
c©2017 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 69, No. 4 (2017) pp. 1431–1442
doi: 10.2969/jmsj/06941431

Analytic continuation of multiple Hurwitz zeta functions
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Abstract. We obtain the analytic continuation of multiple Hurwitz zeta
functions by using a simple and elementary translation formula. We also locate
the polar hyperplanes for these functions and express the residues, along these
hyperplanes, as coefficients of certain infinite matrices.

1. Introduction.

For any integer r ≥ 1, let Ur denote the open subset of Cr consisting of all r-tuples

(s1, . . . , sr) of complex numbers satisfying the conditions

Re(s1 + · · ·+ si) > i for 1 ≤ i ≤ r.

For any real numbers a1, . . . , ar ∈ [0, 1), the multiple Hurwitz zeta function of depth r

on Ur is defined by

ζ(s1, . . . , sr; a1, . . . , ar) =
∑

n1>···>nr>0

(n1 + a1)
−s1 · · · (nr + ar)

−sr . (1)

It is holomorphic on Ur as the series on the right hand side of (1) is normally convergent

on any compact subset of Ur.

When ai = 0 for all 1 ≤ i ≤ r, the multiple Hurwitz zeta function of depth r

equals to the multiple zeta function of depth r. Now it is natural to ask whether the

multiple Hurwitz zeta function of depth r has analytic continuation to the whole Cr.

This question was first considered by Akiyama and Ishikawa in [2] where they proved, by

generalizing an argument of Akiyama, Egami and Tanigawa [1], that the multiple Hurwitz

zeta functions of depth r can be meromorphically continued to Cr by applying the Euler–

Maclaurin summation formula to n1, the first index of the summation, in (1). Murty

and Sinha [12] prove the meromorphic continuation using the binomial theorem and a

theorem of Hartogs, while Kelliher and Masri [8] obtain it using the Mellin transformation

of meromorphic distributions. Analytic continuation of a more general class of multiple

zeta functions, using Mellin–Barnes integrals, has been given by Matsumoto [10].

The meromorphic continuation of multiple zeta functions using the translation for-

mula
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ζ(s1 + s2 − 1, s3, . . . , sr) =
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
ζ(s1 + k, s2, . . . , sr) (2)

is recently given by Mehta, Saha and Viswanadham [11]. It is inspired by the work of

Ecalle [4], [5] and based on an idea of Ramanujan [13] in the case of Riemann zeta func-

tion. A similar method has been used by Essouabri [6] to give the analytic continuation

of a family of zeta functions associated to Pascal’s triangle mod p.

The formula (2) can be generalized to the multiple Hurwitz zeta functions as follows:

ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar)

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)ζ(s1 + k, s2, . . . , sr; a1, . . . , ar), (3)

where Ak(a1, a2) denotes ((1− a2 + a1)
k+1 − (a1 − a2)

k+1). We call (3), the translation

formula for multiple Hurwitz zeta functions which is proved in Section 2. We obtain, by

means of (3), the meromorphic continuation of multiple Hurwitz zeta functions which is

the first goal of our paper. This so far seems to be the simplest proof of this fact, to the

best of our knowledge.

While considering the meromorphic continuation, the natural and immediate task

is to investigate the poles of multiple Hurwitz zeta functions and to compute residues at

these poles. A possible list of polar hyperplanes for the multiple Hurwitz zeta functions

was given by Akiyama and Ishikawa ([2, Theorem 1]), and they were able to give the

exact list of these in some special cases without mentioning about the residues along

these poles. Kelliher and Masri ([8, Theorem 1.1, 1.2 and 1.3]) gave a possible list

of polar hyperplanes and gave formulas for the residues along these hyperplanes. We

proceed with this paper, in Section 3, by expressing our translation formula as a product

of certain infinite matrices. We conclude the paper by giving the complete list, in some

special cases, of the location of polar hyperplanes for multiple Hurwitz zeta functions

and express their residues (see Section 4) along them as coefficients of these matrices.

The method we use here to obtain the meromorphic continuation of multiple Hurwitz

zeta funtions, to locate the singularities and to compute residues at these singularities is

same as in [11].

Remark 1. For r ≥ 1 and 0 < ai ≤ 1, 1 ≤ i ≤ r, one can also define the multiple

Hurwitz zeta function of depth r on Ur in the following way:

ζH(s1, . . . , sr; a1, . . . , ar) =
∑

n1>···>nr≥0

(n1 + a1)
−s1 · · · (nr + ar)

−sr . (4)

However, one has

ζH(s1, . . . , sr; a1, . . . , ar) = ζ(s1, . . . , sr; a1, . . . , ar) +
1

arsr
ζ(s1, . . . , sr−1; a1, . . . , ar−1).

Hence, the analytic continuation of ζH(s1, . . . , sr; a1, . . . , ar) can be obtained from the

analytic continuation of ζ(s1, . . . , sr; a1, . . . , ar).
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2. Translation formula and meromorphic continuation.

In this section, we obtain the meromorphic continuation of the multiple Hurwitz

zeta function. First we show that it satisfies the translation formula (3).

Theorem 1. For any r ≥ 2, a1, . . . , ar ∈ [0, 1), and s1, . . . , sr ∈ Ur, the following

formula holds for multiple Hurwitz zeta functions :

ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar) (3)

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)ζ(s1 + k, s2, . . . , sr; a1, . . . , ar),

where Ak(a1, a2) denotes ((1− a2 + a1)
k+1 − (a1 − a2)

k+1).

Proof. The meromorphic continuation of multiple Hurwitz zeta functions can

be obtained by using the following formula remaked by Mehta, Saha and Viswanadham

([11, Remark 4]). For any n1 ≥ 2, we have

(n1 + a2 − 1)1−s1 − (n1 + a2)
1−s1

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
(n1 + a1)

−s1−kAk(a1, a2).

Taking summation on both sides over n1 from n2 + 1 to ∞, we get

(n2 + a2)
1−s1 =

∞∑
n1=n2+1

⎛
⎝∑

k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
(n1 + a1)

−s1−kAk(a1, a2)

⎞
⎠ .

Multiplying both sides by
∏r

i=2(ni + ai)
−si and taking summation over nr from 1 to ∞,

over nr−1 from nr + 1 to ∞ and so on up to over n2 from n3 + 1 to ∞, we get

ζ(s1 + s2 − 1, s3, . . . , sr; a2, a3, . . . , ar)

=
∑

n1>···>nr>0

∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)(n1 + a1)

−s1−k · · · (nr + ar)
−sr .

Hence it is enough to prove that the family of functions

(
(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)(n1 + a1)

−s1−k · · · (nr + ar)
−sr

)
n1>···>nr>0, k≥0

is normally summable on any compact subset of Ur.

Let C be any compact subset of Ur, and c be the maximum of |s1 − 1| in C. If we

denote the supremum of a complex valued function f on C by ‖f‖C , then we have

∥∥∥∥ (s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)(n1 + a1)

−s1−k · · · (nr + ar)
−sr

∥∥∥∥
C
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is bounded above by

c(c+ 1) · · · (c+ k)

2k(k + 1)!
|Ak(a1, a2)|

∥∥(n1 + a1)
−s1 · · · (nr + ar)

−sr
∥∥
C
.

We know that the family (‖(n1+ a1)
−s1 · · · (nr + ar)

−sr‖C) is summable. Now the claim

follows since |Ak(a1, a2)| < bk+1 for some b < 2 and the series

∑
k≥0

c(c+ 1) · · · (c+ k)

(k + 1)!

(
b

2

)k

converges. This completes the proof the theorem. �

In the theorem below, we show that the multiple Hurwitz zeta function of depth r

extends meromorphically to the whole Cr.

Theorem 2. Let r ≥ 2 be an integer. Then for any a1, . . . , ar ∈ [0, 1), the multiple

Hurwitz zeta function of depth r, ζ(s1, . . . , sr; a1, . . . , ar), is a meromorphic function on

Cr and satisfies the translation formula:

ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar)

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)ζ(s1 + k, s2, . . . , sr; a1, . . . , ar), (5)

where the series of meromorphic functions on the right hand side converges normally,

except for finite terms, on any compact subset of Cr.

Proof. We prove this theorem by induction on the depth r. When r = 2 the left

hand side of (5) is a meromorphic function since it is the Hurwitz zeta function and we

know that it is a meromorphic function on C. For r ≥ 3 it is a meromorphic function by

the induction hypothesis since it has depth r − 1.

For any N ≥ 0, let Ur(N) denote the open subset of Cr defined by

Re(s1 + · · ·+ si) > i−N for 1 ≤ i ≤ r.

We prove, by induction on N , that ζ(s1, . . . , sr; a1, . . . , ar) is meromorphic in Ur(N) for

each N ≥ 0, which concludes the theorem.

When N = 0 this is nothing but Theorem 1. Now assume that the multiple Hurwitz

zeta function of depth r can be extended to Ur(N − 1) meromorphically. Hence all the

terms on the right hand side of (5), except possibly the first one, are meromorphic in

Ur(N) and the terms with k ≥ N are holomorphic in Ur(N). In order to show that the

series

∑
k≥N

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)ζ(s1 + k, s2, . . . , sr; a1, . . . , ar) (6)

is a holomorphic function on Ur(N) it suffices to show that it is normally convergent on
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any compact subset of Ur(N). As a consequence ζ(s1, . . . , sr; a1, . . . , ar) is a finite sum

of meromorphic functions and hence it is a meromorphic function on Ur(N).

As in the previous theorem, let C be a compact subset of Ur(N) and c be the

maximum of |s1 − 1| in Ur(N). Then we have for any k ≥ N

∥∥∥∥ (s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(a1, a2)(n1 + a1)

−s1−k · · · (nr + ar)
−sr

∥∥∥∥
C

is bounded above by

c(c+ 1) · · · (c+ k)

2k−N (k + 1)!
|Ak(a1, a2)|‖(n1 + a1)

−s1−N · · · (nr + ar)
−sr‖C .

We have the family (‖(n1 + a1)
−s1−N · · · (nr + ar)

−sr‖C)n1>···>nr
is summable, since

(s1 +N, s2, . . . , sr) ∈ Ur, and the series
∑

k≥N
c(c+1)···(c+k)
2k−N (k+1)!

|Ak(a1, a2)| is convergent as
|Ak(a1, a2)| < bk+1 for some b < 2. �

Remark 2. Let e(z) denote e2πiz. For any a1, . . . , ar ∈ [0, 1) and λ1, . . . , λr ∈ R,

the multiple Lerch zeta function of depth r on Ur is defined by

ζ(s1, . . . , sr; a1, . . . , ar;λ1, . . . , λr) =
∑

n1>···>nr>0

e(λ1n1 + · · ·+ λrnr)

(n1 + a1)s1 · · · (nr + ar)sr

and it is a holomorphic function on Ur as the series on the right hand side above is

normally convergent on any compact subset of Ur. The analytic continuation of these

functions can be obtained by the following version of the translation formula.

ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar;λ1 + λ2, λ3, . . . , λr)

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
Ak(λ1, a1, a2)ζ(s1 + k, s2, . . . , sr; a1, . . . , ar, λ1, . . . , λr),

(7)

where Ak(λ1, a1, a2) = e(−λ1)(1 − a2 + a1)
k+1 − (a1 − a2)

k+1. The formula (7) can be

deduced from the following formula.

e(λ1(n1 − 1))(n1 + a2 − 1)1−s1 − e(λ1n1)(n1 + a2)
1−s1

=
∑
k≥0

(s1 − 1) · · · (s1 + k − 1)

(k + 1)!
(n1 + a1)

−s1−kAk(λ1, a1, a2). (8)

Analytic continuation of a more general class of multiple Hurwitz–Lerch zeta functions

using certain integrals has been given by Komori ([9, Theorem 3.14]) along with a de-

scription of the set of its possible singularities. The analytic coninuation and singularities

of multiple Lerch zeta functions, using a variant of translation formula, is studied by Gun

and Saha [3] and the results are included in the thesis work of Saha [14].
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3. Matrix representation of the translation formula.

We can view the translation formula as the first one in an infinite family of relations,

each obtained successively by applying the translation s1 �→ s1+1 to both sides of (5). By

viewing the translation formula in this way, we can express this infinite family of relations

in terms of infinite matrices. More precisely, we can write this family of relations as

Z(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar) = M(s1 − 1)Z(s1, . . . , sr; a1, . . . , ar), (9)

where Z(s1, . . . , sr; a1, . . . , ar) is the infinite column vector given by

Z(s1, . . . , sr; a1, . . . , ar) =

⎛
⎜⎜⎜⎝

ζ(s1, s2 . . . , sr; a1, a2, . . . , ar)

ζ(s1 + 1, s2 . . . , sr; a1, a2, . . . , ar)

ζ(s1 + 2, s2 . . . , sr; a1, a2, . . . , ar)
...

⎞
⎟⎟⎟⎠ , (10)

and

M(t) =

⎛
⎜⎜⎜⎜⎜⎝

tA0
t(t+1)

2! A1
t(t+1)(t+2)

3! A2 · · ·
0 (t+ 1)A0

(t+1)(t+2)
2! A1 · · ·

0 0 (t+ 2)A0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (11)

In the definition of matrix M we denoted Ak(a1, a2) by Ak for simplicity. Observe that

M(t) can be written as a product of two matrices D(t) and G(t) as

M(t) = G(t)D(t) = D(t)G(t+ 1), (12)

where

D(t) =

⎛
⎜⎜⎜⎝
t 0 0 · · ·
0 t+ 1 0 · · ·
0 0 t+ 2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ , G(t) =

⎛
⎜⎜⎜⎜⎜⎝

A0
t
2!A1

t(t+1)
3! A2 · · ·

0 A0
(t+1)
2! A1 · · ·

0 0 A0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (13)

Let B(t) denote the following matrix:

B(t) =

⎛
⎜⎜⎜⎝
0 t 0 · · ·
0 0 t+ 1 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (14)

Then we can write G(t) = g(B(t)), where g(t) is the formal power series

(e(a1−a2)t(et − 1))/t. Let h(t) be the formal power series which is inverse of g(t), i.e.
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h(t) =
te(a2−a1)t

et − 1
=

∑
n≥0

Bn(a2 − a1)
tn

n!
,

where Bn(x) denote the nth Bernoulli polynomial.

Since G(t) and D(t) are upper triangular matrices whose diagonal elements are

invertible, we have G(t) and D(t) are invertible. If we denote the inverse of M(t) by

N(t), then we have

N(t) = D(t)−1G(t)−1 = G(t+ 1)−1D(t)−1. (15)

Since G(t) = g(B(t)) and h(t) is the inverse of g(t), formula (15) can be equivalently

written as

N(t) = D(t)−1h(B(t)) = h(B(t+ 1))D(t)−1. (16)

Hence we have

N(t) = N(t; a1, a2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
t

B1(a2−a1)
1!

(t+1)B2(a2−a1)
2!

(t+1)(t+2)B3(a2−a1)
3! · · ·

0 1
t+1

B1(a2−a1)
1!

(t+2)B2(a2−a1)
2! · · ·

0 0 1
t+2

B1(a2−a1)
1! · · ·

0 0 0 1
t+3 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

From the above description one may be tempted to express the column vector

Z(s1, . . . , sr; a1, . . . , ar) as a product of N(s1 − 1; a1, a2) with the column vector Z(s1 +

s2 − 1, s3 . . . , sr; a2, . . . , ar). However, this does not seem to be possible as the entries of

the formal product of the matrices N(s1−1; a1, a2) and Z(s1+s2−1, s3 . . . , sr; a2, . . . , ar)

are not convergent series. To overcome this hurdle, in view of (15), we express formula

(9) as

D−1(s1 − 1)Z(s1 + s2 − 1, . . . , sr; a2, . . . , ar) = G(s1)Z(s1, . . . , sr; a1, . . . , ar). (18)

We now choose an integer K ≥ 1 and let I = {n ∈ N : 0 ≤ n ≤ K−1}, and J = {n ∈ N :

n ≥ K}, where N denotes the set of integers n ≥ 0. With these notations we can write

infinite matrices as block matrices, for example

G(s1) =

(
GII(s1) GIJ(s1)

0JI GJJ(s1)

)
.

From (18) we have

D−1
II (s1 − 1)ZI(s1 + s2 − 1, s3, . . . , sr; a2, a3 . . . , ar)

= GII(s1)ZI(s1, . . . , sr; a1, . . . , ar) +GIJ(s1)ZJ(s1, . . . , sr; a1, . . . , ar). (19)

Hence we deduce that
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ZI(s1, . . . , sr; a1, . . . , ar) = G−1
II (s1)D

−1
II (s1 − 1)ZI(s1 + s2 − 1, s3 . . . , sr; a2, . . . , ar)

−G−1
II (s1)GIJ(s1)ZJ(s1, . . . , sr; a1, . . . , ar). (20)

The entries in the product of the matrices in the first term of the right hand side of (20)

are meromorphic in Cr and the entries of the product

G−1
II GIJ(s1)ZJ(s1, . . . , sr; a1, . . . , ar) (21)

are holomorphic in Ur(K). Comparing the first entry of the column vectors of both sides

of (20) we get

ζ(s1, . . . , sr; a1, . . . , ar) =
1

s1 − 1
ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar)

+
K−2∑
k=0

s1(s1 + 1) · · · (s1 + k − 1)

(k + 1)!
Bk+1(a2 − a1)ζ(s1 + s2 + k, s3, . . . , sr; a2, . . . , ar)

+ ξK(s1, . . . , sr; a1, . . . , ar), (22)

where ξK(s1, . . . , sr; a1, . . . , ar) is a holomorphic function in Ur(K). This is what we get

by applying the Euler–Maclaurin summation formula to n1, the first index of summation,

in (1) as obtained by Akiyama and Ishikawa (see [2, Section 3]), except here we have a

more precise error term.

4. Poles and residues.

In this section, we obtain a list of possible polar hyperplanes of the multiple Hurwitz

zeta function and express their residues, along these hyperplanes, as matrix coefficients.

For any j ≥ 0, let Z≤j denote the set of all integers n such that n ≤ j.

The following theorem gives a list of possible singularities of multiple Hurwitz zeta

function:

Theorem 3. The multiple Hurwitz zeta function of depth r has at most a simple

pole along the following hyperplanes

s1 = 1, s1 + s2 + · · ·+ si ∈ Z≤i for i = 2, 3, . . . , r, (23)

while it is a holomorphic function on Cr outside the union of these hyperplanes.

Proof. We prove the theorem by induction on the depth r. Since the Hurwitz

zeta function is a holomorphic function on C except at s = 1, where it has a simple pole,

the theorem holds when r = 1.

Let r ≥ 2 and assume that the theorem is true for multiple Hurwitz zeta functions

of depth ≤ r − 1. Choose an integer K ≥ 1. As earlier, let I be the set of all integers n

such that 0 ≤ n ≤ K − 1, and J be the set of integers n such that n ≥ K. Then by (20)

we have

ZI(s1, . . . , sr; a1, . . . , ar) = NII(s1 − 1; a1, a2)ZI(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar)
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−G−1
II (s1)GIJ(s1)ZJ(s1, . . . , sr; a1, . . . , ar).

The entries of the column vector G−1
II (s1)GIJ(s1)ZJ(s1, . . . , sr; a1, . . . , ar) are holo-

morphic on Ur(K). Hence the polar hyperplanes in Ur(K) of the first entry of the

column vector on the left hand side, which is ζ(s1, . . . , sr; a1, . . . , ar), are the union of

polar hyperplanes of the first row of NII(s1 − 1; a1, a2) and the entries of the column

vector ZI(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar).

All the entries of the first row of the matrix NII(s1−1; a1, a2) are holomorphic except

the first entry where it has a simple pole at s1 = 1. By the induction hypothesis the

polar hyperplanes for the entries of the column vector ζ(s1, . . . , sr; a1, . . . , ar) in Ur(K)

are

s1 + · · ·+ si = n, where − (K − 1) + i ≤ n ≤ i and 2 ≤ i ≤ r. (24)

Since Ur(K) is an open covering of Cr, the theorem follows. �

We define the residue along the hyperplane given by the equation s1+ · · ·+si = i−k

to be the restriction to this hyperplane of the meromorphic function (s1 + · · ·+ si − i+

k)ζ(s1, . . . , sr; a1, . . . , ar). To verify if a hyperplane listed in the above theorem is indeed

a polar hyperplane, we compute the residue of the multiple Hurwitz zeta function of

depth r along that hyperplane.

Theorem 4. The residue of the multiple Hurwitz zeta function along the hyper-

plane s1 = 1 is the restriction of the function ζ(s2, . . . , sr; a2, . . . , ar) to the hyperplane

s1 = 1. The residue along the hyperplane s1+ · · ·+si = i−k, 2 ≤ i ≤ r and k ≥ 0, is the

product of the (0, k)th entry of the matrix
∏i−1

d=1 N(s1 + · · ·+ sd − d; ad, ad+1) by the re-

striction of the function ζ(si+1, . . . , sr; ai+1, . . . , ar) to the hyperplane s1+· · ·+si = i−k.

Proof. To prove the first assertion, consider the function

ζ(s1, . . . , sr; a1, . . . , ar)− ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar)

s1 − 1
. (25)

We can see by (20) or (22) that the function above has no pole along the hyperplane

s1 = 1. Hence the residue of the function ζ(s1, . . . , sr; a1, . . . , ar) is restriction of the

meromorphic function ζ(s1 + s2 − 1, s3, . . . , sr; a2, . . . , ar) to s1 = 1 which is same as

ζ(s2, . . . , sr; a2, . . . , ar).

To prove the second assertion, let s1 + · · · + si = i − k, 2 ≤ i ≤ r and k ≥ 0

be the given hyperplane. Let K be an integer such that K > k. Since the entries of

the second term on the right hand side of (20) are holomorphic along the hyperplane

s1 + · · · + si = i − k, this term itself can be neglected. Hence by iterating the formula

(20) i− 1 times we get
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ZI(s1, . . . , sr; a1, . . . , ar)

=
i−1∏
d=1

NII(s1 + · · ·+ sd − d; ad, ad+1)ZI(s1 + · · ·+ si − i+ 1, si+1, . . . , sr; ai, . . . , ar) .

(26)

The entries of the matrix
∏i−1

d=1 NII(s1 + · · · + sd − d; ad, ad+1) have no pole along the

hyperplane s1+ · · ·+si = i−k since they are rational functions in s1, . . . , si−1. The first

k−1 entries of the column vector are ζ(s1+· · ·+si−i+1+j, si+1, . . . , sr; ai, ai+1, . . . , ar),

(0 ≤ j ≤ k − 1) and the entries with index > k are ζ(s1 + · · · + si − i + 1 +

j, si+1, . . . , sr; ai, ai+1, . . . , ar), (j > k). Hence these entries have no pole along the

hyperplane s1 + · · · + si = i − k (by Theorem 3). Hence only the kth entry of

ZI(s1 + · · · + si − i + 1) possibly has a pole along the hyperplane s1 + · · · + si = i − k.

Hence the residue of ζ(s1, . . . , sr; a1, . . . , ar) along the hyperplane is the product of the

(0, k)th entry of the matrix
∏i−1

d=1 NII(s1 + · · · + sd − d; ad, ad+1) by the residue of the

function ζ(s1 + · · ·+ si − i+ 1 + k, si+1, . . . , sr; ai, . . . , ar). By considering the function

ζ(s1 + · · ·+ si − i+ 1 + k, si+1, . . . , sr; ai, . . . , ar)

− ζ(s1 + · · ·+ si+1 − i+ k, si+2, . . . , sr; ai+1, . . . , ar)

s1 + · · ·+ si − i+ k

we can see that the residue of ζ(s1 + · · · + si − i + 1 + k, si+1, . . . , sr; ai, ai+1, . . . , ar)

along the hyperplane s1 + · · · + si = i − k is the restriction of the function

ζ(si+1, . . . , sr; ai+1, . . . , ar) to s1 + · · ·+ si = i− k, from which the theorem follows. �

Now, using Theorem 4, we deduce the exact list of polar hyperplanes for multiple

Hurwitz zeta functions of depth r in the case when ai+1−ai (1 ≤ i ≤ r−1) are rationals.

The lack of appropriate information about the real zeros of Bernoulli polynomials restricts

us to this particular case. To obtain the exact list of polar hyperplanes, we rule out the

hyperplanes listed in Theorem 3 for which the computed residue is 0.

Theorem 5. Let r ≥ 2, and assume that ai+1−ai ∈ Q∩ (−1, 1) for 1 ≤ i ≤ r− 1.

The precise list of the polar hyperplanes for the multiple Hurwitz zeta function of depth

r is the following :

s1 = 1;

s1 + s2 = 2− k (k ≥ 0) if and only if Bk(a2 − a1) 
= 0;

s1 + · · ·+ si = i− k (i ≥ 3 and k ≥ 0).

Proof. Since the residue of ζ(s1, . . . , sr; a1, . . . , ar) along the hyperplane s1 = 1

is ζ(s2, . . . , sr; a2, . . . , ar) which is a non-zero meromorphic function, the first assertion

follows.

The residue of ζ(s1, . . . , sr; a1, . . . , ar) along the hyperplane s1 + s2 = 2 − k is

the product of (0, k)th entry of the matrix N(s1 − 1; a1, a2) by ζ(s3, . . . , sr; a3, . . . , ar).

The matrix N(s1 − 1; a1, a2) has (0, 0)th entry as 1/(s1 − 1) and the (0, k)th

entry as (s1 · · · (s1 + k − 2)Bk(a2 − a1))/(k)!. By using this and the fact that
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ζ(s3, . . . , sr; a3, . . . , ar) is a non-zero meromorphic function, the second assertion also

holds.

Let i = 3. Since ζ(s4, . . . , sr; a4, . . . , ar) is a non-zero meromorphic function to

prove the theorem in this case it suffices to prove that the (0, k)th entry of the matrix

N(s1−1; a1, a2)N(s1+s2−2; a2, a3) is non-zero. Observe that, when k is even, Bk(a3−a2)

is non-zero, and when k is odd, eitherB1(a2−a1)Bk−1(a3−a2) orBk−1(a2−a1)B1(a3−a2)

is non-zero. This follows from the fact that even Bernoulli polynomials does not vanish

at rational numbers, and both a2 − a1, a3 − a2 can not be equal to 1/2. Thus in any

case, one of the summand of the (0, k)th entry of N(s1 − 1; a1, a2)N(s1 + s2 − 2; a2, a3)

is non-zero. Hence we are done in this case.

Let i ≥ 4. Since ζ(si+1, . . . , sr; ai+1, . . . , ar) is a non-zero meromorphic function

to prove the last assertion it suffices to prove that the (0, k)th entry of the matrix∏i−1
d=1 N(s1 + · · ·+ sd − d; ad, ad+1) is non-zero. The entries of the first row of the matrix∏i−2
d=1 N(s1+· · ·+sd−d; ad, ad+1) belong to Q(s1−1, s1+s2−2, . . . , s1+· · ·+si−2−(i−2)).

We have that the first two entries of the matrix
∏i−2

d=1 N(s1 + · · · + sd − d; ad, ad+1)

is non-zero which can be observed by induction. The entries of the kth column of

N(s1+· · ·+si−i; ai, ai+1) belong to Q(s1+· · ·+si−i). Those which are not equal to zero

are linearly independent over Q(s1−1, s1+s2−2, . . . , s1+· · ·+si−2−(i−2)). Since one of

Bk(x) and Bk−1(x) is non-zero we have at least one of the first two entries in this column

is not zero. This implies that the (0, k)th entry of
∏i−1

d=1 N(s1 + · · ·+ sd − d; ad, ad+1) is

non-zero, which concludes the proof. �

Remark 3. Since the residues of ζ(s1, . . . , sr; a1, . . . , ar) depend on the values of

Bernoulli polynomials at ai+1 − ai, (1 ≤ i ≤ r − 1), in general, the exact list of polar

hyperplanes of ζ(s1, . . . , sr; a1, . . . , ar) cannot be given. However, once a1, . . . , ar are

given, this seems easily possible by the method of Theorem 5.

Remark 4. Whether a given hyperplane is indeed a polar hyperplane or not

depends on the zeros of Bernoulli polynomials. The later is studied by many authors,

for example see Inkeri [7].
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