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Abstract. We consider weighted Hardy spaces over bidisk D2 which
generalize the weighted Bergman spaces A2

α(D
2). Let z, w be coordinate func-

tions and MzNwN the multiplication by zNwN for a natural number N . In
this paper, we study the reducing subspaces of MzNwN . In particular, we
obtain the minimal reducing subspaces of Mzw.

1. Introduction.

Let X be a closed subspace in a Hilbert space. Then, X is said to be invariant under

an operator A if AX ⊂ X. Moreover, X is called a reducing subspace of an operator A if

X is invariant under both A and its adjoint A∗. We consider the problem of determining

the reducing subspaces of multiplication operators on weighted Hardy spaces H2
ω(D

2).

Let (n1, n2) be a multi-index of non-negative integers. The weighted Hardy spaceH
2
ω(D

2)

over bidisk D
2 with the weight ω consists of analytic functions

f(z, w) =
∑

(n1,n2)

a(n1, n2)z
n1wn2

such that

‖f‖2 =
∑

(n1,n2)

ω(n1, n2)|a(n1, n2)|2 < ∞,

where ω = {ω(n1, n2)} is a set of positive numbers.
One of the examples of weighted Hardy spaces is the weighted Bergman space

A2
α(D

2), where the weight is

ω(n1, n2) =
n1!Γ(2 + α)

Γ(2 + α+ n1)
· n2!Γ(2 + α)

Γ(2 + α+ n2)

for α > −1.
For the definition of transparent function, see section 2. Let Mϕ denote the multi-

plication operator defined by ϕ. Now we state our main result.

Theorem 1.1. We fix a natural number N .

(1) The reducing subspaces of MzNwN on H2
ω(D

2) contain the minimal reducing subspace
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Xp where p is a transparent function.

(2) X is a minimal reducing subspace of MzNwN if and only if there exists a transparent

function p such that X = Xp.

In this paper, we will determine the reducing subspaces of the multiplication operator

by zNwN (N ≥ 1) on weighted Hardy spaces over bidisk by using the technique in [9]

and [12]. We note that we solve the problem of determining the reducing subspaces of

MzNwN when N = 1 as well as N > 1.

Zhu [13] determined the reducing subspaces of the multiplication by Blaschke prod-

ucts with two zeros on the Bergman space over the unit disk. Stessin and Zhu [12]

determined the reducing subspaces of the multiplication by zN in weighted Hardy spaces

on the unit disk. Motivated by these results, many mathematicians have studied the

reducing subspaces of the multiplication operators on weighted Hardy spaces over the

unit disk and bidisk. We can find the results of Blaschke product in [2], [3] and [6]. In

particular, the general case of finite Blaschke products has been done on the Bergman

space in [2]. Guo and Huang [4], [5], [6], [7] studied a broad range of topics of the reduc-

ing subspace from various points of view. Dan and Huang [1] determined the reducing

subspaces of the multiplication operators on the Bergman space A2(D2) defined by a

class of polynomials which are in the form of zk + wl.

LetN1, N2 be natural numbers. In association with this paper, the author [9] studied

the reducing subspaces of MzN1 and MwN2 on weighted Hardy spaces over bidisk. Shi

and Lu [11] determined the reducing subspaces of TzN1wN2 = PMzN1wN2 on A2
α(D

2),

where N1 �= N2 and P is the projection onto A2
α(D

2). Lu and Zhou [10] determined the

reducing subspaces of TzNwN = PMzNwN on A2
α(D

2).

2. Preliminaries.

Throughout this paper, we fix a natural number N and the weight satisfying

sup
(n1,n2)

ω(n1 +N,n2 +N)

ω(n1, n2)
< ∞

so that the multiplication operator MzNwN and its adjoint M∗
zNwN are bounded.

Now we introduce some notions of multi-index in this paper. First we set the order

on a set of multi-indices as follows; (1)(k,m) > (l, n) (2)(m, k) > (n, k) for all non-

negative integers k, l,m, n with m > n ≥ 0. Let I be a subset of multi-indices such

that

I = {(m1,m2); 0 ≤ m1 ≤ N − 1 or 0 ≤ m2 ≤ N − 1}.
If

ω(m1 + kN,m2 + kN)

ω(m1,m2)
=

ω(n1 + kN, n2 + kN)

ω(n1, n2)

for all positive integer k, then we say that (m1,m2) and (n1, n2) are equivalent. In this

case, we write (m1,m2) ∼ (n1, n2). Using this relation, we define a class of functions.

We say that a function in the form of
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p(z, w) =
∑

(n1,n2)∈I

a(n1, n2)z
n1wn2

is a transparent function if we have (n1, n2) ∼ (n′
1, n

′
2) for any two nonzero coefficient

a(n1, n2) and a(n′
1, n

′
2) of p. If we partition the set I into equivalence classes Ω1,Ω2, . . .,

then gj(z, w) =
∑

(n1,n2)∈Ωj
a(n1, n2)z

n1wn2 is transparent for all j.

Next we will show an example of the reducing subspaces which plays an important

role. Let S be the algebra over C generated by the multiplication operator MzNwN and

its adjoint M∗
zNwN . For any nonzero function f ∈ H2

ω(D
2), we put Sf = {Tf ;T ∈ S}.

We set Xf the closure of Sf in H2
ω(D

2).

Lemma 2.1. (1) Xf is the smallest reducing subspace containing f .

(2) If f(z, w) =
∑

(n1,n2)∈I a(n1, n2)z
n1wn2 is a transparent function, then

Xf = Span{f(z, w)zkNwkN ; k = 0, 1, 2, . . .},

where we denote by Span Y the closed linear span of a subset Y in H2
ω(D

2).

Proof. (1) Obvious.

(2) Let X = Span{f(z, w)zkNwkN : k = 0, 1, 2, . . .}. Then f ∈ X ⊂ Xf . From (1),

it is enough to show that X is a reducing subspace of MzNwN . It is easy to see that

MzNwNX ⊂ X. We will computeM∗
zNwN {f(z, w)zkNwkN} to show thatM∗

zNwNX ⊂ X.

Without loss of generality, we may assume k > 0. Let k = l + 1. We note that both

MzNwN and M∗
zNwN are bounded. Since f is a transparent function, by calculation we

have

M∗
zNwN {f(z, w)zkNwkN} =M∗

zNwNMzNwN {f(z, w)zlNwlN}

=M∗
zNwNMzNwN

⎧⎨
⎩

∑
(n1,n2)∈I

a(n1, n2)z
n1+lNwn2+lN

⎫⎬
⎭

=
∑

(n1,n2)∈I

a(n1, n2)
ω(n1 + kN, n2 + kN)

ω(n1 + lN, n2 + lN)
zn1+lNwn2+lN

=
ω(m1 + kN,m2 + kN)

ω(m1 + lN,m2 + lN)

∑
(n1,n2)∈I

a(n1, n2)z
n1+lNwn2+lN

=
ω(m1 + kN,m2 + kN)

ω(m1 + lN,m2 + lN)
f(z, w)zlNwlN ∈ X,

where (m1,m2) is the minimal multi-index of non-zero coefficient of f . �

For f ∈ Hol(D2), we denote f (k1,k2)(0, 0) = (∂k1+k2)/∂zk1∂wk2 f(0, 0). For any

subspace X in H2
ω(D

2) with X �= {0}, let (m1,m2) be the minimal multi-index such that

there exists some f ∈ X with f (m1,m2)(0, 0) �= 0 but g(k1,k2)(0, 0) = 0 for all g ∈ X and

(k1, k2) < (m1,m2). We will call (m1,m2) the order of X at the origin.

Proposition 2.2. Let X be a nonzero reducing subspace of MzNwN and (m1,m2)
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the order of X at the origin. Then the extremal problem

sup{Ref (m1,m2)(0, 0); f ∈ X, ‖f‖ ≤ 1}

has a unique solution G with ‖G‖ = 1 and G(m1,m2)(0, 0) > 0. Furthermore, G is in the

form of

G(z, w) =
∑

(n1,n2)∈I

b(n1, n2)z
n1wn2 .

Proof. Since the mapping f 
→ f (m1,m2)(0, 0) is a bounded linear functional on

H2
ω(D

2), by Riesz representation theorem the extremal problem has a unique solution G

with ‖G‖ = 1 and G(m1,m2)(0, 0) > 0.

Next we prove M∗
zNwNG = 0. We put gf = (G+MzNwN f) · ‖G+MzNwN f‖−1 for

all f ∈ X. Since Reg
(m1,m2)
f (0, 0) ≤ G(m1,m2)(0, 0) and

Reg
(m1,m2)
f (0, 0) = ReG(m1,m2)(0, 0) · ‖G+MzNwN f‖−1,

we obtain ‖G +MzNwN f‖ ≥ 1 for all f ∈ X. From this inequality, we see that G ⊥
MzNwNX. Therefore M∗

zNwNG = 0 because M∗
zNwNG ∈ X. �

We will call the function G in Proposition 2.2 the extremal function of X.

Proposition 2.3. The extremal function of any reducing subspace of MzNwN in

H2
ω(D

2) is a transparent function.

Proof. Let X be a reducing subspace of MzNwN and (m1,m2) be the order of X

at the origin. From Proposition 2.2, there exists a unique extremal function G. From the

definition of (m1,m2), the functionG contains the term (G(m1,m2)(0, 0)/m1!m2!)z
m1wm2 .

We recall that for n = 1, 2, . . . ,

gn(z, w) =
∑

(k1,k2)∈Ωn

G(k1,k2)(0, 0)

k1!k2!
zk1wk2

is a transparent function and that G(z, w) =
∑

n gn(z, w), where Ωn is the equivalence

class as above. Without loss of generality, we may assume g1(z, w) contains the term

(G(m1,m2)(0, 0)/m1!m2!)z
m1wm2 .

Let (M
(j)
1 ,M

(j)
2 ) be the minimal multi-index of pj . It is clear that

(M∗
zNwN )

k(MzNwN )kgn =
ω(M

(n)
1 + kN,M

(n)
2 + kN)

ω(M
(n)
1 ,M

(n)
2 )

gn.

We note that (M
(j)
1 ,M

(j)
2 ) and (m1,m2) are not equivalent for j = 2, 3, . . .. Therefore

there exists an integer k depending on j such that
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ω(M
(j)
1 + kN,M

(j)
2 + kN)

ω(M
(j)
1 ,M

(j)
2 )

�= ω(m1 + kN,m2 + kN)

ω(m1,m2)
.

We compute

(
ω(M

(j)
1 + kN,M

(j)
2 + kN)

ω(M
(j)
1 ,M

(j)
2 )

− (M∗
zNwN )

k(MzNwN )k
)
G(z, w)

=
∑
n�=j

(
ω(M

(j)
1 + kN,M

(j)
2 + kN)

ω(M
(j)
1 ,M

(j)
2 )

− ω(M
(n)
1 + kN,M

(n)
2 + kN)

ω(M
(n)
1 ,M

(n)
2 )

)
gn ∈ X,

where we note that the function g1 does not vanish. By this calculation we can remove

transparent functions other than g1 one by one from G. Repeating this process and

taking the limit in the norm of H2
ω(D

2), we can force a transparent function g1 to be

in X. The transparent function g1 satisfies the conditions of the extremal problem in

Proposition 2.2; ‖g1‖ ≤ ‖G‖ = 1, g
(m1,m2)
1 (0, 0) = G(m1,m2)(0, 0) and g1 ∈ X. The fact

that G is extremal implies that G is equal to g1 and is a transparent function. �

The reducing subspace X is called minimal if {0} and X are the only reducing

subspaces contained in X.

Proposition 2.4. If p is a transparent function, then the reducing subspace Xp is

minimal.

Proof. Let X be a reducing subspace contained in Xp. Assume that X �= {0}.
From Proposition 2.2, we have the extremal function GX on X which is a transparent

function in the form of

GX(z, w) =
∑

(n1,n2)∈I

b(n1, n2)z
n1wn2 .

Since the transparent function GX is in Xp, there is some function f(z, w) ∈ Hol(D2)

such that f(z, w) =
∑

n≥0 cn(zw)
nN and pf = GX . We see that f is constant, forcing

p ∈ X. This implies that Xp = X. Thus Xp is minimal, finishing the proof of Proposition

2.4. �

3. Main results.

Theorem 3.1. The reducing subspaces of MzNwN on H2
ω(D

2) contain the minimal

reducing subspace Xp where p is a transparent function in the form of

p(z, w) =
∑

(n1,n2)∈I

a(n1, n2)z
n1wn2 .

Moreover, X is a minimal reducing subspace of MzNwN if and only if there exists a

transparent function p such that X = Xp.

Proof. Without loss of generality, we may assume X is a nonzero reducing sub-
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space of MzNwN . From Proposition 2.2, there exists a unique extremal function p(z, w)

in X. From Proposition 2.3, this extremal function is a transparent function. By Lemma

2.1, Xp is the smallest reducing subspace containing p and therefore Xp ⊂ X. In addi-

tion, if X is minimal, then it is clear that X = Xp. The converse is true from Proposition

2.4. �

Next we consider the case of the weighted Bergman spaces over bidisk. Corollary 3.2

is first obtained in [10, Theorem 1.1]. We note that this statement holds when N = 1.

Corollary 3.2. The minimal reducing subspaces of MzNwN on the weighted

Bergman space A2
α(D

2) over bidisk are

Span{(azmwn + bznwm)(zw)kN ; k = 0, 1, 2, . . .}

for (m,n), (n,m) ∈ I and complex numbers a, b.

Proof. Let γn = n!Γ(2 + α)/Γ(2 + α+ n) for α > −1. Recall that the weight of
the weighted Bergman space A2

α(D
2) over bidisk is

ω(n1, n2) =
n1!Γ(2 + α)

Γ(2 + α+ n1)
· n2!Γ(2 + α)

Γ(2 + α+ n2)
= γn1

γn2
.

By calculations, for all non-negative integers m,n and k,

ω(m+ k, n+ k) = γm+kγn+k = ω(n+ k,m+ k).

In particular, we see that

ω(m,n) = γmγn = ω(n,m).

Clearly these equalities imply that (m,n) ∼ (n,m) for (m,n), (n,m) ∈ I.

On the other hand, we assume that distinct multi-indices (m1,m2) and (n1, n2) are

equivalent; (m1,m2) and (n1, n2) satisfy

γm1+kNγm2+kN

γm1γm2

=
γn1+kNγn2+kN

γn1γn2

for all integers k ≥ 0. Then we see that

γm1
γm2

= γn1
γn2

, (1)

considering that the sequence {γn} is strictly decreasing and

lim
k→∞

γm1+kNγm2+kN

γn1+kNγn2+kN
= 1.

The same argument to prove the equality (1) can be found in the proof of [11, Theorem

3.2]. The equality (1) implies

γm1+kNγm2+kN = γn1+kNγn2+kN
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for all integers k ≥ 0. Moreover, tracing the proofs of [11, Lemma 2.3] and [11, Lemma

3.1] in similar ways, we will show that m1 = n2 and that m2 = n1 as below.

First we assume that α = 0. Here we consider the case of the Bergman space. The

equality γm1+kNγm2+kN = γn1+kNγn2+kN for all k ≥ 0 implies that

h(λ) = (m1 + λN + 1)(m2 + λN + 1)− (n1 + λN + 1)(n2 + λN + 1)

is analytic on C and hence h(λ) = 0 for all λ ∈ C. We see that n1 −m1 = m2 − n2. In

addition, the equality γm1
γm2

= γn1
γn2

implies that (m1+1)(m2+1) = (n1+1)(n2+1).

Since (m1,m2) �= (n1, n2), we obtain m1 = n2 and m2 = n1.

Next we consider the case when α �= 0. Without loss of generality, we may assume

that n1 > m1 and m2 > n2. If m1 > n1,m2 > n2 or m1 < n1,m2 < n2, then

γm1+kNγm2+kN �= γn1+kNγn2+kN since the sequence {γn} is strictly decreasing. The

equality γm1+kNγm2+kN = γn1+kNγn2+kN for all k ≥ 0 implies that

n1−m1∏
j=1

(λN + j +m1)

m2−n2∏
j=1

(λN + 2 + α+m2 − j)

=

n1−m1∏
j=1

(λN + 2 + α+ n1 − j)

m2−n2∏
j=1

(λN + j + n2). (2)

Comparing the coefficient of λn1−m1+m2−n2−1, we get

n1−m1∑
j=1

(j +m1) +

m2−n2∑
j=1

(2 + α+m2 − j) =

n1−m1∑
j=1

(2 + α+ n1 − j) +

m2−n2∑
j=1

(j + n2).

This equality implies that n1 −m1 = m2 − n2.

Moreover we obtainm1 = n2 by substituting λ = −(m1+1)/N and λ = −(n2+1)/N

for the equality (2) and using the same argument in the proof of [11, Lemma 3.1].

Combining with n1 −m1 = m2 − n2, we see that m2 = n1.

Therefore we conclude that two multi-indices (m1,m2) and (n1, n2) in I are equiv-

alent if and only if m1 = n2 and n1 = m2. This fact implies that transparent functions

are in the form of azmwn + bznwm. Thus the statement holds from Theorem 3.1. �

Finally we assume N = 1. We can put I = {(n1, n2);n1 = 0 or n2 = 0}. In this

case, we express a transparent function p(z, w) as follows;

p(z, w) = a0 +
∞∑
j=1

(ajz
j + bjw

j).

Corollary 3.3. The minimal reducing subspaces of Mzw on the weighted Hardy

space H2
ω(D

2) over bidisk are

Span{p(z, w)(zw)k; k = 0, 1, 2, . . .},

where p(z, w) is a transparent function.
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Proof. This is a special case of Theorem 3.1 when N = 1. �

Corollary 3.4. The minimal reducing subspaces of Mzw on the weighted Bergman

space A2
α(D

2) over bidisk are

Span{(azn + bwn)(zw)k; k = 0, 1, 2, . . .}

for a non-negative integer n and complex numbers a, b.

Proof. We can prove this statement by combining Corollary 3.2 and Corollary

3.3. �

For example, let p(z, w) = z−w. We easily see that p(z, w) is a transparent function

andXp is a minimal reducing subspace ofMzNwN on the weighted Bergman space A2
α(D

2)

over bidisk. This statement holds when N = 1.
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