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Abstract. The purpose of this paper is to show that it is characteristic
of symmetric cones among irreducible homogeneous cones that there exists a
non-constant relatively invariant polynomial such that its Laplace transform

is the reciprocal of a certain polynomial. To prove our theorem, we need
the inductive structure of the basic relative invariants of a homogeneous cone.
However, we actually work in a more general setting, and consider the inducing

of the basic relative invariants from lower rank cones.

Introduction.

It is well known that the Fourier–Laplace transform of a complex power xs of positive

reals x, or of a complex power P (x)s of a positive-definite quadratic form P (x), is essen-

tially given by a complex power of a certain polynomial (see [2, Sections II.2 and III.2],

[10], for example). These facts are the fundamental principles of the theory of preho-

mogeneous vector spaces constructed by M. Sato (see [10, Introduction]). On the other

hand, Wishart [17] and Ingham [5] consider the gamma functions of positive-definite

symmetric matrices in statistics, and Siegel [15] in number theory independently. The

gamma functions are also studied by Riesz [14] for Lorentz cones, and by Koecher [11]

for general symmetric cones. As is computed in the book Faraut and Korányi [1], once

the gamma functions associated with symmetric cones are calculated, we are able to

obtain the Laplace transforms of relative invariants by using the transitivity of group

actions. Looking at the formula closely, we find that the Laplace transform of a complex

power of the determinant function detx (Minkowski metric in the case of Lorentz cones)

of symmetric cones Ω is expressed, up to gamma factors, as a complex power of the

reciprocal of the same determinant function (see [1, Chapter VII], for example):∫
Ω

e−⟨x |y ⟩(detx)s dµ(x) =
(gamma factors)

(det y)s
(y ∈ Ω),

where dµ is a suitable invariant measure on Ω. Gindikin [3] considers the Laplace trans-

form in a more general setting where the integration domains are homogeneous cones

which form a class of prehomogeneous vector spaces. Then a natural question is whether

or not, in the case of general homogeneous cones, there exists a non-constant relatively
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invariant polynomial such that its Laplace transform is the reciprocal of a certain poly-

nomial. Here, the groups that we consider for relative invariance are the split solvable

Lie groups acting simply transitively on the cones. In this paper, we give an answer to

this question by showing that this property is characteristic of symmetric cones, that is,

this property holds if and only if the cone is symmetric.

We now describe the contents of this paper in more detail. Let Ω be a homogeneous

cone of rank r in a finite-dimensional real vector space V . Then, there exists a split

solvable Lie group H acting on Ω linearly and simply transitively. By differentiating

the action of H on Ω, we see that V admits an algebraic structure △, called a Vinberg

algebra, having a unit element e0. We have the normal decomposition V =
⊕

1≤j≤k≤r Vkj
with respect to a complete system of orthogonal primitive idempotents. The cone Ω has

r irreducible relatively H-invariant polynomial functions ∆1, . . . ,∆r, called the basic

relative invariants of Ω. We place the multipliers of these ∆j in an r× r matrix σ which

is called the multiplier matrix of Ω in this paper (see (1.5) for detail). An algorithm for

calculating σ is given by using the data of Ω (cf. [12]). The dual cone Ω∗ of Ω is defined

through an inner product ⟨ · | · ⟩ in V given by an admissible linear form (see (V2) in this

paper), and the corresponding Vinberg algebra is denoted by (V,

△

).

In order to work out the problem above, we need an inductive structure of Vinberg

algebra, but in this paper, we deal with a rather general situation with a view of future

studies. Let p, q be positive integers such that p+ q = r, and we put

V− :=
⊕

1≤j≤k≤p

Vkj , E :=
⊕

1≤j≤p<k≤r

Vkj , V+ :=
⊕

p<j≤k≤r

Vkj . (0.1)

Then, V is decomposed into a direct sum V = V− ⊕ E ⊕ V+ of these vector subspaces.

We denote general elements x in V by x− + ξ + x+ ∈ V (x± ∈ V±, ξ ∈ E) without any

comments. We note that V± are subalgebras of V , and hence there exist homogeneous

cones Ω± corresponding to V±, respectively. On E, the linear operators ψ(x−) and φ(x+)

(x± ∈ V±) are defined, respectively, by

ψ(x−)ξ := ξ△x−, φ(x+)ξ := ξ

△

x+ (ξ ∈ E).

It is then shown in Lemma 2.2 that ψ (resp. φ) is a selfadjoint representation of (V−,△)

(resp. (V+,

△

)). Let Q be the symmetric V+-valued bilinear map associated with φ,

so that Q(ξ, η) = ξ△ η (ξ, η ∈ E). Then, the determinants of the right multiplication

operators Rx, defined by Rxy = y△x (x, y ∈ V ) are described in Proposition 2.5 as

DetRx = DetR−
x−

·Detψ(x−) ·DetR+
x+−(1/2)Q(ψ(x−)−1ξ, ξ) (x ∈ Ω),

where R± denote the right multiplication operators of V±, respectively. By putting

x̃ := x+ − (1/2)Q(ψ(x−)
−1ξ, ξ) ∈ V+, we see in Lemma 2.6 that (h · x)˜= h+ · x̃, where

h+ is the “V+-part” of h ∈ H (see (2.6) for detail). Let σ± be the multiplier matrices of

Ω±, respectively. We denote by ∆−
1 , . . . ,∆

−
p the basic relative invariants of Ω−, and by

∆+
1 , . . . ,∆

+
q those of Ω+. Then, by calculating the irreducible factors in DetRx (x ∈ Ω),

Theorem 2.8 shows that there exists a unique matrix Ξ ∈ Mat(q, p; {0, 1}) such that, by

putting Γ = (γjk) := σ+Ξ, we have
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i (x−) (i = 1, . . . , p),

∆p+j(x)=∆−
1 (x−)

γj1 · · ·∆−
p (x−)

γjp∆+
j

(
x+ − 1

2
Q(ψ(x−)

−1ξ, ξ)

)
(j = 1, . . . , q)

for any x ∈ Ω. Moreover, the multiplier matrix σ of Ω is described as

σ =

(
σ− 0

σ+Ξσ− σ+

)
=

(
Ip 0

0 σ+

)(
Ip 0

Ξ Iq

)(
σ− 0

0 Iq

)
.

We now consider the Laplace transform of relatively H-invariant functions on homo-

geneous cones. Let dµ be anH-invariant measure on Ω, and ∆s the relativelyH-invariant

function whose multiplier is s ∈ Rr with ∆s(e0) = 1. Let ΓΩ(s) be the gamma function

of Ω (see (3.1) for definition). Then, the Laplace transform L[∆s] of ∆s is defined as

L[∆s](y) :=
1

ΓΩ(s)

∫
Ω

e−⟨x |y ⟩∆s(x) dµ(x) (y ∈ Ω∗),

where Ω∗ is the dual cone of Ω. Note that, in our definition, the Laplace transform is

normalized as L[∆s](e0) = 1. We denote by ∆∗
1, . . . ,∆

∗
r the basic relative invariants of

Ω∗. For any ν, µ ∈ Zr, let ∆ν(x) (x ∈ Ω) and ∆
µ
∗ (y) (y ∈ Ω∗) be rational functions

defined, respectively, by

∆ν(x) := ∆1(x)
ν1 · · ·∆r(x)

νr , ∆
µ
∗ (y) := ∆∗

1(y)
µ1 · · ·∆∗

r(y)
µr ,

and we put pk :=
∑
j<k dimVkj for k = 1, . . . , r. Moreover, let σ∗ be the multiplier

matrix of Ω∗. Then, Gindikin [3] tells us that, if (νσ)k > pk for any k = 1, . . . , r, then

we have

L[∆ν ](y) =
1

∆
ν′

∗ (y)
(y ∈ Ω∗; ν′ := νσσ−1

∗ ).

The decomposition V = V− ⊕E ⊕Rcr where we put p = r− 1 in (0.1) describes an

inductive structure of V . Investigating the matrix σσ−1
∗ in detail by using this inductive

structure (Lemma 3.1 and Proposition 3.2), we prove our main theorem in Theorem 3.4,

that is, an irreducible homogeneous cone is symmetric if and only if there exists a non-

constant polynomial ∆ν(x) such that the reciprocal ∆
ν′

∗ (y) = (L[∆ν ](y))
−1

of the Laplace

transform of ∆ν(x) is also a non-constant polynomial.

We organize this paper as follows. Section 1 contains the fundamental facts about

homogeneous cones and Vinberg algebras. In Section 2, we study the basic relative

invariants of a homogeneous cone. By decomposing the corresponding Vinberg algebra

as a direct sum of three vector subspaces of which two are subalgebras, the basic relative

invariants are induced from the two cones associated with the subalgebras. Section 3 is

devoted to giving a characterization of symmetric cones among irreducible homogeneous

cones by using the reciprocals of the Laplace transforms on homogeneous cones. To do

so, we consider inductive structures of the multiplier matrices of homogeneous cones and

of the dual cones.
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1. Preliminaries.

Let V be a finite-dimensional real vector space, and Ω an open convex cone in V

containing no entire line. The cone Ω is said to be homogeneous if the group G(Ω) =

{g ∈ GL(V ); g(Ω) = Ω} acts on Ω transitively. In this paper, we always assume that Ω

is homogeneous, and call it a homogeneous cone for short. By Vinberg [16], there exists

a split solvable Lie subgroup H of G(Ω) such that H acts on Ω simply transitively. Let

h be the Lie algebra corresponding to H, and fix a point e0 ∈ Ω. Then, we have a linear

isomorphism h ∋ X 7→ Xe0 ∈ V obtained by differentiating the orbit map h 7→ he0 at

the unit element of H. We denote the inverse map by L : V ∋ x 7→ Lx ∈ h. According

to [16], we introduce a product △ in V by

x△ y := Lxy (x, y ∈ V ).

The product △ is neither commutative nor associative in general. We know that e0 is a

unit element of V . Moreover, (V,△) satisfies the following three conditions:

(V1) Lx△ y−y△x = LxLy − LyLx for any x, y ∈ V ,

(V2) there exists a linear form s such that s(x△ y) defines an inner product in V ,

(V3) the linear operator Lx has only real eigenvalues for each x ∈ V .

We call (V,△) (or simply V ) a Vinberg algebra in this paper. Linear forms with the

property (V2) are said to be admissible. The rank r of the cone Ω is defined by the

dimension of a maximal connected commutative subgroup of G(Ω). Let c1, . . . , cr be a

complete system of orthogonal primitive idempotents of V . They satisfy cj△ ck = δjkcj
and e0 = c1 + · · · + cr. We denote by Rx (x ∈ V ) the right multiplication operators

Rxy := y△x (y ∈ V ). Let Vjj be the one-dimensional subspace Rcj (j = 1, . . . , r), and

we put for j < k

Vkj :=

{
x ∈ V ; Lcix =

1

2
(δij + δik)x, Rcix = δijx (i = 1, . . . , r)

}
.

Then, V is decomposed into

V =
⊕

1≤j≤k≤r

Vkj , (1.1)

which is called the normal decomposition of V . The complete system c1, . . . , cr is said

to be a Vinberg frame in this paper. With respect to this decomposition, we have the

following multiplication rules:

Vji△Vlk = {0} (if i ̸= k, l), Vkj △Vji ⊂ Vki,

Vji△Vki ⊂ Vjk or Vkj (if j ≥ k or j ≤ k, respectively).
(1.2)
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A homogeneous cone Ω is said to be irreducible if there exist no non-trivial subspaces

V1, V2 ⊂ V and homogeneous cones Ωj ⊂ Vj (j = 1, 2) such that V is a direct sum

of V1 and V2, and Ω = Ω1 ⊕ Ω2. It is easily verified that any homogeneous cone Ω

in V is decomposed as a direct sum of its irreducible components Ωa (a = 1, . . . , q),

where q is the number of the irreducible components of Ω. Vinberg [16, Proposition 10]

tells us that there exists a permutation σ ∈ Sr such that the normal decomposition

V =
⊕

j≤k Vσ(k)σ(j) is of the diagonal form
U1 0 · · · 0

0 U2
. . .

...
...

. . .
. . . 0

0 · · · 0 Uq

 , (1.3)

where Ua ⊂ V is the ambient vector space of Ωa. In other words, the irreducible compo-

nents can be placed on the diagonal blocks.

A typical example of homogeneous cone is a positive-definite matrices S+
N in the

space SN of symmetric matrices of rank N . The group GL(N,R) acts on S+
N transitively

by ρ(g)x := gx tg where g ∈ GL(N,R) and x ∈ S+
N . Let HN be the group of lower

triangular matrices with positive diagonals. Then, HN is a split solvable Lie subgroup of

GL(N,R), and acts on S+
N simply transitively. For x = (xij) ∈ SN , let us define a lower

triangular matrix x by

(x)ij =


xij (i > j),
1

2
xjj (i = j),

0 (i < j),

and put x := t(x). Obviously we have x = x+ x. We choose the unit matrix IN as the

element e0 in the construction of a Vinberg algebra (SN ,△) from S+
N . Then, the product

△ is given as

x△ y := xy + yx (x, y ∈ SN ).

According to Ishi [7, Section 3.1], we realize a homogeneous cone Ω of rank r in a

subspace ZV of SN , defined below, with a suitable N (see also [4, Section 3.2]). With

respect to Ω, there exist a partition N = n1+ · · ·+nr of N and a system of vector spaces

Vkj ⊂ Mat(nk, nj ; R) (1 ≤ j < k ≤ r) satisfying the following conditions:

(1) if A ∈ Vlk and B ∈ Vkj , then one has AB ∈ Vlj (1 ≤ j < k < l ≤ r),

(2) if A ∈ Vlj and B ∈ Vkj , then one has A tB ∈ Vlk (1 ≤ j < k < l ≤ r),

(3) if A ∈ Vkj , then one has A tA ∈ RInk
(1 ≤ j < k ≤ r).

Let ZV be the subspace of SN defined by
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ZV :=

x =


x1In1

tX21 · · · tXr1

X21 x2In2
tXr2

...
. . .

Xr1 Xr2 · · · xrInr

 ;
xj ∈ R (j = 1, . . . , r),

Xkj ∈ Vkj (1 ≤ j < k ≤ r)

 ⊂ SN ,

and let HV be the split solvable subgroup of HN defined by

HV :=

h =


h1In1

T21 h2In2

...
. . .

Tr1 Tr2 · · · hrInr

 ;
hj ∈ R+ (j = 1, . . . , r),

Tkj ∈ Vkj (1 ≤ j < k ≤ r)

 . (1.4)

Then, Ω is linearly isomorphic to PV := ZV ∩ S+
N on which HV acts simply transitively

by the action ρ(h)x = hx th for h ∈ HV and x ∈ PV . Moreover, a split solvable Lie group

H acting on Ω simply transitively is isomorphic to HV . Although this realization is

not unique in general, each realization corresponding to the same Ω is mutually linearly

isomorphic. We note that there exists a minimal realization in the sense of Yamasaki

and Nomura [18], which is unique up to the order of Vinberg frame. In this paper, we

assume that Ω is realized as a matrix form, and so is H.

Let χ : H → R× be a character of H. Since H is split solvable, there exists ν =

(ν1, . . . , νr) ∈ Rr such that

χ(h) = χν(h) = h2ν11 · · ·h2νrr (h ∈ H),

where h ∈ H is described as in (1.4). A function f on Ω is said to be relativelyH-invariant

if there exists a character χν with some ν ∈ Rr such that f(ρ(h)x) = χν(h)f(x) for any

h ∈ H and x ∈ Ω. The vector ν ∈ Rr is called the multiplier of f , and we write

f(x) = ∆ν(x) if f(e0) = 1. Among relatively H-invariant polynomial functions, there

exist exactly r irreducible ones ∆1, . . . ,∆r, by which any relatively H-invariant polyno-

mial function p is described as

p(x) = (const)∆1(x)
m1 · · ·∆r(x)

mr (x ∈ Ω; for some m1, . . . ,mr ∈ Z≥0)

(cf. Ishi [6]). Moreover, Ω is written as

Ω = {x ∈ V ; ∆1(x) > 0, . . . ,∆r(x) > 0} .

The polynomials ∆1(x), . . . ,∆r(x) are called the basic relative invariants of Ω. Let

σj = (σj1, . . . , σjr) be the multiplier of ∆j (j = 1, . . . , r), and we place them in an r × r

matrix σ as follows:

σ =

σ1
...

σr

 = (σjk)1≤j,k≤r, (1.5)
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which is called the multiplier matrix of Ω in this paper. If we determine the numbering

of the basic relative invariants by the procedure of Ishi [6] according to the Vinberg

frame, then we see that σ is described as a lower triangular matrix with ones on the

main diagonals. Thus, we always assume that the basic relative invariants are labeled in

this order. Put dkj := dimVkj for 1 ≤ j < k ≤ r and di :=
t(0, . . . , 0, di+1,i, . . . , dri) for

i = 1, . . . , r − 1. Let us recall the algorithm for calculating σ given in [12].

Lemma 1.1. For i = 1, . . . , r − 1, defining l
(j)
i = t(l

(j)
1i , . . . , l

(j)
ri ) (j = i, . . . , r)

inductively by l
(i)
i := di and, for k = i+ 1, . . . , r − 1,

l
(k)
i =

{
l
(k−1)
i − dk (l

(k−1)
ki > 0),

l
(k−1)
i (l

(k−1)
ki = 0),

one sets ε[i] = t(εi+1,i, . . . , εri) ∈ {0, 1}r−i (i = 1, . . . , r − 1) where

εji =

1 (if l
(r−1)
ji > 0),

0 (if l
(r−1)
ji = 0)

(j = i+ 1, . . . , r).

Then, the multiplier matrix σ is calculated as

σ = Er−1Er−2 · · · E1, Ei :=

Ii−1 0 0

0 1 0

0 ε[i] Ir−i

 (i = 1, . . . , r − 1). (1.6)

Note that, if we write σ−1 = (σjk)1≤j,k≤r, then we find that σjk = −εjk for j > k

by taking the inverse of both sides of (1.6).

Let ⟨ · | · ⟩ be the inner product of V given by (V2). Let ρ∗ be the contragredient

representation of ρ defined by ⟨ρ(h)x |ρ∗(h)y ⟩ = ⟨x |y ⟩ for any h ∈ H and x, y ∈ V .

Through the inner product ⟨ · | · ⟩, we define

Ω∗ :=
{
y ∈ V ; ⟨x |y ⟩ > 0 for all x ∈ Ω \ {0}

}
.

Then, Ω∗ is an open convex cone on which H acts simply transitively by ρ∗, and the

homogeneous cone Ω∗ is called the dual cone of Ω. A function f∗ on Ω∗ is said to

be relatively H-invariant if there exists a character χµ with some µ ∈ Rr such that

f∗(ρ∗(h)y) = χ−1
µ (h)f∗(y) for any h ∈ H and y ∈ Ω∗. The vector µ is called the

multiplier of f∗ of Ω∗, and write f∗(y) = ∆∗
µ(y) when f

∗(e0) = 1. The Vinberg algebra

(V,

△

) corresponding to Ω∗ is called the dual Vinberg algebra of (V,△), and the product△

satisfies ⟨
x

△

y |z
⟩
= ⟨y |x△ z ⟩ (x, y, z ∈ V ). (1.7)

We summarize the properties of (V,

△

) (cf. [12]). For a Vinberg frame of (V,

△

), we

choose cr, . . . , c1. Then, the normal decomposition of (V,

△

) with respect to the frame

is given also by (1.1) with the multiplication rules below:
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Vji

△

Vlk = {0} (if j ̸= k, l), Vji

△

Vkj ⊂ Vki,

Vki

△

Vkj ⊂ Vji or Vij (if i ≤ j or i ≥ j, respectively).
(1.8)

Moreover, we have the following relationship between the products △ and

△

:

x△ y + x

△

y = y△x+ y

△

x (x, y ∈ V ). (1.9)

Let ∆∗
1(x), . . . ,∆

∗
r(x) be the basic relative invariants of Ω∗. Here, they are given induc-

tively by the procedure of [6] according to the Vinberg frame cr, . . . , c1, and the indices

are labeled from r down to 1. Then, the multiplier matrix σ∗ of Ω∗ is described as an

upper triangular form, whereas σ is lower triangular.

For a linear map φ on V to SN , the lower part φ and the upper part φ are defined,

respectively, by

φ(x) = φ(x), φ(x) = φ(x) (x ∈ V ).

Then, we easily find that

t(φ(x)) = φ(x), φ(x) = φ(x) + φ(x) (x ∈ V ).

When φ is an algebra homomorphism of Vinberg algebras, that is, φ satisfies

φ(x△ y) = φ(x)φ(y) + φ(y)φ(x) (x, y ∈ V ),

we call φ a selfadjoint representation of (V,△) (cf. Ishi [8]). We require also φ(e0) = IN .

Similarly, φ is called a selfadjoint representation of (V,

△

) if φ satisfies

φ(x

△

y) = φ(x)φ(y) + φ(y)φ(x) (x, y ∈ V ),

and also φ(e0) = IN .

2. Inducing the basic relative invariants from lower rank cones.

Let Ω be a homogeneous cone of rank r ≥ 2, and V the corresponding Vinberg alge-

bra. We fix a matrix realization Ω = PV , and keep to the notation used in Section 1. Let

us take positive integers p, q such that r = p+q. According to the normal decomposition

V =
⊕

j≤k Vkj , the subspaces V± and E are defined respectively by

V− =
⊕

1≤j≤k≤p

Vkj , E =
⊕

1≤j≤p<k≤r

Vkj , V+ =
⊕

p<j≤k≤r

Vkj .

Then, V is decomposed into the direct sum

V = V+ ⊕ E ⊕ V−. (2.1)

With respect to this decomposition, we have the following multiplication tables by the

multiplication rules (1.2) and (1.8):
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(a)

△ V− E V+

V− V− E 0

E E V+ 0

V+ 0 E V+

, (b)

△

V− E V+

V− V− E 0

E 0 V− E

V+ 0 E V+

, (2.2)

where left factors of the products are placed in row entries, and right ones are placed in

column entries. These tables immediately lead us to the fact that V± are subalgebras of

V . We denote general elements x of V by

x = x+ + ξ + x− (x+ ∈ V+, ξ ∈ E, x− ∈ V−)

without any comments. We note that the special case (p, q) = (1, r − 1) is dealt with

in the previous paper [12]. We shall generalize its results to a general situation in this

section, and our result for the case (p, q) = (r−1, 1) will be used in the proof of the main

theorem given in the next section.

We denote by L(E) the space of linear operators on E. Let φ be the linear operator

on V+ to L(E) defined by

φ(x+)ξ := ξ

△

x+ (x+ ∈ V+, ξ ∈ E),

and Q the symmetric V+-valued bilinear map associated with φ, that is,

⟨Q(ξ, η) |x+ ⟩ = ⟨φ(x+)ξ |η ⟩ (ξ, η ∈ E, x+ ∈ V+).

Since ⟨φ(x+)ξ |η ⟩ =
⟨
ξ

△

x+ |η
⟩
= ⟨x+ |ξ△ η ⟩ by (1.7), we have

Q(ξ, η) = ξ△ η (ξ, η ∈ E). (2.3)

Moreover, (1.9) together with the multiplication table (a) in (2.2) implies that

φ(x+)ξ = x+ △ ξ + x+

△

ξ = (Lx+ + tLx+)ξ,

and hence we obtain

φ(x+)ξ = x+ △ ξ, φ(x+)ξ = x+

△

ξ (x+ ∈ V+, ξ ∈ E). (2.4)

Similarly to φ, the linear operator ψ on V− to L(E) is defined by

ψ(x−)ξ := ξ△x− (x− ∈ V−, ξ ∈ E),

and its lower and upper parts are given, respectively, by

ψ(x−)ξ = x− △ ξ, ψ(x−)ξ = x−

△

ξ. (2.5)

Lemma 2.1. For any x± ∈ V± and ξ, η ∈ E, one has the following :

(i) Q(ψ(x−)ξ, η) = Q(ξ, ψ(x−)η),

(ii) ψ(x−)φ(x+) = φ(x+)ψ(x−).
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Proof. (i) Using (2.3) and (V1), we obtain

Q(ξ, ψ(x−)η) = η△ (ξ△x−) + (ξ△ η − η△ ξ)△x− = η△ (ξ△x−),

and thus we get the assertion.

(ii) The multiplication table (a) in (2.2) and (V1) together with (2.4) yield that

ψ(x−)φ(x+)ξ = (ξ△x+)△x− + x+ △ (ξ△x−)− ξ△ (x+ △x−) = Lx+
ψ(x−)ξ,

and the proof is completed. □

These operators φ and ψ are fundamental because we have the following lemma.

Lemma 2.2. (i) (φ,E) is a selfadjoint representation of (V+,

△

),

(ii) (ψ,E) is a selfadjoint representation of (V−,△).

Proof. (V1) and (1.9) together with the table (a) in (2.2) imply that

φ(x+

△

y+)ξ = x+

△

(ξ

△

y+) + (ξ

△

x+ − x+

△

ξ)

△

y+
= x+

△

(ξ

△

y+) + (x+ △ ξ)

△

y+,

and hence the assertion (i) holds. (ii) is proved in a similar way. □

Let Ω± be the homogeneous cones corresponding to V±, respectively. Let us put

H− :=

h− =

h1In1

...
. . .

Tp,1 · · · hpInp

 ;
hi ∈ R+ (i = 1, . . . , p),

Tkj ∈ Vkj (1 ≤ j < k ≤ p)

 ,

H+ :=

h+ =

hp+1Inp+1

...
. . .

Tr,p+1 · · · hrInr

 ;
hj ∈ R+ (j = p+ 1, . . . , r),

Tkj ∈ Vkj (p+ 1 ≤ j < k ≤ r)

 .

Then, H± act simply transitively on Ω±, respectively. These are embedded into H

respectively, by putting n− := n1 + · · ·+ np and n+ := np+1 + · · ·+ nr, as

H− ∋ h− 7→
(
h− 0

0 In+

)
∈ H, H+ ∋ h+ 7→

(
In− 0

0 h+

)
∈ H, (2.6)

and we identify those in this manner. Since we have a matrix realization (1.4) of H, any

h ∈ H can be written by using some h± ∈ H± and ηh ∈ E as

h =

(
h− 0

ηh h+

)
= h− ·

(
In− 0

ηh In+

)
· h+,

and we use this decomposition without comments in this section. In what follows, we

write the action by h ·x instead of ρ(h)x to avoid complexity. We note that since H± act

on Ω± simply transitively, for any h± ∈ H± there exist y± ∈ V± such that h± = expLy± .
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Lemma 2.3. For any h± ∈ H± and ξ, η ∈ E, one has the following formulas:

(i) h+ ·Q(ξ, η) = Q(h+ · ξ, h+ · η),
(ii) ψ(x−)h+ = h+ψ(x−),

(iii) ψ(h− · x−) = h−ψ(x−)
th−,

(iv)Q(ξ, h− · η) = Q(th− · ξ, η).

Proof. (i) The axiom (V1) and the table (a) in (2.2) together with (2.3) imply

that

Ly+Q(ξ, η) = ξ△ (y+ △ η) + (y+ △ ξ − ξ△ y+)△ η

= Q(Ly+ξ, η) +Q(ξ, Ly+η).
(2.7)

Taking exponential in both sides with respect to Ly+ , we get the assertion.

(ii) This comes from Lemma 2.1 (ii).

(iii) By (V1), (2.4) and Lemma 2.1 (ii), we obtain

ψ(Ly−x−) = ψ(y−)ψ(x−) + ψ(x−)ψ(y−) = Ly−ψ(x−) + ψ(x−)
tLy− .

Taking exponential in both sides with respect to Ly− , we conclude ψ(h− · x−) =

h−ψ(x−)
th−.

(iv) (1.9) and (2.2) yield that y− △ ξ + y−

△

ξ = ξ△ y−. Using (V1) we obtain

Q(ξ, Ly−η) = y− △ (ξ△ η) + (ξ△ y− − y− △ ξ)△ η = Q(tLy−ξ, η),

and hence the assertion is proved. □

Lemma 2.4. h · x is calculated as

h− · x− + h− · (ψ(x−)ηh + h+ · ξ) +
(
1

2
Q(ψ(x−)ηh, ηh) +Q(ηh, h+ · ξ) + h+ · x+

)
.

Proof. The multiplication table (a) in (2.2) implies

h+ · x− = x−, h+ · ξ ∈ E, h+ · x+ ∈ V+,

and

Lηh(V−) ⊂ E, Lηh(E) ⊂ V+, Lηh(V+) = {0}.

Thus, taking exponential we have

(expLηh)x− = x− + Lηhx− +
1

2
L2
ηh
x− = x− + ψ(x−)ηh +

1

2
Q(ψ(x−)ηh, ηh),

(expLηh)ξ = ξ + Lηhξ = ξ +Q(ηh, ξ), (expLηh)x+ = x+.

Finally, again by the table (a) in (2.2) we have

h− · x− ∈ V−, h− · ξ ∈ E, h− · x+ = x+,
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and these observations yield that

h · x− = h−(expLηh) · x− = h− ·
(
x− + ψ(x−)ηh +

1

2
Q(ψ(x−)ηh, ηh)

)
,

h · ξ = h− · (h+ · ξ +Q(ηh, h+ · ξ)),
h · x+ = h+ · x+.

Thus, we have proved the assertion. □

The multiplication table (a) in (2.2) together with (2.3), (2.4) and (2.5) yields that

the product x△ y is rewritten by using the operators φ and ψ as

x△ y = x− △ y− +
(
ψ(y−)ξ + φ(x+)η + ψ(x−)η

)
+ (Q(ξ, η) + x+ △ y+) , (2.8)

where y = y− + η + y+ with y± ∈ V± and η ∈ E. The identity (5.3) in [9] tells us

that DetRx is a relatively H-invariant polynomial and that the basic relative invariants

of Ω are given as the irreducible factors of DetRx. Let R± be the right multiplication

operators of V±, respectively. Then, (2.8) implies

Rx =

 R−
x−

0 0

ψ( · )ξ ψ(x−) φ( · )ξ
0 Q(ξ, · ) R+

x+

 ,

where the basis is taken in the order V−, E, and V+.

Proposition 2.5. For x ∈ Ω, one has

DetRx = DetR−
x−

·Detψ(x−) ·DetR+
x+−(1/2)Q(ψ(x−)−1ξ, ξ). (2.9)

Proof. First, Lemma 2.4 tells us that x ∈ Ω implies x− ∈ Ω−, and hence ψ(x−)

is invertible by Lemma 2.3 (iii). Using the following elementary determinant formula

Det

(
A B

C D

)
= Det(A)Det(D − CA−1B) (DetA ̸= 0),

we obtain

DetRx = DetR−
x−

Det

(
ψ(x−) φ(·)ξ
Q(·, ξ) R+

x+

)
= DetR−

x−
Detψ(x−)Det(R+

x+
−Q(ψ(x−)

−1φ( · )ξ, ξ)).

By Lemma 2.1, we have

ψ(x−)
−1φ(y+)ξ = φ(y+)ψ(x−)

−1ξ, Q(ψ(x−)
−1φ(y+)ξ, ξ) = Q(φ(y+)ξ, ψ(x−)

−1ξ),

and these formulas together with (2.7) yield that
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Q(ψ(x−)
−1φ(y+)ξ, ξ) =

1

2

(
Q(ψ(x−)

−1φ(y+)ξ, ξ) +Q(ψ(x−)
−1φ(y+)ξ, ξ)

)
=

1

2

(
Q(φ(y+)ψ(x−)

−1ξ, ξ) +Q(φ(y+)ξ, ψ(x−)
−1ξ)

)
=

1

2
y+ △Q(ψ(x−)

−1ξ, ξ) = R+
(1/2)Q(ψ(x−)−1ξ, ξ)(y+).

Since R+
x+

is linear with respect to x+, the proof is now completed. □

For x ∈ Ω, we put x̃ := x+ − 1

2
Q(ψ(x−)

−1ξ, ξ) ∈ V+.

Lemma 2.6. One has (h · x)˜= h+ · x̃.

Proof. We shall calculate the Q-part of (h · x) .̃ Lemma 2.3 (iii) tells us that

ψ(h− · x−)−1h− · (ψ(x−)η + h+ · ξ) = th−1
− · ψ(x−)−1(ψ(x−)η + h+ · ξ)

= th−1
− · (η + ψ(x−)

−1h+ · ξ),

and Lemma 2.1 (i) implies that Q(ψ(x−)
−1h+ · ξ, ψ(x−)η) = Q(h+ · ξ, η). Using (ii) and

(i) of Lemma 2.3, we have Q(ψ(x−)
−1h+ · ξ, h+ · ξ)) = h+ ·Q(ψ(x−)

−1ξ, ξ), and thus we

obtain by Lemma 2.3 (iv)

Q
(
th−1

− · (η + ψ(x−)
−1h+ · ξ), h− · (ψ(x−)η + h+ · ξ)

)
=Q

(
η + ψ(x−)

−1h+ · ξ, ψ(x−)η + h+ · ξ
)

=Q(η, ψ(x−)η) + 2Q(η, h+ · ξ) + h+ ·Q(ψ(x−)
−1ξ, ξ).

Consequently, we get (h ·x)˜= h+ ·(x+−(1/2)Q(ψ(x−)
−1ξ, ξ)), and now there is nothing

to prove. □

Let us calculate the irreducible factors in (2.9). We first note that DetR−
x−

is a

relatively H−-invariant polynomial, and so is Detψ(x−) because we have Lemma 2.3 (iii).

This means that, since these polynomials are relatively H-invariant by Lemma 2.4, the

basic relative invariants ∆−
1 (x−), . . . ,∆

−
p (x−) of Ω− are still those of Ω. In the case of

DetR+
x̃ , we have

DetR+
x̃ = ∆+

1 (x̃)
m1 · · ·∆+

q (x̃)
mq ,

where m1, . . . ,mq are positive integers, and hence it is sufficient to consider ∆+
j (x̃) for

each j = 1, . . . , q. By Lemma 2.6, ∆+
j (x̃) is relatively H-invariant. For an operator T ,

we denote by
co
T the cofactor of T , that is, we have

co
T = (DetT )T−1 for invertible T .

Then, the inverse ψ(x−)
−1 is described as

ψ(x−)
−1 =

1

Detψ(x−)
coψ(x−) (x− ∈ Ω−),

and the elements of coψ(x−) are polynomials of the elements of x−. Since Detψ(x−) is

relatively H−-invariant, there exist non-negative integers γj1, . . . , γjp such that
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Pj(x) := ∆−
1 (x−)

γj1 · · ·∆−
p (x−)

γjp∆+
j (x̃) (2.10)

is a polynomial having no ∆−
i (x−)-factors. We note that each Pj(x) is relatively H-

invariant because ∆−
i (x−) and ∆+

j (x̃) are relatively H-invariant.

Before we confirm the irreducibility of Pj(x), let us describe the multiplier matrix

σ of Ω by using those of Ω±. By Theorem 5.1 of [12] and by the fact that ∆−
1 , . . . ,∆

−
p

are the basic relative invariants of Ω, we see that σ is expressed, by using a certain q× p

matrix X, as

σ =

(
σ− 0

X σ+

)
. (2.11)

Proposition 2.7. P1(x), . . . , Pq(x) are the basic relative invariants of Ω.

Proof. Let ∆1(x), . . . ,∆p+q(x) be the basic relative invariants of Ω. We already

know that ∆i(x) = ∆−
i (x) (i = 1, . . . , p). Since each Pj(x) is a relatively H-invariant

polynomial and has no ∆−
i (x)-factors, there exists τ = (τ1, . . . , τq) ∈ Zq≥0 such that

Pj(x) = ∆p+1(x)
τ1 · · ·∆p+q(x)

τq .

Then, by (2.11), the multiplier of Pj is equal to (0, τ)σ = (τX, τσ+). On the other

hand, (2.10) means that the multiplier of Pj is given as (γ
j
σ−, σ

+
j ), and hence τ satisfies

τσ+ = σ+
j . Since τ1, . . . , τq are all non-negative, τ needs to be equal to the row vector

ej having one in the j-th coordinate and zeros elsewhere, that is, Pj(x) = ∆p+j(x), and

the proposition is now proved. □

Let us put Γ := (γjk) ∈ Mat(q, p; R) and Ξ := σ−1
+ Γ. Then equations (2.11) and

(2.10) yield that X = Γσ−, and the inverse of σ is described as σ−1 =

(
σ−1
− 0

−Ξ σ−1
+

)
. By

Lemma 1.1, elements of Ξ need to be equal to 0 or 1. Summing up these arguments, we

arrive at the following theorem.

Theorem 2.8. Assume that V is decomposed into V− ⊕ E ⊕ V+.

(i) There exists a unique matrix Ξ ∈ Mat(q, p; {0, 1}) such that, by putting Γ = (γjk) :=

σ+Ξ, one has for any x ∈ Ω ∆i(x)=∆−
i (x−) (i = 1, . . . , p),

∆p+j(x)=∆−
1 (x−)

γj1 · · ·∆−
p (x−)

γjp∆+
j

(
x+ − 1

2
Q(ψ(x−)

−1ξ, ξ)

)
(j = 1, . . . , q).

(ii) The multiplier matrix σ of Ω is given by

σ =

(
σ− 0

σ+Ξσ− σ+

)
=

(
Ip 0

0 σ+

)(
Ip 0

Ξ Iq

)(
σ− 0

0 Iq

)
.
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3. Polynomial condition of the reciprocals of the Laplace transforms.

In this section, we consider the Laplace transforms of relativelyH-invariant functions

on homogeneous cones. The notation is continued from the previous sections. Let ∆s(x)

be the relatively H-invariant function of Ω whose multiplier is s ∈ Rr with ∆s(e0) =

1. Let dµ be an H-invariant measure on Ω, and put pk =
∑
j<k dimVkj . Then, by

Gindikin [3], the integral

ΓΩ(s) =

∫
Ω

e−⟨x |e0 ⟩∆s(x) dµ(x) (3.1)

converges if and only if sk > pk/2 for any k = 1, . . . , r. The Laplace transform L[∆s] of

∆s is defined by

L[∆s](y) :=
1

ΓΩ(s)

∫
Ω

e−⟨x |y ⟩∆s(x) dµ(x) (y ∈ Ω∗). (3.2)

Here, in our definition, the Laplace transform is normalized as L[∆s](e0) = 1. Then,

Gindikin [3] also shows that the integral (3.2) converges absolutely if and only if sk > pk/2

for any k = 1, . . . , r, and if converges, we have the formula

L[∆s](y) =
1

∆∗
s(y)

(y ∈ Ω∗). (3.3)

For ν, µ ∈ Zr, let ∆ν(x) (x ∈ Ω) and ∆
µ
∗ (y) (y ∈ Ω∗) be rational functions defined

respectively by

∆ν(x) := ∆1(x)
ν1 · · ·∆r(x)

νr , ∆
µ
∗ (y) := ∆∗

1(y)
µ1 · · ·∆∗

r(y)
µr .

By definition, it is easily verified that

∆ν(x) = ∆νσ(x), ∆
µ
∗ (y) = ∆∗

µσ∗
(y) (x ∈ Ω, y ∈ Ω∗), (3.4)

and hence the formula (3.3) is rewritten, by putting ν′ := νσσ−1
∗ , as

L[∆ν ](y) =
1

∆
ν′

∗ (y)
(y ∈ Ω∗). (3.5)

We note that it is shown by (3.4) that a relatively H-invariant function ∆s is polynomial,

in other words the vector s is Ω-integral in the sense of [3, p. 37], if and only if all the

elements of sσ−1 are non-negative integers.

Let us assume that Ω is the symmetric cone S+
r for a while. In this case, ∆j(x) are

the left upper corner principal minors of x ∈ Ω, and ∆∗
k(y) are the right lower corner

principal minors of y ∈ Ω. By Propositions VI.3.10 and VII.1.5 of [1], for example, the

multiplier matrices σ and σ∗ are given, respectively, as
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σ =

1
...
. . .

1 · · · 1

 , σ∗ =

1 · · · 1
. . .

...

1

 , (3.6)

and this yields that ν′ = νσσ−1
∗ = (ν1 + · · · + νr,−ν1, . . . ,−νr−1). Thus, we obtain

by (3.5)

L[∆ν ](y) =
1

∆
ν′

∗ (y)
=

∆∗
2(y)

ν1 · · ·∆∗
r(y)

νr−1

∆∗
1(y)

ν1+···+νr
(y ∈ Ω). (3.7)

If ν = (0, . . . , 0, n) with n ∈ N, then we find that ∆ν(x) and ∆
ν′

∗ (y) = (L[∆ν ](y))
−1

are

both non-constant polynomials. This property is valid for any irreducible symmetric cone

(cf. [1, Chapter VII]), and we shall show that, among irreducible homogeneous cones,

symmetric cones are characterized by this property.

We now return to a general situation that Ω is an irreducible homogeneous cone.

Let us introduce an inductive structure in V . We set (p, q) = (r − 1, 1) in the decompo-

sition (2.1). Then, by putting V ′ = V−, we have

V = V ′ ⊕ E ⊕ Rcr. (3.8)

Let Ω′ be the cone corresponding to V ′, and we denote the multiplier matrices of Ω′ and

(Ω′)∗ by σ′ and σ′
∗, respectively. Theorem 2.8 implies that there exist γ ∈ {0, 1}r−1 and

ε ∈ {0, 1}r−1 such that

σ =

(
σ′ 0

γσ′ 1

)
, σ∗ =

(
σ′
∗ σ

′
∗ε

0 1

)
.

Between γ and ε, the following relationship holds.

Lemma 3.1. There exists an integer j0 such that γj0 = εj0 = 1.

Proof. Since V is irreducible, we have {j; γj = 1} ̸= ∅. Let j0 be the maximal

integer such that γj = 1.

Then, by Lemma 1.1, we obtain

dimVrj0 > 0, dimVrk = 0 (j0 < k < r),

and, Lemma 1.1 for σ∗ yields that

εj0 = 1, εk = 0 (k = j0 + 1, . . . , r − 1),

so that the lemma is now proved. □

To go further, we introduce some notations. For row vectors u = t(u1, . . . , ur) ∈ Rr,
we write u > 0 when uj > 0 for all j. We use similar notation for column vectors ν ∈ Rr,
and for other inequalities ≥, <, ≤.
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Proposition 3.2. Let Ω be an irreducible homogeneous cone. If Ω is not symmet-

ric, then there exists u ∈ {0, 1}r such that σσ−1
∗ u < 0. If Ω is symmetric, then there are

no such u ∈ {0, 1}r, and, at best, σσ−1
∗ u = −t(1, . . . , 1, 0) for some u.

Proof. At first, we assume that Ω is symmetric. In this case, we know that σ

and σ∗ are expressed as in (3.6), and a simple calculation yields that

σσ−1
∗ =


1
...
1

−Ir−1

1 0 · · · 0

 .

Hence, it is easily verified that there are no u ∈ {0, 1}r such that σσ−1
∗ u < 0, and

σσ−1
∗ u = −t(1, . . . , 1, 0) when u = t(0, 1, . . . , 1). Next we assume that Ω is not sym-

metric. We shall prove the proposition in this case by the induction on the rank r.

Let us decompose V as in (3.8). Since Ω′ is not necessarily irreducible, we consider

the irreducible decomposition Ω′ =
⊕q

a=1 Ωa, where q is the number of the irreducible

components Ωa of Ω′. We relabel the Vinberg frame, if necessary, such that the ambi-

ent vector space Ua of Ωa are placed on the diagonal blocks (cf. (1.3)). Moreover, let

E =
⊕q

a=1Ea be the decomposition of E with respect to the relabeled Vinberg frame.

Then, V is of the form

V =



U1 0 · · · 0 E1

0
. . .

. . .
...

...
...

. . . Uq−1 0 Eq−1

0 · · · 0 Uq Eq
E1 · · · Eq−1 Eq Rcr

 .

For each a = 1, . . . , q, let σa be the multiplier matrix of the cone Ωa, and σ
∗
a that of the

dual cone of Ωa. Since the subspace U0
a := Ua ⊕ Ea ⊕ Rcr is a subalgebra as Vinberg

algebra, we have the cone Ω0
a corresponding to U0

a . Applying Theorem 2.8 to Ω0
a and

to its dual cone (Ω0
a)

∗, we see that there exist zero-one vectors γ
a
and εa such that the

multiplier matrices of Ω0
a and of (Ω0

a)
∗ are written, respectively, as(

σa 0

γ
a
σa 1

)
,

(
σ∗
a σ

∗
aεa

0 1

)
.

We note that, since V is irreducible, each U0
a needs to be irreducible, and hence γ

a
and

εa are both not zero-vectors for all a. Recalling Lemma 1.1, we see that σ and σ∗ are

described, respectively, as

σ =


σ1

. . .

0 σq
γ
1
σ1 · · · γqσq 1

 , σ∗ =


σ∗
1 0 σ∗

1ε1
. . .

...

σ∗
q σ

∗
qεq
1

 .
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For any a = 1, . . . , q, since rankΩa < r, the hypothesis implies that there exists a zero-one

vector ua satisfying the property for Ωa, and we place them in a vector form as

u :=


u1

...

uq
1

 ∈ {0, 1}r.

By a simple matrix calculation, we find that

σσ−1
∗ u =


σ1(σ

∗
1)

−1u1 − σ1ε1
...

σq(σ
∗
q )

−1uq − σqεq∑
a γaσa(σ

∗
a)

−1ua + 1−
∑
a γaσaεa

 ,

and put

Y a = σa(σ
∗
a)

−1ua − σaεa, X =
∑
a

γ
a
σa(σ

∗
a)

−1ua + 1−
∑
a

γ
a
σaεa.

First, let us consider Y a. If Ωa is not symmetric, then by the hypothesis we have

σa(σ
∗
a)

−1ua < 0, and hence Y a < 0. Let us assume that Ωa is symmetric. In this case

σa is described as in (3.6). For a vector s = (s1, . . . , sr), put |s| := s1 + · · ·+ sr. Then,

the last factor of σaεa is equal to |εa|, and we have |εa| > 0 because εa ̸= 0. Since we

have σa(σ
∗
a)

−1ua = −t(1, . . . , 1, 0), we conclude Y a < 0.

Next, let us consider X. By Lemma 3.1, we have γ
a
σaεa ≥ 1 for each a, and thus

1−
∑
a

γ
a
σaεa ≤ 1− q. (3.9)

Therefore, if q ≥ 2, we easily find that X ≤ 1 − q < 0. Suppose that q = 1. In this

case we have Ω′ = Ω1, so that we use prime symbols, like u′ = u1, for simplicity. Since

(3.9) implies that X ≤ γ′σ′(σ′
∗)

−1u′, we first consider the value of γ′σ′(σ′
∗)

−1u′. If Ω′

is not symmetric, the hypothesis implies that σ′(σ′
∗)

−1u′ < 0, and hence X < 0. We

now assume that Ω′ is symmetric. Then, we have σ′(σ′
∗)

−1u′ = −t(1, . . . , 1, 0) with

u′ = t(0, 1, . . . , 1). Thus, if γ′ ̸= (0, . . . , 0, 1), then we obtain X ≤ γ′σ′(σ′
∗)

−1u′ < 0.

Next, we put γ′ = (0, . . . , 0, 1). In this case γ′σ′(σ′
∗)

−1u′ = 0, so that we consider the

value of 1− γ′σ′ε′. Lemma 3.1 tells us that εr−1 = 1, where we put ε′ = t(ε1, . . . , εr−1).

Since γ′σ′ε′ = 1 + ε1 + · · ·+ εr−2, if ε ̸= t(0, . . . , 0, 1) then we have X ≤ 1− γ′σ′ε′ < 0.

Finally, let ε = t(0, . . . , 0, 1). Then, a simple calculation yields that

σ =

(
σ′ 0

γσ′ 1

)
=

1
...
. . .

1 · · · 1

 , σ∗ =

(
σ′
∗ σ

′
∗ε

0 1

)
=

1 · · · 1
. . .

...

1

 ,

and therefore σ−1 + σ−1
∗ is equal to the Cartan matrix of type Ar. Theorem 4.3 of [13]
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tells us that Ω is nothing other than an irreducible symmetric cone. Hence, the proof is

now completed. □

Lemma 3.3. Let ν ≥ 0. If there exists a matrix A such that νA ≥ 0 and Au < 0

for some u ∈ {0, 1}r, then ν = 0.

Proof. First, we can easily verify νAu = (νA)u ≥ 0. On the other hand, a

straightforward calculation yields that νAu = ν(Au) ≤ 0. Thus, we obtain νAu = 0.

Since all elements of Au are strictly negative and ν ≥ 0, we conclude that ν = 0. □

Proposition 3.2 together with Lemma 3.3 leads us to the following theorem which

gives a characterization of symmetric cones among irreducible homogeneous cones by

using the Laplace transforms of relatively H-invariant functions on Ω.

Theorem 3.4. Let Ω be an irreducible homogeneous cone. Then, Ω is symmetric

if and only if there exists a non-constant relatively H-invariant polynomial ∆ν(x) such

that the reciprocal ∆
ν′

∗ (y) = (L[∆ν ](y))
−1

of the Laplace transform of ∆ν(x) is also a

non-constant polynomial.

Proof. Since the multiplier matrices σ and σ∗ of symmetric cones are described

as in (3.6), the “only if” part is already proved in (3.7). We now assume that Ω is not

symmetric. Then, by Proposition 3.2, there exists u ∈ {0, 1}r such that σσ−1
∗ u < 0. Let

us assume that ∆ν(x) and ∆
ν′

∗ (y) are both polynomials, that is, we assume that ν ≥ 0

and ν′ = νσσ−1
∗ ≥ 0. Then, Lemma 3.3 shows that ν needs to be equal to 0. Thus, there

are no non-constant polynomials which satisfy the property when Ω is not symmetric. □
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