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Abstract. We prove some Sawyer-type characterizations for multilinear
fractional maximal function for the upper triangle case. We also provide some
two-weight norm estimates for this operator. As one of the main tools, we use

an extension of the usual Carleson Embedding that is an analogue of the P.
L. Duren extension of the Carleson Embedding for measures.

1. Introduction.

All over the text, Rn will be the n-dimensional real Euclidean space; all the cubes

considered are non-degenerate with sides parallel to the coordinate axes and we denote

by Q the set of all these cubes. If Q is a cube, then we denote by |Q| its Lebesgue

measure. When ω is a weight on Rn, we write ω(Q) :=
∫
Q
ω(x)dx. Given an exponent

1 < p < ∞, we denote by p′ its conjugate; that is pp′ = p+ p′. We recall that a function

f belongs to the weighted space Lp(σ) if

∥f∥p,σ :=

(∫
Rn

|f(t)|pσ(t)dt
)1/p

< ∞.

We use the notation ∥T∥Lp(σ)→Lq(ω) for the norm of T as operator acting from Lp(σ) to

Lq(ω).

An important question in modern harmonic analysis is given an operator T , deter-

mine the pairs of weights (ω, σ) such that

∥Tf∥p,ω ≤ C(ω, σ)∥f∥p,σ (1.1)

or more generally,

∥Tf∥q,ω ≤ C(ω, σ)∥f∥p,σ. (1.2)

When T is the Hardy–Littlewood maximal operator M , a complete answer to the

above question was provided in the case ω = σ by Muckenhoupt [25] who proved that

(1.1) holds for M if and only if σ satisfies the so-called Ap condition. That is

[σ]Ap := sup
Q∈Q

(
1

|Q|

∫
Q

σ

)(
1

|Q|

∫
Q

σ1−p′
)p−1

< ∞. (1.3)
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Note however that this question in its general form is difficult.

Recall that the fractional maximal function is defined by

Mαf(x) := sup
Q∈Q

χQ(x)

|Q|1−α/n

∫
Q

|f(y)|dy (1.4)

provided 0 ≤ α < n. When α = 0, this is just the Hardy–Littlewood maximal function.

Muckenhoupt and Wheeden [26] proved that for 1 < p < n/α, and 1/q = 1/p−α/n, Mα

is bounded from Lp(σp) to Lq(σq) if and only if

[σ]Ap,q := sup
Q∈Q

(
1

|Q|

∫
Q

σq

)1/q (
1

|Q|

∫
Q

σ−p′
)1/p′

< ∞.

In [30], E. Sawyer provided a general criterium for the maximal function to be bounded

from Lp(σ) to Lq(ω), 1 < p ≤ q < ∞. He proved that Mα is bounded from Lp(σ) to

Lq(ω) if and only if

[σ, ω]Sp,q,α := sup
Q∈Q

(∫
Q
(Mα(σχQ)(x))

q
ω(x)dx

(σ(Q))
q/p

)1/q

< ∞ (1.5)

(see [23] for the norm estimate). Condition (1.5) is usually called Sawyer’s condition or

characterization.

We are interested in the multilinear analogues of the maximal operators above. For

m a given positive integer, the multilinear fractional maximal function is defined by

Mαf⃗(x) := sup
Q∈Q

|Q|α/n
m∏
i=1

χQ(x)

|Q|

∫
Q

|fi(y)|dy

provided 0 ≤ α < mn. Here f⃗ = (f1, . . . , fm) where the fis are measurable functions.

When α = 0, M0 = M is the multilinear Hardy–Littlewood maximal function. Note

that these operators are related to multilinear Calderón–Zygmund theory and the study

of multilinear fractional integral operators [9], [10], [11], [12], [15], [18], [24]. In this

work, we prove a Sawyer-type characterization for the multilinear fractional maximal

function defined above. We also provide some norm estimates for this operator. We note

that the multilinear analogues of B. Muckenhoupt and Muckenhoupt–Wheeden results

recalled above are given in [18] and [24] respectively.

2. Statement of the results.

2.1. Sawyer-type characterizations.

One of our interests in this work is the extension of Sawyer result to the multilinear

setting. In [2] and [22], the authors dealt with this question for α = 0 but under the

assumption that the weights satisfy a kind of reverse Hölder inequality and monotone

property respectively. Li and Sun [21] managed to extend the Sawyer characterization

for the boundedness ofMα from Lp1(σ1)×· · ·×Lpm(σm) to Lq(ω) for max{p1, . . . , pm} ≤
q < ∞. They proved the following.
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Theorem 2.1. Given a nonnegative integer m, and 1 < p1, . . . , pm < ∞; suppose

that 0 ≤ α < mn, and max{p1, . . . , pm} ≤ q < ∞. Let ω1, . . . , ωm and v be weights and

put σi = ω
1−p′

i
i , i = 1, . . . ,m. Define

[ω⃗, v]SP⃗ ,q
:= sup

Q∈Q

(∫
Q
(Mα(σ1χQ, . . . , σmχQ)(x))

q
v(x)dx

)1/q
∏m

i=1 σi(Q)1/pi
.

Then Mα is bounded from Lp1(ω1)× · · · × Lpm(ωm) to Lq(v) if and only if [ω⃗, v]SP⃗ ,q
is

finite. Moreover,

∥Mα∥(∏m
i=1 Lpi (ωi))→Lq(v) ⋍ [ω⃗, v]SP⃗ ,q

.

The condition [ω⃗, v]SP⃗ ,q
< ∞ is necessary in general but the assumption q ≥

max{p1, . . . , pm} makes the result above restrictive. One might be interested in know-

ing if it is possible to remove this assumption and may be replace it by q ≥ p, with

1/p = 1/p1+ · · ·+1/pm. Before going ahead on this question, let us state our first result

which provides a general sufficient condition.

Proposition 2.2. Given a nonnegative integer m, 1 < p1, . . . , pm < ∞. Suppose

that 0 ≤ α < mn, 1/p = 1/p1 + · · · + 1/pm and p ≤ q < ∞. Let ω1, . . . , ωm and v be

weights and put σi = ω
1−p′

i
i , i = 1, . . . ,m and νω⃗ =

∏m
i=1 σ

p/pi

i . Define

[νω⃗, v]SP⃗ ,q
:= sup

Q∈Q

(∫
Q
(Mα(σ1χQ, . . . , σmχQ)(x))

q
v(x)dx

)1/q
(νω⃗(Q))

1/p
.

Then Mα is bounded from Lp1(ω1) × · · · × Lpm(ωm) to Lq(v) if [νω⃗, v]SP⃗ ,q
is finite.

Moreover,

∥Mα∥(∏m
i=1 Lpi (ωi))→Lq(v) ≲ [νω⃗, v]SP⃗ ,q

.

It comes that if the weight ωi, i = 1, 2, . . . ,m are such that for any cube Q ∈ Q,

m∏
i=1

σi(Q)p/pi =

m∏
i=1

(∫
Q

σi(x)dx

)p/pi

≲
∫
Q

(
m∏
i=1

σ
p/pi

i

)
(x)dx = νω⃗(Q), (2.1)

then the equivalence [νω⃗, v]SP⃗ ,q
⋍ [ω⃗, v]SP⃗ ,q

holds and consequently, Theorem 2.1 holds

without the restriction q ≥ max{p1, . . . , pm} but with this time p ≤ q. That is the

following holds.

Theorem 2.3. Given a nonnegative integer m, 1 < p1, . . . , pm < ∞. Suppose that

0 ≤ α < mn, 1/p = 1/p1 + · · ·+ 1/pm and p ≤ q < ∞. Let ω1, . . . , ωm and v be weights

and put σi = ω
1−p′

i
i , i = 1, . . . ,m. Suppose that the weights σi, i = 1, . . . ,m are such

that (2.1) holds, and define
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[νω⃗, v]SP⃗ ,q
= sup

Q∈Q

(∫
Q
(Mα(σ1χQ, . . . , σmχQ)(x))

q
v(x)dx

)1/q
∏m

i=1 σi(Q)1/pi
.

Then Mα is bounded from Lp1(ω1)× · · · ×Lpm(ωm) to Lq(v) if and only if [νω⃗, v]SP⃗ ,q
is

finite. Moreover,

[νω⃗, v]SP⃗ ,q
≲ ∥Mα∥(∏m

i=1 Lpi (ωi))→Lq(v) ≲ [ω⃗]
1/p
RHP⃗

[νω⃗, v]SP⃗ ,q
.

Condition (2.1) was used and named reverse Hölder inequality RHP⃗ in [2], [3]. The

constant [ω⃗]RHP⃗
in the above theorem is the best constant in (2.1). In [2], the authors

obtained Theorem 2.3 for α = 0 and p = q, but it is hard to provide examples of family

of weights for which (2.1) holds. Nevertheless one can check that for σ1 = σ2 = · · · =
σm = σ, we have the inequality (2.1) and in this case, the following result.

Corollary 2.4. Given a nonnegative integer m, 1 < p1, . . . , pm < ∞. Suppose

that 0 ≤ α < mn, 1/p = 1/p1 + · · · + 1/pm and p ≤ q < ∞. Let σ and ω be weights.

Define

[σ, ω]SP⃗ ,q
= sup

Q∈Q

(∫
Q
(Mα(σχQ, . . . , σχQ)(x))

q
ω(x)dx

)1/q
σ(Q)1/p

.

Then Mα is bounded from Lp1(σ−p1/p
′
1) × · · · × Lpm(σ−pm/p′

m) to Lq(ω) if and only if

[σ, ω]SP⃗ ,q
is finite. Moreover,

∥Mα∥(∏m
i=1 Lpi (σ−pi/p

′
i )
)
→Lq(ω)

⋍ [σ, ω]SP⃗ ,q
.

Recall that the A∞ class of Hruščev ([13]) consists of weights ω satisfying

[ω]A∞ := sup
Q∈Q

(
1

|Q|

∫
Q

ω

)
exp

(
1

|Q|

∫
Q

logω−1

)
< ∞. (2.2)

It is easy to check that for σ1, . . . , σm ∈ A∞, and for any cube Q,

m∏
i=1

σi(Q)p/pi ≲
(

m∏
i=1

[σi]A∞

)∫
Q

(
m∏
i=1

σ
p/pi

i

)
(x)dx

(see [31]). It follows that we also have the following result.

Corollary 2.5. Given a nonnegative integer m, 1 < p1, . . . , pm < ∞. Suppose

that 0 ≤ α < mn, 1/p = 1/p1 + · · · + 1/pm and p ≤ q < ∞. Let ω1, . . . , ωm and v be

weights and put σi = ω
1−p′

i
i , i = 1, . . . ,m. Suppose that the weights σi, i = 1, . . . ,m are

in the class A∞ and define

[ω⃗, v]SP⃗ ,q
= sup

Q∈Q

(∫
Q
(Mα(σ1χQ, . . . , σmχQ)(x))

q
v(x)dx

)1/q
∏m

i=1 σi(Q)1/pi
.
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Then Mα is bounded from Lp1(ω1)× · · · × Lpm(ωm) to Lq(v) if and only if [ω⃗, v]SP⃗ ,q
is

finite. Moreover,

[ω⃗, v]SP⃗ ,q
≲ ∥Mα∥(∏m

i=1 Lpi (ωi))→Lq(v) ≲
(

m∏
i=1

[σi]A∞

)1/p

[ω⃗, v]SP⃗ ,q
.

To prove Proposition 2.2, one first need to observe that the matter can be re-

duced to the associated dyadic maximal function. We then use an approach that can be

traced back to [30] and has been simplified in [4], it consists in discretizing the integral∫
Rd (Md,α(f)(x))

q
ω(x)dx where Md,α stands for the multilinear dyadic fractional max-

imal function, using appropriate level sets and their decomposition into disjoint dyadic

cubes. In the linear case (i.e. when m = 1), one then uses an interpolation approach to

get the embedding (see [4], [21]). This method still works in the multilinear case under

further restrictions on the exponents that allow one to reduce the matter to a linear case

and this is what happens exactly in the proof of Theorem 2.1 in [21]. It is not clear how

this can be done in general in the multilinear setting for the upper triangle case (p < q).

To overcome this difficulty, we just extend the techniques used for the diagonal case

(p = q) which reduce the matter to a Carleson embedding (see [2]). More precisely, we

use the following extension of the usual Carleson embedding and its multilinear analogue.

Theorem 2.6. Let σ be a weight on Rn and α ≥ 1. Assume {λQ}Q∈D is a sequence

of positive numbers indexed over the set of dyadic cubes D in Rn. Then the following are

equivalent.

(i) There exists some constant A > 0 such that for any cube R ∈ D,∑
Q⊆R,Q∈D

λQ ≤ A(σ(R))α.

(ii) There exists a constant B > 0 such that for all p ∈ (1,∞),∑
Q∈D

λQ|mσ(f,Q)|pα ≤ B∥f∥pαp,σ,

where mσ(f,Q) = (1/σ(Q))
∫
Q
f(t)σ(t)dt.

The above theorem for α = 1 is the usual Carleson Embedding Theorem (see [14],

[28]). The case α > 1 is new and can be viewed as an analogue of P. L. Duren extension of

Carleson embedding theorem for measures [7]. The proof of Theorem 2.1 is also simplified

when combining the main idea of [21] and the extension of the Carleson embedding. For

the proof of Proposition 2.2, we will use a multilinear analogue of the above embedding.

2.2. Some norm estimates.

Our other interest in this paper is to provide sufficient conditions for Mα to be

bounded from Lp1(σ1)×· · ·×Lpm(σm) to Lq(ω). Usually, one expects conditions that have

a form close to the Ap characteristic of Muckenhoupt. This question is quite interesting

in this research area as it is related to the same type of questions for singular operators
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and some questions arising from PDEs (see [5], [12], [24], [26], [27] and the references

therein). Before going ahead on this question, we need more definitions and notations.

Given two weights ω and σ, we say they satisfy the joint Ap condition for 1 < p < ∞
if

[ω, σ]Ap := sup
Q∈Q

ω(Q)σ(Q)p−1

|Q|p
< ∞. (2.3)

Note that when σ = ω−1/(p−1), this is just the definition of the Ap class of Muckenhoupt.

A new class of weights was recently introduced by Hytönen and Pérez [14] and consists

of pair of weights satisfying the condition

[ω, σ]Bp := sup
Q∈Q

ω(Q)σ(Q)p

|Q|p+1
exp

(
1

|Q|

∫
Q

log σ−1

)
< ∞. (2.4)

We recall the definition of the A∞ class of Fujii–Wilson ([8], [16], [32], [33], [34]). We

say a weight σ belongs to A∞ if

[σ]A∞ := sup
Q∈Q

1

σ(Q)

∫
Q

M(σχQ) < ∞. (2.5)

Buckley [1] obtained the following estimate for the maximal operator M :

∥M∥Lp(σ)→Lp(σ) ≤ Cp′[σ]
1/(p−1)
Ap

. (2.6)

This was recently improved by Hytönen and Pérez [14] as follows.

Theorem 2.7 ([14, Theorem 1.7]). Let 1 < p < ∞, and σ, ω two weights. Then

∥M(fσ)∥p,ω ≤ C(n)p′
(
[σ, ω]Bp

)1/p ∥f∥p,σ (2.7)

and

∥M(fσ)∥p,ω ≤ C(n)p′
(
[σ, ω]Ap [σ]A∞

)1/p ∥f∥p,σ. (2.8)

Estimate (2.8) in the case p = 2 is actually attributed to Lerner and Ambrosi

[17]. To find the corresponding estimates in the Lp − Lq case, we need to introduce

adapted classes of weights that generalize the above ones. For 1 < p1, . . . , pm, q < ∞,

P⃗ = (p1, . . . , pm), we say the weights σ⃗ = (σ1, . . . , σm) and ω satisfy the joint conditions

AP⃗ ,q and BP⃗ ,q if

[σ⃗, ω]AP⃗ ,q
:= sup

Q∈Q

ω(Q)p/q
∏m

i=1 σi(Q)p/p
′
i

|Q|p(m−(α/n))
< ∞ (2.9)

and

[σ⃗, ω]BP⃗ ,q
:= sup

Q∈Q

ω(Q)p/q
∏m

i=1 σi(Q)p

|Q|p(m−(α/n))+1

m∏
i=1

(
exp

(
1

|Q|

∫
Q

log σ−1

))p/pi

< ∞. (2.10)
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One easily checks the following inequalities

[σ⃗, ω]AP⃗ ,q
≤ [σ⃗, ω]BP⃗ ,q

≤ [σ⃗, ω]AP⃗ ,q

m∏
i=1

[σi]
p/pi

A∞
.

Let us also introduce the multilinear A∞ class of Chen–Damián [2]. That is the class of

weights σ⃗ = (σ1, . . . , σm) such that

[σ⃗]W∞
P⃗

:= sup
Q∈Q

∫
Q

∏m
i=1 M(σiχQ)(x)

p/pidx∫
Q

∏m
i=1 σ

p/pi

i (x)dx
< ∞,

where 1/p = 1/p1 + · · ·+ 1/pm. Our corresponding result is the following.

Theorem 2.8. Let 1 < p1, . . . , pm, q < ∞, and σ⃗ = (σ1, . . . , σm), ω be weights.

Put 1/p = 1/p1 + · · ·+ 1/pm and assume that p ≤ q. Then

∥Mα(σ1f1, . . . , σmfm)∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]BP⃗ ,q

)1/p m∏
i=1

∥fi∥pi,σi , (2.11)

∥Mα(σ1f1, . . . , σmfm)∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

)1/p( m∏
i=1

[σi]
1/pi

A∞

)
m∏
i=1

∥fi∥pi,σi

(2.12)

and

∥Mα(σ1f1, . . . , σmfm)∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

[σ⃗]W∞
P⃗

)1/p m∏
i=1

∥fi∥pi,σi . (2.13)

We observe that when α = 0 and p = q, that is for the multilinear Hardy–Littlewood

maximal function, inequalities (2.11) and (2.13) were proved in [2], while (2.12) was

obtained in [6]. Sharp norm estimates of the Hardy–Littlewood maximal function and

the fractional maximal function are considered in [19], [20], some of these estimates are

similar to (2.12) with a modification of the power on [σi]A∞ . An extension of the Buckley

estimate (2.6) to the multilinear maximal function is given in [6].

To prove Theorem 2.8, one first needs to observe as above that one only needs to

consider the case of the dyadic maximal function. Then to estimate the norm of the

dyadic maximal function, we proceed essentially as for Proposition 2.2. For some other

sufficient conditions of this type, we refer the reader to the following and the references

therein [2], [18], [19], [23], [24].

The paper is organized as follows, in the next section, we introduce an extension

of the usual notion of Carleson sequences, and provide equivalent characterizations. In

Section 4, we prove Proposition 2.2 and simplify the proof of Theorem 2.1. Theorem 2.8

is proved in the last section. Some steps in our proofs are known by the specialists but

we write them down so that the reader can easily follow us.

All over the text, C will denote a constant not necessarily the same at each oc-

currence. We write C(α, n, · · · ) to emphasize on the fact that our constant depends on

the parameters α, n, · · · . As usual, given two positive quantities A and B, the notation
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A ≲ B (resp. B ≲ A) will mean that there is an universal constant C > 0 such that

A ≤ CB (resp. B ≤ CA). When A ≲ B and B ≲ A, we write A ⋍ B and say A and B

are equivalent.

3. (α, σ)-Carleson sequences.

We introduce a more general notion of Carleson sequences, provide equivalent defi-

nitions and applications.

3.1. Definitions and results.

We have the following general definition of Carleson sequences.

Definition 3.1. Given a weight σ and a number α ≥ 1, a sequence of positive

numbers {λQ}Q∈D indexed over the set of dyadic cubes D in Rn is called a (α, σ)-Carleson

sequence if there exists a constant A > 0 such that for any cube R ∈ D,∑
Q⊆R

λQ ≤ A(σ(R))α. (3.1)

We call Carleson constant of the sequence {λQ}Q∈D, the smallest constant in the

above definition and denote it by ACarl when there is no ambiguity. When σ ≡ 1 and

α ≥ 1, we speak of α-Carleson sequences. In particular when α = 1, we just call them

Carleson sequences as usual.

Let us introduce some notations. For f ∈ Lp(ω),

∥f∥pp,ω :=

∫
Rn

|f(x)|pω(x)dx

and

mω(f,Q) :=
1

ω(Q)

∫
Q

f(x)ω(x)dx

where ω(Q) =
∫
Q
ω. When ω ≡ 1, we write mQf = m(f,Q) = mω(f,Q).

Theorem 2.6 provides an equivalent definition of (α, σ)-Carleson sequences. Here is

its proof.

Proof of Theorem 2.6. Let us recall that the dyadic Hardy–Littlewood maxi-

mal function with respect to the measure σ is defined by

Mσ
d f := sup

Q∈D

χQ

σ(Q)

∫
Q

|f |σ.

When σ ≡ 1, we write Mσ
d = Md. We recall the estimate

∥Mσ
d f∥p,σ ≤ p′∥f∥p,σ. (3.2)

We will also need the following inequality.
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λpσ ({x : Mσ
d f(x) > λ}) ≤ ∥Mσ

d f∥pp,σ. (3.3)

For the implication (ii) ⇒ (i), we test (ii) with the function f = χR with R ∈ D to

obtain ∑
Q⊆R,Q∈D

λQ ≤
∑
Q∈D

λQ (mσ(f,Q))
pα

≤ B∥χR∥pαp,σ = B (σ(R))
α
.

That is for any R ∈ D ∑
Q⊆R,Q∈D

λQ ≤ B (σ(R))
α

which is (i).

To prove that (i) ⇒ (ii), it is enough by (3.2) to prove the following.

Lemma 3.2. Let {λQ}Q∈D and α ≥ 1. Suppose that there exists a constant A > 0

such that for any R ∈ D, ∑
Q⊆R,Q∈D

λQ ≤ A(σ(R))α.

Then for all p ∈ [1,∞), ∑
Q∈D

λQ|mσ(f,Q)|pα ≤ Aα∥Mσ
d f∥pαp,σ. (3.4)

Proof. We can suppose that f > 0. As in the case of α = 1 in [14], we read∑
Q∈D λQ (mσ(f,Q))

pα
as an integral over the measure space (D, µ) built over the set

of dyadic cubes D, with µ the measure assigning to each cube Q ∈ D the measure λQ.

Thus ∑
Q∈D

λQ (mσ(f,Q))
pα

=

∫ ∞

0

pαtpα−1µ ({Q ∈ D : mσ(f,Q) > t}) dt

=

∫ ∞

0

pαtpα−1µ(Dt)dt,

Dt := {Q ∈ D : mσ(f,Q) > t}. Let D∗
t be the set of maximal dyadic cubes R with

respect to the inclusion so that mσ(f,R) > t. Then∪
R∈D∗

t

R = {x ∈ Rn : Mσ
d f(x) > t}.

It follows from the hypothesis on the sequence {λQ}Q∈D that

µ(Dt) =
∑
Q∈Dt

λQ ≤
∑

R∈D∗
t

∑
Q⊆R

λQ
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≤ A
∑

R∈D∗
t

(σ(R))
α ≤ A

 ∑
R∈D∗

t

σ(R)

α

≤ A (σ({Mσ
d f > t}))α .

Hence using (3.3), we obtain

S(f) :=
∑
Q∈D

λQ|mσ(f,Q)|pα

≤ A

∫ ∞

0

pαtpα−1 (σ({Mσ
d f > t}))α dt

= A

∫ ∞

0

pαtp−1σ({Mσ
d f > t}) (tpσ({Mσ

d f > t}))α−1
dt

≤ Aα∥Mσ
d f∥p(α−1)

p,σ

∫ ∞

0

ptp−1σ({Mσ
d f > t})dt

≤ Aα∥Mσ
d f∥pαp,σ. □

The proof is complete. □

The above theorem is clearly a generalization as taking α = 1 we get the well known

Carleson embedding result (see [14], [28]).

Remark 3.3. As a first application, we obtain a necessary and sufficient condition

for the main paraproduct to be bounded from Lp(R) to L2(R) for 1 ≤ p ≤ 2. Let us still

denote by D the set of dyadic intervals in R. Recall that given a dyadic interval I, the

Haar function supported by I is defined by hI(s) = |I|−1/2(χI+(s)− χI−(s)), where I−

and I+ are the left and the right halfs of I respectively. For ϕ ∈ L2(R) with finite Haar

expansion, the (main) paraproduct with symbol ϕ is the operator defined on L2(R) by

Πϕb(s) :=
∑
I∈D

⟨ϕ, hI⟩(mIb)hI(s)

where mIb = (1/|I|)
∫
I
b(x)dx. It is well known that the operator Πϕ is bounded on

Lp(R) if and only if the sequence {|⟨ϕ, hI⟩|2}I∈D is a Carleson sequence (see [28]). The

following partial extension is a direct consequence of Theorem 2.6.

Corollary 3.4. Let ϕ ∈ L2(R) and 1 ≤ p ≤ 2. Then Πϕ extends to a bounded

operator from Lp(R) to L2(R) if and only if

A := sup
J∈D

1

|J |2/p
∑

I⊆J,I∈D

|⟨ϕ, hI⟩|2 < ∞. (3.5)

Moreover, ∥Πϕ∥Lp(R)→L2(R) ⋍ A.

The higher dimensional version of the above corollary requires an adapted multi-

variable version of Theorem 2.6. This will be presented elsewhere.
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An alternative characterization of (α, σ)-Carleson sequences is the following.

Theorem 3.5. Let N ≥ 1 be an integer, 1 < pj < ∞, j = 1, . . . , N . Assume that σ

is a weight on Rn, and that there are 0 < q1, . . . , qN < ∞ such that α =
∑N

j=1 qj/pj ≥ 1.

Then given a sequence {λQ}Q∈D of positive numbers, the following are equivalent.

(i) {λQ}Q∈D is a (α, σ)-Carleson sequence, that is for some constant A > 0 and for

any cube R ∈ D, ∑
Q⊆R,Q∈D

λQ ≤ A(σ(R))α.

(ii) There exists a constant B > 0 such that

∑
Q∈D

λQ

N∏
j=1

|mσ(fj , Q)|qj ≤ B
N∏
j=1

∥fj∥qjpj ,σ. (3.6)

Proof. To prove that (ii) ⇒ (i), take for R ∈ D given, fj = χR for j = 1, . . . , N

and proceed as in the proof of Theorem 2.6. To prove that (i) ⇒ (ii), it is enough to

prove the following lemma which might be useful in some other circumstances.

Lemma 3.6. Let N ≥ 1 be an integer, 1 ≤ pj < ∞, j = 1, . . . , N . Assume that σ

is a weight on Rn, and that 0 < q1, . . . , qN < ∞ so that α =
∑N

j=1 qj/pj ≥ 1. Then if

{λQ}Q∈D is a sequence of positive numbers such that there exists a constant A > 0 so

that for any cube R ∈ D, ∑
Q⊆R,Q∈D

λQ ≤ A(σ(R))α,

then

∑
Q∈D

λQ

N∏
j=1

|mσ(fj , Q)|qj ≲ Aα
N∏
j=1

∥Mσ
d fj∥qjpj ,σ. (3.7)

Proof. An application of Hölder’s inequality and Lemma 3.2 provide

∑
Q∈D

λQ

N∏
j=1

|mσ(fj , Q)|qj ≤
N∏
j=1

∑
Q∈D

λQ|mσ(fj , Q)|pjα

qj/(αpj)

≤
N∏
j=1

(
Aα∥Mσ

d fj∥pjα
pj ,σ

)qj/(αpj)

≲ Aα
N∏
j=1

∥Mσ
d fj∥qjpj ,σ. □

The proof is complete. □
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3.2. Another extension.

We end this section with the following extension of the multilinear Carleson embed-

ding of [2].

Lemma 3.7. Let N ≥ 1 be an integer, 1 < pi, α < ∞, i = 1, . . . , N . Assume that

σi, i = 1, . . . ,m are weights on Rn, and put νσ⃗ =
∏m

i=1 σ
p/pi

i and 1/p = 1/p1+· · ·+1/pm.

Then if {λQ}Q∈D is a sequence of positive numbers such that there exists a constant A > 0

so that for any cube R ∈ D, ∑
Q⊆R,Q∈D

λQ ≤ A(νσ⃗(R))α,

then

∑
Q∈D

λQ

∣∣∣∣∣
N∏
i=1

mσi(fi, Q)

∣∣∣∣∣
pα

≤ Aα∥M σ⃗
d (f⃗ )∥pαp,νσ⃗

(3.8)

≲ Aα

N∏
i=1

∥Mσi

d fi∥pαpi,σi

≲ Aα

N∏
i=1

∥fi∥pαpi,σi
,

where

M σ⃗
d (f⃗ ) = sup

Q∈D

m∏
i=1

χQ

σi(Q)

∫
Q

|fi|σi(x)dx,

f⃗ = (fi, . . . , fm).

Proof. We read
∑

Q∈D λQ

(∏N
i=1 |mσi(fi, Q)|

)pα
as an integral over the measure

space (D, µ) built over the set of dyadic cubes D, with µ the measure assigning to each

cube Q ∈ D the measure λQ. Thus

S(f⃗ ) :=
∑
Q∈D

λQ

(
N∏
i=1

|mσi(fi, Q)|

)pα

=

∫ ∞

0

pαtpα−1µ

({
Q ∈ D :

N∏
i=1

|mσi
(fi, Q)| > t

})
dt

=

∫ ∞

0

pαtpα−1µ(Dt)dt,

Dt := {Q ∈ D :
∏N

i=1 |mσi(fi, Q)| > t}. Let D∗
t be the set of maximal dyadic cubes R

with respect to the inclusion, with
∏m

i=1(1/σi(Q))
∫
Q
|fi|σi(x)dx > t. Then
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R∈D∗

t

R = {x ∈ Rn : M σ⃗
d (f⃗ )(x) > t}.

It follows from the hypothesis on the sequence {λQ}Q∈D that

µ(Dt) =
∑
Q∈Dt

λQ ≤
∑

R∈D∗
t

∑
Q⊆R

λQ

≤ A
∑

R∈D∗
t

(νσ⃗(R))
α ≤ A

 ∑
R∈D∗

t

νσ⃗(R)

α

≤ A
(
νσ⃗({M σ⃗

d f > t})
)α

.

Hence using (3.3) applied to M σ⃗
d (f⃗ ), we obtain

S(f⃗ ) :=
∑
Q∈D

λQ

(
N∏
i=1

|mσi(fi, Q)|

)pα

≤ A

∫ ∞

0

pαtpα−1
(
σ({M σ⃗

d (f⃗ ) > t})
)α

dt

= A

∫ ∞

0

pαtp−1σ({M σ⃗
d (f⃗ ) > t})

(
tpσ({M σ⃗

d (f⃗ ) > t})
)α−1

dt

≤ Aα∥M σ⃗
d (f⃗ )∥p(α−1)

p,σ

∫ ∞

0

ptp−1σ({M σ⃗
d (f⃗ ) > t})dt

≤ Aα∥M σ⃗
d (f⃗ )∥pαp,σ.

The second inequality in (3.8) follows from the Hölder’s inequality while the third follows

from (3.2). The proof is complete. □

4. Sawyer-type two-weight characterization.

Let us consider the following family of dyadic grids in Rn.

Dβ := {2−k
(
[0, 1)n +m+ (−1)kβ

)
: k ∈ Z,m ∈ Zm}; β ∈

{
0,

1

3

}n

.

For β = 0 = (0, 0, . . . , 0), we write D0 = D. The dyadic multilinear fractional maximal

function with respect to the grid Dβ is defined by

Mβ
d,αf(x) := sup

Q∈Dβ

m∏
i=1

χQ(x)

|Q|1−(α/mn)

∫
Q

|fi(y)|dy.

When α = 0, this is just the dyadic multilinear Hardy–Littlewood maximal function

denoted here Mβ
d . When β = 0, we write Md,α and Md for Mβ

d,α and Mβ
d respectively.

We observe that any cube is contained in a dyadic cube Qβ ∈ Dβ for some β ∈
{0, 1/3}n with l(Qβ) ≤ 6l(Q) (see for example [29] for the case n = 1). Thus
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1

|Q|1−(α/nm)

∫
Q

|f | ≤ 6n−(α/m)

|Qβ |1−(α/nm)

∫
Qβ

|f |

and consequently,

Mαf ≤ 6nm−α
∑

β∈{0,1/3}n

Mβ
d,αf. (4.1)

We will use the following notations: for σ⃗ = (σ1, . . . , σm) and f⃗ = (f1, · · · , fm) given, we

write σ⃗f⃗ := (σ1f1, . . . , σmfm) and for a real number σ, σf⃗ = (σf1, . . . , σfm). We also

use the notation χ⃗Q = (χQ, . . . , χQ) (m-entries vector) so that σχ⃗Q = (σχQ, . . . , σχQ)

and σ⃗χ⃗Q = (σ1χQ, . . . , σmχQ).

4.1. Proof of Proposition 2.2.

From the above observations, we see that for the proof of Proposition 2.2, it is

enough to prove the following.

Proposition 4.1. Given σ1, . . . , σm and ω, m + 1 weights on Rn, and 1 <

p1, . . . , pm < ∞, let 1/p = 1/p1 + · · · + 1/pm, p ≤ q < ∞, and define νσ⃗ =
∏m

i=1 σ
p/pi

i .

Then if there exists a constant C1 > 0 such that for any cube Q ∈ D,∫
Q

(Md,α(σ⃗χ⃗Q)(x))
q
ω(x)dx ≤ C1 (νσ⃗(Q))

q/p
,

then there exists a constant C2 > 0 such that∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx ≤ C2

(
m∏
i=1

∥f∥pi,σi

)q

.

Moreover, if

[νσ⃗, ω]SP⃗ ,q
:= sup

Q∈D

(∫
Q
(Md,α(σ⃗χ⃗Q)(x))

q
ω(x)dx

(νσ⃗(Q))
q/p

)1/q

,

then

∥Md,α(σ⃗·)∥(∏m
i=1 Lpi (σi))→Lq(ω) ≲ [νσ⃗, ω]SP⃗ ,q

. (4.2)

Proof. Let a > 2nm−α. To each integer k, we associate the following set

Ωk := {x ∈ Rn : ak < Md,α(σf⃗ )(x) ≤ ak+1}.

There exists a family {Qk,j}j∈N0 of dyadic cubes maximal with respect to the inclusion

and such that

m∏
i=1

1

|Qk,j |1−(α/nm)

∫
Qk,j

|fi(x)|σ(x)dx > ak
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so that

Ωk ⊆
∪
j∈N0

Qk,j .

Note that because of their maximality, we have for each fixed k, Qk,j ∩Qk,l = ∅ for j ̸= l.

Also,

2nm−αak >
m∏
i=1

1

|Qk,j |1−(α/nm)

∫
Qk,j

|fi(x)|σ(x)dx > ak.

Let us put E(Qk,j) := Qk,j ∩Ωk. Then Ωk =
∪∞

j=1 Ek,j and the E(Qk,j) are disjoint for

all j and k, i.e E(Qk,j) ∩ E(Ql,m) = ∅ for (k, j) ̸= (l,m). It follows that

L(f⃗ ) :=

∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx

=
∑
k

∫
Ωk

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx

≤ aq
∑
k

akqω(Ωk)

≤ aq
∑
k,j

akqω(E(Qk,j))

≤ aq
∑
k,j

(
m∏
i=1

1

|Qk,j |1−(α/nm)

∫
Qk,j

|fi(x)|σi(x)dx

)q

ω(E(Qk,j))

= aq
∑
k,j

ω(E(Qk,j))

(
m∏
i=1

σi(Qk,j)

|Qk,j |1−(α/nm)

)q ( m∏
i=1

mσi(fi, Qk,j)

)q

= aq
∑
Q∈D

λQ

(
m∏
i=1

mσi(fi, Q)

)q

,

where

λQ :=


ω(E(Q))

(
m∏
i=1

σi(Q)

|Q|1−(α/nm)

)q

if Q = Qk,j for some (k, j),

0 otherwise.

We observe that for any R ∈ D,

SR :=
∑

Q⊆R,Q∈D

ω(E(Q))

(
m∏
i=1

σi(Q)

|Q|1−(α/nm)

)q

=
∑

Q⊆R,Q∈D

ω(E(Q))

(
m∏
i=1

1

|Q|1−(α/nm)

∫
Q

σiχR

)q
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=
∑

Q⊆R,Q∈D

∫
E(Q)

(
m∏
i=1

1

|Q|1−(α/nm)

∫
Q

σiχR

)q

(x)dx

≤
∫
R

(Md,α(σ⃗χ⃗R))
q
(x)dx

≤ [νσ⃗, ω]
q
SP⃗ ,q

(νσ⃗(R))
q/p

.

That is {λQ}Q∈D is a (q/p, νσ⃗)-Carleson sequence. Thus from Lemma 3.7 we obtain∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx ≲ [νσ⃗, ω]

q
SP⃗ ,q

m∏
i=1

∥Mσi

d (σifi) ∥qpi,σ

≲ [νσ⃗, ω]
q
SP⃗ ,q

m∏
i=1

∥fi∥qpi,σi
.

The proof is complete. □

4.2. Proof of Theorem 2.1.

We observe again that we only need to prove the following.

Proposition 4.2. Given σ1, . . . , σm and ω, m + 1 weights on Rn, and 1 <

p1, . . . , pm < ∞, let σ⃗ = (σ1, . . . , σm), 1/p = 1/p1+ · · ·+1/pm and q ≥ max{p1, . . . , pm}.
Then the following are equivalent.

(i) There exists a constant C1 > 0 such that for any cube Q ∈ D,∫
Q

(Md,α(σ⃗χ⃗Q)(x))
q
ω(x)dx ≤ C1

m∏
i=1

(σi(Q))
q/pi .

(ii) There exists a constant C2 > 0 such that∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx ≤ C2

(
m∏
i=1

∥f∥pi,σi

)q

.

Moreover, if

[σ⃗, ω]SP⃗ ,q
:= sup

Q

(∫
Q
(Mα(σ⃗χ⃗Q)(x))

q
ω(x)dx∏m

i=1 (σ(Q))
q/pi

)1/q

,

then

∥Mα(σ⃗·)∥(∏m
i=1 Lpi (σi))→Lq(ω) ⋍ [σ⃗, ω]SP⃗ ,q

. (4.3)

As in [21] we restrict ourself to the bilinear case as the general case follows the

same. We will focus on the proof of the sufficiency that is the implication (i) ⇒ (ii) as

the converse is obvious. We start by the following lemma proved in [21] and provide a

simplified proof.
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Lemma 4.3. Suppose that 0 ≤ α < 2n, that 1 < p1, p2 < ∞. Put 1/p = 1/p1+1/p2
and let q ≥ p2, σ1, σ2, ω be three weights. Then if f is a function with suppf ⊂ R ∈ D,

then

∥χRMd,α(χRσ1, fσ2)∥q,ω ≲ [σ⃗, ω]SP⃗ ,q
σ1(R)1/p1∥f∥p2,σ2 . (4.4)

Proof. We proceed as in the proof of Proposition 4.1. Let a > 2nm−α. To each

integer k, associate the set

Ωk := {x ∈ Rn : ak < Md,α(χRσ1, fσ2)(x) ≤ ak+1}.

There exists a family {Qk,j}j∈N0 of dyadic cubes maximal with respect to the inclusion

and such that

1

|Qk,j |2−(α/n)

∫
Qk,j

χR(x)σ1(x)dx

∫
Qk,j

|f(x)|σ2(x)dx > ak

so that

Ωk ⊆
∪
j∈N0

Qk,j .

Following the same steps as in the proof of Proposition 4.1 and using the same notations,

we obtain that

LR(f) :=

∫
R

(Md,α(χRσ1, fσ2)(x))
q
ω(x)dx

≤ aq
∑

Qk,j⊆R

(∫
Qk,j

χRσ1

∫
Qk,j

|f |σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

= aq
∑

Qk,j⊂R

(∫
Qk,j

χRσ1

∫
Qk,j

|f |σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

+aq
(∫

R
χRσ1

∫
R
|f |σ2

|R|2−(α/n)

)q

ω(E(R))

= aq(T1 + T2)

where

T1 =
∑

Qk,j⊂R

(∫
Qk,j

χRσ1

∫
Qk,j

|f |σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j)),

and

T2 =

(∫
R
χRσ1

∫
R
|f |σ2

|R|2−(α/n)

)q

ω(E(R)).

We easily obtain that
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T2 =

(∫
R
χRσ1

∫
R
|f |σ2

|R|2−(α/n)

)q

ω(E(R))

≤
(

1

σ2(R)

∫
R

|f |σ2

)q ∫
R

(Md,α(χRσ1, χRσ2))
q
ω(x)dx

≤ [σ⃗, ω]qSP⃗ ,q
σ1(R)q/p1∥f∥qp2,σ2

.

We observe that

T1 =
∑

Qk,j⊂R

(∫
Qk,j

χRσ1

∫
Qk,j

|f |σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

=
∑

Qk,j⊂R

mσ2(|f |, Qk,j)
q

(∫
Qk,j

χRσ1

∫
Qk,j

χRσ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

=
∑
Q∈D

λQmσ2(|f |, Q)q

where

λQ :=


(∫

Q
χRσ1

∫
Q
χRσ2

|Q|2−(α/n)

)q

ω(E(Q)) if Q = Qk,j ⊂ R for some (k, j),

0 otherwise.

Let us prove that {λQ}Q∈D is (q/p2, σ2)-Carleson sequence. Let K ∈ D, K ⊂ R. Then

∑
Q∈D,Q⊆K

λQ =
∑

Q∈D,Q⊆K

(∫
Q
χRσ1

∫
Q
χRσ2

|Q|2−(α/n)

)q

ω(E(Q))

≤
∑

Q∈D,Q⊆K

∫
E(Q)

(∫
Q
χRσ1

∫
Q
χRσ2

|Q|2−(α/n)

)q

ω(x)dx

≤
∫
K

(Md,α(χRσ1, χRσ2)(x))
q
ω(x)dx

≲ σ1(K)q/p1σ2(K)q/p2 [σ⃗, ω]qSP⃗ ,q

≲ σ1(R)q/p1 [σ⃗, ω]qSP⃗ ,q
σ2(K)q/p2 .

That is {λQ}Q∈D is (q/p2, σ2)-Carleson sequence with Carleson constant

ACarl ≲ σ1(R)q/p1 [σ⃗, ω]qSP⃗ ,q
.

Thus by Theorem 2.6,

T1 ≲ σ1(R)q/p1 [σ⃗, ω]qSP⃗ ,q
∥f∥qp2,σ2

.

From the estimates of T1 and T2, we conclude that
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R

(Md,α(χRσ1, fσ2)(x))
q
ω(x)dx ≲ σ1(R)q/p1 [σ⃗, ω]qSP⃗ ,q

∥f∥qp2,σ2
.

The proof is complete. □

The next result is enough to conclude for the sufficient part in Proposition 4.2 for

the bilinear case and was also proved in [21], we give a simplified proof that uses the

general Carleson embedding.

Proposition 4.4. Suppose that 0 ≤ α < 2n, that 1 < p1, p2 < ∞. Put 1/p =

1/p1 + 1/p2 and let q ≥ max{p1, p2}, and σ1, σ2, ω be three weights. Then

∥Md,α(f1σ1, f2σ2)∥q,ω ≲ [σ⃗, ω]SP⃗ ,q
∥f∥p1,σ1∥f∥p2,σ2 . (4.5)

Proof. From the decomposition in Proposition 4.1, we have that

L(f1, f2) :=

∫
Rn

(Md,α(f1σ1, f2σ2)(x))
q
ω(x)dx

≤
∑
k,j

(∫
Qk,j

|f1|σ1

∫
Qk,j

|f2|σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

=
∑
k,j

mσ1(|f1|, Qk,j)
q

(
σ1(Qk,j)

∫
Qk,j

|f2|σ2

|Qk,j |2−(α/n)

)q

ω(E(Qk,j))

=
∑
Q∈D

λQmσ1(|f1|, Q)q

where

λQ :=


(
σ1(Q)

∫
Q
|f2|σ2

|Q|2−(α/n)

)q

ω(E(Q)) if Q = Qk,j for some (k, j),

0 otherwise.

Let us prove that {λQ}Q∈D is (q/p1, σ1)-Carleson sequence.

For R ∈ D given, we obtain using Lemma 4.3 that

∑
Q∈D,Q⊆R

λQ =
∑

Q∈D,Q⊆R

(
σ1(Q)

∫
Q
|f2|σ2

|Q|2−(α/n)

)q

ω(E(Q))

=
∑

Q∈D,Q⊆R

(
σ1(Q)

∫
Q
χR|f2|σ2

|Q|2−(α/n)

)q

ω(E(Q))

≤
∫
R

(Md,α(χRσ1, χR|f2|σ2))
q
ω(x)dx

≤ [σ⃗, ω]qSP⃗ ,q
σ1(R)q/p1∥f2∥qp2,σ2

.

That is {λQ}Q∈D is (q/p1, σ1)-Carleson sequence with Carleson constant
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ACarl ≲ [σ⃗, ω]qSP⃗ ,q
∥f2∥qp2,σ2

.

Thus using the equivalent definitions in Theorem 2.6, we obtain∫
Rn

(Md,α(f1σ1, f2σ2)(x))
q
ω(x)dx ≲ [σ⃗, ω]qSP⃗ ,q

∥f1∥qp1,σ1
∥f2∥qp2,σ2

.

The proof is complete. □

5. Two-weight norm estimates.

For the proof of Theorem 2.8, we also only have to prove the following.

Theorem 5.1. Let 1 < p1, . . . , pm, q < ∞, and σ⃗ = (σ1, . . . , σm), ω be weights.

Put 1/p = 1/p1 + · · ·+ 1/pm and νσ⃗ =
∏m

i=1 σ
p/pi

i . Assume also that p ≤ q. Then

∥Mα(σ⃗f⃗ )∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]BP⃗ ,q

)1/p
∥M σ⃗

d f⃗ ∥p,νσ⃗
(5.1)

≤ C(n, p, q)
(
[σ⃗, ω]BP⃗ ,q

)1/p m∏
i=1

∥Mσi

d fi∥pi,σi

≤ C(n, p, q)
(
[σ⃗, ω]BP⃗ ,q

)1/p m∏
i=1

∥fi∥pi,σi ,

∥Mα(σ⃗f⃗ )∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

)1/p( m∏
i=1

[σi]
1/pi

A∞

)
m∏
i=1

∥Mσi

d fi∥pi,σi (5.2)

≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

)1/p( m∏
i=1

[σi]
1/pi

A∞

)
m∏
i=1

∥fi∥pi,σi .

∥Mα(σ⃗f⃗ )∥q,ω ≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

[σ⃗]W∞
P⃗

)1/p
∥M σ⃗

d f⃗ ∥p,νσ⃗
(5.3)

≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

[σ⃗]W∞
P⃗

)1/p m∏
i=1

∥Mσi

d fi∥pi,σi

≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

[σ⃗]W∞
P⃗

)1/p m∏
i=1

∥fi∥pi,σi .

Note that the second and the third inequalities in (5.1), (5.2) and (5.3) follow from

Hölder’s inequality and (3.2) respectively.

Proof. The proof of Theorem 5.1 follows essentially as in the case α = 0 and

p = q in [2], [6]. Hence we will only prove (5.2).

We keep the notations of the proof of Proposition 4.1. Let us put qi = qpi/p > 1

and observe that 1/q = 1/q1 + · · ·+ 1/qm.

We use for simplicity, the notation Qk,j = Q and obtain that
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L(f⃗ ) :=

∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx

≲ aq
∑
k,j

(
m∏
i=1

1

|Q|1−(α/nm)

∫
Q

|fi|σi

)q

ω(Q)

=
∑
k,j

ω(Q)

(
m∏
i=1

σi(Q)

|Q|1−(α/nm)

)q m∏
i=1

(mσi(|fi|, Q))
q

=
∑
k,j

(
ω(Q)p/q

∏m
i=1 σi(Q)p/p

′
i

|Q|p(m−(α/n))

)q/p m∏
i=1

σi(Q)q/pi (mσi
(|fi|, Q))

q

≤ [σ⃗, ω]
q/p
AP⃗ ,q

∑
k,j

m∏
i=1

σi(Q)q/pi (mσi(|fi|, Q))
q

≤ [σ⃗, ω]
q/p
AP⃗ ,q

m∏
i=1

∑
k,j

σi(Q)qi/pi (mσi(|fi|, Q))
qi

q/qi

= [σ⃗, ω]
q/p
AP⃗ ,q

m∏
i=1

∑
k,j

σi(Q) (mσi(|fi|, Q))
pi

q/pi

= [σ⃗, ω]
q/p
AP⃗ ,q

m∏
i=1

∑
Q∈D

λi
Q (mσi

(|fi|, Q))
pi

q/pi

with

λi
Q :=

{
σi(Q) if Q = Qk,j for some (k, j).

0 otherwise.

By Lemma 3.2 we can conclude that

L(f⃗ ) :=

∫
Rn

(
Md,α(σ⃗f⃗ )(x)

)q
ω(x)dx

≤ C(n, p, q)
(
[σ⃗, ω]AP⃗ ,q

)q/p( m∏
i=1

[σi]
q/pi

A∞

)
m∏
i=1

∥Mσi

d fi∥qpi,σi

provided that for each i = 1, . . . ,m, {λi
Q}Q∈D is a σi-Carleson sequence with the appro-

priate constant. That is for any R ∈ D,∑
Q⊆R,Q∈D

σi(Q) ≲ [σi]A∞σ(R). (5.4)

The inequality (5.4) can be found in [14]. Let us prove it here for completeness.

We first check the following.



03-7358: 2017.12.26

92 B. F. Sehba

|Qk,j | ≤ γ|E(Qk,j)|, γ =
1

1− ((2nm−α)/a)
1/(m−(α/n))

. (5.5)

Recall that E(Qk,j) = Qk,j ∩ Ωk and observe that∣∣∣∣∣Qk,j ∩

(∞∪
l=1

Qk+1,l

)∣∣∣∣∣ = ∑
Qk+1,l⊂Qk,j

|Qk+1,l|

≤

 ∑
Qk+1,l⊂Qk,j

|Qk+1,l|m−(α/n)

1/(m−(α/n))

≤

 1

ak+1

∑
Qk+1,l⊂Qk,j

m∏
i=1

∫
Qk+1,l

|fi|σi

1/(m−(α/n))

≤

 1

ak+1

m∏
i=1

∑
Qk+1,l⊂Qk,j

∫
Qk+1,l

|fi|σi

1/(m−(α/n))

≤

(
1

ak+1

m∏
i=1

∫
Qk,j

|fi|σi

)1/(m−(α/n))

≤
(

1

ak+1
2nm−αak|Qk,j |m−(α/n)

)1/(m−(α/n))

≤
(
2nm−α

a

)1/(m−(α/n))

|Qk,j |.

Thus

|Qk,j | ≤ E(Qk,j) +

∣∣∣∣∣Qk,j ∩

(∞∪
l=1

Qk+1,l

)∣∣∣∣∣
≤ |E(Qk,j)|+

(
2nm−α

a

)1/(m−(α/n))

|Qk,j |

which proves (5.5). It follows that∑
Q⊆R,Q∈D

σ(Q) ≤ γ
∑

Q⊆R,Q∈D

σi(Q)

|Q|
|E(Q)|

= γ
∑

Q⊆R,Q∈D

∫
E(Q)

σi(Q)

|Q|

≤ γ
∑

Q⊆R,Q∈D

∫
E(Q)

Md(σiχR)

= γ

∫
R

Md(σiχR)

≤ γ[σi]A∞σi(R).
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The proof is complete. □
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[14] T. Hytönen and C. Pérez, Sharp weighted bounds involving A∞, Anal. and P.D.E., 6 (2013),

777–818.

[15] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett.,

6 (1999), 1–15.

[16] A. K. Lerner, Sharp weighted norm inequalities for Littlewood–Paley operators and singular

integrals, Adv. Math., 226 (2011), 3912–3926.

[17] A. K. Lerner and S. Ombrosi, Personal communication.
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