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Abstract. We define Magidor cardinals as Jónsson cardinals upon re-
placing colorings of finite subsets by colorings of ℵ0-bounded subsets. Unlike

Jónsson cardinals which appear at some low level of large cardinals, we prove
the consistency of having quite large cardinals along with the fact that no
Magidor cardinal exists.

0. Introduction.

The definitions of large cardinals came, historically, from different fields in math-

ematics. Some notions are set-theoretical (e.g., inaccessible or Mahlo cardinals), some

belong to the logic realm (e.g., compact and weakly compact cardinals). Many of them

were defined on pure combinatorial grounds (e.g., Ramsey or Erdős cardinals) and one

definition comes from measure theory (i.e., the measurable cardinals). For most of large

cardinals, a natural defining property exists in more than one field.

The higher part of the chart of large cardinals is connected with elementary em-

beddings. If κ is large enough then there is a non-principal ultrafilter U on κ which is

κ-complete, and one can form the ultraproduct Vκ/U and get a well-founded model. The

construction yields an elementary embedding ȷ : V → Vκ/U which is not the identity.

An important question here is how far can we stretch the similarity between the

original universe V and the resulting model Vκ/U . More generally, if ȷ : V → M

and κ = crit(ȷ) then κ is a large cardinal (regardless if it comes from an ultraproduct

construction), and we can ask how far is V from M . It turns out that this question

produces stronger and stronger notions of large cardinals (the main directions being

strong cardinals on one hand, and supercompact or huge cardinals on the other hand).

The ultimate demand is V = Vκ/U (or V = M), which can also be phrased as follows:

Definition 0.1 (Reinhardt principle). There exists a non-trivial embedding ȷ :

V → V.

This basic principle is inconsistent with ZFC. Kunen proved (in [13]) that if ȷ is an

elementary embedding from V into V, then ȷ must be the identity. Several proofs are

known (see [9, pp. 318–324]), all of them employ the axiom of choice. The original proof

is based on the following:
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Theorem 0.2 (ω-Jónsson algebras). For every infinite cardinal λ there exists a

function f : [λ]ω → λ such that y ∈ [λ]λ ⇒ f“[y]ω = λ.

The proof of the combinatorial theorem appeared first in [4]. In the common notation

of the square brackets we may simply write λ ↛ [λ]ωλ . We indicate that the proof makes

use of the axiom of choice, and no proof of the failure of Reinhardt principle in ZF is

known.

But in the frame of ZFC, Reinhardt principle casts a limitation on the existence of

too strong notions of large cardinals. In this paper we deal with two axioms, labeled as I1

and I2. From now on, an elementary embedding ȷ is a non-trivial elementary embedding

(i.e., ȷ is not the identity):

Definition 0.3 (The axioms I1 and I2).

(ℵ) I1 means that for some ordinal δ there exists an elementary embedding ȷ : Vδ+1 →
Vδ+1.

(ℶ) I2 asserts that there is an elementary embedding ȷ : V → M such that Vδ ⊆ M for

some δ > crit(ȷ) satisfying ȷ(δ) = δ.

The axioms I1 and I2 were introduced, first, in [5]. Interesting results which follow

from these (and similar) axioms are proved in [14]. Magidor observed that if λ ↛
[λ]ℵ0-bd

λ for every (strong limit) λ, then I1 is refuted. Living in Vλ+1, a function f which

exemplifies λ ↛ [λ]ℵ0-bd
λ plays the role of an ω-Jónsson function in the proof of Kunen,

and the existence problem of such a function is attributed to Menachem Magidor (see

[9, Question 24.1]). By a paper of Shioya (see [18]) it refutes the axiom I2 as well.

Being the central notion of this paper, an appropriate name is in order:

Definition 0.4 (Magidor cardinals). Let λ be an infinite cardinal.

(ℵ) A function f : [λ]ℵ0-bd → α is a Magidor function for λ (with α-many colors) if and

only if f“[A]ℵ0-bd = α whenever A ∈ [λ]λ.

(ℶ) A cardinal λ with countable cofinality is a Magidor cardinal if and only if λ →
[λ]ℵ0-bd

λ .

If cf(λ) > ℵ0 then a Magidor function on λ is simply an ω-Jónsson function, hence

non-existent in ZFC. We shall prove that Magidor cardinals are large cardinals (in the

philosophical sense, i.e. their existence is axiomatic and cannot be derived from ZFC).

Moreover, we shall see that these cardinals (if exist) are situated in a fairly high position

among their friends in the table of large cardinals.

We try to follow the standard notation. If λ is a cardinal then [λ]ℵ0 is the collection

of subsets of λ whose size is ℵ0. By [λ]ℵ0-bd we denote the bounded subsets of λ whose

size is ℵ0. Arrows notation with bd as a superscript are to be interpreted in the same

manner. For example, λ ↛ [λ]ℵ0-bd
α means that there exists a coloring c : [λ]ℵ0-bd → α

such that for every y ∈ [λ]λ we have c“[y]ℵ0-bd = α. By the notation λ ↛ [λ]ℵ0-bd
θ,<θ we

mean that the number of colors obtained is less than θ.
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For τ = cf(τ) < λ let Sλ
τ be the set {δ < λ : cf(δ) = τ}. Notice that if λ is a

regular cardinal then Sλ
τ is a stationary subset of λ. We shall use this notation even

if λ > cf(λ) = ℵ0. A set B is θ-closed if the following requirement holds: for every

increasing sequence ⟨δi : i < θ⟩ of members of B we have δ = sup{δi : i < θ} ∈ B. If

ȷ is an elementary embedding between transitive models of ZFC, then crit(ȷ) is the first

ordinal moved by ȷ and fix(ȷ) is the first fixed point of ȷ above the critical point.

A word about square principles. The classical square has been defined by Jensen in

his profound analysis of the constructible universe [8]. Actually, Jensen phrased several

versions of the square, and also described a straightforward way to force their existence. A

recurrent question in this area is the relationship between squares and large cardinals. By

and large, the square is an incompact creature while large enough cardinals are compact.

Consequently, the higher part of the large cardinals table and the square are orthogonal,

but one can weaken the amount of square in order to incorporate larger cardinals in the

universe, and this is the main theme in the current paper. Recall that for a set C we

define acc(C) = {α ∈ C : α = sup(C ∩ α)}. We shall force the existence of the following

principle:

Definition 0.5 (Partial global square). Suppose δ = cf(δ). The δ-partial global

square means that there exists S ⊇ SOn
δ and a sequence ⟨Cα : α ∈ S, α > δ⟩ such

that otp(Cα) < δ for every α, acc(Cα) ⊆ S for every α and Cα ∩ β = Cβ whenever

β ∈ acc(Cα).

The historical background of Magidor cardinals goes back more than forty years

ago, shortly after the concept of Reinhardt cardinals was introduced and Kunen’s incon-

sistency has been proved. Due to Magidor himself, [16], it emerged out of an innocent

attempt to prove the inconsistency of I1 along the line of Kunen’s proof. Things have

been changed, notwithstanding. In the wake of Woodin’s work about ADL(R) and the

axiom I0 (see [12] and [9, pp. 328–329]) it seems that set theorists feel that the axioms

of rank-into-rank are stable enough. In particular, the existence of Magidor cardinals is

confident at least like the existence of finite ordinals.

We follow the notation of [7] in general, with the following important exception.

We use the Jerusalem forcing notation, i.e. p ≤ q means that q is stronger than p. We

shall use the forcing of Laver from [15] by assuming that a supercompact cardinal κ

is indestructible under κ-directed-closed forcing notions. For an excellent background

regarding the contents of this paper we suggest [9] and [1].

We are grateful to Menachem Magidor for a very helpful discussion on the subject of

Magidor cardinals. We also thank the referee for a wonderful work which was much deeper

than just proofreading. In particular, the current version of Theorem 1.8, Proposition

1.10 and Proposition 3.18 are due to the referee.



01-7327: 2017.12.26

4 S. Garti and Y. Hayut

1. Combinatorial properties of Magidor cardinals.

We commence with a coding lemma, needed for several claims below:

Lemma 1.1 (Coding reals).

(ℵ) There exists a function r : [ω]ω → [ω]ω such that for every x, z ∈ [ω]ω there exists

a subset y ∈ [x]ω for which r(y) = z.

(ℶ) There exists a function r : [ω]ω → 2ℵ0 so that for every x ∈ [ω]ω and every β < 2ℵ0

there exists a subset y ∈ [x]ω such that r(y) = β.

(ג) Both assertions can be implemented on [λ]ω in lieu of [ω]ω for every infinite cardinal

λ, i.e. there is a function r : [λ]ω → 2ℵ0 so that for every x ∈ [λ]ω and every

β < 2ℵ0 there exists a subset y ∈ [x]ω such that r(y) = β.

In all cases we call r a coding reals function.

Proof. We prove the first part of the lemma, the proof of the second and third

part is just the same. We fix an enumeration {xα : α < 2ℵ0} of the members of [ω]ω, in

which every member appears 2ℵ0 -many times. Likewise, we fix an enumeration {zβ : β <

2ℵ0} of the members of [ω]ω, in which every member appears only once. The function r

is defined by induction on α < 2ℵ0 .

Arriving at α, let β be the order type of the set {γ < α : xγ = xα}. Choose a subset

yα ∈ [xα]
ω such that yα ̸= yγ for every γ < α. The choice is possible since α < 2ℵ0 and

we have 2ℵ0 members of [xα]
ω at our disposal. Define r(yα) = zβ .

Assume now that x, z ∈ [ω]ω. By the nature of our enumerations, there exists a

unique ordinal β so that z = zβ . Since β < 2ℵ0 there exists an ordinal α < 2ℵ0 such that

x = xα and β = otp({γ < α : xγ = xα}). By the α-th stage of the construction there is

some yα ∈ [x]ω such that r(yα) = zβ = z, so we are done.

For getting the same coding with respect to [λ]ω, let µ = λω and enumerate the

members of [λ]ω in such a way that every set appears 2ℵ0 many times. By the same

process as above, one can define now the function r which codes every real number. □

Our main goal is to refute the existence of Magidor cardinals from a weak version

of the square principle. We are trying to employ the weakest square from the large

cardinals point of view, i.e. a principle which can live happily with strong axioms of

large cardinals. As a first step we show that one can replace the demand of λ-many

colors (in the definition of Magidor cardinals) by α-many colors for some α < λ:

Lemma 1.2. If λ ↛ [λ]ℵ0-bd
α for every α < λ, then λ ↛ [λ]ℵ0-bd

λ .

Proof. For every α < λ we choose a coloring cα : [λ]ℵ0-bd → α which exemplifies

the relation λ ↛ [λ]ℵ0-bd
α . Now we define a single coloring c : [λ]ℵ0-bd → λ as follows. If

x ∈ [λ]ℵ0-bd then let γ be min(x), and set c(x) = cγ(x \ {γ}).
Suppose y ∈ [λ]λ and β < λ. Choose an ordinal α ∈ y so that β < α, and define

y′ = y \ (α+1). Clearly y′ ∈ [λ]λ, hence there exists some x ∈ [y′]ℵ0-bd such that cα(x) =

β. Let z be x∪{α}. It follows that c(z) = cα(x) = β. Since z ∈ [y′∪{α}]ℵ0-bd ⊆ [y]ℵ0-bd

we are done. □
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It follows from the above claim that if λ is a Magidor cardinal then there exists a

first ordinal α so that λ → [λ]ℵ0-bd
α , and we denote this ordinal by αM . Similarly, if λ is

a Jónsson cardinal then we let αJ be the first ordinal α so that λ → [λ]<ω
α . Something

further can be said about αM . The first part of the following claim is modelled after

[10], and the second part applies to Magidor cardinals which emerge out of elementary

embeddings. By I1(κ, λ) we mean that ȷ : Vλ+1 → Vλ+1 is an elementary embedding so

that κ = crit(ȷ), and hence λ = fix(ȷ) is a Magidor cardinal.

Claim 1.3 (Some αM properties). Let λ be a Magidor cardinal.

(a) The ordinal αM is a regular cardinal, and λ → [λ]ℵ0-bd
αM ,<αM

.

(b) If I1(κ, λ) then αM < κ.

(c) αJ ≤ αM .

(d) 2ℵ0 < αM .

Proof. For part (a) assume towards contradiction that cf(αM ) < αM . Fix any

cofinal function t : cf(αM ) → αM . Likewise, choose a function fα : [λ]ℵ0-bd → α for

every α < αM which exemplifies the negative relation λ ↛ [λ]ℵ0-bd
α . Denote the function

fcf(αM ) by g.

Let w be the set of infinite countable ordinals {β : ω ≤ β < ω1}. We choose

a one-to-one mapping p : w × w → w such that for every (β0, β1) ∈ w × w we have

β0 + β1 < p(β0, β1) (the sign + refers to ordinals sum). Notice that p need not be

surjective (and usually, it is not).

Given a set x ∈ [λ]ℵ0-bd let {xj : j < β} be an enumeration of the members of x in

increasing order. We define h(x) as follows. If β /∈ rang(p) then h(x) = 0. If β ∈ rang(p)

then there exists a unique pair (β0, β1) so that p(β0, β1) = β. Since β0 + β1 < β we

can define safely the subsets y = {xj : j < β0} and z = {xj : β0 ≤ j < β1}. Define

h(x) = ft(g(y))(z).

Assume A ∈ [λ]λ and γ < αM . First of all, we choose an ordinal α < cf(αM ) such

that γ < t(α) < αM . By the definition of g there exists y ∈ [A]ℵ0-bd such that g(y) = α.

Let β0 be the order type of (y,<). By the definition of ft(g(y)) there exists a subset

z ∈ [A− sup(y)]ℵ0-bd such that ft(g(y))(z) = γ. Let β1 be the order type of (z,<). Let β

be p(β0, β1), and recall that β0 + β1 < β. We choose a subset z+ = {xj : β0 + β + 1 ≤
xj < β} ∈ [A−sup(z)]ℵ0-bd, and let x = y∪z∪z+. It follows that h(x) = ft(g(y))(z) = γ,

hence h exemplifies the negative relation λ ↛ [λ]ℵ0-bd
αM

, a contradiction.

The second part of the assertion (i.e. λ → [λ]ℵ0-bd
αM ,<αM

) follows from the proof above.

Indeed, for creating the contradictory h we need only the fact that the range of g is

unbounded in αM , and fα for each value of g.

For part (b) assume that δ = αM ≥ κ = crit(ȷ). Since δ < λ = fix(ȷ) we know that

ȷ(δ) > δ. Choose a function f : [λ]ℵ0-bd → δ which exemplifies the Magidority of λ. By

elementarity, ȷf : [λ]ℵ0-bd → ȷ(δ) is a Magidor function, and it lies in Vλ+1. However,

ȷ(δ) is αM by elementarity, which is an absurd since ȷ(δ) > δ.

Moving to (c), suppose we are given a Magidor cardinal λ and fix an ω-sequence of

ordinals ⟨αn : n ∈ ω⟩ which tends to λ. For every x ∈ [λ]ℵ0-bd let nx be the first natural
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number for which x ∩ αnx ̸= ∅. Define:

m(x) =

{
|x ∩ αnx | if the intersection is finite

0 if the intersection is infinite.

Choose any ordinal β < αJ . We shall construct a function f : [λ]ℵ0-bd → β which

omits no color, hence proving that β < αM for every β < αJ . To begin with, let

g : [λ]<ω → β be a Jónsson function in the common sense. Suppose x = {xn : n ∈ ω} ∈
[λ]ℵ0-bd, and let z be the finite subset {xm(x), . . . , x2m(x)−1}. We let f(x) = g(z).

For proving that f is as required, assume A ∈ [λ]λ and γ < β is any color. Let n

be the first natural number for which |A∩ [αn, αn+1)| ≥ ℵ0. By the Jónssonness of g we

can choose some η = ηγ ∈ [A \ αn+1]
<ω such that g(η) = γ.

Pick any subset of A ∩ [αn, αn+1) of size |η|, say η0. Choose a subset η1 ∈ [A]ℵ0-bd

so that max(η) < min(η1). Set x = η0 ∪ η ∪ η1. By the definition of f we have f(x) =

g(η) = γ, so we are done.

Finally, fix a coding reals function rα : [α]ω → 2ℵ0 for every α ∈ [ω, λ). Given

x ∈ [λ]ℵ0-bd such that otp(x) = ω, let α be sup(x). Define f : [λ]ℵ0-bd → 2ℵ0 as follows.

If otp(x) ̸= ω then f(x) = 0 and if otp(x) = ω then f(x) = rα(x). By the coding reals

lemma, f exemplifies the negative relation λ ↛ [λ]ℵ0-bd
2ℵ0

and even λ ↛ [ω]ℵ0-bd
2ℵ0

, so we are

done. □

The third part of the above claim yields the following:

Theorem 1.4 (Magidor cardinals and Jónsson cardinals). Suppose λ is a Magidor

cardinal. Then λ is a Jónsson cardinal as well. In particular, there are no Magidor

cardinals in the constructible universe.

Proof. Assume λ is not a Jónsson cardinal. For every β < λ let fβ exemplify the

negative relation λ ↛ [λ]ℵ0-bd
β . Such a function exists by virtue of part (c) of Claim 1.3.

However, it follows now from Lemma 1.2 that λ is not a Magidor cardinal, a contradiction.

□

Remark 1.5. Part (c) of Claim 1.3, used in the above proof, can be proved easily

by the following argument. Suppose α < αJ and fix a function f : [λ]<ω → α which

exemplifies λ ↛ [λ]<ω
α .

Define g : [λ]ℵ0-bd → α as follows. If otp(x) = ω + n and η is the ω-th member of

x, then g(x) = f(x \ η). Otherwise, g(x) = 0. Clearly, g exemplifies λ ↛ [λ]ℵ0-bd
α , so

α < αM .

This simple proof has been suggested by the referee of this paper, and we thank him

or her. We keep, however, the indirect proof given above as it might be useful for other

versions of Magidority which are dictated in Definition 1.11 below.

The last part of Claim 1.3 yields another interesting consequence:

Corollary 1.6 (Magidority and the continuum). If λ is a Magidor cardinal,

then λ > 2ℵ0 , while if there exists a Jónsson cardinal, then it is consistent that there is

a Jónsson cardinal below the continuum.
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Proof. The first part of the assertion follows from the fact that 2ℵ0 < αM < λ.

The second part appears in [3], and we describe shortly the argument for completeness.

Assume that λ is a Jónsson cardinal, and let κ = λ+. Let P be Add(ω, κ), and force with

P in order to add κ-many Cohen reals.

Clearly, VP |= 2ℵ0 = κ. We claim that λ is a Jónsson cardinal in the generic

extension VP. For this end, assume that c : [λ]<ω → λ is a coloring in VP. Let c
˜
be a

name of this coloring in V. The value of c
˜
is determined by a small set of conditions,

since P is ccc. It follows that the Jónssonness of λ from the ground model is preserved,

as we can define a function f ∈ V to exemplify it, so we are done. □

The above corollary is suggestive also for Magidor cardinals, in the sense that one

can force them to be below 2ℵ1 . It means that although Magidor cardinals are large

cardinals in the philosophical sense (i.e., their existence is axiomatic), if there exists a

Magidor cardinal, one can reduce its magnitude in the ℶ-scale. In particular, a Magidor

cardinal need not be a limit of strongly inaccessible cardinals, and can be smaller than

the first strongly inaccessible:

Claim 1.7 (Small Magidor cardinals). If there is a Magidor cardinal, then it is

consistent that there is a Magidor cardinal below 2ℵ1 .

Proof. We shall prove the following general assertion. Suppose P is ℵ1-complete

and αM -cc. If G ⊆ P is a generic subset, then λ is still a Magidor cardinal in V [G] and

α
V[G]
M ≤ αV

M . Let αM be αV
M and assume that c

˜
: [λ]ℵ0-bd → αM is a name of a coloring.

We have to find A
˜

∈ [λ]λ for which ⊩P c
˜
“[A
˜
]ℵ0-bd ̸= α̌M . For this end, we define in V

a function g : [λ]ℵ0-bd → αM , and by the Magidority of λ in V we can choose a subset

A ∈ [λ]λ for which |g“[A]ℵ0-bd| < αM . We shall see that c
˜
omits colors on Ǎ.

Given any set y ∈ [λ]ℵ0-bd we know that c
˜
(y) is a name of an ordinal in αM . Since

P is αM -cc there is an antichain Ay of size strictly less than αM which forces a value to

c
˜
(y). Define:

δ(y) = sup{δ : ∃p ∈ Ay, p ⊩ c
˜
(y) = δ}.

Clearly, δ(y) < αM . Set g(y) = δ(y) for every y ∈ [λ]ℵ0-bd. Since the forcing

relation is definable in V, we have g ∈ V, and g : [λ]ℵ0-bd → αM . Choose A ∈ [λ]λ so

that |g“[A]ℵ0-bd| < αM , and let β be sup(g“[A]ℵ0-bd). Now Ǎ ∈ V[G], and if y
˜
∈ [Ǎ]ℵ0-bd

then y ∈ [A]ℵ0-bd by the ℵ1-completeness of P, so ⊩P c
˜
(y) ≤ g(y) ≤ β. It follows that λ

is a Magidor cardinal in V[G], as required.

Let λ be Magidor in V, and apply the general assertion at the beginning of the proof

to the Cohen forcing for adding λ+-many subsets of ℵ1. This forcing satisfies the above

requirement from P, (notice that P is (2ℵ0)+-cc so also αM -cc since 2ℵ0 < αM ) hence λ

is still a Magidor cardinal in the forcing extension. However, λ < 2ℵ1 , so we are done. □

The first part of Claim 1.3 shows that a Magidor cardinal has some Rowbottom

properties when the number of colors is αM . We can prove a parallel result for every

α ∈ [αM , λ) provided that α has uncountable cofinality:
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Theorem 1.8. Assume α is a cardinal and cf(α) > ω. Let λ be a Magidor cardinal,

and assume that λ → [λ]ℵ0-bd
αℵ0

.

(a) λ → [λ]ℵ0-bd
αℵ0 ,<α

.

(b) If λ → [λ]ℵ0-bd
α then λ → [λ]ℵ0-bd

α,<α .

(c) If α < αM then αℵ0 < αM .

Proof. Let f be a function from [λ]ℵ0-bd into αℵ0 . We have to find a set A ∈ [λ]λ

such that |f“[A]ℵ0-bd| < α. For this end, fix an ω-Jónsson function g : [αℵ0 ]ω → αℵ0 .

Fix also an enumeration ⟨bζ : ζ < αℵ0⟩ of all the members of [αℵ0 ]ω without repetitions.

Notice that |ω·ω([ω1]
ω)| = 2ℵ0 . By the coding reals lemma we can choose for any

δ < λ a map rδ : [δ]ω → ω·ω([ω1]
ω) such that for every x ∈ [δ]ω and every s ∈ ω·ω([ω1]

ω)

there is y ∈ [x]ω for which rδ(y) = s.

We define another function h from [λ]ℵ0-bd into αℵ0 . Given any x ∈ [λ]ℵ0-bd we ask

whether there exists a limit ordinal β < ω1 such that otp(x) = β + ω. If the answer is

negative, then h(x) = 0. If the answer is positive, we decompose x in the following way.

First, let ⟨xi : i < β + ω⟩ be an increasing enumeration of the members of x. Denote

sup(x) by δ and set s = rδ({xβ+i : i < ω}). We may assume that s = ⟨aj : j < ω · ω⟩
when aj ∈ [β]ω for every j < ω · ω.

For every n, j ∈ ω let ynj = {xi : i ∈ aω·n+j}. For every n ∈ ω let zn = {f(ynj ) :

j ∈ ω}. By the definition of f we have zn ∈ [αℵ0 ]ω. Hence there exists a unique ordinal

ζn < αℵ0 such that zn = bζn . We define h(x) = g({ζn : n ∈ ω}). This accomplishes the

definition of h.

We choose a set A ∈ [λ]λ such that h“[A]ℵ0-bd ̸= αℵ0 . We claim that |f“[A]ℵ0-bd| <
α. For proving this claim, assume toward contradiction that |f“[A]ℵ0-bd| ≥ α, and let

η < αℵ0 be any ordinal. We shall find some x ∈ [A]ℵ0-bd for which h(x) = η, thus proving

that h“[A]ℵ0-bd = αℵ0 , a contradiction.

Since cf(α) > ω and cf(λ) = ω, we can find µ < λ such that |f“[A ∩ µ]ℵ0-bd| ≥ α.

Let B = f“[A ∩ µ]ℵ0-bd and C = {ζ < 2ℵ0 : bζ ∈ [B]ω}. The cardinality of C is αℵ0 as

|B| ≥ α, and hence g“[C]ω = ℵℵ0 . In particular, we can choose an element z ∈ [C]ω so

that g(z) = η.

Let ⟨ζn : n ∈ ω⟩ be an increasing enumeration of the members of z. By the definition

of C, for every n ∈ ω we have bζn ∈ [B]ω. For every n, j ∈ ω we find ynj ∈ [A ∩ µ]ω

such that bζn = {f(ynj ) : j ∈ ω}. Choose any y ∈ [A]ℵ0-bd such that µ < min(y) and

otp(
∪

n,j∈ω ynj ∪ y) = β for some limit ordinal β < ω1.

Let x′ be
∪

n,j∈ω ynj ∪ y and enumerate the members of x′ in increasing order by

⟨xi : i < β⟩. As above, let ⟨aj : j < ω · ω⟩ be the corresponding decomposition, so that

aj ∈ [β]ω and ynj = {xi : i ∈ aω·n+j}. In order to get the correct order type we choose a set

w ∈ [A]ℵ0-bd such that sup(x′) < min(w), otp(w) = ω, and rsup(w)(w) = ⟨aj : j < ω · ω⟩.
Define x = x′ ∪ w, so x ∈ [A]ℵ0-bd and notice that h(x) = η, so we are done. □

Remark 1.9. It follows from the above theorem that every Magidor cardinal λ is

ω-closed, i.e. α < λ ⇒ αℵ0 < λ. A slightly different proof of this fact appears in [6].

Based on the above remark, one can show the following:
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Proposition 1.10. If there exists a Magidor cardinal λ, then there is a generic

extension in which λ is still Magidor and αM = ℵ2.

Proof. First observe that if λ is Magidor, α = cf(α) < λ and λ → [λ]ℵ0-bd
α , then

for every forcing notion P which is ℵ1-complete and α-cc we have ⊩P λ → [λ]ℵ0-bd
α .

For proving this statement recall that if λ → [λ]ℵ0-bd
α and α is regular, then λ →

[λ]ℵ0-bd
α,<α . Now fix a condition p ∈ P and let f

˜
be a name of a function from [λ]ℵ0-bd into

α. For every x ∈ [λ]ℵ0-bd let Rx = {β < α : ∃q ≥ p, q ⊩ f
˜
(x) = β̌}. Since P is α-cc,

|Rx| < α. Define g(x) = sup(Rx) and notice that g(x) < α since α is regular.

Since the forcing relation is definable in V, g ∈ V. By the construction, p ⊩ f
˜
(x) ≤

g(x) whenever x ∈ [λ]ℵ0-bd. Choose A ∈ [λ]λ so that |g“[A]ℵ0-bd| < α. It follows that

p ⊩ sup(f
˜
“[A]ℵ0-bd) ≤ sup(g“[A]ℵ0-bd) < α (here we use the ℵ1-completeness of P) and

hence p ⊩ f
˜
“[A]ℵ0-bd ̸= α.

Given a Magidor cardinal λ, let α be ((αM )ℵ0)+. Since λ is ω-closed and limit,

α < λ. Likewise, α itself is ω-closed and regular. Consequently, there is a forcing

notion P which is ℵ1-complete and α-cc such that ⊩P α = ℵ2. By the above argument,

λ → [λ]ℵ0-bd
α in the generic extension, and hence λ is Magidor with αM ≤ α in VP. On

the other hand, αM ≥ α = ℵ2 since αM > 2ℵ0 and hence ⊩P αM = ℵ2 as desired. □

Magidor cardinals were defined with respect to ω-bounded sets, regardless of the

order type of these sets. The following definition is more sensitive:

Definition 1.11 (β-Magidority). Let β be an infinite ordinal.

(ℵ) [λ]<β-bd is the collection of bounded subsets of λ whose order type is strictly less

than β.

(ℶ) λ → [λ]<β-bd
λ if and only if for every c : [λ]<β-bd → λ there exists A ∈ [λ]λ for

which c ↾ [A]<β-bd ̸= λ.

(ג) A cardinal λ is β-Magidor if and only if λ → [λ]<β-bd
λ .

(ℸ) We call λ strongly-Magidor if and only if λ is β-Magidor for every β < λ.

Listed below are some basic observations, the proof of which is similar to the above

proofs for the common Magidority (i.e., the case of β = ω1). We denote by αM (β) the

first ordinal α so that λ → [λ]<β-bd
α .

• 2ℵ0 < αM (ω + 1).

• β < γ ⇒ αM (β) ≤ αM (γ).

• If I1(κ, λ) then λ is strongly Magidor.

The proof of the last item begins like the proof of Magidority for I1 cardinals. First

we show that λ is < θ-Magidor for every θ < κ. Indeed, if I1(κ, λ) and f : [λ]<θ-bd → λ

exemplifies λ ↛ [λ]<θ-bd
λ , then ȷf : [λ]<θ-bd → λ exemplifies λ ↛ [λ]<θ-bd

λ by elementarity

(we use the fact that f belongs to Vλ+1, as the sets in the domain of f are bounded).

However, ȷ“λ ∈ [λ]λ and κ /∈ ȷf“[ȷ“λ]<θ-bd.
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Second, we can define below λ elementary embeddings for which the critical point

is more and more large, up to λ. For every n ∈ ω there is ın : Vλ+1 → Vλ+1 such

that crit(ın) = ȷn(κ). This can be done by defining ın over Vλ and then extending it

(essentially, in a unique way) to Vλ+1 as described in [9, pp. 325–326]. Now if we choose

a sequence ⟨θn : n ∈ ω⟩ cofinal in λ, then we can use the first step described above in

order to show that λ is < θn-Magidor for every n ∈ ω.

2. Partial squares and Magidor cardinals.

Diminishing the number of colors in Lemma 1.2, we can phrase a useful combinatorial

property which enables us to prove negative square brackets relations with respect to ω-

bounded subsets. This property is a special kind of reflection for certain stationary sets:

Definition 2.1 (Quilshon (pitchfork)). Assume λ > δ = cf(δ). We say that

⋔ (λ, δ) (or ⋔λ,δ) holds if and only if there is a collection {Sγ : γ < δ} of disjoint subsets

of λ so that Sγ ∩ η is a stationary subset of η for every ordinal η < λ with cf(η) = δ and

every γ < δ. We may replace λ by any unbounded subset S ⊆ λ, so ⋔S,δ means that we

decompose S rather than λ.

The following theorem draws a connection between ⋔ (λ, δ) and ω-bounded Jónsson

functions:

Theorem 2.2 (Non-Magidority and the quilshon principle). Assume that λ >

cf(λ) = ℵ0 is a Magidor cardinal, S = Sλ
ω and let α = αM < λ be the first ordinal so

that λ → [λ]ℵ0-bd
α . Then ¬(⋔S,δ) for every δ ∈ Reg ∩ [α, λ).

Proof. Assume to the contrary that ⋔S,δ for some δ ∈ Reg ∩ [α, λ). We shall

prove that in this case λ ↛ [λ]ℵ0-bd
δ . For this end, let {Sγ : γ < δ} exemplify ⋔S,δ.

For each ordinal η < λ with cf(η) = δ let Sη,γ be Sγ ∩ η. By the definition of the

pitchfork, {Sη,γ : γ < δ} forms a partition of Sη
ω into δ-many disjoint stationary sets.

Given x ∈ [λ]ℵ0-bd let ηx be the first ordinal such that cf(ηx) = δ and ηx > sup(x). Since

the cofinality of sup(x) is ω, there exists a unique ordinal γ ∈ δ such that sup(x) ∈ Sηx,γ .

Define f(x) to be this ordinal.

Suppose A ∈ [λ]λ and let {aβ : β < λ} be an increasing enumeration of the members

of A. Denote the initial segment {aβ : β < δ} by Aδ and sup(Aδ) by η, so cf(η) = δ.

Let ε < δ be any color, let Aω-cl
δ be the ω-closure of Aδ, and notice that it meets every

stationary subset of Sη
ω. In particular, Sη,ε ∩ Aω-cl

δ ̸= ∅. This means that for some

x ∈ [Aδ]
ω we have sup(x) ∈ Sη,ε.

However, Aδ is bounded in λ by the ordinal η, so x ∈ [A]ℵ0-bd. Likewise, if ηx ≤ η is

the first ordinal above sup(x) with cofinality δ, then sup(x) ∈ Sηx,ε by the quilshon. It

follows from the definition of f and the fact that sup(x) ∈ Sηx,ε = Sε∩ηx = (Sε∩η)∩ηx =

Sη,ε ∩ ηx that f(x) = ε. Since ε < α was arbitrary we infer that λ ↛ [λ]ℵ0-bd
δ , a

contradiction. □

The next stage is essentially to prove that the quilshon follows from a partial global

square, and even less:
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Claim 2.3 (The quilshon claim). Assume δ = cf(δ) > ℵ0 and the δ-partial global

square principle holds. Then ⋔λ,δ holds for every λ > δ.

Proof. Fix any δ-partial global square sequence of the form ⟨Cα : α ∈ S, α > δ⟩,
when S ⊇ SOn

δ . We shall define a function f : S → δ+1, and then create a quilshon out

of f .

To begin with, choose any partition of δ into δ-many (disjoint) stationary sets ⟨Tγ :

γ < δ⟩. For every α < δ let f(α) = γ if and only if α ∈ Tγ . Notice that Tγ = f−1({γ}) for
every γ < δ, and a similar property will be maintained along the inductive construction

of f . We would like to define f also on S \ δ, so assume α ∈ S \ δ and distinguish two

cases. If cf(α) ≥ δ then let f(α) = δ, in which case α is uninteresting from our point of

view. If cf(α) < δ then f(α) is defined as f(otp(Cα)).

Ahead of defining the quilshon, we should prove that f is well defined. The problem

is non-existent when cf(α) ≥ δ, and if otp(Cα) < δ then f(otp(Cα)) is well-defined by

the initial decomposition into stationary sets. By the definition of partial global square,

all the cases are covered.

Let λ be an infinite cardinal above δ (typically, λ is a singular cardinal of countable

cofinality). Let Sγ = {β < λ : f(β) = γ} for every γ < δ. We claim that the collection

⟨Sγ : γ < δ⟩ forms a quilshon for λ. For showing this, assume η < λ and cf(η) = δ.

Assume further that γ < δ. We need to show that Sγ ∩ η is a stationary subset of η.

Fix any club Dη ⊆ η. We shall prove that Dη ∩Sγ ̸= ∅. This can be done simply by

showing that there exists an ordinal β ∈ Dη such that f(β) = γ. We may assume that

Dη ⊆ acc(Cη) (recall that δ is uncountable). Denote ζ = otp(Cη). By the global square

properties, ζ < η. Inasmuch as cf(ζ) = cf(η) = δ we can use the induction hypothesis to

conclude that Sγ ∩ ζ is a stationary subset of ζ.

Let t : ζ → Cη be an increasing enumeration of the members of Cη. We translate

the club Dη into Dζ = {γ < ζ : t(γ) ∈ Dη}, so Dζ is a club in ζ. By virtue of the

induction hypothesis we can choose an ordinal ζ ′ ∈ Dζ∩Sγ . It means that f(ζ ′) = γ, and

β = t(ζ ′) ∈ Dη. However, f(β) = f(otp(Cβ)) which by coherence equals f(otp(Cη∩β)) =
f(ζ ′) = γ, so we are done. □

Our main purpose is to prove the consistency of large cardinals with the fact that

no Magidor cardinal exists. We begin with a limit of measurable cardinals. Recall that

if λ > cf(λ) is a limit of measurable cardinals, then λ is Jónsson (by results of Prikry,

see [17]). Nevertheless, it is consistent that there are many measurable cardinals while

there are no Magidor cardinals at all.

Before proving it, recall that κ is 1-extendible if and only if there exists a cardinal

λ > κ and an elementary embedding ȷ : H(κ+) → H(λ+) so that crit(ȷ) = κ and ȷ(κ) = λ

(this definition comes from [2], and other equivalent formulations exist in the literature).

It is easy to see that if κ is 1-extendible then there is a normal ultrafilter U on κ which

concentrates on the measurable cardinals below κ (see, e.g. [9, Proposition 23.1]).

It is known that the existence of a global square implies the partial global square at

every regular cardinal δ. Theorem 6.5 of [2] asserts that if there exists some 1-extendible

cardinal κ in the ground model (and an inaccessible cardinal above λ where λ is the

target of the embedding), then one can force a global square while preserving the fact
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that κ is 1-extendible:

Corollary 2.4 (Non-Magidority and limit of measurables). It is consistent that

κ is 1-extendible and there are no Magidor cardinals. Consequently, it is consistent that

there is a class of measurable cardinals and no Magidor cardinals. In particular, a limit

of measurable cardinals need not be a Magidor cardinal.

Proof. Combine the above mentioned theorem from [2] with Claim 2.3 in order

to get a model with 1-extendible cardinal κ and quilshon for every δ = cf(δ) > ℵ0. It

follows from Theorem 2.2 that there are no Magidor cardinals in this model, despite the

fact that there are (at least) κ-many measurable cardinals. Moreover, Vκ is a model of

ZFC in which there is a class of measurable cardinals and no Magidor cardinal. □

The main theorem of this section says that an ω-limit of supercompat cardinals

need not be a Magidor cardinal. Presumably, this idea can be exploited to produce a

universe with a class of supercompact cardinals with no Magidor cardinal, and also to

reach beyond supercompactness, see the remarks below.

Ahead of the proof we shall phrase a simple lemma, which seems useful also for

other assertions of the same type. Given a function f ∈
∏

i<δ θi, the support of f

is supp(f) = {i < δ : f(i) ̸= 0}. We say that f has Easton support if and only if

|supp(f) ∩ σ| < σ whenever σ is an inaccessible cardinal.

Lemma 2.5. Assume that :

(a) ȷ : V → M is an elementary embedding and κ = crit(ȷ).

(b) The cofinality of all the cardinals in the product
∏

i<δ θi is at least κ.

(c) µ is an M -regular cardinal above ȷ(κ).

(d) β = sup{ȷf(µ) : f has Easton support in
∏

i<δ θi}.

Then cfM (β) ≥ κ.

Proof. Assume towards contradiction that θ = cf(β) < κ. Choose ⟨fj : j < θ⟩,
each fj is an Easton support function in

∏
i<δ θi, such that β = sup{ȷfj(µ) : j < θ}.

Define g = sup{fj : j < θ}+ 1 and deduce from (b) that g ∈
∏

i<δ θi and has an Easton

support. However, ȷg(µ) > sup{fj(µ) : j < θ} = β, a contradiction to the very definition

of β, so we are done. □

Theorem 2.6 (Quilshon and supercompact cardinals). It is consistent that an

ω-limit of supercompact cardinals is not a Magidor cardinal.

Proof. Let ⟨κn : n ∈ ω⟩ be a strictly increasing sequence of cardinals so that

κ0 = ℵ0 and κn is a supercompact cardinal for every 0 < n ∈ ω. We may assume that

κn is Laver-indestructible for every 0 < n ∈ ω. Let λ be supn∈ωκn and denote the set

Sλ
ω by S.

We wish to define a forcing notion Q such that:

(ℵ) κn is a supercompact cardinal after forcing with Q, for every 0 < n ∈ ω.
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(ℶ) For every n ∈ ω there is a regular cardinal κn < θn < κn+1 for which ⋔S,θn holds

after forcing with Q.

From (ℵ) we infer that λ is still a limit of supercompact cardinals in the generic

extension by Q. From (ℶ) we conclude, by the quilshon claim 2.3, that λ is not a

Magidor cardinal after forcing with Q. Let us describe this forcing notion. We indicate

that Q may collapse some cardinals, but each Mahlo cardinal along the iteration will be

preserved.

We shall define Q as a product of the form
∏

n∈ω Rn. Each component Rn would

be a forcing notion which adds a partial global square for the cofinality θn, modelled

basically after the forcing of Jensen. We shall see that Rn is θn-closed, and we shall

prove that it possesses enough completeness and enough chain condition properties in

order to preserve enough cardinals. By Claim 2.3 we shall get ⋔S,θn at every n ∈ ω after

forcing with Rn. Finally, we shall see that each Rn preserves the supercompactness of

the κn-s.

Assume we have accomplished the construction of Rn for every n ∈ ω. Let Q =∏
n∈ω Rn with full support. Fix any n ∈ ω and decompose the product into the left part∏
m≤n Rn and the right part

∏
m>n Rn. By the θn+1-completeness of each Rm when

m > n we know that
∏

m>n Rn is κn-complete and even κn-directed-closed. By the

properties of Rm (to be proved below) we know that the supercompactness of each κn

is preserved by Rm for every m ≤ n and hence also by
∏

m≤n Rn. It follows that Q
preserves the supercompactness of every κn, so λ is a limit of supercompact cardinals in

the generic extension by Q. However, λ is not a Magidor cardinal after forcing with Q,

by virtue of ⋔S,θn at every n ∈ ω, so we are done.

For accomplishing the proof we have to define Rn for every n ∈ ω, and to prove the

asserted properties of this forcing notion. Fix a natural number n and the associated

regular cardinal θn ∈ (κn, κn+1). Let R = Rn be an iteration with reverse Easton support

over all the regular cardinals to add a partial global square at the cofinality θn. It means

that we take direct limits at inaccessible stages and inverse limits at other limit stages.

In the successor stage, let Rβ+1 = Rβ ∗ Sβ when Sβ = {∅} if β is not a regular cardinal,

and we define Sβ for a regular β as follows.

A condition p ∈ Sβ is an approximation to a global square sequence p = ⟨Cγ : γ ≤
δ < β, otp(Cγ) < θn⟩ such that:

(a) Cγ = ∅ or Cγ is a club in γ.

(b) If γ > cf(γ) = θn then Cγ is a club in γ.

(c) The sequence is coherent, i.e. if ξ ∈ acc(Cγ) then Cγ ∩ ξ = Cξ.

For the order, assume p, q ∈ Sβ and let p ≤Sβ q if and only if δp ≤ δq and Cp
γ = Cq

γ for

every γ ≤ δp.

The component Sβ of the forcing R is θn-complete. Indeed, assume ζ < θn and

⟨pi : i < ζ⟩ is an increasing sequence of conditions in Sβ . Let q be the union
∪

i<ζ pi
with Cζ+1 = ∅ appended as a top element. Notice that cf(ζ) ≤ ζ < θn so we may add

the empty set as a last element. It follows that q ∈ Sβ and pi ≤ q for every i < ζ.



01-7327: 2017.12.26

14 S. Garti and Y. Hayut

Recall that if P is a forcing notion, p ∈ P and µ is an infinite cardinal, then ⅁µ(p,P)
is a two-players game which lasts µ moves. In the α-th move, player I tries to choose

pα ∈ P such that p ≤ pα and β < α ⇒ qβ ≤ pα. Player II tries to choose qα ∈ P such

that pα ≤ qα. Player I wins if and only if she has a legal move for every α < µ. The

forcing P is < µ-strategically complete if and only if player I has a winning strategy in

⅁µ(p,P) for every p ∈ P.
We claim now that Sβ is < β-strategically closed. For proving it, assume µ < β

and we have the usual two-players game of length µ. Let D = ⟨Dδ : δ < µ⟩ be a partial

square sequence along the ordinals of Sµ
θn
. It exists, due to the induction hypothesis. The

strategy of the good player will be to choose at every limit stage η the set {ξi : i ∈ Dη},
stipulating ξi = ℓg(pi) (meaning the length of pi). It follows that this is a winning

strategy.

It remains to show that R = Rn preserves the supercompactness of κn. Denote κn

by κ, and fix any cardinal µ. We shall prove that if κ is 2(µ
<κ)-supercompact then it

remains µ-supercompact after forcing with R. In particular, if κ is supercompact then

forcing with R preserves it.

For the fixed µ let τ = 2(µ
<κ), and let ȷ : V → M be any τ -supercompact embedding

for which κ = crit(ȷ) and ȷ(κ) > τ . By Silver’s criterion we are looking for an M -generic

H with respect to the forcing notion ȷ(R) such that ȷ“G ⊆ H. If we can create such an H

then we will be able to extend ȷ into ȷ+ : V[G] → M [H]. The lower part of H is inherited

from G by the Easton support (as described below), and the rest will be constructed by

defining the pertinent strong master condition.

Notice that forcing with R after the τ -stage adds no sets of size τ or less. Con-

sequently, this part of R neither adds nor destroys supercompact measures over Pκµ.

Hence we may concentrate on the first τ stages of R, which we still call R for simplicity.

As a first step let H ↾ κ = G ↾ κ. This is justified by the Easton support. Indeed,

for every condition p ∈ R we have supp(p) ∩ κ is bounded, hence supp(ȷ(p) ∩ ȷ(κ)) =

ȷ(supp(p)∩ κ) = supp(p)∩ κ. Moreover, M agrees with V up to the stage τ on R, so we

can define H ↾ τ = G.

Define m =
∪
{ȷ(p) ↾ [ȷ(κ), ȷ(τ)] : p ∈ G}, meaning that we take at every point

the concatenation of all the square sequences at this coordinate. We have to show that

m is a name of a condition in ȷ(R) ↾ [ȷ(κ), ȷ(τ)]. Since τM ⊆ M (by the choice of ȷ)

we know that ȷ“R ∈ M . It follows that m ∈ M [H ↾ τ ]. Likewise, if cfM (µ) = µ then

cfM (ℓg(
∪

p∈G ȷ(p)(µ))) ≥ κ due to Lemma 2.5 so we can set Cµ+1 = ∅ without violating

item (b) in the definition of the members of R, and thus complete m to a condition.

Finally, m is a strong master condition by the construction. More precisely, m has

been defined on the interval [ȷ(κ), ȷ(τ)] in such a way that exceeds every embedding of

conditions in G, and we may have to fix m below ȷ(κ) in order to get a strong master

condition. We can force now over V[G] the existence of a V-generic set H for ȷ(R) such
that m ∈ H. Since τM ⊆ M we know that H is also M -generic.

We have defined H and proved that ȷ“G ⊆ H. Denote K = H ↾ [τ+, ȷ(τ)] and notice

that ȷ+ : V[G] → M [H] is definable in V[G][K]. In particular, there exists in V[G][K]

a normal ultrafilter over Pκµ. However, the part of R which is added by K over V[G]

does not add sets of size less than τ+, and hence the normal measure on Pκµ belongs to

V[G], so we are done. □
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Remark 2.7. Unlike the forcing in Corollary 2.4, which adds a quilshon for every

δ = cf(δ) > ℵ0, in the above theorem we add a quilshon only for an unbounded set of

regular cardinals below λ. Essentially, the reason is the strong reflection properties of

the supercompact cardinal.

The result is that we can make sure that λ is not Magidor, but maybe there are

Magidor cardinals in the universe (even below λ). However, we believe that it is consistent

to have a class of supercompact cardinals with no Magidor cardinals at all.

The process of adding an unbounded sequence of partial squares below λ in order to

eliminate its Magidority can be applied also in the context of rank-to-rank embeddings.

We shall prove that an ω-limit of Magidor cardinals can be a non-Magidor cardinal. Of

course, such a theorem assumes that there are at least ω Magidor cardinals. Moreover,

we will have to assume that they come from instances of I1, and that the critical points

satisfy some preliminary requirement. The main reason is that we must preserve the

Magidority of the members in the ω-sequence of Magidor cardinals. It follows that we

can preserve I1 (and consequently, the pertinent Magidority). The proof is based on

the ideas of the former proof (for supercompact cardinals), and in some sense it is a bit

simpler.

Theorem 2.8 (Non-limitude of Magidority). Assume that I1(κn, λn) holds, and

λn < κn+1 for every n ∈ ω. Let τ be supn∈ω λn. There is a forcing notion Q such that if

GQ ⊆ Q is generic then in V[GQ] every λn is a Magidor cardinal but τ is not a Magidor

cardinal.

Proof. We choose a regular uncountable cardinal θ0 < κ0, and for every 0 < n ∈
ω we choose a regular cardinal θn such that λn−1 < θn < κn. We define the forcing

notion Rn to be the forcing which adds a partial square for the cofinality θn. Define

Q =
∏

n∈ω Rn with full support, and let GQ ⊆ Q be a generic set.

Fix a natural number n ∈ ω, and split the product into
∏

m≤n Rn and
∏

m>n Rn.

The upper part would be θm-complete, so I1(κn, λn) is preserved. Indeed, no new subsets

of Vλn+1 are introduced by this part of the forcing. We shall see below that Rℓ preserves

I1(κn, λn) for every ℓ ≤ n, and hence the lower part
∏

m≤n Rn preserves I1(κn, λn) as

well. This is the main burden of the proof, and if we succeed then we conclude with

I1(κn, λn) for every n ∈ ω in V[GQ]. On the other hand, forcing with Q adds a partial

square for every θn. Since these cardinals are unbounded in λ, we infer that λ is not a

Magidor cardinal in V[GQ].

As usual, the part of Rn above λ+
n cannot add new sets of cardinality less than λ+

n

(by the distributivity of this component), and hence has no influence on I1(κn, λn). We

focus on Rn ↾ λ+
n which will be denoted by R. We denote the generic set that we choose

for R by G, and let κn = κ, λn = λ.

The key point in proving that forcing with R preserves I1(κn, λn) is that the con-

ditions in R are elements of Vλ+1. Indeed, if p ∈ R then dom(p) ∩ ȷn(κ) is bounded for

every n ∈ ω as we use Easton support. In particular, p ∈ Vλ+1 and hence p ∈ dom(ȷ).

Moreover, every set in Vλ+1[G] has a name in Vλ+1[G] (more precisely, a λ-sequence of

members of Vλ+1 ×Vλ which can be coded as an element of Vλ+1[G]).
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Aiming to lift ȷ : Vλ+1 → Vλ+1 into ȷ+ : Vλ+1[G] → Vλ+1[H] we must define a

suitable generic set H. We emphasize that in this case our purpose is to get Vλ+1[G] =

Vλ+1[H], since we are looking for an embedding from Vλ+1[G] to itself in the generic

extension. Observe that if p ∈ R then ȷ(p) ∈ R by the definition of R and the elementarity

of ȷ, though p ̸= ȷ(p) in general. Hence the set H should be R-generic over Vλ+1. We

also must make sure that ȷ“G ⊆ H so we define a master condition and depict a generic

set H which contains it.

We commence with a description of a master condition m ∈ R. The condition m

will not be a strong master condition (i.e., m ≥ ȷ(p) for every p ∈ G) but it will satisfy

p ↾ κ ∪m ≥ ȷ(p) for every p ∈ G which is enough in order to use Silver’s criterion. The

advantage is that we can concentrate on conditions p for which dom(p) ∩ κ = ∅. Set:

m =
∪

{ȷ(p) : p ∈ Vλ+1 ∩G
˜
,dom(p) ∩ κ = ∅}.

By the union we mean that we take concatenations of the square approximation sequences

at each stage, and then we take all the sequences as our condition. Of course, we have to

show that this definition of m is actually a condition in R. For this end, we shall prove

that m has Easton support and that the pertinent cofinality allows us to add the empty

set as a last element in the µ-th coordinate for every µ = cfM (µ) above κ.

Assume, firstly, that µ is a regular cardinal in M and κ ≤ µ < λ, so ȷn(κ) ≤ µ <

ȷn+1(κ) for some n ∈ ω. Set β
˜

= sup{domȷ(p)(µ) : p ∈ G
˜
}, assuming without loss

of generality that this fact is forced by the empty condition so we can treat β
˜

as an

ordinal β. Let A be the set of all functions with Easton support in
∏
{η : ȷn−1(κ) ≤ η <

ȷn(κ), η = cf(η)}. By the reasoning of Lemma 2.5, using genericity arguments, we infer

that cfM (β) ≥ κ. Since θn < κn = κ ≤ cfM (β) we can set Cµ+1 = ∅, so the definition of

m as a condition can be accomplished.

Let us try to show that m has Easton support. Recall that dom(p)∩ [ȷn(κ), ȷn+1(κ))

is bounded in ȷn+1(κ) for every n ∈ ω and every p ∈ R. Consequently, if ȷn(κ) < µ =

cf(µ) ≤ ȷn+1(κ), then dom(m) ∩ µ is the union of at most ȷn(κ) many sets (since |R ↾
ȷn(κ)| = ȷn(κ)), each of which is bounded in µ. It follows that |dom(m)∩µ| ≤ ȷn(κ) < µ

as desired.

Finally, let p ∈ G be a condition for which dom(p) ∩ κ = ∅. We need showing that

ȷ(p) ≤ m, and we shall prove that p ↾ α ⊩ ȷ(p)(α) ≤ m(α) for every α. Recall that if

m ≥ ȷ(p) whenever dom(p) ∩ κ = ∅, then p ↾ κ ∪ m ≥ ȷ(p) for every p ∈ G, which is

sufficient.

There is nothing to worry about for α < κ by the assumption that dom(p) ∩ κ = ∅.
Likewise, there is nothing to worry about for κ ≤ α < ȷ(κ) since ȷ(p)(α) is empty in these

cases as κ = crit(ȷ) (so the first element of dom(p) will be sent by ȷ at least to ȷ(κ)).

Suppose α ≥ ȷ(κ). By definition, m(α) is a name for an upper bound of {ȷ(q)(α) : q ∈ G
˜
}.

In particular, p ↾ α ⊩ m(α) ≥ ȷ(p ↾ α)(α) = ȷ(p)(α).

Having established the definition of m and the fact that it can serve as a master

condition, we can choose a generic set G such that m ∈ G. We define H = G, so H

is R-generic and includes m. By Silver’s criterion we can lift our embedding ȷ into the

extension ȷ+ : Vλ+1[G] → Vλ+1[H] = Vλ+1[G] and conclude that I1(κ, λ) = I1(κn, λn)

is preserved by R as required. □
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Remark 2.9. The non-Magidority of an ω-limit of Magidor cardinals is not con-

fined to a limit of I1 instances. Starting from the above setting, we can add λ+ Cohen

subsets of ℵ1 after the forcing of the above theorem. The result is a non-Magidor limit

of Magidor cardinals below 2ℵ1 , and in particular they are not I1.

The above theorem yields similar consistency results for other notions of large cardi-

nals, and we phrase below a typical one. Recall that a Magidor cardinal can be very small

in the ℶ-scale, by Claim 1.7. However, the above theorem shows that the natural way to

construct a Magidor cardinal as a limit of large cardinals, fails even under very strong

hypotheses. This kind of statements creates the impression that a Magidor cardinal is a

very large cardinal, at least from this point of view. The moral of the corollary below is

that sometimes it doesn’t help to stand on the shoulders of giants:

Corollary 2.10 (A huge corollary). It is consistent (under the assumptions of

the previous theorem) that an ω-limit of huge cardinals is not a Magidor cardinal. The

same holds if we replace huge by n-huge for every n ∈ ω.

Proof. If I1(κ, λ) then there is a normal ultrafilter U over κ which concentrates

on the set {δ < κ : δ is n-huge for every n ∈ ω}. Actually, such U exists even under the

weaker assumption I3(κ, λ). By Theorem 2.8, choose such δm for every m ∈ ω, which

satisfies λm < δm < κm+1 in V[G]. It follows that λ = supm∈ω λm = supm∈ω δm is a

non-Magidor cardinal, limit of cardinals which are n-huge for every n ∈ ω. □

The assumption that the intervals (κn, λn) are pairwise disjoint (both in Theorem 2.8

and in Corollary 2.10) is quite reasonable. In fact, if there are infinitely many instances

of I1(κn, λn) for which m ̸= n ⇒ κm ̸= κn, then there is also a sequence of pairs

which satisfy the disjointness assumption (although not necessarily a sub-sequence of the

original one).

We comment that an interlaced sequence of the form κn < κn+1 < λn < λn+1

and I1(κn, λn) for every n ∈ ω might prove as the correct assumption for showing the

Magidority of λ = supn∈ω λn. More generally, if κ is 2-super huge, then partial squares

and even quilshon fail for every δ = cf(δ) ≥ κ. We also mention Martin’s maximum,

from which ¬(⋔λ,ℵ2) follows. If this can be generalized to higher cofinalities, then we

might be able to prove positive Magidority results.

3. Open problems.

We list a few open problems concerning Magidor cardinals and the related cardinal

αM . For brevity, λ is a Magidor cardinal throughout this section. Some of the problems

have an analog for Jónsson cardinals, including the first one.

Question 3.1. Is it consistent that ℵω is a Magidor cardinal?

A related problem can be asked about the limit cardinals below any Magidor car-

dinal. We have shown the consistency of λ < 2ℵ1 , so a Magidor cardinal need not be a

limit of strongly inaccessible cardinals. However, we may ask:
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Question 3.2. Is it consistent that a Magidor cardinal is not a limit of weakly

inaccessible cardinals?

A negative answer settles, of course, the first question. Another way to attack the

first question sends us to the realm of determinacy. Recall that AD implies that ℵω is a

Rowbottom cardinal, by [11]. By and large, AD has a salient propensity to combinatorial

assertions with infinite exponent. The most conspicuous assertion is ω1 → (ω1)
ω1 , and it

follows from this property that ℵ1 is a Magidor cardinal. The case of ℵω invites a similar

conclusion, so we ask:

Question 3.3. Assume AD. Is it provable that ℵω is a Magidor cardinal?

We recall that a limit of Jónsson cardinals need not be a Jónsson cardinal, by a

result of Kunen. Similarly, under the assumption that there are many instances of I1 we

have shown that the limit can be a non-Magidor cardinal (see Theorem 2.8, under an

additional assumption on the sequence). The I1 assumption was essential in the proof,

but non limitude of Magidority is consistent even without having I1, see remark 2.9.

The other side of the coin is the axiom I0, which says that there exists an elementary

embedding ȷ : L(Vλ+1) → L(Vλ+1) such that crit(ȷ) < λ. It has been proved by Laver

that I0 is strictly stronger than I1. Presumably, the forcing in Theorem 2.8 destroys the

property of being I0.

Question 3.4. Let λ be an ω-limit of Magidor cardinals which are I0. Is it

consistent that λ is not a Magidor cardinal?

It is known that if I1(κ, λ) then there are κ0 < κ, λ0 < λ for which I2(κ0, λ0).

Consequently, the first Magidor cardinal is not I1. The following is natural:

Question 3.5. Is it consistent that the first Magidor cardinal is I2?

Finally, it is well known that the first Jónsson cardinal is either weakly inaccessible

or a singular cardinal with countable cofinality. It follows from Corollary 1.6 that the

first Jónsson cardinal need not be the first Magidor cardinal. We may ask if the first

Magidor cardinal has some reflection properties with respect to Jónsson cardinals:

Question 3.6. Is it consistent that the first Jónsson cardinal is also the first

Magidor cardinal?

Let us turn to the relation between Magidor cardinals and other large cardinals. In

the former sections we have seen on the one hand that Magidority is a consequence of

I1 and I2, and on the other hand that a global non-Magidority is consistent with the

existence of a class of measurable cardinals. We may ask about larger cardinals, and the

following two-fold question is typical:

Question 3.7. Is it consistent that there is one supercompact cardinal and no

Magidor cardinal? Is it consistent that there is a class of supercompact cardinals and no

Magidor cardinal?
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In fact, one should state this question with respect to smaller notions (e.g., strong

compactness). It begins at the point of the failure of square (but the amount of square

is essential here). Anyhow, Theorem 2.6 is suggestive, and we believe that the answer is

positive. From the other direction of large cardinals:

Question 3.8. Assume λ is I3 (i.e. there exists an elementary embedding ȷ :

Vλ → Vλ). Does it follow that λ is a Magidor cardinal?

We comment that I3 seems to be fairly different from I1 and I2, so one may try the

opposite direction (i.e., proving the consistency of I3 with non-existence of Magidor car-

dinals). One way to do it is to force weak versions of square or quilshon while preserving

stronger assumptions of large cardinals. We mention here the huge cardinals. The partial

square used in Theorem 2.6 becomes a bit more problematic in the huge environment,

and much more problematic above a super huge cardinal.

By Corollary 2.10, an ω-limit of huge cardinals can be non-Magidor. Moreover,

hugeness can be sharpened to n-hugeness for every n ∈ ω. However, it is important to

bound the target of the elementary embedding. Therefore, we may ask:

Question 3.9. Is it consistent that a non-Magidor cardinal λ is a limit of super

huge cardinals? Does there exist a strong enough notion of large cardinals which ensures

that an ω-limit of its type is a Magidor cardinal?

From the other direction, we have seen that each Magidor cardinal is Jónsson. Like-

wise, if λ is Magidor then λ > 2ℵ0 and ω-closed. Recall that every Rowbottom cardinal

above 2ℵ0 is ω-closed (see [19]). A Magidor cardinal need not be Rowbottom (as com-

mented by the referee of the paper, by forcing λ to be below 2ℵ1), but we raise the

following:

Question 3.10. Is it true that every Magidor cardinal is αM -Rowbottom?

The following problems are connected with αM , the first ordinal for which the col-

oring omits colors. We have proved that if θ < αM and cf(θ) > ω, then θω < αM . The

motivation is that if we proved that αM is ω-closed, then we could prove the consistency

of αM = ℵ2 (which is the lower bound on αM ). However, the proviso cf(θ) > ω seems

obstinate:

Question 3.11. Is it consistent that λ is a Magidor cardinal and αM = θ+ when

cf(θ) = ω? Is it possible for a Magidor cardinal which comes from I1(κ, λ)?

Concerning this problem, one may wish to focus on the first Magidor cardinal, in

which case θ < αM < λ and hence θ itself is not a Magidor cardinal. This assumption

gives some hope to imitate the proof of the uncountable cofinality, but there are still

some obstacles. Anyway, we may ask more generally:

Question 3.12. Is it consistent that λ is a Magidor cardinal and αM is a successor

of a singular cardinal?

We indicate that pcf arguments may be helpful to refute the above possibility (by
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introducing αM as the true cofinality of some sequence of cardinals for which there are

no Magidor functions). Another possible direction is to begin with αM as a successor of

a large cardinal and to try to singularize this cardinal, so:

Question 3.13. Is it consistent that λ is a Magidor cardinal and αM is a successor

of a measurable cardinal? Is it consistent that αM is a measurable cardinal?

A general question is the preservation of Magidority under forcing extensions. In

particular, we should investigate the influence of Prikry-type forcing notions on Magi-

dority:

Question 3.14. Suppose λ is a Magidor cardinal, limit of measurable cardinals.

Let P be the diagonal Prikry forcing with respect to λ. Is it true that λ is still a Magidor

cardinal after forcing with P?

Notice that the assumption on λ in the above question holds when λ comes from an

instance of I1.

It has been proved for α > cf(α) > ℵ0 that λ → [λ]ℵ0-bd
α implies λ → [λ]ℵ0-bd

α,<α . We

encountered the recurrent problem of the countable cofinality case, which seems to be

essential for several reasons when dealing with Magidor cardinals. We may ask:

Question 3.15. Assume λ → [λ]ℵ0-bd
α , and cf(α) = ℵ0. Is it provable that λ →

[λ]ℵ0-bd
α,<α ?

The parallel for Jónsson cardinals holds true, by assuming that the number of colors

is not a Jónsson cardinal, due to Kleinberg. It means that λ → [λ]<ω
α,<α whenever α is

not a Jónsson cardinal. We mention, en route, that λ → [λ]<ω
α,<α is consistent even if α

is Jónsson, assuming e.g. that λ carries a Rowbottom filter. But this assumption, as it

is, cannot be generalized to Magidority.

Unlike Jónssonicity, for which the crux of the matter is whether α is Jónsson or

not, the limitation in our context is whether α has countable cofinality. We may wish

to separate between a Magidor α and a non-Magidor α in the above problem. The

assumption that α is not a Magidor cardinal holds always for the first Magidor cardinal

λ.

Question 3.16. Let λ0 < λ1 be Magidor cardinals, and α0
M , α1

M the associated

cardinals. Is it consistent that α1
M < α0

M? What about a Magidor cardinal, limit of

the sequence of Magidor cardinals ⟨λn : n ∈ ω⟩ assuming that ⟨αn
M : n ∈ ω⟩ is strictly

increasing?

Concerning the second part, it might be helpful to distinguish two cases. Let α =∪
n∈ω αn

M . If α = λ and it is a Magidor cardinal, then necessarily αM < αn
M for almost

every n ∈ ω.

We conclude with a problem about the relation between αJ and αM . We have seen

that αJ ≤ αM for every Magidor cardinal, and if I1(κ, λ) then it seems that one can

force strict inequality by adding αJ -many Cohen subsets to ℵ0 (recall that 2ℵ0 < αM ).

It seems harder to prove equality:
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Question 3.17. Is it consistent that αJ = αM? Is it consistent for a Magidor

cardinal which comes from I1?

We include here a partial answer to Question 3.15, proved by the referee of the

paper:

Proposition 3.18. Assume λ → [λ]ℵ0-bd
α , and α is not a Magidor cardinal. Then

λ → [λ]ℵ0-bd
α,<α .

Proof. The theorem has been proved in the case of cf(α) > ω, so assume cf(α) =

ω and fix an increasing sequence of regular uncountable cardinals ⟨αn : n ∈ ω⟩ with limit

α. Let f : [λ]ℵ0-bd → α be any coloring. We have to find a set A ∈ [λ]λ such that

|f“[A]ℵ0-bd| < α.

By the assumption that α is not Magidor, fix a function g : [α]ℵ0-bd → α which

exmeplifies the non-Magidority of α. Likewise, for every δ < λ we fix a coding reals

function rδ : [δ]ω → ω([ω1]
ω).

We define a new coloring h : [λ]ℵ0-bd → α as follows. Given x ∈ [λ]ℵ0-bd we ask

whether there exists a limit ordinal β < ω1 such that otp(x) = β+ω. If not, let h(x) = 0.

If the answer is yes, let ⟨xi : i < β + ω⟩ be an increasing enumeration of the members of

x and let δ = sup(x). Set s = rδ({xβ+i : i < ω}). We can express s as ⟨aj : j < ω⟩ where
aj ∈ [β]ω for every j ∈ ω. Denote {xi : i ∈ aj} by yj . Now if {f(yj) : j ∈ ω} ∈ [α]ℵ0-bd

then h(x) = g({f(yj) : j ∈ ω}). Otherwise, let h(x) = 0.

Choose a set A ∈ [λ]λ such that h“[A]ℵ0-bd ̸= α. We claim that |f“[A]ℵ0-bd| < α.

Assume toward contradiction that this is not the case, i.e. |f“[A]ℵ0-bd| = α. By induction

on n ∈ ω we choose a set Bn ⊆ f“[A]ℵ0-bd such that:

(α) |Bn| ≥ αn.

(β) sup(Bn) < min(Bn+1) < α.

(γ) ∃µn < λ such that Bn ⊆ f“[A ∩ µn]
ℵ0-bd.

How do we choose these sets? For B0 we choose any bounded subset of α of size at least α0

so (α) and (β) are satisfied. Requirement (γ) can be arranged by the assumption toward

contradiction. The inductive step is similar. Suppose Bi has been defined for i < n

and n > 0. Let α′ = sup(Bn−1) < α. By the assumption toward contradiction we have

|f“[A∩µn]
ℵ0-bd\α′| = α. Since cf(α) = ω and αn = cf(αn) > ω, we can find α′′ < α such

that α′ < α′′ and |(f“[A∩µn]
ℵ0-bd \α′)∩α′′| ≥ αn. Set Bn = (f“[A∩µn]

ℵ0-bd \α′)∩α′′

and verify the above requirements.

We define B∗ =
∪

n∈ω Bn. The following properties can be derived from the con-

struction (observe, in particular, that (b) follows from (β)):

(a) |B∗| = α.

(b) For every x ∈ [B∗]ℵ0-bd there is n ∈ ω such that x ⊆
∪

i<n Bi.

(c) For every n ∈ ω there is µn < λ such that
∪

i<n Bi ⊆ f“[A ∩ µn]
ℵ0-bd.
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Since |B∗| = α we know that g“[B∗]ℵ0-bd = α. We shall use this fact in order to show

that h“[A]ℵ0-bd = α. So fix any color η < α, and we shall designate a set x ∈ [A]ℵ0-bd

for which h(x) = η.

Firstly, we choose z ∈ [B∗]ℵ0-bd such that g(z) = η. Now we recover x from z as

follows. We choose n ∈ ω for which z ⊆
∪

i<n Bi. For this n we had µn < λ which

satisfies (c). Let µ = µn, so
∪

i<n Bi ⊆ f“[A ∩ µ]ℵ0-bd. Enumerate the members of z by

⟨ζj : j ∈ ω⟩.
For every j ∈ ω pick a set yj ∈ [A ∩ µ]ℵ0-bd such that f(yj) = ζj . Choose y ∈

[A ∩ µ]ℵ0-bd such that µ < min(y) and otp(
∪

j∈ω yj ∪ y) = β for some limit ordinal

β < ω1. Denote
∪

j∈ω yj∪y by x′ and enumerate the members of x′ in increasing order by

⟨xi : i < β⟩. For every j ∈ ω let aj ∈ [β]ω be such that yj = {xi : i ∈ aj}. Finally, choose
w ∈ [A]ℵ0-bd such that sup(x′) < min(w), otp(w) = ω and rsup(w)(w) = ⟨aj : j ∈ ω⟩.

We let x = x′ ∪ w. Notice that x ∈ [A]ℵ0-bd and the order type of x is β + ω for

some limit ordinal β. By the very definition of h we have h(x) = η, so h“[A]ℵ0-bd = α as

η was arbitrary. However, this contradicts the choice of A, so we are done. □
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[ 4 ] P. Erdős and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Polon. Sci. Sér. Sci. Math.

Astronom. Phys., 14 (1966), 19–23.

[ 5 ] H. Gaifman, Elementary embeddings of models of set-theory and certain subtheories, Axiomatic

set theory (Proc. Sympos. Pure Math., XIII, Part II, Univ. California, Los Angeles, Calif., 1967),

Amer. Math. Soc., Providence R.I., 1974, pp. 33–101.

[ 6 ] S. Garti, Y. Hayut and S. Shelah, On the verge of inconsistency: Magidor cardinals and Magidor

filters, Israel J. Math., 220 (2017), 89–102.

[ 7 ] T. Jech, Set theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003, The third millennium

edition, revised and expanded.

[ 8 ] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic, 4 (1972),

229–308; erratum, ibid. 4 (1972), 443, With a section by J. Silver.

[ 9 ] A. Kanamori, The higher infinite, second ed., Springer Monogr. Math., Springer-Verlag, Berlin,

2003, Large cardinals in set theory from their beginnings.

[10] E. M. Kleinberg, Rowbottom cardinals and Jonsson cardinals are almost the same, J. Symbolic

Logic, 38 (1973), 423–427.

[11] E. M. Kleinberg, AD ⊢ “the ℵn are Jonsson cardinals and ℵω is a Rowbottom cardinal”, Ann.

Math. Logic, 12 (1977), 229–248.

[12] P. Koellner and W. H. Woodin, Large cardinals from determinacy, Handbook of set theory. 1, 2,

3, Springer, Dordrecht, 2010, pp. 1951–2119.

[13] K. Kunen, Elementary embeddings and infinitary combinatorics, J. Symbolic Logic, 36 (1971),

407–413.

[14] R. Laver, On very large cardinals, Paul Erdős and his mathematics, II, Budapest, 1999, Bolyai
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