow,M(U(1)a9) - Flow,m(u(z)ag)“Lf

2
(k) GRS (2)
<3 |[{uldmu . “0.1) [l = Bl — w2 }]

= Xe=1(0,T)
1) (2) ® _,
+Clgls | {uf3) o = 03 ol - <oo>}”Xsfl(O,T) )
uniformly for uglf; m and uggj)

Proposition 7.5 follows from direct computations based on Lemma 4.14.

We obtain the existence of a solution {u (1) m, %)} of (4.2), (4.4) and (4.6) on [0, T
satisfying u(1),m (0) = u(1),m (T") and v (s0)(0) = U(s0)(T") by similar iteration argument to
that in [10].

0 _ _ ©) ,©
Uy = (d)(l), (1)) and u(oo) = (gb(oo), W(o)) are defined by

ul) (1) = 51()F 1T~ 51(T)) "Gy + F1(1)[Ga),

U4)m
wy = m) - PeOuw®), 1)

Ul () = S0 0T = 820.0(T)) 17 00, 0(T)[Goc] + -7 s0.0(1) [Goc],

where t € [0,T], G = T(O,%g(x,t)% G1 = PG , Goo = PuG, 99 = ¢§(1); + ¢Egl) and
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0 0 0 0 0 0
vt _(Al;;g ; + wE )) Note that “8 m(O) Elg m(T) and ugoi)(O) = uE;)(T)

. Uy = (¢>(1) , (1) ) and u (qb(oo), (Oo)) are defined, inductively for N >
; BY

U (8) = Su(t M( T = ()™ Froum (W™=, 9)] + S 1(8)[Fronsm (N0, g)],
Eiv)) = m(1) — Pi(¢MwM),

(7.2)
ul) (1) = 8o uiv— (NI = S v (1) 717 v (1) [Fign (u®™ =1, g)]
+yoo,u(N*1) (t)[Fhigh(u(Nil)a g)]7
_ (N—-1) 1) (N 1) (N— 1) (N-1) (N)
where t € [O,T], U(N D= U(l) +u(oo) (1) (¢(1) (1) )7 ¢ ¢(

¢(N) and w™) = wEf)]) +w(N)) Note that ug) (0) = Eﬁ) (T') and u (O) (0) (T)
The symbol Bxgym(a,b)( r) stands for the closed unit ball in Xfym( b) centered at 0
with radius r, i.e.,
B (a, b) - {{u(l mau(oo)} € bem(a b) H{U (1),m> U )}”X’“(a,b) < T} .

We have the following proposition from Propositions 5.1, 6.5, 7.1, 7.2, and 7.5 by

the same argument as that in [10].

PROPOSITION 7.6.  There exists a constant 61 > 0 such that if [g]s < 61, then it
holds that

i (N) ()
(1) H{ (1) m? (Oo)}HXS(O,T) < Cl[g]sa
for all N >0, and
(N+1) _(N) (N+1) (N)}‘
(ii) H{ Udym’ = U W)~ ) X+=1(0.1)
N) 4V, (N1
= Cilgls { Uym T H),m 2 Moo) T Yoo }Hxs_l(oﬁTy

for N > 1. Here Cy is a constant independent of g and N.

Concerning the existence of a solution {u(1) m, Uy} of (4.2), (4.4) and (4.6) on
[0, T satisfying u(1),m (0) = u(1),m(T) and u()(0) = u(c)(T'), we state the following

PROPOSITION 7.7.  There exists a constant 6o > 0 such that if [g]s < da, then
the system (4.2), (4.4) and (4.6) has a unique solution {u(1)m,ue)} on [0,T] in
Bx:, . 0,1)(C1lgls) satisfying w),m(0) = w),m(T) and u(e)(0) = (o) (T). The unique-
ness of solutions of (4.2), (4.4) and (4.6) on [0,T] satisfying u(1),m(0) = u)m(T) and
U(oo) (O) = U(x0) (T) holds in BXﬁym(QT) (0152).

COROLLARY 7.8. There exists a constant 63 > 0 such that if [g]s < O3, then
the system (4.1)—(4.2) has a unique solution {u(l),u(oo)} on [0,T] in Bx:  (0,1)(C2lgls)
satisfying u;)(0) = ugj)(T) (j = 1,00) where ugjy = " (¢, we)) (7 =1,00) and Cy is a
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constant independent of g. The uniqueness of solutions of (4.1)—(4.2) on [0,T)] satisfying
u(;)(0) = u;)(T) (j = 1,00) holds in BXsym((LT)(CQ(Sg).

Proposition 7.7 and Corollary 7.8 follow from Lemma 4.9 (i) and Proposition 7.7 by
the same way as that in [10] and we omit the proofs.

As for the unique existence of solutions of the initial value problem, (4.1)—(4.2), the
following proposition can be proved from the estimates in sections 5-7, as in [4], [10].

PROPOSITION 7.9. Let h € R and let Uy = Uy + Uyeo with Uy € %(1),sym X
g(msyn and Upso € H(SOO) 2. sym" Then there exist constants 64 > 0 and C3 > 0 such that

if

M(Uor, Uosor 9) = 0ol gy + Vol , +[g]s < 04,
there exists a solution {u(1y, Uy} of the initial value problem for (4.1)—(4.2) on [h, h+T)
in Bxgym(h’thT)(CgM(Um, Uoss, 9)) satisfying the initial condition u(j)|i=n = Uoj (j =
0,00). The uniqueness for this initial value problem holds in Bijm(h,h+T)(0364)-

Therefore, we can extend {u (1), %()} periodically on R as a time periodic solution
of (4.1)—(4.2) by using Corollary 7.8 and Proposition 7.9 in the same argument as that
given in [4]. Consequently, we obtain Theorem 3.1. This completes the proof.
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