
04-7484: 2017.12.26

c⃝2018 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 70, No. 1 (2018) pp. 95–110
doi: 10.2969/jmsj/07017484

Montesinos knots, Hopf plumbings,

and L-space surgeries

By Kenneth L. Baker and Allison H. Moore

(Received Apr. 7, 2016)

Abstract. Using Hirasawa–Murasugi’s classification of fibered Mon-
tesinos knots we classify the L-space Montesinos knots, providing further ev-

idence towards a conjecture of Lidman–Moore that L-space knots have no
essential Conway spheres. In the process, we classify the fibered Montesinos
knots whose open books support the tight contact structure on S3. We also
construct L-space knots with arbitrarily large tunnel number and discuss the

question of whether L-space knots admit essential tangle decompositions in
the context of satellite operations and tunnel number.

1. Introduction.

From the algebraic viewpoint of Heegaard Floer homology, L-spaces are the “simple”

3-manifolds. They are the rational homology spheres with rank as small as possible, i.e.

the manifolds Y such that rk ĤF (Y ) = |H1(Y ;Z)|. These include S3, the lens spaces

(except S1×S2), the other elliptic manifolds, many Seifert fibered spaces, as well as many

hyperbolic manifolds [OS05]. One way to construct examples of L-spaces is through

“bootstrapping” a known L-space surgery on a knot. It follows from the Heegaard Floer

surgery exact triangle that if r > 0 surgery on a knot K in S3 is an L-space, then for

every number s ≥ r the result of s-surgery on K is also an L-space [OS05]. Capturing

this, a knot K in S3 admitting a positive Dehn surgery to an L-space is known as an

L-space knot.

So which knots are L-space knots? This question would be answered with a geometric

characterization. Already established are the fiberedness [Ni07] and support of the tight

contact structure [Hed10, Corollary 1.4 with Proposition 2.1] for L-space knots. Using

these properties, the structure of the Alexander polynomial of an L-space knot [OS05],

and the determinant-genus inequality for L-space knots [LM13, Lemma 5] we further

probe a conjecture about geometric decompositions of L-space knots.

Conjecture 18 (Lidman–Moore [LM13]). An L-space knot has no essential Con-

way sphere.

To do so, we first extend the results and techniques of [LM13] to obtain a classifi-

cation of the L-space knots among the Montesinos knots.
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Theorem 1. Among the Montesinos knots, the only L-space knots are the pretzel

knots P (−2, 3, 2n+ 1) for n ≥ 0 and the torus knots T (2, 2n+ 1) for n ≥ 0.

It turns out that generalizing from pretzel knots to Montesinos knots yields no new

L-space knots than the ones already obtained in [LM13] and thus continues to support

Conjecture 18.

As a byproduct of our proof, we obtain a classification of fibered Montesinos knots

that support the tight contact structure. The statement of the following theorem uses the

conventions of Hirasawa–Murasugi for the notation of Montesinos links [HM06] which

we review at the beginning of Section 2.3.

Theorem 2. A fibered Montesinos knot that supports the tight contact structure

is isotopic to either

• M(−d1/(2d1 + 1), . . . ,−dr/(2dr + 1)
∣∣1) for some set of positive integers d1, . . . , dr

such that d1 + · · ·+ dr is even, or

• M(−m1/(m1 + 1), . . . ,−mr/(mr + 1)
∣∣2) for some odd integer m1 ≥ 1 and even

integers m2, . . . ,mr ≥ 2.

Moreover, the knot with its fiber may be obtained from the disk by a sequence of Hopf

plumbings.

These two families of fibered Montesinos knots are illustrated with their fibers in

Figure 1.

Figure 1. The two families of fibered Montesinos knots that support the
tight contact structure.

These two theorems will be proven in Section 3 with a discussion of the general

strategy in Section 3.1. Lemma 7 recalls the corresponding result for two-bridge knots.

Then our arguments split according to Hirasawa–Murasugi’s partition of Montesinos

knots into odd and even types.

Proof of Theorem 2. Lemma 7 handles two-bridge knots. Proposition 8 pro-

duces the first family for odd type Montesinos knots; Proposition 13 produces the second

family for even type Montesinos knots. □

Proof of Theorem 1. Lemma 7 shows the L-space two-bridge knots are the

T (2, 2n + 1) torus knots for n ≥ 0. We then restrict attention to Montesinos knots of
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length at least 3 (since those of shorter length are two-bridge). Then, among these knots,

Proposition 12 shows there are no L-space knots of odd type and Proposition 15 shows

that those of even type are the pretzel knots P (−2, 3, 2n+ 1) for integers n ≥ 0. □

Thereafter, in Section 4, we generalize Conjecture 18.

Conjecture 19. L-space knots have no essential tangle decomposition.

We examine this conjecture in the contexts of satellite L-space knots and tunnel

numbers of L-space knots and pose a few questions.

2. Preliminaries.

2.1. Open books.

We refer the reader to the lecture notes [Etn06] of Etnyre for a useful survey on the

basics of open books and contact structures. Nevertheless, let us remind the reader of a

few items.

An open book for an oriented 3-manifold Y is a link L with a fibration of its com-

plement ϕ : Y − L → S1 such that a fiber F = ϕ−1(0) is a Seifert surface for the link,

∂F = L. Since the binding of an open book is an oriented fibered link, we may simply

speak of the fibered link (up to orientation reversal of all the components) since a fiber

and hence the fibration will be understood. Each open book for a 3-manifold induces a

contact structure on that manifold [TW75]; more precisely, it supports a unique contact

structure [Gir02]. Contact structures on 3-manifolds can either be tight or overtwisted.

On S3 there is a unique tight contact structure.

The positive and negative Hopf bands, H+ and H−, are shown in Figure 2 left and

center. Let us say a Seifert surface contains a positive or negative Hopf band if one may

be deplumbed from the surface.

Following [Yam07], an essential simple closed curve in a Seifert surface is a twisting

loop if it is non-isolating and bounds a disk in the manifold with the same framing as the

Seifert surface. For example, the connected sum of a positive and negative Hopf band

contains a twisting loop, shown in Figure 2 right.

Figure 2. The positive Hopf band H+, the negative Hopf band H−, and
their connected sum H−#H+ which contains a twisting loop as shown.

Lemma 3. Let F be a fiber of an open book.

• If F contains a positive Hopf band, then its open book supports the same contact

structure as the open book obtained by deplumbing that positive Hopf band, [Gir02].
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• If F contains a negative Hopf band, then its open book supports an overtwisted

contact structure, e.g. [Etn06].

• If F contains a twisting loop, then its open book supports an overtwisted contact

structure, [Yam07, Theorem 1.1]. □

2.2. A basic sequence of deplumbings.

Figure 3. When a surface laterally encounters a twist region, there is a se-
quence of “obvious deplumbings”. Shown on the left is a vertical twist region
of 6 negative half-twists from which 5 negative Hopf bands are successively
deplumbed.

Lemma 4. Let F be a Seifert surface for a link L with a sequence of n half-twists

in L as shown in the left side of Figure 3 for n = −6. If n ≥ 2, then F contains n − 1

positive Hopf bands which may be successively deplumbed, leaving a single positive half

twist. If n ≤ −2, then F contains |n| − 1 negative Hopf bands which may be successively

deplumbed, leaving a single negative half twist.

Proof. The case of n = −6 is shown in Figure 3 and makes an inductive proof

clear. Mirror the figure for positive n. □

2.3. Montesinos knots and links.

As stated in the introduction, we follow the conventions of Hirasawa–Murasugi for

our notation [HM06]. A Montesinos link K is denoted

K = M

(
β1

α1
,
β2

α2
, . . . ,

βr

αr

∣∣∣∣ e)
where αi > 1, |βi| < αi, and gcd(αi, βi) = 1. The number r is the length of the

Montesinos link. As an illustration, Figure 4 shows the length 3 Montesinos knot

M(3/4,−2/5, 1/3 | 3).
If the Montesinos linkK above is a knot then at most one of α1, . . . , αr is even. (Note

that this is not a sufficient condition for being a knot.) By an isotopy of K, one may

cyclically permute indices so that α2, . . . , αr are all odd. With this setup, Hirasawa–

Murasugi then partition Montesinos knots into odd types and even types according to

whether or not α1 is odd. Hirasawa–Murasugi’s Theorems 3.1 and 3.2 describe both the

genera and fiberedness of Montesinos knots for odd types and even types, respectively

[HM06].
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Figure 4. Two isotopic presentations of the Montesinos knot M(3/4,−2/5, 1/3 | 3).

Notation. In this article we will write, for example, O(II-3-ii) to refer to condition

(II)(3)(ii) of Theorem 3.1 and E(III-i) to refer to condition (III)(i) of Theorem 3.2 of

Hirasawa–Murasugi [HM06].

Hirasawa–Murasugi use special forms of continued fractions for the terms βi/αi in

the notation of a Montesinos knot to describe minimal genus Seifert surfaces. They define

the continued fraction S = [x1, x2, . . . , xm] for a rational number β/α with −α < β < α

as the expression

β

α
=

1

x1 −
1

x2 −
1

. . . −
1

xm

where every coefficient xi is non-zero. The continued fraction S is said to be even if each

coefficient xi is even. The continued fraction S is said to be strict if for each odd j both

(a) xj is even and (b) if xj = ±2 then xj+1 has the opposite sign.

We will also need the determinant of a Montesinos knot. This can be calculated

as the order of the first homology of the double branched cover of the knot. Using

[Sav02] as a reference and making adjustments for differences in notation, one obtains

the following.

Lemma 5. The determinant of the Montesinos knot K = M(β1/α1, β2/α2, . . . ,

βr/αr | e) is

det(K) =

∣∣∣∣∣α1 · · ·αr

(
e+

r∑
i=1

βi

αi

)∣∣∣∣∣ .
3. Proofs of Theorems 1 and 2.

3.1. Strategy of proof of Theorem 1.

Recall the fundamental properties of L-space knots noted in the introduction:

• The non-zero coefficients of the Alexander polynomial of an L-space knot are ±1

and alternate in sign [OS05].

• An L-space knot K of genus g(K) satisfies the determinant-genus inequality:

det(K) ≤ 2g(k) + 1, [LM13, Lemma 5].
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• An L-space knot is fibered [Ni07].

• An L-space knot supports the tight contact structure; that is, it is a fibered strongly

quasipositive knot [Hed10, Corollary 1.4 with Proposition 2.1].

These properties suggest a general strategy for identifying L-space knots among some

collection of knots. Briefly, the strategy is: (1) select the knots in the collection which

are fibered and (2) support the tight contact structure, (3) cull the knots which do

not satisfy the determinant-genus inequality, and (4) discard those whose Alexander

polynomials do not have the correct form. Ideally, at this stage the remaining knots may

be recognized as L-space knots; but if not, (5) compute the knot Floer homology of the

knots or the Heegaard Floer homology of large surgeries on the knots.

Following this strategy for the proof of Theorem 1, we (1) appeal to Hirasawa–

Murasugi’s classification of fibered Montesinos knots [HM06] and then (2) cull those

that either admit a Stallings twist or may have a negative Hopf band deplumbed (since

by Lemma 3 these indicate that a fibered knot supports an overtwisted contact structure).

At this point we certify that the remaining knots indeed do support the tight contact

structure by showing they can all be obtained by successive plumbings of positive Hopf

bands. This completes stage (2) of the strategy producing two manageable families of

Montesinos knots. (Truth be told, one of these two families are identifiable as pretzel

knots, so we simply invoke the results of [LM13]. Nevertheless, one could continue with

the strategy instead.) Stage (3) then follows in a more-or-less straightforward calculation

from formulae for the determinant of Montesinos knots which significantly reduces the

set of Montesinos knots to be considered. For stage (4), computations of the Alexander

polynomials are then sufficient to rule out all the knots that are not already known to

be L-space knots. Fortunately, stage (5) is unnecessary.

Observe that stage (2) of the strategy produces the collection of fibered Montesinos

knots that support the tight contact structure, Theorem 2. As a consequence of [Hed10,

Corollary 1.4 with Proposition 2.1], this collection also describes the set of fibered Mon-

tesinos knots which are strongly quasipositive.

Question 6. Which non-fibered Montesinos knots are strongly quasipositive?

3.2. Two-bridge knots and links.

Montesinos links of length r = 1 or 2 are two-bridge links.

Lemma 7. The fibered two-bridge links that support the tight contact structure are

the torus links T (2, N) for integers N ≥ 1.

The L-space two-bridge knots are the torus knots T (2, 2n+ 1) for integers n ≥ 0.

Proof. We offer a quick sketch. Fibered two-bridge knots and links are well-

known to be obtained as a linear chain of plumbings of positive and negative Hopf

bands (e.g. [GK90]); they have corresponding continued fraction expansions where each

coefficient is ±2. Among these, only those built from positive Hopf bands support the

tight contact structure on S3 (Lemma 3), and these happen to be the torus links T (2, N)
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for integers N ≥ 1. When N = 2n+ 1 is odd, these torus links are knots and (2N − 1)-

surgery is a lens space. Thus the fibered two-bridge knots that support the tight contact

structure are the L-space two-bridge knots. □

Alternatively, since two-bridge knots are alternating [Goo72], Theorem 1.5 of

[OS05] implies that the only two-bridge knots admitting L-space surgeries are those

which are isotopic to a torus knot T (2, 2n+ 1) for some integer n.

We will henceforth assume that r ≥ 3.

3.3. Odd fibered Montesinos knots.

Proposition 8. Let K be an odd fibered Montesinos knot supporting the tight

contact structure. Then for some set of positive integers d1, . . . , dr such that d1+ · · ·+dr
is even,

K = M

(
−d1

2d1 + 1
, . . . ,

−dr
2dr + 1

∣∣∣∣ 1) .

Moreover, the fiber of K, shown on the left side of Figure 1, is a positive Hopf plumbing.

Proof. Let K be a fibered Montesinos knot of odd type. By Theorem 3.1 of

Hirasawa–Murasugi [HM06], we may assume that e ̸= 0 and each βi/αi has a strict

continued fraction expansion

Si = [2a
(i)
1 , b

(i)
1 , . . . , 2a(i)qi , b

(i)
qi ]

where |a(i)j | = 1 or 2 for all i, j and a
(i)
1 has sign opposite e. Note that strictness of Si

implies that if |a(i)j | = 1, then a
(i)
j and b

(i)
j differ in sign. The fiber F of K appears as in

Figure 10 of [HM06].

(For notational purposes, one may care to define b
(i)
0 as −e. Indeed, for each i, there

is an isotopy of F so that the e twist region plays the role of a b
(i)
0 twist region.)

In accordance with Lemma 3, we assume that F has no negative Hopf bands. Im-

mediately Lemma 4 gives

either e = +1 or e < 0 and either b
(i)
j = −1 or b

(i)
j > 0. (∗)

Claim 9. For each i, |a(i)j | = 1 implies a
(i)
j = −1, b

(i)
j > 0, and either b

(i)
j−1 = −1

or e = +1 if j − 1 = 0.

Proof. First assume a
(i)
j = +1. Then b

(i)
j < 0 by the strictness of Si. If j = 1,

then O(II-2-i) implies e < 0. An isotopy of the fiber moves one of the e half-twists into

the position shown in Figure 5 where a negative Hopf band is found. If j > 1, then

O(II-3-i) implies b
(i)
j−1 > 0. Thus near the a

(i)
j twists, the surface locally appears as in

Figure 5 where a negative Hopf band is evident. Thus a
(i)
j = −1. The strictness of Si

then implies b
(i)
j > 0. Condition O(II-3-i) with (∗) then implies b

(i)
j−1 = −1. □
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Figure 5. When a
(i)
j = 1 a negative Hopf band can be found. Left: j = 1

after an isotopy of the surface. Right: j > 1.

Figure 6. When a
(i)
j = 2 and j is the final index, a negative Hopf band can

be found. Left: j = 1 after an isotopy of the surface. Right: j > 1.

Claim 10. For each i, |a(i)j | = 2 implies a
(i)
j = −2, b

(i)
j = −1, either b

(i)
j−1 = −1 or

e = +1 if j − 1 = 0.

Proof. First observe that if a
(i)
j = −2, the remaining conditions follow from

O(II-3-ii), O(II-2-ii), and (∗).
Let j be the last index for which a

(i)
j = +2. If j > 1, then O(II-3-ii) implies b

(i)
j > 0

and b
(i)
j−1 > 0. If j = 1, then O(II-2-ii) implies b

(i)
j > 0 and e < 0. In either case, Claim 9

and the first sentence of this proof then imply that j must be the final index of Si. When

j = 1, an isotopy of the fiber moves one of the e half-twists into the position shown in

Figure 6 where a negative Hopf band is found. When j > 1, the surface locally appears

near the a
(i)
j twists as in Figure 6 where a negative Hopf band is evident. □

Let (−4,−1)[n] denote the sequence −4,−1,−4,−1, . . . ,−4,−1 of length 2n. To-

gether Claims 9 and 10 then imply that e = +1 and for each strict continued fraction Si,

either Si = [(−4,−1)[n]] for n ≥ 1 or Si = [(−4,−1)[n],−2, di] for n ≥ 0 and di > 0. Ob-

serving the equivalence [. . . ,−4,−1] = [. . . ,−2,+1], we may assume the latter of these

holds for Si. Figure 8 then shows how to transform Si into the strict continued fraction

[−2, di] for some integer di > 0. Note that [−2, di] = −di/(2di + 1). Thus any odd type

fibered Montesinos knot without negative Hopf bands may be expressed as

K = M

(
−d1

2d1 + 1
, . . . ,

−dr
2dr + 1

∣∣∣∣ 1)
for some set of positive integers d1, . . . , dr.
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Figure 1 (left) illustrates Montesinos links of the form M(−d1/(2d1 + 1), . . . ,

−dr/(2dr+1) | 1). Performing a particular crossing change in each factor transforms this

link toM(−d1, . . . ,−dr | 1) which may be recognized as the torus link T (d1+· · ·+dr−1, 2).

Thus this link, and hence K above, is a knot precisely when d1 + · · ·+ dr is even.

To show that such a fibered knot actually supports the tight contact structure,

we show that positive Hopf bands can be successively deplumbed from a fiber until a

single positive Hopf band is obtained. Indeed, beginning from Figure 1 (left), apply

Lemma 4 to obtain a sequence of deplumbings that transform each di down to 1. This

results in the odd type fibered Montesinos link M(−1/3,−1/3, . . . ,−1/3 | 1) of length

r. As demonstrated in Figure 7, each −1/3 signifies a positive Hopf band that may be

deplumbed, deleting that term from the notation. After r− 1 steps, we are left with the

link M(−1/3 | 1) which is itself a positive Hopf band. Reversing this process exhibits the

fiber of our original knot as a successive Hopf plumbing. □

Figure 7. M(−1/3,−1/3, . . . ,−1/3 | 1) has a positive Hopf band that may be deplumbed.

Figure 8. An isotopy illustrating the equivalence [. . . , a− 2,−1,−2, d] = [. . . , a, d+ 1].

Lemma 11. Let K be an odd fibered Montesinos knot supporting the tight contact

structure. Then det(K) > 2g(K) + 1 unless K = M(−1/3,−1/3,−2/5 | 1).

Proof. By Theorem 3.1 [HM06], an odd fibered Montesinos knot K has genus

g(K) =
1

2

(
r∑

i=1

b(i) + |e| − 1

)

where
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b(i) =

qi∑
j=1

|b(i)j |.

By Proposition 8, the parameters of any such K supporting the tight contact structure

are r ≥ 3, e = +1 and βi/αi = −di/(2di + 1) = [−2, di] for some integers di > 0, for all

i = 1, . . . , r (i.e. qi = 1 for all i). Thus,

2g(K) + 1 =
r∑

i=1

di + 1.

Using Lemma 5, we have

det(K) = 2r
r∏

i=1

(
di +

1

2

) ∣∣∣∣∣1−
r∑

i=1

di
2di + 1

∣∣∣∣∣ .
Since di > 0 for all i, then

r

2
>

r∑
i=1

di
2di + 1

≥ r

3
. (†)

When r > 3, r/3 > 1 and applications of (†) then gives

2r

∣∣∣∣∣1−
r∑

i=1

di
2di + 1

∣∣∣∣∣ = 2r

(
r∑

i=1

di
2di + 1

− 1

)
≥ 2r

(r
3
− 1
)
> 1.

Hence

det(K) >
r∏

i=1

(
di +

1

2

)
>

r∑
i=1

di + 1 = 2g(K) + 1.

When r = 3, then

det(K) = 8
3∏

i=1

(
di +

1

2

) ∣∣∣∣∣1−
3∑

i=1

di
2di + 1

∣∣∣∣∣ .
If 1 ≥

∑3
i=1 di/(2di + 1), then necessarily d1 = d2 = d3 = 1 and det(K) = 0. However,

because d1 + d1 + d3 is odd, K is a link rather than a knot.

Otherwise, at least one of d1, d2, d3 is greater than 1. Thus |1−
∑3

i=1 di/(2di+1)| ≥
1/15 and det(K) ≥ (8/15)

∏3
i=1(di+1/2) with equality only when {d1, d2, d3} = {1, 1, 2}.

If d1, d2, d3 ≥ 2 or if d1 = 1 and d2, d3 ≥ 3, then

det(K) >
8

15

3∏
i=1

(
di +

1

2

)
>

3∑
i=1

di + 1 = 2g(K) + 1.

Otherwise, the triple {d1, d2, d3} is one of {1, 1, 2}, {1, 1, 3}, {1, 2, 2} or {1, 2, 3}. The

triples {1, 1, 3} and {1, 2, 2} correspond with two component links rather than knots.
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An explicit computation for the remaining two triples finishes the proof. For the triple

{1, 2, 3}, we have det(K) = 17 while 2g(K) + 1 = 7. For the triple {1, 1, 2}, we have

det(K) = 3 while 2g(K) + 1 = 5. This last one gives the knot stated in the theorem. □

Proposition 12. No odd type Montesinos knot (of length r ≥ 3) is an L-space

knot.

Proof. Since L-space knots are fibered knots that support the tight con-

tact structure and satisfy the determinant-genus bound, Lemma 11 identifies

M(−1/3,−1/3,−2/5 | 1) as the single candidate for an L-space knot among the odd

type Montesinos knots (since we assumed throughout that r ≥ 3). This knot may

be identified as the knot 10145 in the Rolfsen table. Its Alexander polynomial is

∆10145(t) = t2 + t − 3 + t−1 + t−2. This fails the Alexander polynomial condition for

L-space knots. □

3.4. Even fibered Montesinos knots.

Proposition 13. Let K be an even fibered Montesinos knot supporting the tight

contact structure. Then for some set of positive integers m1, . . . ,mr with r ≥ 3,

K = M

(
−m1

m1 + 1
, . . . ,

−mr

mr + 1

∣∣∣∣ 2) .

Moreover, the fiber of K, shown on the right side of Figure 1, is a positive Hopf plumbing.

Proof. Let K be a fibered Montesinos knot of even type. By Theorem 3.2 of

Hirasawa–Murasugi [HM06], we may assume that e is even and each βi/αi has an even

continued fraction expansion

Si = [2c
(i)
1 , 2c

(i)
2 , 2c

(i)
3 , . . . , 2c(i)mi

].

The fiber F of K appears as in Figure 12 or Figure 13 of [HM06] depending on whether

e ̸= 0 or e = 0 respectively. (Since K is a knot, we may further assume that m1 is odd

and mi is even for i > 1, but we will not use this. The following arguments apply equally

well to any fibered Montesinos link with fiber F as in Figure 12 or Figure 13 of [HM06];

indeed the proof of the conditions for fiberedness in Theorem 3.2 of [HM06] do not rely

upon the connectedness of K.)

Assume e = 0. Then since we assume r ≥ 3, conditions E(II-i) and E(III) guarantee

there exists an index i such that (c
(i)
1 , c

(i+1)
1 ) = ±(1,−1). Then, referring to Figure 13

of [HM06] for the surface F , there is an unknot C in F running once through each of

the bands corresponding to c
(i)
1 and c

(i+1)
1 such that C is 0-framed by F . In particular

C is a twisting loop in F . By Lemma 3 any such knot supports an overtwisted contact

structure, and thus we conclude e ̸= 0.

Since e ̸= 0 and K is fibered, E(I) implies that e = ±2. Referring to Figure 12 of

[HM06] for the surface F , it is readily apparent that F contains a negative Hopf band

if e = −2 and a positive one if e = 2. Due to Lemma 3, we must have e = 2.

Condition E(I) with Lemma 3 (and Lemma 7 and its proof) then further imply

c
(i)
j = −1 for all i, j so that for each i we have the continued fraction Si = [−2,−2, . . . ,−2]
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of length mi. This in turn implies βi/αi = −mi/(mi + 1). Thus we have the fibered

Montesinos knot

K = M

(
−m1

m1 + 1
, . . . ,

−mr

mr + 1

∣∣∣∣ 2)
for some set of positive integers m1, . . . ,mr. Since −mi/(mi + 1) = −1 + 1/(mi + 1), K

is illustrated as in the right side of Figure 1. Furthermore the fiber F may be assembled

by beginning with the positive Hopf band corresponding to the e = 2 twists and then

plumbing on to it a linear chain of mi positive Hopf bands for each i. Hence the fibered

knot is a positive Hopf plumbing and supports the tight contact structure. □

Lemma 14. We have the following equivalence between Montesinos links and pretzel

links. For any positive integers m1, . . . ,mr,

M

(
−m1

m1 + 1
, . . . ,

−mr

mr + 1

∣∣∣∣ 2) = P (m1 + 1, . . . ,mr + 1,−1, . . . ,−1︸ ︷︷ ︸
r−2

).

Proof. The right side of Figure 1 shows that the Montesinos link K =

M(−m1/(m1+1), . . . ,−mr/(mr +1) | 2) can be regarded as the pretzel link P (−1,m1+

1, . . . ,−1,mr +1, 1, 1). By flype moves, P (−1,m1 +1, . . . ,−1,mr +1, 1, 1) is isotopic to

the pretzel link P (m1 + 1, . . . ,mr + 1,−1, . . . ,−1︸ ︷︷ ︸
r−2

). □

Proposition 15. The only even type Montesinos knots (of length r ≥ 3) that are

L-space knots are the pretzel knots P (−2, 3, 2n+ 1) for integers n ≥ 0.

Proof. Since L-space knots must be fibered knots that support the tight contact

structure, Proposition 13 restricts the candidates for L-space knots among the even type

Montesinos knots to those of the form M(−m1/(−m1 + 1), . . . ,−mr/(−mr + 1) | 2) for
positive integers m1, . . . ,mr with r ≥ 3. Lemma 14 shows that these Montesinos knots

are actually pretzel knots. According to [LM13], the only L-space pretzel knots (that are

not two-bridge knots) are the pretzel knots P (−2, 3, 2n + 1) for integers n ≥ 0. Noting

that P (−2, 3, 2n + 1) and P (2, 3, 2n + 1,−1) are isotopic pretzel knots completes the

proof. □

Remark 16. One could obtain Proposition 15 without appealing to [LM13]. Pro-

ceeding with the general procedure as we did for the odd type Montesinos knots, one may

cull the knots from Proposition 13 with the determinant-genus relation. This shows that

if K is an even fibered Montesinos knot supporting the tight contact structure such that

det(K) ≤ 2g(K) + 1, then K = M (−m1/(m1 + 1),−m2/(m2 + 1),−m3/(m3 + 1) | 2)
where (m1,m2,m3) ∈ {(5, 2, 2), (3, 2, 2), (3, 2, 4), (1, 4, 4), (1, 4, 6), (1, 2, 2c)} for positive

integers c. The Alexander polynomials of the first five of these knots have coefficients

that are greater than one in absolute value; hence those knots cannot be L-space knots.

The remaining family of knots is the desired family of pretzel knots P (−2, 3, 2n+ 1) for

non-negative integers n.
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4. On essential tangle decompositions of L-space knots.

A knot K in 3-manifold Y has an essential n-string tangle decomposition if there is

an embedded sphere Q that transversally intersects K in 2n points such that the planar

surface Q− ∂N (K) is essential in the knot exterior Y −N (K), i.e. Q− ∂N (K) is both

incompressible and ∂-incompressible. IfK has no essential n-string tangle decomposition,

then K is called n-string prime.

Observe that a 1-string prime knot is simply a prime knot.

Theorem 17 (Krcatovich [Krc13]). L-space knots are prime knots.

A Conway sphere for a knot (or link) is a sphere Q transversally intersecting the

knot in 4 points. Hence a 2-string prime knot is a knot without any essential Conway

spheres. Thus the first conjecture from the introduction may be rephrased as follows:

Conjecture 18 (Lidman–Moore [LM13]). L-space knots are 2-string prime.

Since Montesinos knots generalize pretzel knots, and those with length r ≥ 4 have

essential 2-string tangle decompositions (for example, a sphere separating two adjacent

factors from the remaining r − 2 is an essential Conway sphere), our Theorem 1 lends

further credence to this conjecture. However we suspect something stronger is true.

Conjecture 19. L-space knots are n-string prime for all integers n > 0. That

is, L-space knots have no essential tangle decomposition.

Since an essential tangle decomposition of a knot can give rise to a closed essential

surface in the knot’s exterior, one may be tempted to conjecture that L-space knots

have no closed essential surfaces in their exterior. Let us note however, that there are

hyperbolic L-space knots for which this is not the case (indeed, ones with lens space

surgeries, e.g. [Bak05]). For non-hyperbolic examples, there are satellite L-space knots.

4.1. Satellite operations.

Recall that for a satellite knot K, there is a knotted solid torus V containing K such

that there is no isotopy of K in V to the core of V . The core of V is the companion of

K, and the pair (V,K) is the pattern of K. If K is braided in V , then we say K is a

braided satellite of the core of V .

Hayashi–Matsuda–Ozawa show that if there is no essential tangle decomposition of

the pattern (V,K), then any essential tangle decomposition of the satellite K gives rise

to an essential tangle decomposition of the core of V , [HMO99]. In particular, this gives

the following result for braided satellites.

Theorem 20 ([HMO99, Theorem 4.1]). A braided satellite of a knot with no

essential tangle decomposition also has no essential tangle decomposition.

The Berge–Gabai knots are the knots in solid tori with non-trivial Dehn surgeries

yielding solid tori [Ber91], [Gab89]. In particular, a satellite knot K with one of these

as its pattern has a non-trivial Dehn surgery that is equivalent to a Dehn surgery on its

companion knot. Thus, when done with the correct framings, the operation of taking
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Berge–Gabai satellites (which includes cabling) preserves the property of being L-space

knots. But a sharper statement can be made.

Theorem 21 (Hom–Lidman–Vafaee [HLV14]). An L-space knot that is a Berge–

Gabai satellite must have an L-space knot as its companion.

Previously, Hedden [Hed09] and Hom [Hom11] determined how the property of

being an L-space knot behaves with respect to cabling. Together Theorem 20 and The-

orem 21 show that if a Berge–Gabai satellite knot is a counterexample to Conjecture 19

then so is its companion.

Question 22. Let K be an L-space satellite knot.

• Is K a braided satellite?

• Is the companion knot to K also an L-space knot?

4.2. L-space knots of large tunnel number.

Recall that the tunnel number of a knot K is the minimum number of mutually

disjoint, embedded arcs intersecting K at their endpoints such that the exterior of the

resulting 1-complex is a handlebody.

The L-space knots identified in Theorem 1 and all of the Berge knots [Ber90] have

tunnel number one, as do many other familiar L-space knots. Gordon–Reid have shown

that tunnel number one knots are n-string prime for all integers n > 0 [GR95]. Thus

L-space knots with tunnel number one support Conjecture 19.

However there are L-space knots with greater tunnel number. Indeed, sufficiently

large cables of L-space knots are also L-space knots [Hed09], yet tunnel number one

cabled knots are only those which are certain cables of torus knots [MS91]. More

generally we show there are L-space knots of arbitrarily large tunnel number.

Proposition 23. For any integer N , there is an L-space knot with tunnel number

greater than N .

Proof. Sufficiently large cables of positive L-space knots are also positive L-space

knots [Hed09]. Thus it is enough to show that, generically, the tunnel number of an

iterated cable of a torus knot (i.e. an iterated torus knot) grows with the number of

cabling iterations. Indeed, this follows from Theorem 4.2 of [Zup14]. □

The L-space knots with tunnel number greater than one constructed in Proposi-

tion 23 are all satellite knots. Furthermore, we have not identified a non-satellite L-space

knot in the literature without tunnel number one, though we expect there should be

many. Is this the case?

Question 24. Is there a non-satellite L-space knot with tunnel number greater

than one?

After our initial preprint, Motegi showed us his construction of infinitely many

hyperbolic L-space knots with tunnel number 2 [Mot14]. In his article, he further

inquires about hyperbolic L-space knots with larger tunnel number.



04-7484: 2017.12.26

Montesinos knots, Hopf plumbings, and L-space surgeries 109

Along these lines, classifying L-space knots among tunnel number one knots would

be informative.

Question 25. Which tunnel number one knots are L-space knots?

Note that our general strategy in Section 3.1 barely gets off the ground since fibered-

ness among tunnel number one knots is not yet well understood.

Question 26.

A. Which tunnel number one knots in S3 are fibered? [Joh07]

B. Which fibered tunnel number one knots in S3 support the tight contact structure?
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