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Abstract. We consider the Stokes semigroup in a large class of domains
including bounded domains, the half-space and exterior domains. We will
prove that the Stokes semigroup is analytic in a certain type of solenoidal
subspaces of BMO.

1. Introduction.

We will investigate the homogeneous Stokes equations

ut −∆u+∇π = 0 in Ω× (0, T )

div u= 0 in Ω× (0, T )

u= 0 on ∂Ω× (0, T )

u(0) = u0

(1.1)

in a uniformly C3-domain Ω ⊂ Rn (n ≥ 2). The Lp-theory for 1 < p < ∞ of the Stokes

equations is quite well understood if the Helmholtz projection in Lp exists. For this

let Lp
σ(Ω) be the closure of C∞

c,σ(Ω), the space of smooth solenoidal vector fields with

compact support, in Lp(Ω). The Helmholtz projection is then the projection operator

from Lp(Ω) into Lp
σ(Ω) derived from the Helmholtz decomposition. In [15] the second

author proved that the Stokes operator generates an analytic semigroup in Lp
σ(Ω) if Ω

is a bounded domain. The same result was proved in [13], [14] for general domains

under the assumption that the Helmholtz decomposition of Lp
σ(Ω) exists. For domains

not admitting the Lp-Helmholtz decomposition this result is still unknown.

In [1] and [2] K. Abe and the second author proved similar analyticity results in

solenoidal subspaces of L∞(Ω) for a certain class of domains called admissible. Similar

analyticity results in L∞ by resolvent estimates were obtained in [3].

In this work we want to generalize these analyticity results to a subspace of BMO.

In order to do so we introduce a norm measuring the mean oscillation of the function

inside the domain and the mean value of the function near the boundary. We define this

BMO-type norm in the following way. Let for f ∈ L1
loc(Ω) and B ⊂ Ω the mean value

2010 Mathematics Subject Classification. Primary 35Q35; Secondary 76D07.
Key Words and Phrases. Stokes equations, BMO, analytic semigroup.
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) and the

German Research Foundation (DFG) through the Japanese-German Graduate Externship and Interna-
tional Research Training Group 1529 on Mathematical Fluid Dynamics. The second author is partly
supported by JSPS through grants no. 26220702 (Kiban S), no. 23244015 (Kiban A) and no. 25610025

(Houga). The third author was partly supported by the Program for Leading Graduate Schools, MEXT,
Japan.

https://doi.org/10.2969/jmsj/07017346


07-7346: 2017.12.26

154 M. Bolkart, Y. Giga and T. Suzuki

fB be defined as

fB :=
1

|B|

∫
B

f(y) dy.

For the parameter µ ∈ (0,∞] we define the BMO-seminorm

[f ]BMOµ(Ω) := sup
Br(x)⊂Ω,r<µ

1

|Br(x)|

∫
Br(x)

|f(y)− fBr(x)| dy.

We will usually omit Ω in the notation of the seminorm if no confusion may arise. The

space BMOµ(Ω) is then defined as

BMOµ(Ω) := {f ∈ L1
loc(Ω) : [f ]BMOµ < ∞}.

We define for ν ∈ (0,∞] the seminorm

[f ]bν := sup

{
r−n

∫
Br(x0)∩Ω

|f(y)| dy : x0 ∈ ∂Ω, 0 < r < ν

}
.

Then

∥f∥BMOµ,ν
b

:= [f ]BMOµ + [f ]bν

will be called the BMO-type norm. The space BMOµ,ν
b (Ω) is then defined as the space

of all functions f ∈ L1
loc(Ω) satisfying ∥f∥BMOµ,ν

b
< ∞. Let VMOµ,ν

b,0 (Ω) be the closure

of C∞
c (Ω) and VMOµ,ν

b,0,σ(Ω) the closure of C
∞
c,σ(Ω) with respect to the norm ∥ ·∥BMOµ,ν

b
.

Furthermore, let C0,σ(Ω) be the closure of C∞
c,σ(Ω) with respect to the L∞-norm. It is

obvious that C0,σ(Ω) ↪→ VMOµ,ν
b,0,σ(Ω).

Further we define for p ∈ (1,∞)

[f ]BMOµp := sup
Br(x)⊂Ω,r<µ

(
1

|Br(x)|

∫
Br(x)

|f(y)− fBr(x)|
p dy

)1/p

,

[f ]bνp := sup
x0∈∂Ω,0<r<ν

(
r−n

∫
Br(x0)∩Ω

|f(y)|p dy

)1/p

,

∥f∥BMOµ,ν
b p := [f ]BMOµp + [f ]bνp.

Note that by the John–Nirenberg inequality the seminorm [f ]BMOµp is equivalent to

[f ]BMOµ provided that p ∈ (1,∞) and µ ∈ (0,∞].

In [10], [11] it was proved that for the space L̃r := L2 ∩ Lr if r ≥ 2, L̃r := L2 + Lr

otherwise, there is a bounded Helmholtz projection Pr from L̃r(Ω) to L̃r
σ(Ω) in uniformly

C2-domains. Furthermore, it was proved that the Stokes operator generates an analytic

semigroup in L̃r
σ(Ω). Here L̃r

σ(Ω) is the closure of C∞
c,σ(Ω) in the L̃r-norm. The Sobolev

space W̃ 1,r
0 is defined as the closure of C∞

c (Ω) with respect to the norm ∥ · ∥W̃ 1,r :=

∥ · ∥L̃r + ∥∇ · ∥L̃r . In [10], [12] it was proved that for every u0 ∈ L̃r(Ω) there is a

unique solution u(t) ∈ W̃ 1,r
0 (Ω)∩ L̃r

σ(Ω) with ∇2u(t), ut(t),∇π(t) ∈ L̃r(Ω). We call such
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a solution L̃r-solution.

We are now ready to define the notion of an admissible domain in the sense of [1].

Let Ω be a uniformly C2-domain. The domain Ω is then called admissible if there are

r > n and a constant C > 0 such that for all matrix-valued functions f ∈ C1(Ω) with

div f ∈ L̃r(Ω), tr f = 0 and ∂lfij = ∂jfil (1 ≤ i, j, l ≤ n)

sup
x∈Ω

dist(x, ∂Ω)|(I − Pr)(∇f)(x)| ≤ C∥f∥L∞(∂Ω)

holds. Examples of admissible domains are bounded domains, the half space ([1]) and ex-

terior domains ([2]). A layer domain of dimension n ≥ 3 is an example of a domain that is

not admissible ([6]) but has a Helmholtz decomposition in Lp ([21]). Furthermore, there

are also examples of admissible domains that do not have a Helmholtz decomposition in

Lp as constructed in [4].

Having these definitions the first and the second author proved in [8] that for the

Stokes equations the L∞-norm of the derivatives of the solution can be estimated by the

BMOb-norm of the initial data as in the following theorem.

Theorem 1.1. Let n ≥ 2, r > n and

Ñ(u, π)(x, t) := t1/2|∇u(x, t)|+ t|∇2u(x, t)|+ t|ut(x, t)|+ t|∇π(x, t)|.

Let Ω be an admissible, uniformly C3-domain in Rn, µ, ν ∈ (0,∞]. Then there exist a

solution operator S to (1.1) and constants C, T0 > 0 depending only on µ, ν, n and Ω

such that

sup
0<t<T0

∥Ñ(u, π)(·, t)∥∞ ≤ C∥u0∥BMOµ,ν
b

holds for every L̃r-solution (u,∇π) with u0 ∈ C∞
c,σ(Ω). By density the estimate holds also

for each u0 ∈ VMOµ,ν
b,0,σ(Ω) with S(t)u0 = u and a suitable choice of π. The solution

operator S is taken so that it agrees with the L2-Stokes semigroup on C∞
c,σ(Ω).

The estimate t∥ut(t)∥BMOµ,ν
b

≤ C∥u0∥BMOµ,ν
b

for t < T0 which is a consequence of

the theorem is the estimate needed for proving the analyticity of a semigroup. Neverthe-

less, in our case we have the required estimate but this is not enough to conclude that

the Stokes operator actually generates a semigroup on VMOµ,ν
b,0,σ(Ω) since the theorem

does not give us sufficient control about the solution u itself. It is the aim of this paper

to close this gap and to show that the Stokes semigroup is analytic in VMOµ,ν
b,0,σ(Ω).

For this we will need to assume some regularity at the boundary and will make use

of the following property.

Lemma 1.2. Let Ω be a uniformly C2-domain. Then there exists a constant R

such that for all x ∈ Ω with dist(x, ∂Ω) < R there is a unique projection to a boundary

point xc ∈ ∂Ω such that the line between xc and x is normal to ∂Ω in xc.

Proof. For a proof see [16, appendix] and [19, Section 4.4]. □
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We define then for a uniformly C2-domain the number R∗ > 0 to be the supremum

of all R satisfying the above for Ω and its complement. This R∗ is often called the reach

of ∂Ω ([19]).

Our main result then states that in an admissible domain the Stokes operator gener-

ates an analytic semigroup in VMOµ,ν
b,0,σ(Ω) for suitable choices of µ and ν. The constant

Cn,L denotes here a constant depending on the regularity of the domain which will be

defined in section 4.

Theorem 1.3. Let Ω ⊂ Rn be an admissible, uniformly C3-domain. Let 0 < ν ≤
R∗ and µ ∈ (R∗,∞]. Then the Stokes operator generates a C0-analytic semigroup in

VMOµ,ν
b,0,σ(Ω).

The main idea of the proof is deriving estimates for∫
Br(x)

∣∣u(y, t)− uBr(x)(t)
∣∣2 dy and

∫
Br(x0)∩Ω

|u(y, t)|2 dy

for Br(x) ⊂ Ω and x0 ∈ ∂Ω. This can be done by using the fundamental theorem of

calculus u(t) =
∫ t

0
us(s) ds − u0, the equality ut = ∆u − ∇π and integration by parts

such that we only need to estimate π and the gradient of u. Via an estimate on harmonic

functions the pressure in this calculation is also controlled by the gradient of u. By the

estimate

sup
0<t<T0

t1/2∥∇u(t)∥∞ ≤ C∥u0∥BMOµ,ν
b

of Theorem 1.1 we then obtain for t < T0 the inequality

∥u(t)∥BMOµ,2ν
b 2 ≤ C∥u0∥BMOµ,ν

b
.

Finally, we will need equivalence results between different BMOb-norms to compare

these two norms and get the boundedness in VMOµ,ν
b,0,σ(Ω). Together with the time

derivative estimate of Theorem 1.1 this yields the analyticity of the Stokes operator in

VMOµ,ν
b,0,σ(Ω).

This paper is organized as follows. In section 2 we will prove estimates that will

be needed to get control of the pressure terms that will appear in our calculations. In

section 3 we will prove that we can estimate the BMO-type norm of the solution by

another BMO-type norm of the initial data and that the solution is in VMOµ,ν
b,0,σ(Ω).

In section 4 we will prove the required equivalence results of different BMO-type norms.

In section 5 we will consider the Stokes semigroup in the half-space and prove the global

boundedness of the semigroup and its derivatives.

2. Boundary estimate for the pressure.

In this section we will prove estimates for harmonic functions in order to estimate

the pressure terms in Section 3 in a suitable way.

Theorem 2.1. Let Ω be a bounded C2-domain and consider the equation
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∆π = 0 in Ω

∂π/∂n=div∂Ω g on ∂Ω∫
Ω
π dx= 0.

Then there is a constant C > 0 depending only on C2-regularity of Ω and the second

eigenvalue of the Neumann Laplacian in Ω such that

∥π∥L2(∂Ω) ≤ C∥g∥L2(∂Ω) (2.1)

holds for all g ∈ L2(∂Ω) with g · n = 0 on ∂Ω. The constant C is additionally invariant

under scaling transformations of the domain Ω.

We shall prove this theorem in several steps. For Lipschitz domains we consider the

Sobolev space on the boundary ∂Ω. LetH1(∂Ω) denote the space of all f ∈ L2(∂Ω) whose

weak tangential derivative ∇∂Ωf is also in L2(∂Ω). We equip this space with an inner

product in the same way as in the definition of H1(Ω). The space Hs(∂Ω) (0 ≤ s ≤ 1) is

given as the complex interpolation space
[
L2(∂Ω),H1(∂Ω)

]
s
based on fractional powers

of the self-adjoint operator associated with the inner product of H1 ([20]). It is well-

known that the trace space H1/2(∂Ω) of H1(Ω) agrees with this characterization of the

interpolation ([20]). Let H−s(∂Ω) be the dual space of Hs(∂Ω).

Lemma 2.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then

∥∇∂Ωf∥H−1(∂Ω) ≤ ∥f∥L2(∂Ω) (2.2)

for all f ∈ L2(∂Ω), where ∇∂Ω denotes the weak tangential gradient.

Proof. This can be seen immediately from the definition of H−1(∂Ω). □

Lemma 2.3. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then

∥∇∂Ωf∥H−s(∂Ω) ≤ ∥f∥H1−s(∂Ω) (2.3)

for all f ∈ H1−s(∂Ω) and s ∈ [0, 1]. In particular,

∥∇∂Ωf∥H−1/2(∂Ω) ≤ ∥f∥H1/2(∂Ω) (2.4)

for all f ∈ H1/2(∂Ω).

Proof. We interpolate (2.2) with

∥∇∂Ωf∥L2(∂Ω) ≤ ∥f∥H1(∂Ω)

to get (2.3) by complex interpolation theory ([20]). Note that H−s(∂Ω) =[
L2(∂Ω),H−1(∂Ω)

]
s
. □

We next recall the solvability of the Neumann problem
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∆u= 0 in Ω

∂u/∂n= h on ∂Ω
(2.5)

under the compatibility condition
∫
∂Ω

h dHn−1 = 0. The Lax–Milgram theorem or even

the Riesz representation theorem for a Hilbert space guarantees the existence of a solution

u ∈ H1(Ω) for h ∈ H−1/2(∂Ω). If h is regular, say h ∈ H1/2(∂Ω) and if ∂Ω is C2, then u is

H2. This is also standard. We just summarize these results which are for example found

in [7, Theorem III, 4.3] including the case when the Laplace equation (2.5) is replaced by

the Poisson equation ∆u = f .

Lemma 2.4. Let Ω be a bounded Lipschitz domain in Rn. For a given h ∈
H−1/2(∂Ω) with

∫
∂Ω

h dHn−1 = 0, there is a unique weak solution u ∈ H1(Ω) of (2.5)

satisfying
∫
Ω
u dx = 0. This linear operator h 7→ u fulfills the estimate

∥u∥H1(Ω) ≤ C∥h∥H−1/2(∂Ω) (2.6)

with C depending only on Ω through its Lipschitz regularity of Ω as well as the second

eigenvalue of the Laplacian with Neumann boundary conditions.

Moreover, if Ω is C2 and h ∈ H1/2(∂Ω), then u ∈ H2(Ω). The linear operator

h 7→ u fulfills the estimate

∥u∥H2(Ω) ≤ C∥h∥H1/2(∂Ω). (2.7)

Here, the constant C depends in addition on C2-regularity of Ω.

The dependence of C with respect to the second eigenvalue of the Laplacian with

Neumann boundary condition appears when one uses the Poincaré type inequality to

control the L2-norm of u by the L2-norm of ∇u. If the boundary regularity is fixed, then

the constant decreases as the second eigenvalue increases.

The estimate (2.6) together with the well-known trace theorem [7, Theorem III, 2.2]

and (2.4) yield key estimates for the boundary value of the solution π in Theorem 2.1.

Lemma 2.5. Let Ω be a bounded Lipschitz domain in Rn. Let g ∈ H1/2(∂Ω) satisfy

g · n = 0 on ∂Ω and let π ∈ H1(Ω) with
∫
Ω
π dx = 0 be the unique solution of (2.5) with

h = div∂Ω g. Then

∥γπ∥H1/2(∂Ω) ≤ C∥g∥H1/2(∂Ω) (2.8)

with C depending only on the Lipschitz regularity of Ω and the second eigenvalue of the

Laplacian with Neumann boundary condition, where γ denotes the trace on ∂Ω.

Proof. We first notice that
∫
∂Ω

h dHn−1 = 0 because g is tangential. By the

inequality (2.4) we observe that div g ∈ H−1/2(∂Ω), which guarantees the existence of

an H1-solution π (Lemma 2.4). We now observe by the trace theorem, (2.6) and (2.4)

that

∥γπ∥H1/2(∂Ω) ≤ C1∥π∥H1(Ω)



07-7346: 2017.12.26

The Stokes semigroup in BMO 159

≤ C2∥div∂Ω g∥H−1/2(∂Ω)

≤ C3∥g∥H1/2(∂Ω)

which yields (2.8) where Cj denotes a constant depending only on Ω. Here we only used

Lipschitz regularity of the boundary. □

We finally apply a duality argument.

Lemma 2.6. Assume that Ω is a bounded C2-domain in Rn. Let g and π be as in

Lemma 2.5. Then

∥γπ∥H−1/2(∂Ω) ≤ C∥g∥H−1/2(∂Ω) (2.9)

with C depending only on C2-regularity of Ω as well as the second eigenvalue of the

Laplacian with Neumann boundary condition in Ω.

Proof. Let uh be the H2-solution (satisfying
∫
Ω
uh dx = 0) of (2.5) with h ∈

H1/2(∂Ω) satisfying
∫
∂Ω

h dHn−1 = 0. By the Green formula we have∫
∂Ω

(γπ)h dHn−1 −
∫
∂Ω

∂π

∂n
uh dHn−1 =

∫
Ω

(π∆uh − uh∆π) dx = 0,

where γuh is denoted simply by uh. Thus∫
∂Ω

(γπ)h dHn−1 =

∫
∂Ω

(div∂Ω g)uh dHn−1 = −
∫
∂Ω

g · ∇∂Ωuh dHn−1.

This representation yields∣∣∣∣∫
∂Ω

(γπ)h dHn−1

∣∣∣∣ ≤ ∥g∥H−1/2(∂Ω)∥γ∇∂Ωuh∥H1/2(∂Ω).

By the trace theorem and (2.7) we get∣∣∣∣∫
∂Ω

(γπ)h dHn−1

∣∣∣∣ ≤ ∥g∥H−1/2(∂Ω)∥h∥H1/2(∂Ω)

which yields (2.9). □

Proof of Theorem 2.1. Since the estimate (2.9) guarantees that g 7→ γπ is

extendable from tangential H−1/2(∂Ω) to H−1/2(∂Ω), interpolating (2.8) with (2.9)

yields (2.1), where we suppress the trace symbol γ. Here we invoke the property that[
H1/2(∂Ω),H−1/2(∂Ω)

]
1/2

= L2(∂Ω) ([20]). The scaling invariance follows directly from

scaling Ω, π and g. □

Remark 2.7. In the application of Theorem 2.1 in Section 3 we will need to

consider this estimate for domains of the form Ω ∩ Br(x0) (x0 ∈ ∂Ω, r < 2c0R
∗) with

smoothed corners and for balls. For the balls we can invoke that the constant C is scaling

invariant and thus depends only on dimension. For the other domains we will need some
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uniform control of the constant in this estimate. We can achieve this through control on

the C2-regularity of the domains and an estimate from below on the second eigenvalue λ2

of the Neumann Laplacian. For convex domains Ω̃ such an estimate is explicitly known

by [22], where λ2 ≥ π2/ diam(Ω̃)2 was shown. But not all of the domains we consider are

convex. For these remaining domains one can obtain an estimate from below directly from

[9], where this was proved for manifolds satisfying an “interior rolling ε-ball condition”

which is satisfied for all C2-domains. Another possibility is to use the result of [5] where

it was proved that small perturbations of the domain result in small changes of the

eigenvalues. Thus, if we choose 0 < c0 < 1/2 sufficiently small we get from the estimate

λ2 ≥ π2/r2 for the upper half of a ball with radius r the estimate λ2 ≥ π2/2r2 for all

Br(x0) ∩ Ω with x0 ∈ ∂Ω, r < 2c0R
∗ and smoothed corners. From this we can conclude

that the constant C of (2.1) is bounded from above in all applications of Theorem 2.1 if

we choose ν < c0R
∗ and have control on the C2-regularity.

3. Boundedness in BMO-type spaces.

In this section we will prove that the solution operator maps VMOµ,ν
b,0,σ(Ω) to

VMOµ,ν
b,0,σ(Ω) under suitable choices of µ and ν and finally conclude the analyticity

of the Stokes semigroup in these BMO-type spaces. We will distinguish between small

and large balls and use the derivative estimate of Theorem 1.1 in order to prove this

boundedness. It will be easier to do most of the calculations with the BMOb2-norms

since in this case we do not have to take care of the absolute value in the definition and

it enables us to integrate by parts in a way that fits to our needs.

Since we will also need some control over the mean values we will start with an

estimate on mean values of the solution.

Lemma 3.1. Let µ, ν ∈ (0,∞] and Ω an admissible uniformly C3-domain. Then

there are constants C, T0 > 0 which are independent of r, u0 and t such that

∣∣uBr(x)(t)− u0Br(x)

∣∣ ≤ C
t1/2

r
∥u0∥BMOµ,ν

b

holds for all solutions u := S(t)u0 of (1.1) with u0 ∈ VMOµ,ν
b,0,σ(Ω), t ∈ (0, T0) and

Br(x) ⊂ Ω.

Proof. By the fundamental theorem of calculus, equation (1.1)1 and integration

by parts we get

1

|Br(x)|

∫
Br(x)

(u(y, t)− u0(y)) dy

=
1

|Br(x)|

∫
Br(x)

∫ t

0

∂u

∂s
(y, s) ds dy

=
1

|Br(x)|

∫ t

0

∫
Br(x)

(∆u(y, s)−∇π(y, s)) dy ds

=
1

|Br(x)|

∫ t

0

∫
∂Br(x)

(
∂u

∂n
(y, s)− π(y, s)n

)
dHn−1(y) ds.
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Then we can estimate this in the following way by using the Hölder inequality

∥f∥L1(∂Br) ≤ ∥1∥L2(∂Br)∥f∥L2(∂Br), where ∥1∥L2(∂Br) = Cr(n−1)/2∣∣∣∣∣ 1

|Br(x)|

∫
Br(x)

(u(y, t)− u0(y)) dy

∣∣∣∣∣
≤ ω−1

n

r

∫ t

0

1

rn−1

∫
∂Br(x)

(∣∣∣∣ ∂u∂n (y, s)

∣∣∣∣+ |π(y, s)n|
)
ds dHn−1(y), (ωn = |B1(0)|)

≤ ω−1
n

r

∫ t

0

1

rn−1

(∫
∂Br(x)

∥∇u(s)∥L∞(Ω) dHn−1(y) + ∥π(s)∥L1(∂Br(x))

)
ds

≤ C

r

∫ t

0

(∥∇u(s)∥L∞(Ω) + r−(n−1)/2∥π(s)∥L2(∂Br(x))) ds.

Here, we used that ∇u(t) is in W 1,∞(Ω) by Theorem 1.1 and thus ∇u ∈ C(Ω) such that

we can estimate ∥∂u/∂n∥L∞(∂Ω) by ∥∇u∥L∞(Ω).

We get then by Theorem 1.1, Theorem 2.1 with choosing π such that
∫
Br(x)

π = 0,

(1.1)1 and the Hölder inequality ∥f∥L2(∂Br) ≤ ∥1∥L2(∂Br)∥f∥L∞(∂Br)∣∣∣∣∣ 1

|Br(x)|

∫
Br(x)

(u(y, t)− u0(y)) dy

∣∣∣∣∣
≤ C

r

∫ t

0

(∥∇u(s)∥∞ + r−(n−1)/2∥ curlu(s)× n∥L2(∂Br(x))) ds

≤ C

r

∫ t

0

∥∇u(s)∥∞ ds

≤ C

r

∫ t

0

s−1/2∥u0∥BMOµ,ν
b

ds

≤ C
t1/2

r
∥u0∥BMOµ,ν

b
. □

In the next theorem we obtain bounds for the mean oscillation of the solution in

large balls.

Theorem 3.2. Let Ω ⊂ Rn be an admissible, uniformly C3-domain, µ, ν ∈ (0,∞].

Then there are constants C, T0 > 0 depending only on Ω, n, µ and ν such that for all

0 < r < µ and x ∈ Ω with Br(x) ⊂ Ω, t ∈ (0, T0) and all u0 ∈ VMOµ,ν
b,0,σ(Ω) with

u(t) = S(t)u0

1

|Br(x)|

∫
Br(x)

|u(y, t)− uBr(x)(t)|
2 dy ≤ C

(
1 +

t

r2

)
∥u0∥2BMOµ,ν

b
.

Proof. By the fundamental theorem of calculus, (1.1)1 and integration by parts

we get∫
Br

|u(y, t)− uBr (t)|2 dy
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=

∫
Br

(u(y, t)− uBr (t))

(∫ t

0

∂(u− uBr )

∂s
(y, s) ds− (u0(y)− u0Br )

)
dy

≤
∣∣∣∣∫

Br

(u(y, t)− uBr (t))

∫ t

0

(∆u(y, s)−∇π(y, s)) ds dy

∣∣∣∣
+

∣∣∣∣∫
Br

(u(y, t)− uBr (t))

∫ t

0

∂uBr

∂s
(s) ds dy

∣∣∣∣
+ ∥u(y, t)− uBr (t)∥L2(Br)∥u0 − u0Br∥L2(Br)

≤
∣∣∣∣∫ t

0

∫
Br

∇u(y, t)∇u(y, s) dy ds

∣∣∣∣+ ∣∣∣∣∫ t

0

∫
∂Br

(u(y, t)− uBr (t))
∂u

∂n
(s) dHn−1(y) ds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
∂Br

(u(y, t)− uBr (t))π(y, s)n dHn−1(y) ds

∣∣∣∣
+

∣∣∣∣∫
Br

(u(y, t)− uBr (t)) dy(uBr (t)− u0Br )

∣∣∣∣
+

1

2

∫
Br

|u(y, t)− uBr (t)|2 dy +
1

2

∫
Br

|u0(y, t)− u0Br |2 dy,

where we can take the second to last term to the left hand side and the last term can

be estimated by rn[u0]
2
BMOµ2 which by the John-Nirenberg inequality is equivalent to

rn[u0]
2
BMOµ . We will use the derivative estimate of Theorem 1.1 for estimating the other

parts. The first term can be estimated by∣∣∣∣∫ t

0

∫
Br

∇u(y, t)∇u(y, s) dy ds

∣∣∣∣ ≤ ∫
Br

∥∇u(t)∥∞
∫ t

0

∥∇u(s)∥∞ ds dy

≤ Crnt−1/2∥u0∥BMOµ,ν
b

∫ t

0

s−1/2∥u0∥BMOµ,ν
b

ds

≤ Crn∥u0∥2BMOµ,ν
b

.

For the second summand we get∣∣∣∣∫ t

0

∫
∂Br

(u(y, t)− uBr (t))
∂u

∂n
(s) dHn−1(y) ds

∣∣∣∣
≤
∫
∂Br

|u(y, t)− uBr
(t)|

∫ t

0

∥∇u(s)∥∞ ds dHn−1(y)

≤ C

∫
∂Br

|u(y, t)− uBr (t)| dHn−1(y)

∫ t

0

s−1/2∥u0∥BMOµ,ν
b

ds

≤ Ct1/2∥u0∥BMOµ,ν
b

∫
∂Br

|u(y, t)− uBr (t)| dHn−1(y).

In order to estimate the third term we estimate the pressure part by using Theorem 2.1,

(1.1)1 and Hölder’s inequality.∣∣∣∣∫ t

0

∫
∂Br

(u(y, t)− uBr (t))π(y, s)n dHn−1(y) ds

∣∣∣∣
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≤ ∥u(t)− uBr (t)∥L2(∂Br)

∫ t

0

∥π(s)∥L2(∂Br) ds

≤ Cr(n−1)/2∥u(t)− uBr (t)∥L∞(∂Br)

∫ t

0

r(n−1)/2∥ curlu(s)× n∥L∞(∂Br) ds

≤ Crn∥∇u(t)∥∞
∫ t

0

∥∇u(s)∥∞ ds

≤ Crn∥u0∥2BMOµ,ν
b

,

where we used Poincaré’s inequality with constant Cr in Br in the second to last line.

For the fourth term we use Lemma 3.1∣∣∣∣∫
Br

(u(y, t)− uBr (t)) dy(uBr (t)− u0Br )

∣∣∣∣
≤ C

(∫
Br

|u(y, t)− uBr (t)|2 dy
)1/2

rn/2
t1/2

r
∥u0∥BMOµ,ν

b

≤ ε

∫
Br

|u(y, t)− uBr (t)|2 dy + Cε
t

r2
rn∥u0∥2BMOµ,ν

b
.

Thus we have the estimate∫
Br

|u(y, t)− uBr (t)|2 dy ≤ Cεr
n

(
1 +

t

r2

)
∥u0∥2BMOµ,ν

b
+ ε

∫
Br

|u(y, t)− uBr (t)|2 dy

+ Ct1/2∥u0∥BMOµ,ν
b

∫
∂Br

|u(y, t)− uBr (t)| dHn−1(y).

After taking the term containing ε to the left hand side it is left to estimate
∫
∂Br

|u(y, t)−
uBr (t)| dHn−1(y). By the trace theorem and Poincaré’s inequality we obtain∫

∂Br

|u(y, t)− uBr (t)| dHn−1(y) ≤ Cr

(∫
Br

|∇u(y, t)|2 + |u(y, t)− uBr (t)|2 dy
)1/2

≤ Cr

(∫
Br

|∇u(y, t)|2 dy
)1/2

.

We see by a scaling argument that Cr = Crn/2. Then

Ct1/2
∫
∂Br

|u(y, t)− uBr (t)| dHn−1(y) ≤ Ct1/2rn/2∥∇u(t)∥L2(Br)

≤ Ct1/2rn∥∇u(t)∥∞
≤ Crn∥u0∥BMOµ,ν

b

such that we finally obtain∫
Br(x)

|u(y, t)− uBr(x)(t)|
2 dy ≤ Crn

(
1 +

t

r2

)
∥u0∥2BMOµ,ν

b
. □
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For boundedness we will need similar estimates for small r. These estimates can be

proved in a much simpler way by using Poincaré’s inequality.

Lemma 3.3. Let Ω ⊂ Rn be an admissible, uniformly C3-domain, µ, ν ∈ (0,∞].

There are constants C, T0 > 0 depending only on Ω, n, µ and ν such that for all r > 0

and x ∈ Ω with Br(x) ⊂ Ω, t ∈ (0, T0) and all u0 ∈ VMOµ,ν
b,0,σ(Ω) with u(t) = S(t)u0

1

|Br(x)|

∫
Br(x)

|u(y, t)− uBr(x)(t)|
2 dy ≤ C

r2

t
∥u0∥2BMOµ,ν

b
.

Proof. By Poincaré’s inequality in Br with constant Cr and Theorem 1.1 we can

estimate ∫
Br(x)

|u(y, t)− uBr(x)(t)|
2 dy ≤

∫
Br(x)

∥u(t)− uBr(x)(t)∥
2
∞ dy

≤ C

∫
Br(x)

r2∥∇u(t)∥2∞ dy

≤ Crn
r2

t
∥u0∥2BMOµ,ν

b
. □

We can now estimate the BMO-part of the BMOb-norm in a suitable way. In a

similar way we will get estimates for the boundary part of the norm. Since Br(x0) ∩ Ω

for x0 ∈ ∂Ω is not a C2-domain which we will need for the estimate of the pressure, we

need to change the parameter ν in a certain way.

Theorem 3.4. Let Ω ⊂ Rn be an admissible, uniformly C3-domain, µ ∈ (0,∞],

0 < ν ≤ c0R
∗, where c0 is the constant of Remark 2.7. There are constants C, T0 > 0

depending only on Ω, n, µ and ν such that for all x0 ∈ ∂Ω, r < ν, t ∈ (0, T0) and all

u0 ∈ VMOµ,ν
b,0,σ(Ω) with u(t) = S(t)u0

1

rn

∫
Br(x0)∩Ω

|u(y, t)|2 dy ≤ C(∥u0∥2BMOµ,ν
b

+ [u0]
2
b2ν2).

Proof. Let Br(x0) ∩ Ω ⊂ B̃ ⊂ B2r(x0) ∩ Ω be a domain with C2-regularity,

where the C2-regularity of B̃ depends only on ν and the C3-regularity of Ω. Again by

the fundamental theorem of calculus and integration by parts we obtain∫
B̃

|u(y, t)|2 dy

=

∫
B̃

u(y, t)

∫ t

0

∂u

∂s
(y, s) ds dy −

∫
B̃

u(y, t)u0(y) dy

≤
∣∣∣∣∫

B̃

u(y, t)

∫ t

0

(∆u(y, s)−∇π(y, s)) ds dy

∣∣∣∣+ ∥u(t)∥L2(B̃)∥u0∥L2(B̃)

≤
∣∣∣∣∫

B̃

u(y, t)

∫ t

0

(∆u(y, s)−∇π(y, s)) ds dy

∣∣∣∣+ 1

2

∫
B̃

|u(y, t)|2 dy
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+
1

2

∫
B2r(x0)∩Ω

|u0|2 dy,

where we take the second summand to the left hand side. The last summand can

be estimated by rn[u0]
2
b2ν2. For the first summand we obtain by using the estimate

∥u∥L∞(B2r(x0)∩Ω) ≤ Cr∥∇u∥∞, which follows from the homogeneous boundary condition,

estimating the part with pressure π in the same way as in Theorem 3.2 and integrating

by parts

C

rn

∣∣∣∣∫
B̃

u(y, t)

∫ t

0

(∆u(y, s)−∇π(y, s)) ds dy

∣∣∣∣
≤ C

rn

(∣∣∣∣∫
B̃

∇u(y, t)

∫ t

0

∇u(y, s) ds dy

∣∣∣∣+ ∣∣∣∣∫
∂B̃

u(y, t)

∫ t

0

∂u

∂n
(y, s) ds dHn−1(y)

∣∣∣∣
+

∣∣∣∣∫
∂B̃

u(y, t)

∫ t

0

π(y, s)n ds dHn−1(y)

∣∣∣∣)
≤ C

rn

(∫
B̃

∥∇u(t)∥∞
∫ t

0

∥∇u(s)∥∞ ds dy

+

∫
∂B̃

r∥∇u(t)∥∞
∫ t

0

∥∇u(s)∥∞ ds dHn−1(y)

+

∫
∂B̃

|u(y, t)|
∫ t

0

|π(y, s)n| ds dHn−1(y)

)
≤ C∥u0∥2BMOµ,ν

b
+

C

rn
∥u(t)∥L2(∂B̃)

∫ t

0

∥π(s)∥L2(∂B̃) ds

≤ C∥u0∥2BMOµ,ν
b

.

Finally we obtain ∫
B̃

|u(y, t)|2 dy ≤ C∥u0∥2BMOµ,ν
b

+ C[u0]
2
b2ν2. □

Let Cn,L be a constant depending on Ω which will be defined in section 4. Roughly

speaking, Cn,L measures the degree of shrinkage of transforms from neighborhoods near

the boundary to Rn
+.

Theorem 3.5. Let Ω ⊂ Rn be an admissible, uniformly C3-domain, 0 < ν ≤ R∗,

µ ∈ (R∗,∞]. Then there are constants C, T0 > 0 depending only on Ω, n, µ and ν such

that for all t ∈ (0, T0) and all u0 ∈ VMOµ,ν
b,0,σ(Ω) with u(t) = S(t)u0

∥u(t)∥BMOµ,ν
b

≤ C∥u0∥BMOµ,ν
b

holds.

Proof. Since the norms with different such ν are equivalent by Theorem 4.3 that

will be proved later, we can assume that ν < min{R∗/(4Cn,L), c0R
∗}. By Theorem 3.2,

Lemma 3.3 and Theorem 3.4 we obtain for some T0 and C depending only on Ω, n, µ, ν
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∥u(t)∥BMOµ,ν
b 2 ≤ C∥u0∥BMOµ,ν

b
+ C[u0]b2ν2 (t ∈ (0, T0)). (3.1)

We will now use two different equivalence results on the BMOb-norms. At first note that

it is immediate from the definition and Hölder’s inequality that

∥u(t)∥BMOµ,ν
b

≤ C∥u(t)∥BMOµ,ν
b 2.

Since 2ν < R∗/(2Cn,L) we can use the equivalence between ∥·∥BMOµ,2ν
b 2 and ∥·∥BMOµ,2ν

b

that will be proved in the next section (Theorem 4.7) to estimate C[u0]b2ν2 such that we

get

∥u(t)∥BMOµ,ν
b

≤ C∥u0∥BMOµ,ν
b

+ C∥u0∥BMOµ,2ν
b

(t ∈ (0, T0)).

Now we will use the equivalence between ∥ · ∥BMOµ,ν
b

and ∥ · ∥BMOµ,2ν
b

(Theorem 4.3)

which yields

∥u(t)∥BMOµ,ν
b

≤ C∥u0∥BMOµ,ν
b

(t ∈ (0, T0)). □

Now we have all estimates that are necessary to obtain a semigroup. However, as

in the L∞-case C∞
c,σ(Ω) is not dense in the largest solenoidal subspace of BMOµ,ν

b (Ω).

Thus, in order to get a semigroup on VMOµ,ν
b,0,σ(Ω) we have to ensure that the solutions

u(t) ∈ VMOµ,ν
b,0,σ(Ω) for u0 ∈ VMOµ,ν

b,0,σ(Ω). This will be done in the appendix.

We are now able to show our main result, the analyticity of the VMOµ,ν
b,0,σ(Ω)-Stokes

semigroup.

Proof of Theorem 1.3. By Theorem 1.1 and the embedding L∞(Ω) ↪→
BMOµ,ν

b (Ω) we know that the solution operator S(t) satisfies the estimate∥∥∥∥ d

dt
S(t)u0

∥∥∥∥
BMOµ,ν

b

≤ C

t
∥u0∥BMOµ,ν

b
(t ∈ (0, T0)).

Furthermore, we know by the previous theorem that

∥S(t)u0∥BMOµ,ν
b

≤ C0∥u0∥BMOµ,ν
b

(t ∈ (0, T0)). (3.2)

By the appendix we obtain that S(t)u0 ∈ VMOµ,ν
b,0,σ(Ω) for every u0 ∈ VMOµ,ν

b,0,σ(Ω)

and t ∈ (0, T0). From this we can conclude that S(t)u0 ∈ VMOµ,ν
b,0,σ(Ω) for every t > 0.

This together with the above estimates yields that S is an analytic semigroup. It is left

to show that S is a C0-semigroup. It was proved in Proposition 5.3 of [1] that for all

u0 ∈ C∞
c,σ(Ω)

lim
t→0

∥S(t)u0 − u0∥∞ = 0.

If we now take u0 ∈ VMOµ,ν
b,0,σ(Ω), then there exists by definition of VMOµ,ν

b,0,σ(Ω) a

sequence um
0 ∈ C∞

c,σ(Ω) such that um
0 converges to u0 with respect to the BMOµ,ν

b -norm.

Then we have by (3.2) for t < T0
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∥S(t)u0 − u0∥BMOµ,ν
b

≤ ∥S(t)(u0 − um
0 )∥BMOµ,ν

b
+ ∥S(t)um

0 − um
0 ∥BMOµ,ν

b
+ ∥um

0 − u0∥BMOµ,ν
b

≤ (C0 + 1)∥um
0 − u0∥BMOµ,ν

b
+ (2 + ωn)∥S(t)um

0 − um
0 ∥∞.

For given ε > 0 we choose then m ∈ N such that ∥um
0 − u0∥BMOµ,ν

b
< ε/2(C0 + 1) and

then t0 > 0 sufficiently small such that ∥S(t)um
0 −um

0 ∥∞ < ε/2(2 + ωn) for all 0 < t < t0.

Then

∥S(t)u0 − u0∥BMOµ,ν
b

< ε

for t < t0 which proves that S is a C0-semigroup. □

4. Remark on equivalences of BMOb-norms.

In this section we will prove the equivalence results for different BMOb-norms that

were used in the proof of Theorem 3.5.

For these equivalence results we will need a fundamental theorem on BMO-functions

that states that the L1-norm of a function in a large area can be controlled by the L1-

norm of the function in a small area and the BMO-seminorm of f .

Theorem 4.1. Let µ ∈ (0,∞] and Ω ⊂ Rn be a domain. Then for all f ∈
BMOµ(Ω), a > 1, r > 0, x1, x2 ∈ Ω with Br(x1) ⊂ Bar(x2) ⊂ Ω and ar ≤ µ holds the

inequality

∥f∥L1(Bar(x2)) ≤ |Bar(x2)|(1 + an)[f ]BMOµ(Ω) + an∥f∥L1(Br(x1)). (4.1)

Proof. Let B1 := Br(x1), B2 := Bar(x2) and f̃ := f−fB1 . By
∫
B1

(f̃− f̃B2) dy =

−|B1|f̃B2
we obtain

|B1||f̃B2
| ≤

∫
B1

|f̃ − f̃B2
| dy

and thus

|B2|[f̃ ]BMOµ ≥
∫
B2

|f̃ − f̃B2
| dy

≥
∫
B1

|f̃ − f̃B2 | dy

≥ |B1||f̃B2
|.

From this we can estimate the mean value of f̃ in B2 by

|f̃B2 | ≤ an[f̃ ]BMOµ .

Then we can estimate the L1-norm of f by using estimates on the mean values together

with the L1-norm of f on a small ball.
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∥f∥L1(B2) ≤ ∥f − fB1∥L1(B2) + |B2||fB1 |

= ∥f̃∥L1(B2) + |B2||fB1 |

≤ ∥f̃ − f̃B2∥L1(B2) + |B2||f̃B2 |+
|B2|
|B1|

∥f∥L1(B1)

≤ |B2|[f̃ ]BMOµ + |B2|an[f̃ ]BMOµ + an∥f∥L1(B1)

= |B2|(1 + an)[f ]BMOµ + an∥f∥L1(Br(x1)). □

Since we consider BMO-functions on domains it will be useful to extend those

functions to the more classical BMO-functions on Rn. P. W. Jones proved in [18] the

exact condition when this is possible. This condition is in particular satisfied if the

domain is a bounded Lipschitz domain.

Theorem 4.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then there is a con-

stant C depending only on Lipschitz regularity of ∂Ω such that for each f ∈ BMO∞(Ω)

there is an extension f̄ ∈ BMO∞(Rn) such that

[f̄ ]BMO∞(Rn) ≤ C[f ]BMO∞(Ω).

Theorem 4.3. Let Ω ⊂ Rn be a uniformly C2-domain, ν1 < ν2 ≤ R∗ and µ ∈
[ν2,∞]. The norm ∥ · ∥BMO

µ,ν1
b

is then equivalent to ∥ · ∥BMO
µ,ν2
b

.

Proof. It follows immediately from the definition that for ν1 < ν2, ∥f∥BMO
µ,ν1
b

≤
∥f∥BMO

µ,ν2
b

. Thus it is left to show that

1

rn

∫
Ω∩Br(x0)

|f(y)| dy ≤ C∥f∥BMO
µ,ν1
b

with a constant C > 0 independent of x0 ∈ ∂Ω and ν1 ≤ r < ν2. Since ν1 ≤ r < R∗,

every Bν1/2(x0) ∩ Ω ⊂ Br(x0) ∩ Ω contains a closed ball B0 of radius ν1/4 and the

Lipschitz regularity of Ω ∩ Br(x0) is uniform. Thus by Theorem 4.2 there is a uniform

constant C > 0 such that for all x0 ∈ ∂Ω and all ν1 ≤ r < ν2 there is an extension of

f |Ω∩Br(x0) to f̄ ∈ BMO∞(Rn) with

[f̄ ]BMO∞(Rn) ≤ C[f ]BMO∞(Ω∩Br(x0)) ≤ C[f ]BMOµ(Ω).

Since
∫
B0

|f(y)| dy ≤ νn1 [f ]bν1 we obtain by Theorem 4.1 for ν1 ≤ r < ν2 that

1

rn

∫
Ω∩Br(x0)

|f(y)| dy ≤ 1

rn

∫
Br(x0)

|f̄(y)| dy

≤ ωn

(
1 +

(
4ν2
ν1

)n)
[f̄ ]BMO∞(Rn) +

(4r/ν1)
n

rn
∥f∥L1(B0)

≤ C[f ]BMOµ(Ω) + C[f ]bν1 (Ω)

with a constant independent of r and x0. □

We now want to prove the equivalence between BMOµ,ν
b p and BMOµ,ν

b . Our proof
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is divided into two parts. One concerning Hölder type estimates and one concerning

reverse Hölder type estimates which will be the crucial part.

Lemma 4.4 (Hölder type estimates). Let Ω ⊂ Rn be a domain, p ∈ [1,∞), µ, ν ∈
(0,∞] and f ∈ BMOµ,ν

b p(Ω). Then f satisfies the following estimate

∥f∥BMOµ,ν
b

≤ C∥f∥BMOµ,ν
b p

for some constant C = C(n, p) > 0.

Proof. This Lemma is easily obtained by the use of Hölder’s inequality. □

For the reverse Hölder type inequality we need the John–Nirenberg inequality.

Theorem 4.5 (John–Nirenberg inequality). Let Ω ⊂ Rn be a domain, p ∈ [1,∞),

f ∈ BMOµ(Ω). Then, there exists C = C(n, p) > 0 such that

[f ]BMOµp ≤ C[f ]BMOµ .

Proof. This inequality is rather different from the original John–Nirenberg in-

equality ([17]), but it can be obtained from this inequality. □

Let Ω ⊂ Rn be a uniformly C2-domain with Lipschitz constant L and let x0 ∈ ∂Ω.

We define Φx0 : Ω∩B̄R∗(x0) → Rn
+ by Φx0(x) = (x′, xn−ϕx0(x

′)) where ϕx0 is a Lipschitz

function with Lipschitz constant L which is a local coordinate of ∂Ω at x0. Let d(A)

denote the diameter of A. Then we define the degree of shrinkage of Ω (denoted by Cn,L)

by

sup

{
d(Φx0(Br(x) ∩ Ω))

d(Br(x) ∩ Ω)
,
d(Φ−1

x0
(Br(x) ∩ Ω))

d(Br(x) ∩ Ω)
: x ∈ Ω, Br(x) ⊂ BR∗(x0), x0 ∈ ∂Ω

}
.

We remark that this degree depends only on n and L because Ω is uniformly Lipschitz.

Now we want to state the reverse Hölder type estimates up to the boundary.

Lemma 4.6 (Reverse Hölder type estimates up to the boundary). Let Ω ⊂ Rn be a

uniformly C2-domain with Lipschitz constant L. Let Cn,L denote the degree of shrinkage

of Ω. Let ν ∈ (0, R∗/(2C2
n,L)], µ ∈ [R∗,∞], p ∈ [1,∞), f ∈ BMOµ,ν

b (Ω). Then there

exists a constant C = C(n, p,Ω, ν) > 0 such that

[f ]bνp ≤ C∥f∥BMOµ,ν
b (Ω).

Proof. Let x0 ∈ ∂Ω and r < ν be given. We will then write Φ for Φx0 . Then, by

changing variables(
r−n

∫
Ω∩Br(x0)

|f(y)|p dy

)1/p
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=

(
r−n

∫
Φ(Ω∩Br(x0))

|(f ◦ Φ−1)(z)|p|JΦ−1 | dz

)1/p

≤ (1 + L)

(
|Φ(Br)|

rn

)1/p
(
|Φ(Br)|−1

∫
Φ(Ω∩Br(x0))

|(f ◦ Φ−1)(z)|p dz

)1/p

≤ (1 + L)(ωnCn,L)
1/p

(
|Φ(Br)|−1

∫
Φ(Ω∩Br(x0))

|(f ◦ Φ−1)(z)|p dz

)1/p

,

where JΦ−1 denotes the Jacobian of Φ−1. Let ERn
+
be the xn-odd extension from Rn

+ to

Rn. We define the function g by g = ERn
+
(f ◦ Φ−1) and set

QR = Φ(Ω ∩BR(x0)) ∪ (−Φ(Ω ∩BR(x0))) for R = r,R∗.

Then,
∫
QR

gdx = 0 for R = r,R∗. We want to apply Theorem 4.5, so we check that

g satisfies the assumption of Theorem 4.5, i.e., g ∈ BMOCn,Lν(QR∗). For this we will

show that

[g]BMOCn,Lν(QR∗ ) ≤ C∥f∥BMOµ,ν
b (Ω). (4.2)

Take Bs(x) ⊂ QR∗ with s < Cn,Lν < µ/Cn,L. There are two cases we have to consider.

(1) Bs(x) ∩ ∂Rn
+ = ∅,

(2) Bs(x) ∩ ∂Rn
+ ̸= ∅.

In the case (1), we may assume Bs(x) ⊂ Rn
+. We remark that g = f ◦ Φ−1 in this case.

We will show

1

|Bs(x)|

∫
Bs(x)

|g(y)− gBs(x)| dy ≤ C∥f∥BMOµ,ν
b (Ω).

Take arbitrary c ∈ R. Then, by changing variables∫
Bs(x)

|g(z)− gBs(x)| dz

≤
∫
Bs(x)

|f ◦ Φ−1(z)− c| dz + |Bs(x)||c− (f ◦ Φ−1)Bs(x)|

≤ 2

∫
Bs(x)

|f ◦ Φ−1(z)− c| dz

= 2

∫
Φ−1(Bs(x))

|f(y)− c||JΦ| dy

≤ 2(1 + L)

∫
Φ−1(Bs(x))

|f(y)− c| dy.

Let d > 0 be the distance from Φ−1(Bs(x)) to the boundary of BR∗ ∩Ω. If the diameter

of Φ−1(Bs(x)) is smaller than d, we can take the smallest ball Bs′(z
′) with s′ < d < R∗
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and z′ ∈ Ω so that Φ−1(Bs(x)) ⊂ Bs′(z
′) ⊂ BR∗(x0) ∩ Ω. Then s′ ≤ Cn,Ls < µ and we

obtain ∫
Φ−1(Bs(x))

|f(y)− c| dy ≤
∫
Bs′ (z

′)

|f(y)− c| dy.

Since c is arbitrary, this implies

1

|Bs(x)|

∫
Bs(x)

|g(y)− gBs(x)| dy ≤ C[f ]BMOµ < +∞.

If the diameter of Φ−1(Bs(x)) is bigger than d, then we take a perpendicular from Φ−1(x)

to ∂Ω, and let x′ denote a point at which the perpendicular intersects with ∂Ω. Take

the smallest ball Bs′(x
′) ⊂ BR∗(x0) which contains Φ−1(Bs(x)). Then,

1

|Bs(x)|

∫
Bs(x)

|g(y)− gBs(x)| dy ≤ C
s′n

|Bs|
1

s′n

∫
Bs′ (x

′)∩Ω

|f(y)− c| dy.

By taking c = 0 in the integral,

1

|Bs(x)|

∫
Bs(x)

|g(y)− gBs(x)| dy

≤ C
s′n

|Bs|
1

s′n

∫
Bs′ (x

′)∩Ω

|f(y)| dy ≤ Cn,L,d
s′n

|Bs|
[f ]bR∗ .

We remark that [f ]bR∗ is estimated by C∥f∥BMOµ,ν
b (Ω) because f ∈ BMOµ,ν

b (Ω) and

BMOµ,ν
b (Ω) is equivalent to BMOµ,R∗

b (Ω) by Theorem 4.3. We also remark that s′n/|Bs|
is finite because d(Φ−1(Bs(x))) ≤ Cn,Ls. In the case (2), Bs(x) can be decomposed up

to a null set as

Bs(x) = (Bs(x) ∩ Rn
+) ∪ (Bs(x) ∩ (−Rn

+)) = B1 ∪B2.

Then,
∫
Bs(x)

|g(z) − gBs(x)| dz ≤ 2
∫
B1 |g(z)| dz + 2

∫
B2 |g(z)| dz. Since the second term

can be estimated in the same way as the first term, we only need to estimate the first

term. By change of variables,∫
B1

|g(z)| dz =

∫
Φ−1(B1)

|f(z)||JΦ| dz ≤ (1 + L)

∫
Φ−1(B1)

|f(z)| dz.

Let us take a perpendicular from Φ−1(x) to ∂Ω, and let x′ denote the point at which

the perpendicular intersects with ∂Ω. Take the smallest ball Bs′(x
′) ⊂ BR∗(x0) which

contains Φ−1(B1). Then, ∫
Φ−1(B1)

|f(z)| dz

≤ Cs′n
1

s′n

∫
Bs′ (x

′)

|f(z)| dz

≤ Cs′n[f ]bR∗ < +∞.
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We have thus proved (4.2).

As a consequence, we can apply Theorem 4.5 to g and get for the largest ball Br̃(x̃)

satisfying Br̃(x̃) ⊂ Qr and the smallest ball Br′(x
′) satisfying Qr ⊂ Br′(x

′)(
r−n

∫
Ω∩Br(x0)

|f(y)|p dy

)1/p

≤ C

(
|Φ(Br)|−1

∫
Φ(Ω∩Br(x0))

|(f ◦ Φ−1)(z)|p dz

)1/p

= C

(
2|Qr|−1 1

2

∫
Qr

|g(z)− gQr |p dz
)1/p

≤
(
C|Br̃(x̃)|−1

∫
Qr

|g(z)− gBr′ (x
′)|p dz

)1/p

≤

(
C|Br′(x

′)|−1

∫
Br′ (x

′)

|g(z)− gBr′ (x
′)|p dz

)1/p

≤ C[g]BMOCn,Lν(QR∗ ).

Here, we used r ≤ Cn,Lr̃ and r′ ≤ Cn,Lr ≤ Cn,Lν. By (4.2) we obtain as a consequence

for arbitrarily given x0 ∈ ∂Ω and r < ν,(
r−n

∫
Ω∩Br(x0)

|f(y)|p dy

)1/p

≤ C∥f∥BMOµ,ν
b (Ω).

Therefore, we obtain the reverse Hölder type estimates up to the boundary. □

Theorem 4.7. Let Ω ⊂ Rn be a uniformly C2-domain with Lipschitz constant L.

Let Cn,L denote the degree of shrinkage of Ω. Let ν ∈ (0, R∗/(2C2
n,L)], µ ∈ [R∗,∞],

p ∈ [1,∞), f ∈ BMOµ,ν
b (Ω). Then, ∥ · ∥BMOµ,ν

b p is equivalent to ∥ · ∥BMOµ,ν
b

.

Proof. Lemma 4.4 and Theorem 4.6 imply the equivalence. □

5. Bounded analyticity in the half-space.

In this section we will prove that the Stokes semigroup is a bounded analytic semi-

group in a solenoidal subspace of BMO∞,∞
b (Rn

+). Furthermore, we will obtain global

derivative estimates of the solution.

Theorem 5.1. Let Ω = Rn
+ be the half-space. Then there is a constant C which

only depends on the dimension n such that for all u0 ∈ VMO∞,∞
b,0,σ (Rn

+)

sup
t>0

∥u(t)∥BMO∞,∞
b

≤ C∥u0∥BMO∞,∞
b

, (5.1)

sup
t>0

t1/2∥∇u(t)∥∞ ≤ C∥u0∥BMO∞,∞
b

, (5.2)
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sup
t>0

t∥∇2u(t)∥∞ ≤ C∥u0∥BMO∞,∞
b

, (5.3)

sup
t>0

t∥ut(t)∥∞ ≤ C∥u0∥BMO∞,∞
b

, (5.4)

sup
t>0

t∥∇π(t)∥∞ ≤ C∥u0∥BMO∞,∞
b

, (5.5)

where (u,∇π) is the solution of the Stokes equations with S(t)u0 = u(t). In particular,

S is a bounded analytic semigroup on VMO∞,∞
b,0,σ (Rn

+).

Proof. We will use that the spaces BMO∞,∞
b (Rn

+) and L∞(Rn
+) are scaling-

invariant. By Theorem 1.1 and Theorem 3.5 we obtain the existence of some T0 > 0 such

that for all u0 ∈ VMO∞,∞
b,0,σ (Rn

+) the estimate

sup
0<t<T0

(∥u(t)∥BMO∞,∞
b

+ ∥Ñ(u, π)(·, t)∥∞) ≤ CT0∥u0∥BMO∞,∞
b

holds. By taking uλ
0 (x) := u0(λx) as initial data for λ > 0 we obtain the same estimate for

uλ(x, t) = u(λx, λ2t) and πλ = λπ(λx, λ2t) with the right hand side CT0∥uλ
0∥BMO∞,∞

b

which is equal to CT0∥u0∥BMO∞,∞
b

. By the scaling-invariance of the spaces we can

conclude from the estimate for (uλ, πλ) that

sup
0<t<λ2T0

(∥u(t)∥BMO∞,∞
b

+ ∥Ñ(u, π)(·, t)∥∞) ≤ CT0∥u0∥BMO∞,∞
b

with CT0 independent of λ > 0. Since λ was arbitrary we can replace sup0<t<λ2T0
by

supt>0 in the above inequality and get the desired estimates. The bounded analyticity

follows then from the time derivative estimate. □

A. Appendix.

Our goal in this section is to prove a density result. Let Ãr be the Stokes operator

in the space L̃r
σ which is constructed in [10], [11].

Theorem A.1. Let Ω be a uniformly C2-domain in Rn (n ≥ 2). For f ∈ D(Ãr0),

r0 > 2, there exists a sequence {fm} ⊂ C∞
c,σ(Ω) such that ∥f−fm∥W̃ 1,r(Ω) → 0 as m → ∞

for all r ∈ [2, r0).

This density result yields the following property for the Stokes semigroup S(t). Let

W̃ 1,r
σ,0 (Ω) denote the W̃ 1,r-closure of C∞

c,σ(Ω).

Corollary A.2. Let Ω be a uniformly C2-domain and u0 ∈ C∞
c,σ(Ω). Then

S(t)u0 ∈ W̃ 1,r
σ,0 (Ω) for all r ≥ 2 and t > 0. In particular, S(t)u0 ∈ C0,σ(Ω) ⊂

VMOµ,ν
b,0,σ(Ω) with µ, ν ∈ (0,∞].

This follows from Theorem A.1. Indeed, since S is an analytic semigroup in L̃r
σ(Ω)

we observe that S(t)u0 ∈ D(Ãr) for t > 0 and u0 ∈ L̃r
σ(Ω). If u0 ∈ C∞

c,σ(Ω) so that

u0 ∈ L̃r0
σ (Ω) for any r0 ≥ 2, then we get S(t)u0 ∈ D(Ãr0). Thus, applying Theorem A.1

implies that S(t)u0 ∈ W̃ 1,r
σ,0 (Ω) for any r ≥ 2. The remaining assertion follows from the
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Sobolev embedding for r > n and L∞(Ω) ↪→ BMOµ,ν
b (Ω).

The rest of this section is devoted to the proof of Theorem A.1. For this purpose

we need an approximation of the domain Ω.

For a uniformly C2-domain Ω of type (α, β,K) in the sense of [10] one can easily

construct a sequence of uniformly C2-domains Ωm of type (α, β,K) such that Ωm ⊂ Ω,

dist(Ωm, ∂Ω) ≥ 1/m and

Ω ⊂
{
x ∈ Rn : dist(x,Ωm) ≤ 2

m

}
for m ∈ N.

Lemma A.3. For f ∈ D(Ãr0) with r0 > 2 and r ∈ [2, r0) there exists a sequence

{fm} ⊂ W̃ 1,r
0 (Ωm) ∩ L̃r

σ(Ωm) such that ∥fm − f∥W̃ 1,r(Ω) → 0 as m → ∞. Here we

interpret fm as a function defined on Ω by extending via fm = 0 in Ω \ Ωm.

Proof. Let Ãr0,m be the Stokes operator in L̃r0
σ (Ωm). By the construction of the

operator there exists λ0 such that if λ ≥ λ0, then λ + Ãr0,m is invertible in L̃r0
σ (Ωm),

where λ0 is independent of Ωm since this property only depends on (α, β,K). We fix λ0.

For f ∈ D(Ãr0) we define g ∈ L̃r0
σ (Ω) by

g = (λ0 + Ãr0)f.

We approximate g by gm ∈ C∞
c,σ(Ω) such that ∥g − gm∥L̃r(Ω) → 0 as m → ∞. We may

assume that supp gm ⊂ Ωm by taking a subsequence. We set

fm = (λ0 + Ãr0,m)−1(gm|Ωm).

Since fm ∈ D(Ãr0,m), it is clear that fm ∈ W̃ 1,r
0 (Ωm) ∩ L̃r

σ(Ωm) for all r ∈ [2, r0]. We

extend fm by 0 and obtain a sequence of functions fm defined on Ω. By the a priori

estimate of [10], [11] we see that

∥fm∥W̃ 2,r(Ωm) ≤ C∥gm∥L̃r(Ωm) (r ∈ [2, r0))

with C depending only on (α, β,K). It is not difficult to show that fm → f in the sense

of distributions in Ω. Since ∥gm∥L̃r(Ω) is bounded by a constant multiple of ∥g∥L̃r(Ω),

this implies that ∥fm∥W̃ 1,r0 (Ω) is bounded. By

∥∇f −∇fm∥Lr(Ω) ≤ ∥∇f −∇fm∥θL2(Ω)∥∇f −∇fm∥1−θ
Lr0 (Ω)

with 1/r = (θ/r0) + ((1− θ)/2) and the same estimate for f − fm it suffices to prove

that fm → f strongly in H1(Ω). We consider H1(Ω) equipped with the scalar product

(f, g) =
∫
Ω
(λ0 +Ar0)f · g which is equivalent to the standard scalar product in H1(Ω).

Since we already know that fm → f in the sense of distributions and since ∥fm∥H1(Ω)

is bounded, we can conclude that fm → f weakly inH1(Ω). To obtain strong convergence

it remains to prove that ∥fm∥H1 → ∥f∥H1 . For this purpose we observe that
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∥fm∥2H1(Ω) =

∫
Ωm

(λ0 + Ãr0,m)fm · fm dx =

∫
Ωm

gm · fm dx.

Since fm → f weakly in L2(Ω) and gm → g strongly in L2 we conclude that

∥fm∥2H1 →
∫
Ω

f · g dx (m → ∞).

The limit equals to

∥f∥2H1 =

∫
Ω

(λ0 +Ar0)f · f dx.

Thus fm → f in H1. The proof is now complete. □

Lemma A.4. Let Ω ⊂ Rn be a domain and 1 < r < ∞. Let f ∈ W̃ 1,r
0 (Ω) ∩ L̃r

σ(Ω)

with c0 := dist(supp f, ∂Ω) > 0. Then there exists a sequence fm ∈ C∞
c,σ(Ω) such that

∥fm − f∥W̃ 1,r → 0 as m → ∞.

Proof. Let ε > 0 and take some δ < min{ε, c0/2}. Let Ω′ be defined by

Ω′ = {x ∈ Ω : dist(x, ∂Ω) > c0/2}.

Since f is regarded as an element of L̃r
σ(Ω

′), there exists a sequence fk ∈ C∞
c,σ(Ω

′) such

that fk → f in L̃r
σ(Ω

′). Let ϱδ be the standard mollifier whose support is contained in

a ball of radius δ centered at zero. We define fδ = f ∗ ϱδ. We construct a sequence

fk,δ ∈ C∞
c,σ(Ω) by fk,δ = fk ∗ ϱδ such that fk,δ converges to fδ in W̃ 1,r(Ω). Note that the

support of fk,δ is contained in Ω by the choice of Ω′ and ϱ. We observe that

∥f − fk,δ∥W̃ 1,r ≤ ∥f − fδ∥W̃ 1,r + ∥fδ − fk,δ∥W̃ 1,r

≤ ∥f − fδ∥W̃ 1,r + Cδ∥f − fk∥L̃r .

For ε > 0 we take δ sufficiently small such that ∥f − fδ∥W̃ 1,r ≤ ε/2 and then choose k0
large enough to obtain for all k ≥ k0 that Cδ∥f − fk∥L̃r ≤ ε/2. □
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Paris, 1968.

[21] T. Miyakawa, The Helmholtz decomposition of vector fields in some unbounded domains, Math.

J. Toyama Univ., 17 (1994), 115–149.

[22] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch.
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Note added in proof.

(i) As an application of our main result (Theorem 1.3), we are able to prove in

[BGMST] that for any p > 2 there exists a domain Ω not admitting the Lp-

Helmholtz decomposition but the Stokes operator generates an analytic semigroup

in Lp
σ(Ω).

(ii) There are several ways to define BMO like spaces. It turns out the analyticity

results (Theorem 1.3) can be extended to some other spaces closely related to the

present BMO spaces [BGST]. [BGMST] M. Bolkart, Y. Giga, T.-H. Miura, T.

Suzuki and Y. Tsutsui, On analyticity of the Lp-Stokes semigroup for some non-

Helmholtz domains, Math. Nachr., 290 (2017), 2524-2546. [BGST] M. Bolkart, Y.

Giga, T. Suzuki and Y. Tsutsui, Equivalence of BMO-type norms with applications

to the heat and Stokes semigroup, Potential Analysis, Online. DOI:10.1007/s11118-

017-9650-x


