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Abstract. We prove some Sawyer-type characterizations for multilinear
fractional maximal function for the upper triangle case. We also provide some
two-weight norm estimates for this operator. As one of the main tools, we use
an extension of the usual Carleson Embedding that is an analogue of the P.
L. Duren extension of the Carleson Embedding for measures.

1. Introduction.

All over the text, R™ will be the n-dimensional real Euclidean space; all the cubes
considered are non-degenerate with sides parallel to the coordinate axes and we denote
by Q the set of all these cubes. If @ is a cube, then we denote by |Q| its Lebesgue
measure. When w is a weight on R”, we write w(Q) := fQ w(z)dz. Given an exponent
1 < p < 00, we denote by p’ its conjugate; that is pp’ = p+ p’. We recall that a function
f belongs to the weighted space LP (o) if

o= ([ romar) <o

We use the notation || T'||zr(s)— ra(w) for the norm of T" as operator acting from LP(c) to
LY(w).

An important question in modern harmonic analysis is given an operator T, deter-
mine the pairs of weights (w, o) such that

/1

ITfllpw < Clw, o) fllp.0 (L.1)

or more generally,

ITfllge < Cw, ) fllp,o- (1.2)

When T is the Hardy-Littlewood maximal operator M, a complete answer to the
above question was provided in the case w = o by Muckenhoupt [25] who proved that
(1.1) holds for M if and only if o satisfies the so-called A, condition. That is

o= (g o) (g o) < 0
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Note however that this question in its general form is difficult.
Recall that the fractional maximal function is defined by

Mo i) = sup SO / Fw)ldy (1.4)

provided 0 < a < n. When a = 0, this is just the Hardy—Littlewood maximal function.
Muckenhoupt and Wheeden [26] proved that for 1 < p < n/a,and 1/q¢ =1/p—a/n, M,
is bounded from LP(o?) to L9(c?) if and only if

1/‘1 1 , 1/P,
— q il —p
e S‘é%(m/ ) <|Q|/Q" ) =0

In [30], E. Sawyer provided a general criterium for the maximal function to be bounded
from LP(o) to L (w), 1 < p < g < co. He proved that M, is bounded from LP(c) to
L%(w) if and only if

L Jo (Ma(oxQ) (@) w(@)dz
lo,W]s, 0 i= Qeg ( (g(Q))Q/p ) < 00 (1.5)

(see [23] for the norm estimate). Condition (1.5) is usually called Sawyer’s condition or
characterization.

We are interested in the multilinear analogues of the maximal operators above. For
m a given positive integer, the multilinear fractional maximal function is defined by

Maf(w):gé%IQIa/" |Q| / () ldy
=1

provided 0 < o < mn. Here f: (f1,..., fm) where the f;s are measurable functions.
When o = 0, My = M is the multilinear Hardy-Littlewood maximal function. Note
that these operators are related to multilinear Calderén—Zygmund theory and the study
of multilinear fractional integral operators [9], [10], [11], [12], [15], [18], [24]. In this
work, we prove a Sawyer-type characterization for the multilinear fractional maximal
function defined above. We also provide some norm estimates for this operator. We note
that the multilinear analogues of B. Muckenhoupt and Muckenhoupt—Wheeden results
recalled above are given in [18] and [24] respectively.

2. Statement of the results.

2.1. Sawyer-type characterizations.

One of our interests in this work is the extension of Sawyer result to the multilinear
setting. In [2] and [22], the authors dealt with this question for « = 0 but under the
assumption that the weights satisfy a kind of reverse Holder inequality and monotone
property respectively. Li and Sun [21] managed to extend the Sawyer characterization
for the boundedness of M,, from LP* (o)X -« -x LP™ (0,,,) to LI (w) for max{p1,...,pm} <
q < oo. They proved the following.



Two-weight norm estimates for maximal function 73

THEOREM 2.1.  Given a nonnegative integer m, and 1 < p1,...,pm < 00; suppose
that 0 < o < mn, and max{py,...,pm} < ¢ < o0o. Let wy,...,wm, and v be weights and
put o; :wil_p", i=1,...,m. Define

[-. ] . (fQ (MQ(U]_XQ,...,O'mXQ)(x))q U(x)dx)l/q
SR, 52% [T oi(Q)1/Pi :

Then Mg is bounded from LP*(wy) x -+ X LP™ (wy,) to L(v) if and only if [&,v]s, s
finite. Moreover,

—

||MO{||(H;”:'1Lpi(wi))*>Lq(v) =2 [W,v]s, -

5q

The condition [(E,v]gﬁq < oo is necessary in general but the assumption ¢ >
max{p1,...,pm} makes the result above restrictive. One might be interested in know-
ing if it is possible to remove this assumption and may be replace it by ¢ > p, with
1/p=1/p1+---+1/py. Before going ahead on this question, let us state our first result
which provides a general sufficient condition.

PROPOSITION 2.2.  Given a nonnegative integer m, 1 < p1,...,pm < 00. Suppose
that 0 < a<mn, 1/p=1/p1+ -+ 1/py and p < g < 0. Let wy,...,w, and v be
weights and put o; = wj_p", i=1,...,mand vz =[], af/pi. Define

s, ] o (fQ (Ma(01XQ,...,ome)(x))qv(x)dx>l/q
& VISs , - Qeg (V@'(Q))l/p .

Then Mg s bounded from LP*(wi) X -+ x LPm(wm) to L1(v) if [vg,v]s; s finte.
Moreover,

”MO‘H(HZZ1 Lpi(wi))ﬁ[dq(v) f, [V@U]Sﬁ,q-

It comes that if the weight w;, i = 1,2,...,m are such that for any cube Q € Q,

m m

[T =T1( [ m(z)da:)p/ms / (f[a/> (o =va(@, ()

i=1 i=1
then the equivalence [vz,v]s , 2 [, 0] 5 . holds and consequently, Theorem 2.1 holds
without the restriction ¢ > max{pi,...,pm} but with this time p < ¢. That is the
following holds.

THEOREM 2.3.  Given a nonnegative integer m, 1 < p1,...,pm < 00. Suppose that
O<a<mn,1/p=1/p1+--+1/pm and p < ¢ < 00. Let wy,...,wn and v be weights
and put o; = wilfpi, i =1,...,m. Suppose that the weights o;, i = 1,...,m are such

that (2.1) holds, and define
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q 1/q
o (Jo Maloixqs- -, omx@) (@) v(z)dz)
Vg,V|s; = Sup m ;
P Qeg [[Z, oi(@)Y/P:
Then Mg is bounded from LP*(wy) X - -+ X LP (wy,) to L9(v) if and only if [vg,v]sy s
finite. Moreover,
1
[VW,U] < HM H(Hm Lpl(wq‘,))—>Lq(v) < [ ]R/fl [V“-}’U]Sﬁ,q'
Condition (2.1) was used and named reverse Holder inequality RH 5 in [2], [3]. The
constant [W]rm, in the above theorem is the best constant in (2.1). In [2], the authors

obtained Theorem 2.3 for &« = 0 and p = ¢, but it is hard to provide examples of family
of weights for which (2.1) holds. Nevertheless one can check that for o7 = 09 = -+ =
om = 0, we have the inequality (2.1) and in this case, the following result.

COROLLARY 2.4. Given a nonnegative integer m, 1 < p1,...,pm < 00. Suppose
that 0 < a<mn, 1/p=1/p1 +--+1/ppm and p < q¢ < 0. Let o and w be weights.
Define

B (fQ O'XQ,...70'XQ)({IJ))qw(.’E)dZL')1/q
[o,w]ss, = sup (O :

Then Mg, is bounded from LP*(oc=P1/PL) x ... x LPm(g=Pm/Pin) to LY(w) if and only if
[0,w]s , is finite. Moreover,

I\Ma||<

[T, 273 (o 7 /7)) > La(w) = [0, w]s5 -

Recall that the A, class of Hruséev ([13]) consists of weights w satisfying

a. = o (g /Q“> e (g /. og™!) < o0 22)

It is easy to check that for o1, ...,0, € As, and for any cube Q,
m m m
[[o@7 < (H[oi]Am> / (H af“’i) (2)dx
i=1 i=1 @ \i=1

(see [31]). It follows that we also have the following result.

COROLLARY 2.5. Given a nonnegative integer m, 1 < p1,...,pm < 00. Suppose
that 0 < a<mn, 1/p=1/p1+ -+ 1/py and p < q¢ < co. Let wy,...,w, and v be
weights and put o; = wil_pi, t=1,...,m. Suppose that the weights o;, i =1,...,m are

in the class Aso and define

/a
[_, } o (fQ UlXQ7"'7O'mXQ)(x))q U(a:)dx)l
DT ged [T, o (@) '
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Then Mg is bounded from LP'(wy) x -+ x LV (wy) to L9(v) if and only if [&,v]s, is

finite. Moreover,

m l/p
[(‘U?U]S}Sﬂ S HMOLH(H;’IZI Lpi(wi))A)LQ(rU) < (H[Ui]Aoo> [(37’0]5}3,(1'

i=1

To prove Proposition 2.2, one first need to observe that the matter can be re-
duced to the associated dyadic maximal function. We then use an approach that can be
traced back to [30] and has been simplified in [4], it consists in discretizing the integral
Joa Mao(f)(2))? w(x)de where Mgy, stands for the multilinear dyadic fractional max-
imal function, using appropriate level sets and their decomposition into disjoint dyadic
cubes. In the linear case (i.e. when m = 1), one then uses an interpolation approach to
get the embedding (see [4], [21]). This method still works in the multilinear case under
further restrictions on the exponents that allow one to reduce the matter to a linear case
and this is what happens exactly in the proof of Theorem 2.1 in [21]. It is not clear how
this can be done in general in the multilinear setting for the upper triangle case (p < q).
To overcome this difficulty, we just extend the techniques used for the diagonal case
(p = q) which reduce the matter to a Carleson embedding (see [2]). More precisely, we
use the following extension of the usual Carleson embedding and its multilinear analogue.

THEOREM 2.6. Let o be a weight on R™ and o > 1. Assume {Ag}qep 15 a sequence
of positive numbers indexed over the set of dyadic cubes D in R™. Then the following are
equivalent.

(i) There exists some constant A > 0 such that for any cube R € D,

> g < AW(R)"

QCR,QeD
(ii) There exists a constant B > 0 such that for all p € (1,00),

ZAQ|mG [Q |pa<B||f||pa7

QeD

where m,(f,Q) = (1/0(Q)) [, f(t

The above theorem for o« = 1 is the usual Carleson Embedding Theorem (see [14],
[28]). The case o > 1 is new and can be viewed as an analogue of P. L. Duren extension of
Carleson embedding theorem for measures [7]. The proof of Theorem 2.1 is also simplified
when combining the main idea of [21] and the extension of the Carleson embedding. For
the proof of Proposition 2.2, we will use a multilinear analogue of the above embedding.

2.2. Some norm estimates.

Our other interest in this paper is to provide sufficient conditions for M, to be
bounded from LP* (o) X- - -x LP™ (o) to L (w). Usually, one expects conditions that have
a form close to the A, characteristic of Muckenhoupt. This question is quite interesting
in this research area as it is related to the same type of questions for singular operators
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and some questions arising from PDEs (see [5], [12], [24], [26], [27] and the references
therein). Before going ahead on this question, we need more definitions and notations.

Given two weights w and o, we say they satisfy the joint A4, condition for 1 < p < oo
if

w(@o (@)

w, 04, = sup —————— < 00. 2.3
o] QeQ QP (23)

Note that when o = w=/®=1 | this is just the definition of the A, class of Muckenhoupt.
A new class of weights was recently introduced by Hytonen and Pérez [14] and consists
of pair of weights satisfying the condition

[w,o]B, := sup Me Xp <|22| / 1og01> < 00. (2.4)

Qeo |QIPT!

We recall the definition of the A, class of Fujii-Wilson ([8], [16], [32], [33], [34]). We
say a weight o belongs to Ao, if

[0]a, := sup — / M(oxq) (2.5)
Qe a(

Buckley [1] obtained the following estimate for the maximal operator M:
1M () oo < CHI0TH "7 (2.6)
This was recently improved by Hyténen and Pérez [14] as follows.

THEOREM 2.7 ([14, Theorem 1.7]). Let 1 < p < oo, and o, w two weights. Then

1M (o) pe < CO)P' (0,0]8,) " |1 f

p.o (2.7)
and
1M (f0) pew < COY (f0vw]a, 01 )" 1F Lo (2.8)

Estimate (2.8) in the case p = 2 is actually attributed to Lerner and Ambrosi
[17]. To find the corresponding estimates in the LP — L7 case, we need to introduce

adapted classes of weights that generalize the above ones. For 1 < p1,...,pm,q < o0,
P = (p1,...,pm), we say the weights & = (01, ...,0.,) and w satisfy the joint conditions
A};q and B};Aq if

w(Q)P/ 1", oi(Q )p/p;

[0, wlag, = 52% Q[ptmn—(a/n) < o0 (2.9)
and
il e s Y@ QP 1 )Y
G, wlB; , = 52% QT e/ 41 H ex Ql / log o < oo. (2.10)

=1
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One easily checks the following inequalities

G, wla,, < [Gwlp,, < [0 wla, H[ai]z%g.
i=1

Let us also introduce the multilinear Ay class of Chen—Damidn [2]. That is the class of
weights & = (o1,...,0.,) such that

o TT, Mooxe)(@)/7ed
[0]we = sup - 7o
"ooeee IR o () da

< 00,

where 1/p=1/p1 + -+ + 1/pm. Our corresponding result is the following,.

THEOREM 2.8. Let 1 < p1,...,pm,q < 00, and & = (01,...,0m), w be weights.
Put1/p=1/p1 + -+ 1/pm and assume that p < q. Then

1/p 2
|Malorfi o omfullaw < Cp,0) (13.wlss, ) [ il (2.11)
=1

[Malorfi,- - omfm)lqw < Cn,p,q) ([fi W}Aﬁyq) ’ <H[0i],14/£1> IT1s
i1

Pi,0q
=1
(2.12)
and
. . 1/p &
[Malorfis s omfu)lgw < Cp,a) (Fwlap, Fws ) [[fllpo:  (213)
i=1

We observe that when o = 0 and p = ¢, that is for the multilinear Hardy—Littlewood
maximal function, inequalities (2.11) and (2.13) were proved in [2], while (2.12) was
obtained in [6]. Sharp norm estimates of the Hardy-Littlewood maximal function and
the fractional maximal function are considered in [19], [20], some of these estimates are
similar to (2.12) with a modification of the power on [0;]4_ . An extension of the Buckley
estimate (2.6) to the multilinear maximal function is given in [6].

To prove Theorem 2.8, one first needs to observe as above that one only needs to
consider the case of the dyadic maximal function. Then to estimate the norm of the
dyadic maximal function, we proceed essentially as for Proposition 2.2. For some other
sufficient conditions of this type, we refer the reader to the following and the references
therein [2], [18], [19], [23], [24].

The paper is organized as follows, in the next section, we introduce an extension
of the usual notion of Carleson sequences, and provide equivalent characterizations. In
Section 4, we prove Proposition 2.2 and simplify the proof of Theorem 2.1. Theorem 2.8
is proved in the last section. Some steps in our proofs are known by the specialists but
we write them down so that the reader can easily follow us.

All over the text, C' will denote a constant not necessarily the same at each oc-
currence. We write C'(a,n,---) to emphasize on the fact that our constant depends on
the parameters a,n,---. As usual, given two positive quantities A and B, the notation
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A < B (resp. B < A) will mean that there is an universal constant C' > 0 such that
A < CB (resp. B< CA). When A < B and B < A, we write A = B and say A and B
are equivalent.

3. (a,0)-Carleson sequences.

We introduce a more general notion of Carleson sequences, provide equivalent defi-
nitions and applications.

3.1. Definitions and results.
We have the following general definition of Carleson sequences.

DEFINITION 3.1. Given a weight ¢ and a number o > 1, a sequence of positive
numbers {\q }gep indexed over the set of dyadic cubes D in R™ is called a («, 0)-Carleson
sequence if there exists a constant A > 0 such that for any cube R € D,

> Ao < Ale(R)*, (3.1)

QCR

We call Carleson constant of the sequence {A\g}gep, the smallest constant in the
above definition and denote it by Acgr when there is no ambiguity. When ¢ = 1 and
a > 1, we speak of a-Carleson sequences. In particular when o = 1, we just call them
Carleson sequences as usual.

Let us introduce some notations. For f € LP(w),

I/

o= [ 1f@Pulads
and
1
m(f.Q) = S /Q f@)w(a)de

where w(Q) = wi. When w = 1, we write mgf = m(f, Q) = mu(f, Q).
Theorem 2.6 provides an equivalent definition of (o, o)-Carleson sequences. Here is
its proof.

PROOF OF THEOREM 2.6. Let us recall that the dyadic Hardy-Littlewood maxi-
mal function with respect to the measure o is defined by

o 7(Q)

When o =1, we write MJ = My. We recall the estimate

M f = sup X2 /Q flo.

”Mngp,a < lepr,U‘ (3.2)

We will also need the following inequality.
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Mo ({a: M7 f(x) > A}) < [[M7f

(3.3)

p
p,o*

For the implication (ii) = (i), we test (ii) with the function f = xg with R € D to
obtain

S s Y Ao ma(f,Q)™

QCR.QeD Qen
< Bllxzlp% = B (a(R))" .

That is for any R € D

which is (i).
To prove that (i) = (ii), it is enough by (3.2) to prove the following.

LEMMA 3.2.  Let {\g}gep and o > 1. Suppose that there exists a constant A > 0
such that for any R € D,

Then for all p € [1,00),
> Aolmo(f, Q)P < Aal|M f|5%. (34)
QeD

PrOOF. We can suppose that f > 0. As in the case of a = 1 in [14], we read
>0ep @ (mo(f,Q))’" as an integral over the measure space (D, u) built over the set
of dyadic cubes D, with p the measure assigning to each cube @ € D the measure Aq.
Thus

S Ao (mo (£, Q) = / et ({Q €D g (£,Q) > 1)) dt

QeD

o0
= / patP 1 (Dy)dt,
0

D: :={Q € D : mys(f,Q) > t}. Let Df be the set of maximal dyadic cubes R with
respect to the inclusion so that my(f, R) > t. Then

U R={zeR": M7 f(x) > t}.

ReD;

It follows from the hypothesis on the sequence {\g}gep that

w(Dy) = Z)\QS Z Z/\Q

QED: ReD; QCR
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<AY ey <Al Y om

RED; RED;
<A(e({M7f>1})".

Hence using (3.3), we obtain

S(f) ==Y Aolma(f,Q)I"*

QeD

< A/OOO pat?* ! (o ({Mg f > t}))" dt
B A/ooo pat? to({MJ f > t}) (tPo({MFf > t})* " dt

< Aa| Mg fjpe-D / Pl ({MS f > t})dt
0
< Aa|| M FI175,. 0
The proof is complete. O

The above theorem is clearly a generalization as taking o = 1 we get the well known
Carleson embedding result (see [14], [28]).

REMARK 3.3. As a first application, we obtain a necessary and sufficient condition
for the main paraproduct to be bounded from LP(R) to L*(R) for 1 < p < 2. Let us still
denote by D the set of dyadic intervals in R. Recall that given a dyadic interval I, the
Haar function supported by I is defined by hz(s) = [I|~*2(x+(s) — x7- (s)), where I~
and IT are the left and the right halfs of I respectively. For ¢ € L?(R) with finite Haar
expansion, the (main) paraproduct with symbol ¢ is the operator defined on L?(R) by

Iyb(s) := Z (@, hr)(mrb)hi(s)

1eD

where mb = (1/|I]) [, b(x)dz. It is well known that the operator Il is bounded on
LP(R) if and only if the sequence {|(¢, h1)|*}1ep is a Carleson sequence (see [28]). The
following partial extension is a direct consequence of Theorem 2.6.

COROLLARY 3.4. Let ¢ € L3(R) and 1 < p < 2. Then Iy extends to a bounded
operator from LP(R) to L?(R) if and only if
1 2
A = sup T Z (o, h1)]? < oo. (3.5)

J€D ICJ,IeD
Moreover, ||l 1r®)—12®) = A.

The higher dimensional version of the above corollary requires an adapted multi-
variable version of Theorem 2.6. This will be presented elsewhere.
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An alternative characterization of («, c)-Carleson sequences is the following.

THEOREM 3.5. Let N > 1 be an integer, 1 < p; <oo,j=1,...,N. Assume that o
is a weight on R™, and that there are 0 < q1,...,qn < 00 such that o = Z;\;l g;/p; > 1.
Then given a sequence {\g}gep of positive numbers, the following are equivalent.

(i) {Ao}toep is a (a,0)-Carleson sequence, that is for some constant A > 0 and for
any cube R € D,

(ii) There exists a constant B > 0 such that

N N
ST [[Ime(t. @1 < BT I£1% - (3.6)
j=1

QeD  j=1

Proor. To prove that (ii) = (i), take for R € D given, f; = xgforj=1,...,N
and proceed as in the proof of Theorem 2.6. To prove that (i) = (ii), it is enough to
prove the following lemma which might be useful in some other circumstances.

LeEMMA 3.6. Let N > 1 be an integer, 1 <p; < o0, j =1,...,N. Assume that o
is a weight on R™, and that 0 < qq,...,qny < 00 So that o = Zjvzl qj/p; > 1. Then if
{Ao}oep is a sequence of positive numbers such that there exists a constant A > 0 so
that for any cube R € D,

then

N
Y Ao [ Ime(f;. Q1" < Aa H M3 fill 0 (3.7)

QeD  j=1 j=1

PROOF. An application of Holder’s inequality and Lemma 3.2 provide

N q;/(ap;)
> AQH [mo (£, @)1 < [T D2 Aelmo (£, Q)7
Qep =1 j=1 \QeD
N a;/(apy)
< T (Aelnzg £05)"
j=1
N
S Aa ] IMG 15118 - O
j=1

The proof is complete. O
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3.2. Another extension.

We end this section with the following extension of the multilinear Carleson embed-

ding of [2].

LEMMA 3.7. Let N > 1 be an integer, 1 < p;j,a < oo, i =1,...,

N. Assume that

o;, 1 =1,...,m are weights on R™, and put vz = [[}", O’f/pi and1/p=1/p1+---+1/pm.
Then if {\q}gep is a sequence of positive numbers such that there exists a constant A > 0

so that for any cube R € D,

QCR,QeD
then
N b
Z AQ Hmai (fzaQ) < AaHMd( )| P,V
QeD i=1
< AaH M7 fillpe o,
=1
< AaHHﬁ D
where
)= s T 22 [ it
1 oi(Q

pa
Proor. Weread > 5cp Aq (Hfil |me, (fi, Q)|) as an integral over the measure

space (D, ) built over the set of dyadic cubes D, with p the measure assigning to each

cube @ € D the measure A\g. Thus

N po
=Y o (H Ima,-(fz',Q)|>

QED i=1

o) N
= / pat? ({Q eD: [[Imo. (£, Q) > t}) dt
0 1

- / pat™ =L u(D,)dt,
0

D; = {Q e D: I, Imo,(f;,Q)| > t}. Let ’D* be the set of maximal dyadic cubes R

with respect to the inclusion, with []:", (1/0:(Q fQ | filoi(xz)dz > t. Then
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U R={zeR": M{(f)(x) > t}.

RED;

It follows from the hypothesis on the sequence {Ag}gep that

D)= > A< Y. > Ag

QED, ReD; QCR

<AY waR)* <A Y vs(R)

ReD; ReD;

< A(vs({M7f>1})"

Hence using (3.3) applied to Mg(f), we obtain

S = 3 h (Hm @ )

QeD

IN

A / pot* = (o ({MF(F) > 1)) " d

= [ patr 0 () > ) (oI () > )

o0
< Aa|MIIEE™ [ oo () > s
< Aa| M7 (F)IIES
The second inequality in (3.8) follows from the Holder’s inequality while the third follows
from (3.2). The proof is complete. O
4. Sawyer-type two-weight characterization.

Let us consider the following family of dyadic grids in R™.
1 n
D =277 ([0, )"+ m+ (-1)*B) k€ Z,meZ™}; Be {o, 3} .

For 3 =0 = (0,0,...,0), we write D° = D. The dyadic multilinear fractional maximal
function with respect to the grid D” is defined by

M f(@) = sup H|Q|1 ) ;[ iy

QeDB ;4

When o = 0, this is just the dyadic multilinear Hardy—-Littlewood maximal function
denoted here Mg. When g = 0, we write Mg o and Mg for Mg_a and M'g respectively.

We observe that any cube is contained in a dyadic cube Q/@ € DP for some 8 €
{0,1/3}™ with [(Qg) < 61(Q) (see for example [29] for the case n = 1). Thus
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o 1= s [
‘Q|1—(a/nm) 0 — |QB‘1—(a/nm) Qs

and consequently,

Maf <6 " MG Lf. (4.1)

Be{0,1/3}™
We will use the following notations: for & = (o1, ...,0p,) and f: (f1,--+, fm) given, we
write &f := (01f1,...,0mfm) and for a real number o, of = (of1,...,0fm). We also

use the notation Xo = (x@,-.-,xq) (m-entries vector) so that oxo = (oxQ,---,0XxQ)
and oxo = (01XQ, - - -» TmXQ)-

4.1. Proof of Proposition 2.2.
From the above observations, we see that for the proof of Proposition 2.2, it is
enough to prove the following.

ProrposiTiON 4.1. Given o1,...,0, and w, m + 1 weights on R™, and 1 <

m

P Pm < 00, let 1/p = 1/p1 + -+ +1/pm. p < q < 00, and define vy = [, o7/
Then if there exists a constant C1 > 0 such that for any cube Q € D,

/Q (Maa(#30) (@) w(@)dz < Cy (v3(Q))"”

q
piﬁ'q‘,) .

Jo Maa(3x0)(2)) w(x)dz 1/q
W]Sﬂ = sup = |
(vz(Q))

then there exists a constant Cqy > 0 such that

| (Maa@ @) wioris < c: (ﬁ s

Moreover, if

[V57
QeD

then

||/\/l¢1,z>z(&")||(Hg1 LPi(0;))—L1(w) S [V&,W]Sﬁ (4.2)

’q.
PROOF. Let a > 2™"~. To each integer k, we associate the following set
Qp:={zeR":d" < Md7a(of)(x) < att1}.

There exists a family {Qx ; };jen, of dyadic cubes maximal with respect to the inclusion
and such that

H |Qk |1 (a/mm) / ‘ |fz(x)|0'(x)d1; > aF



so that
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Q C U Qr,j-

J€No

Note that because of their maximality, we have for each fixed k, Qx j NQr; = 0 for j # L.

Also,

2 “ak>H [ D / (@) lo(@)ds > a*.

Let us put E(Qg, ;) :=

Qk,j N Q. Then O = 72, Ey; and the E(Qy,;) are disjoint for

all j and k, i.e E(Qk,;) N E(Qrm) = 0 for (k, j) # (I,m). It follows that

I
S~
Ead
<
e
2
Qi
Kﬁl
N—
—~
K
N—
N—
[te)
€
—~
g
IS
5

k
< af Z a®w ()
< af Z akqw E(Qk;))
<

“qz (H 1Qr; '~ (a/nm) /Q“ |fi($)‘7i($)d$> w(E(Qk,j))

9 /'m q
B aqz H@e) (H |Qkal|1Qk5/"m>> (U m"i(f"’Q’“’j)>
q
= aq Z >\Q (ngl fl, )

QEeD

where

Ag =

q
(H o (a/nm)> if Q = Qy,; for some (k,j),

otherwise.

We observe that for any R € D,

Sgr =

s o4

QCR,QeD
m q
1
Z w(E(Q)) <H@|1(a/nm)/ UiXR)
QCR,Q€eD i=1 Q
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m q
1 /
> [ i | oixn) (@)dz
QQR,QED/E(Q) <i—1 Q' (e/mm) Jg >

< /R (Maa(Gx0)" (2)dz

< o, Wl (e (R)V7.

That is {Ag}gep is a (¢/p, v#)-Carleson sequence. Thus from Lemma 3.7 we obtain

o q i
= q Ti
| (Ml @) wla)ds S aswlt, TLIME @3 15,0
i=1
m
< [yz. w]? |19
~ [VU?w]SﬁYq Hl ||f7f||pi,0'7;'
The proof is complete. O
4.2. Proof of Theorem 2.1.
We observe again that we only need to prove the following.
ProrposiTiON 4.2.  Given o1,...,0, and w, m + 1 weights on R", and 1 <

DPly-- s Pm <00, let & = (01,...,0m), 1/p=1/p1+ -+ -+1/py and ¢ > max{p1,...,pm}-
Then the following are equivalent.

(i) There exists a constant Cy > 0 such that for any cube Q € D,
/Q (Ma.a(0x0) () w(z)ds < Cy H (Ji(Q))Q/m .
i=1

(ii) There exists a constant Co > 0 such that

Moreover, if

then

—

||Ma(5')”(1‘[r:1 Lm(gi))_%q(w) = [U’W]S}; .

»d

(4.3)

As in [21] we restrict ourself to the bilinear case as the general case follows the
same. We will focus on the proof of the sufficiency that is the implication (i) = (ii) as
the converse is obvious. We start by the following lemma proved in [21] and provide a
simplified proof.
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LEMMA 4.3.  Suppose that 0 < a < 2n, that 1 < p1,pa < 0o. Put1/p=1/p1+1/ps
and let q > pa, 01,02,w be three weights. Then if f is a function with suppf C R € D,
then

IXrMaa(Xro1, f02) g0 S [0 wlss  a1(R)YPH| fllps.os- (4.4)

PrOOF. We proceed as in the proof of Proposition 4.1. Let a > 2"™~%. To each
integer k, associate the set

Qr:={x eR™: ak < Mao(xrO1, fo2)(z) < ak—H}-

There exists a family {Qx ;};en, of dyadic cubes maximal with respect to the inclusion
and such that

1 /Qk,j XR(:c)m(:E)dx/ f(2)|o2(2)dz > aF

Q5> (/™) Q.

so that

Q C U Q. j-

Jj€Np

Following the same steps as in the proof of Proposition 4.1 and using the same notations,
we obtain that

LR<f>ﬁ:/2<A4¢a<xRahfogxx»qwcwdx

kayj XRO1 wi |floz
Qg P~/

ad Z ka,j XRO1 me |flo2
fRXRUI fR|f‘O-2 !

ral ( ) w(E(R)

= aq(Tl + Tg)

) w(E(Qk.5))

IA
Q»D
N

) w(E(Qk.5))

where

|Qk,j|2_(0‘/")

T = Z <ka.j XRO1 ka,j |f|02> w(E(Qk)j)),

and

o= (fR Tﬁii(fjlf '”2) w(E(R)).

We easily obtain that
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(IRT]I;'? faR/Lfgz) W(E(R))

S( ©) /|f|02> / (Ma,a(xRrO1, XRO2))! w(x)dx

<[o oL (R) VP £I13, o

P,q

We observe that

Jau, Xrno1 Jq,., |flo2\"
"o QZCR < ) Y|Qk,j|2_&Q°‘/,") W(E(Qr.,;))
fk,Xafk_XU q
) QZCRmU2(|f|’Qk7j)q ( : 1J|QZJ' |12*C(QO<Y/JH) = W(E(Qk,j))
=3 Aame(1£1,Q)"
QeD

where

q
Ao = <fQ Tg;l %/fR@) w(E(Q)) if Q = Qi,; C R for some (k,j),

0 otherwise.

Let us prove that {\g}gep is (¢/p2, 02)-Carleson sequence. Let K € D, K C R. Then

> o= X (fQTSZI_{S/f)R”) “(B(Q)

QeD,QCK QeD,QCK

< ¥ / Jo Xron o xrow " -
w
T ochgerdr@ \ QP

< / (Maa(xro1, xro2) (@) w(z)da
K

S 1K) oa (K7 (5wl
S o(R)VP[G,w]S, oa(K)1P.
That is {Ag}gep is (¢/p2, 02)-Carleson sequence with Carleson constant
Acart < 01(R)YP1[5, w]gﬁ’q.
Thus by Theorem 2.6,
Ty £ o (R)VP 7w, 11, 0

From the estimates of T} and T5, we conclude that
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| Maalnm. o) ) wl@)da < o (R (7.15, 11 o

The proof is complete. O

The next result is enough to conclude for the sufficient part in Proposition 4.2 for
the bilinear case and was also proved in [21], we give a simplified proof that uses the
general Carleson embedding.

PROPOSITION 4.4.  Suppose that 0 < « < 2n, that 1 < p1,ps < co. Put 1/p =
1/p1 + 1/p2 and let ¢ > max{p1,p2}, and 01,02, w be three weights. Then

”Mdﬂ(flo—lvao—?)”q,w S [57 w]$ﬁ7q‘|f||p170'1 Hf||P270'2' (45)

Proor. From the decomposition in Proposition 4.1, we have that

L(f, fo) = / (Maa(fron, f209)(@))! w(z)de

fo, |filon [, 1falos)”
< Z( T T ) AEQ1))
¥ g

01(Q) fy, , | Folo2 )
- Zmal<|f1,Qk,j>Q< e 2) W(E(Qry))

k,j

= > Aome, (1], Q)

QeD

where

(01(Q) Jo | f2lo2

q
|Q|2_(a/n) > W(E(Q)) if Q= Qk,j for some (k,j),

0 otherwise.

Ag ==

Let us prove that {\g}gep is (¢/p1,01)-Carleson sequence.
For R € D given, we obtain using Lemma 4.3 that

> = ¥ (Ulgfﬁiff)m) “(E(@)

QeD,QCR QeD,QCR
a1(Q) [, xrlf2lo2 \*
QeD,QCR

< / (Ma,a(XrO1, XRIf2|02))! w(z)d
R

<o, w]qsﬁ‘qm (R)Y™| fall

p2,02°

That is {Ag}ep is (¢/p1, 01)-Carleson sequence with Carleson constant
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ACarl S_, [ ]S- ||f2||p2 o2°

Thus using the equivalent definitions in Theorem 2.6, we obtain
[ Maalhior, fa02) @) wla)de S (5.l il 12l

The proof is complete. O

5. Two-weight norm estimates.

For the proof of Theorem 2.8, we also only have to prove the following.

THEOREM 5.1. Let 1 < p1,...,pm,q < 00, and & = (01,...,0m), w be weights.
Put1/p=1/p1 + -+ 1/pm and vz =[]~ op/pl Assume also that p < q. Then

1/ .
|Ma(GF )l < Clnp,a) (18,05, ) " 1M Fll, (5.1)

Pi;0i

<Ceupa) (1 wbﬁ,q)l/pﬂ YA

< Clnpg) (19605, ) pﬁ\\le\pq,a,,

< C(n,p,q) ([ )Up (ﬁ i)

1=

i=1

/> [0
i=1

[Ma@F) g < Clnpea) (13.01az,) " (H ”“)HnMgifnm,m (5.2)

Pi0i*

—

1/p
|MG F

|Ma(E ) g < C 0, q) (150, Gz (5.3)

P

Di,0i

Pioi-

)
< C(n,p,q) ([UWAa UW?)l/pﬁHMUlfz
)

[117

Note that the second and the third inequalities in (5.1), (5.2) and (5.3) follow from
Hélder’s inequality and (3.2) respectively.

< C(nvpvq) ([U w A— U WOC

PrROOF. The proof of Theorem 5.1 follows essentially as in the case @« = 0 and
p = q in [2], [6]. Hence we will only prove (5.2).

We keep the notations of the proof of Proposition 4.1. Let us put ¢; = gp;/p > 1
and observe that 1/¢=1/q1 + - 4+ 1/qm.

We use for simplicity, the notation @ ; = @ and obtain that
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L(F) = / (Maa(@P)@)) " wle)de
o2 (s )

4 m

= kzj:w <H ‘Q|1 (a/nm)) H(mm(‘szQ))q

i=1

w P/‘Z o P/P;; q/p m
= Z ( |Q3—[Z 1(Q/ZTE ) > HU ‘1/171 Ui(‘fi|7Q))q

< [¢ CI/P ZHO. q/pl (Mo, (

k,j i=1

< [6,w)i? TT{ D2 @/ (mo(
k.j

|aQ)>q

q/qi

Q)"

qa/pi
= [&aw]i/;qn Zav mm |f7| Q)) )
Q/Pi

fil, @)™

= [7, w]?ﬁl/;q H Z )‘22 (Mg, (

i=1 \QeD

with

Q= 0 otherwise.

i {Ui(Q) if Q = Qg,; for some (k,7).

By Lemma 3.2 we can conclude that

L) = | (Maal@H)(@) wiz)da
( )

a/v [ Y
< Clnpq) (7,014, ) (H 2 /> T £l o,
=1 =
provided that for each i =1,...,m, {)\ég}er is a 0;-Carleson sequence with the appro-
priate constant. That is for any R € D,
Y 0@ Sloilano(R). (5.4)

QCR,QeD

The inequality (5.4) can be found in [14]. Let us prove it here for completeness.
We first check the following.
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|Qk.j| < VIE(Qr5)I, ¥

Recall that E(Qy ;)

|Qk,j N <U Qk+1,l> ‘ =
=1

B. F. SEHBA

1
1— ((Qnm,a)/a)l/(m.—(a/n))

= Qk,; N Q and observe that

> 1@kl

Qr+1,1CQk,j
1/(m—(a/m))
< Z Qi1 |™ (/™)
Qr41,1C Q.5
1/(m—(a/n))
1
\aw X IO e
Qr+1,1CQ,j =1 Qr+1,1
N 1/(m—(a/n)
1
<\ =10 X / | filoi
i=1 Qpp1,1CQr.y ¥ Qh1il
1 m —(a/m))
<\ 77 | filo
1/(m—(a/m))
< T 2nm—aak|Qk’j|m—(a/n)>
gnm-—a 1/(m—(a/n))
< a ) |Qk.jl-
Thus
|Qk,j] < E(Qr,j)+ |Qr; N (U Qr+1 l)
gnm-—a 1/(m—(a/n))
< 1B@ul+ (5o Qu

which proves (5.5). It follows that

Y oe@<y Y 29 g
QCR,QeD QCR,QeD ‘Q|
B oi(Q)
’YQCRQED/E(Q) @l

<Aloilaoi(R).



Two-weight norm estimates for maximal function 93

The proof is complete. O
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