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Abstract. Consider the nonlinear Schrödinger equation (NLS) with a
potential with a single negative eigenvalue. It has solitons with negative small
energy, which are asymptotically stable, and, if the nonlinearity is focusing,
then also solitons with positive large energy, which are unstable. In this paper
we classify the global dynamics below the second lowest energy of solitons
under small mass and radial symmetry constraints.

1. Introduction.

1.1. Background and motivation.

Nonlinear dispersive equations have solutions with various types of behavior in time,

typically scattering (globally dispersive), blow-up, and solitary waves, i.e., solitons. In the

recent years, especially since the work of Kenig and Merle [13], global dynamics leading

to those different types have been revealed among large general solutions, so that one

can partially predict evolution of each solution from the initial data. Kenig and Merle

[13] studied the energy-critical NLS

iu̇−Δu = |u|4u, u(t, x) : R1+3 → C, (1.1)

and proved that all solutions with energy less than the ground state W

E(u) =

∫
R3

|∇u|2
2

− |u|
6

6
dx < E(W ),

W (x) := (1 + |x|2/3)−1/2, −ΔW = W 5,

(1.2)

either scatter or blow-up, and that the two types of behavior are distinguished by some

explicit functionals of the initial data. For example,

K(u(0)) =

∫
R3

|∇u(0)|2 − |u(0)|6dx
{
≥ 0 =⇒ scattering,

< 0 =⇒ blow-up.
(1.3)

The distinction is essentially the same as that in the classical result for the nonlinear

Klein–Gordon equation by Payne and Sattinger [21] into global existence vs. blow-up, but

the crucial aspect of Kenig–Merle’s work is to reveal and exploit the global dispersion in
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the scattering part. It was extended to the threshold energy E(u) ≤ E(W ) by Duyckaerts

and Merle [6], and then slightly above the ground state by Schlag and the author [18],

for the nonlinear Klein–Gordon equation

ü−Δu+ u = u3, u(t, x) : R1+3 → R,

E(u) =

∫
R3

|u̇|2 + |∇u|2 + |u|2
2

− |u|
4

4
dx < E(Q) + ε2,

(1.4)

where Q ∈ H2(R3) is the unique positive radial solution or the ground state of

−ΔQ+Q = Q3. (1.5)

The types of behavior in that case are separated into 9 sets of solutions by center-stable

and center-unstable manifolds of the ground state, and the mechanism of transition be-

tween scattering and blow-up is revealed. Furthermore, Duyckaerts, Kenig and Merle [5]

established a complete classification of asymptotic behavior of solutions, for the energy-

critical wave equation

ü−Δu = u5, u(t, x) : R1+3 → R, (1.6)

in terms of resolution into solitons (i.e. rescaled W ), without any size restriction on

the initial data. All of these works have been extended to several equations and settings

including the above examples, except the soliton resolution which is yet limited to variants

of energy-critical wave equations.

General dynamics are, however, far more complicated for more general or physical

equations. In particular, many equations, especially of the NLS type, have many solitons,

differing in shape, energy, stability, etc. Heuristically, unstable solitons are expected to

collapse into stable solitons, radiating dispersive waves. For small solitons of the NLS

with a decaying potential V (x), Tsai and Yau [24]–[27] first proved such a phenomenon,

as well as asymptotic stability of the ground soliton, in the case −Δ+ V has two well-

positioned negative eigenvalues. Since then, there have been intensive studies (cf. [3], [9],

[17], [22], [23]) on global behavior of small solutions including many solitons, but very

little is rigorously known about dynamical relation between solitons which are neither

close nor similar to each other. It seems hard in such cases to construct or control

solutions in a precise way along some anticipated evolution. A more natural strategy is

to deal altogether with general solutions including or at least close to those solitons, with

less precise information on individual trajectories.

1.2. Setting and the main result.

As a first step toward the above problem, we consider the NLS with a potential

iu̇+Hu = s|u|2u, H := −Δ+ V, s = ±,
u(t, x) : R1+3 → C, V (x) : R3 → R,

(1.7)

in the simplest non-trivial setting, namely the case with the unique eigenvalue
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Hφ0 = e0φ0, e0 < 0, 0 < φ0 ∈ H2(R3), ‖φ0‖L2(R3) = 1, (1.8)

with spec(H|φ⊥
0
) = [0,∞) absolutely continuous, and the radial symmetry restriction

u(t, x) = u(t, |x|), V (x) = V (|x|). (1.9)

Hence the initial data set is the radial subspace of the Sobolev space

H1
r (R

3) := {u ∈ L2(R3) | ∇u ∈ L2(R3), u(x) = u(|x|)}. (1.10)

The nonlinearity can be either defocusing s = − or focusing s = +. In the focusing case

s = +, the above equation is one of the simplest equations with both stable and unstable

solitons, where the former is small and the latter is large. The goal of this study is a

complete description of global dynamics in a fairly large solution space, containing both

the stable and the unstable solitons. In this paper, we consider the region of small mass

and an upper energy constraint which eliminates the unstable solitons. An implication

of the main result is that if an unstable (large) soliton with small mass and the second

largest energy is perturbed to decrease its energy and the mass, then it either blows up

or collapses into a (small) ground state soliton, radiating most of the energy (which is

large) into a dispersive wave. The two types of behavior is distinguished by a functional

of the initial data, similarly to Kenig–Merle or Payne–Sattinger.

In order to state the main result, we need a few more assumptions on V . A simple

sufficient condition is that V is in the Schwartz class and H has no resonance:

Ḣ1(R3) 
 ϕ, (−Δ+ V )ϕ = 0 =⇒ ϕ = 0. (1.11)

The existence of small solitons is well known in the above setting. The function u(t, x) =

e−itωϕ(x) is a solution of (1.7) if and only if

(H + ω)ϕ = s|ϕ|2ϕ. (1.12)

In this paper we call a solution of (1.12) a soliton, denoting the set of solitons by

S := {ϕ ∈ H1
r (R

3) | ∃ω ∈ R s.t. (1.12)} (1.13)

and the energy (Hamiltonian) and the mass (charge) by

E(u) :=

∫
R3

|∇u|2 + V |u|2
2

− s|u|4
4

dx, M(u) :=

∫
R3

|u|2
2

dx, (1.14)

which are continuous on H1(R3) and conserved for (1.7). For each fixed mass M(ϕ) =

μ > 0, we can define the energy levels of solitons by induction on j = 0, 1, 2, . . . ,

Ej(μ) := inf{E(ϕ) | ϕ ∈ S , M(ϕ) = μ, E(ϕ) > Ej−1(μ)}, (1.15)

where E−1(μ) := −∞ and inf ∅ :=∞, then classify the solitons
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Sj := {ϕ ∈ S | E(ϕ) = Ej(M(ϕ))}. (1.16)

S0 is the set of least energy solitons, namely the ground states, while Sj is the j-th

excited state for j ≥ 1. In this paper, we are concerned only with S0 and S1.

It is easy to observe that the ground states for small mass are bifurcation from 0

generated by the linear ground state φ0 in (1.8). More precisely, there exists 0 < zb  1

and a C1 map

(Φ,Ω) : Db := {z ∈ C | |z|2 < 2zb} → H1
r (R

3)× R (1.17)

such that (ϕ, ω) = (Φ[z],Ω[z]) solves (1.12) for each z ∈ Db and

Φ[z] = zφ0 + γ, γ ⊥ φ0, ‖γ‖H1 � |z|3. (1.18)

See [10] for a proof in a more general setting. We can prove that Φ(Db) = S0 under the

small mass constraint M < z2b , while the first excited energy satisfies

E1(μ) =

{
E
0(Q)M(Q)μ−1(1 + o(1)) (s = +)

∞ (s = −), (1.19)

as μ→ 0, where E
0 denotes the energy without the potential, namely

E
0(ϕ) :=

∫
R3

|∇u|2
2

− s
|u|4
4

dx. (1.20)

In fact, in the defocusing case s = −, the soliton (1.12) is unique for each fixed M(ϕ) =

μ > 0 modulo the gauge symmetry eiθ. In the focusing case s = +, the first excited

states are generated by scaling of Q

S1 
 ϕ = ω1/2(Q+ o(1))(ω1/2x) (M(ϕ)→ 0) (1.21)

We do not need the above characterizations of S1, but the variational property with

respect to the virial-type functional

K2(u) :=

∫
R3

|∇u|2 − rVr|u|2
2

− s
3|u|4
4

dx = ∂α=1E(α
3/2u(αx)) (1.22)

plays a crucial role as in the case V = 0. Henceforth ∂α=a denotes the partial derivative

with respect to α at α = a, namely

∂α=af := lim
ε→0

f |α=a+ε − f |α=a

ε
. (1.23)

The following is the main result of this paper.

Theorem 1.1. There exists 0 < μ�  1 such that for any u(0) ∈ H1
r (R

3) satisfying

M(u(0)) ≤ μ� and E(u(0)) < E1(M(u(0))), the corresponding solution of (1.7) either

blows up in finite time both in t > 0 and in t < 0, or scatters as t→ ±∞ to the ground
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states S0. More precisely, in the former case, there are T± ∈ (0,∞) such that the unique

solution u ∈ C((−T−, T+);H
1
r ) exists and

lim
t→±(T±−0)

‖∇u(t)‖L2(R3) =∞ = lim sup
t→±(T±−0)

‖u(t)‖L∞(R3). (1.24)

In the latter case, there are a C1 function z : R → Db ⊂ C and u± ∈ H1
r (R

3) such that

|z(t)| converges as t→ ±∞ and

lim
t→±∞ ‖u(t)− Φ[z(t)]− e−itΔu±‖H1(R3) = 0. (1.25)

Moreover, the blow up occurs if and only if

s = +, ‖∇u(0)‖L2(R3) > 1, and K2(u(0)) < 0, (1.26)

which persists in t as long as the solution u exists.

The above theorem contains the asymptotic stability of the ground state S0 for

small H1 radial solutions. This part is contained in the asymptotic stability for small

solutions in [10] by Gustafson, Tsai and the author, which does not need the radial

symmetry restriction.

If the potential V = 0, then there is no small soliton such as S0, but the ground

state Q as in (1.4) exists and unstable. In that case, the above result regarding S0 = {0}
and S1 = {αQ(αx)}α>0 was obtained by Holmer and Roudenko [11], extended to the

non-radial case by Duyckaerts, Holmer and Roudenko [4], to the threshold energy by

Duyckaerts and Roudenko [7], and slightly above the threshold (in the radial case) by

Schlag and the author [19]. In these works there is no small-mass constraint as above,

but it is not an essential difference, because the scale invariance in the case V = 0 allows

one freely to add or remove such a restriction.

1.3. Difficulties and ideas in the proof.

The proof follows the strategy of Kenig and Merle [13], which consists of a stationary

part based on the classical variational argument for the elliptic equation (1.12), and a

dynamical (or scattering) part based on the variational argument in space-time: the

profile decomposition by Bahouri and Gérard [1].

The problem caused by the potential in the stationary variational argument can be

read immediately from the virial identity

∂t〈iu̇|x · ∇u〉 = −2K2(u). (1.27)

In the absence of V , the functional K2 can not vanish under the energy constraint except

at 0, and so sign-definite along each trajectory. This leads to monotonicity in the virial

identity, which has been the crucial starting point for V = 0, including the case slightly

above the ground state [18], where possible change of signK2 was controlled by using

the linearized operator around Q.

In the presence of V , the functional K2 changes the sign around the ground solitons

S0. Note that this problem does not arise in the elliptic equation (1.12) using the Nehari
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functional

∂α=1(E+ ωM)(αu) =

∫
R3

|∇u|2 + (V + ω)|u|2 − |u|4dx, (1.28)

because the excited states S1 can be distinguished from the ground states S0 by the time

frequency ω. Indeed, ω → −e0 on S0 while ω → ∞ on S1 as M → 0. In contrast, the

virial functional K2 is independent of ω, since it is derived by the L2-preserving dilation.

The above problem in the virial identity is however easily solved using the fact that

the disturbance of signK2 occurs only in a small neighborhood of H1(R3), where we have

the asymptotic stability of S0 from [10]. In fact, the region K2 � M 1 splits into two

sets far from each other in H1(R3): one around 0 satisfying

‖∇ϕ‖2L2(R3) + ‖ϕ‖2L4(R3) � M(ϕ) 1, (1.29)

and the other with large energy satisfying

min(‖∇ϕ‖2L2(R3), ‖ϕ‖4L4(R3)) � M(ϕ)−1 � 1. (1.30)

See Lemma 2.3 for a more general statement with a proof. In (1.26), the condition

‖∇u‖L2 > 1 is imposed only to distinguish the above two cases, so there are many

alternative conditions, such as ‖u‖L4 > 1.

The problems in the space-time variational argument, caused by the potential, or

more precisely by the stable solitons S0, appear more fundamental. First, we should

obviously remove the stable soliton part from the solution to apply the profile decompo-

sition, as it aims at global dispersion or space-time integrability of the solutions. Second,

the linear terms of the dispersive part, namely the interaction with the small soliton, can

not be treated as part of the nonlinear perturbation, since it would require smallness in

L2
t of the remainder of the profile decomposition, which is impossible as long as we take

the initial data from the L2
x Sobolev space.

Therefore, we have to consider the linearized equation around the small soliton as

the reference equation in the profile decomposition for the dispersive component. Since

the modulation in time, namely z(t) in (1.25), depends on the solution, it means that we

have to consider a sequence of equations corresponding to the sequence of solutions to

which we apply the concentration compactness.

Another problem is that we have very poor control on the global or asymptotic

behavior of z(t). For example, the convergence of |z(t)| as t → ∞ becomes arbitrarily

slow by choosing small H1 data, see [10, Theorem 1.9]. This causes difficulties at least

in the following two places.

First, the nonlinear profile decomposition is a method to approximate solutions

globally in time, but we can not do it for the soliton part z(t). Therefore we have to

distinguish time into two regimes: around and away from the profiles, approximating z

only in the former, while relying on the smallness of the dispersive component in the

latter.

Second, the nonlinear profiles moving to t → ±∞ were defined in Kenig–Merle

[13] by the wave operator, i.e., solving the final state problem with the linear profile as
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the scattering state. The existence of solution to the final state problem in the current

setting, namely around the ground states S0, was proved in [10], but we do not even

know the uniqueness, while we would need some continuity estimate. Hence we have to

define the nonlinear profiles in another way, that is the weak limit along a time sequence,

proving afterward that the linear profile is the scattering state. The drawback of this

definition is that we can not construct global approximation at one stroke as in Kenig–

Merle, but have to proceed step by step over each profile. The approach in this paper

can be roughly regarded as a hybrid between Bahouri–Gérard [1] and Kenig–Merle [13].

The former used the scattering to describe the limit of sequence of solutions, while the

latter used the limit of sequence to obtain the scattering. We need to proceed from both

the sides.

Yet another complication in the estimates is due to the quadratic nonlinearity in the

equation after linearization, to which we can not directly apply the Strichartz estimate to

obtain Lipschitz estimate in the energy space for global perturbation, together with the

smallness of the remainder in the profile decomposition. To solve this problem, we follow

the idea in [16], using non-admissible Strichartz norms and measuring the initial data by

the Strichartz norm. Such estimates are derived for the linearized equation, treating the

time dependent potential by the double endpoint Strichartz estimate as in [10], but it

requires the non-admissible version, obtained independently by Foschi [8] and by Vilela

[28].

Extension of the result in this paper to the lower space dimensions would require

similar modification to the argument by Mizumachi [14], [15], who extended the small

data result of [10] by replacing the endpoint Strichartz estimate with Kato’s weighted

L2 space-time estimate. Apart from that issue, it should be rather straightforward to

extend it to general space dimensions and general power nonlinearity between the mass

and the energy critical exponents, namely

iu̇+Hu = s|u|αu, u(t, x) : R1+d → C,
4

d
< α <

4

d− 2
, (1.31)

even though the 3D-cubic setting is exploited for minor simplification in several places

of this paper.

1.4. Notation.

Lp
x, B

s
p,q, and Hs

p denote respectively the standard Lebesgue, inhomogeneous Besov,

and inhomogeneous Sobolev spaces on R
3. The L2 based Sobolev space is denoted by

Hs = Hs
2 . The Lp

x norm is often denoted by ‖ · ‖p. For any function space X on R
3, the

subspace of radial functions is denoted by Xr, and the Lp space in t ∈ R with values in

X is denoted by Lp
tX. For any function space Z on R

1+3 and I ⊂ R, Z(I) denotes the

restriction onto I × R
3. The L2 inner products on R

3 are denoted by

(f |g) :=
∫
R3

f(x)g(x)dx, 〈f |g〉 := Re(f |g). (1.32)

1.5. Assumptions on V .

Let L∞0 (R3) = {ϕ ∈ L∞(R3) | lim
R→∞

‖ϕ‖L∞(|x|>R) = 0}. The precise assumption on

V is as follows.
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(i) V : R3 → R is radially symmetric.

(ii) V, x∇V, x2∇2V ∈ (L2 + L∞0 )(R3) and V/|x| ∈ L1(R3).

(iii) −Δ+ V on L2
r(R

3) has a unique and negative eigenvalue.

(iv) The wave operator W = limt→∞ eitHeitΔ and its adjoint W ∗ are bounded on the

Sobolev space W k,p(R3) for some p > 6 and k = 0, 1.

The above assumption (ii) implies that

lim
|x|→∞

|V (x)|+ |x∇V (x)| = 0 (1.33)

by the radial Sobolev inequalities, cf. Appendix Appendix A. By Beceanu [2, Corollary

1.5], the assumption (iv) is fulfilled if 0 is neither an eigenvalue nor resonance of H, and

V ∈ (Lp ∩ FḂ1/2
2,1 )(R

3).

For example, if ψ ∈ S(R3) is a radial positive function, the above assumptions (i)–

(iv) are satisfied by V = −aψ for a ∈ (1/a1, 1/a2), where a1 > a2 > 0 are the largest and

the second largest eigenvalues of the compact self-adjoint operator (−Δ)−1/2ψ(−Δ)−1/2

on L2
r(R

3).
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2. Standing waves.

This section collects some properties of the solutions of (1.12), namely solitons. It

is easy to see ω > 0 for ϕ ∈ H1
r (R

3), using the asymptotic behavior of the ODE as

r = |x| → ∞. We will see that in the defocusing case s = −, there is a unique soliton ϕ

for each ω ∈ (0,−e0) and nothing else. In the focusing case s = +, there is a soliton for

each ω ∈ (−e0,∞), among which we can specify the ground state and the first excited

state for each fixed small mass under the radial constraint.

2.1. Energy functionals.

For any ϕ ∈ H1(R3), and V : R
3 → R, we define the following functionals on

H1(R3).

�V �(ϕ) := 〈V ϕ|ϕ〉/2, M(ϕ) := �1�(ϕ) = ‖ϕ‖22/2, G(ϕ) := s‖ϕ‖44/4,
H(ϕ) := 〈Hϕ|ϕ〉/2 = ‖∇ϕ‖22/2 + �V �(ϕ), E := H−G.

(2.1)

The energy E and the mass M are conserved in time for (1.7). The corresponding

quantities without the potential V are denoted by H
0, E0, etc.

H
0(ϕ) := ‖∇ϕ‖22/2, E

0(ϕ) := ‖∇ϕ‖22/2− s‖ϕ‖44/4,
K

0
2(ϕ) := ∂α=1E

0(α3/2ϕ(αx)).
(2.2)
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For the variational property in the focusing case, we need the dilation operator

St
pϕ(x) := e3t/pϕ(etx), S ′pϕ(x) = (x · ∇+ 3/p)ϕ(x), (2.3)

which preserves the Lp
x norm. The same notation is used for the functional

(S ′pF )(ϕ) := ∂t=0F (St
pϕ). (2.4)

Then we have

S ′pM = (6/p− 3)M, S ′pH0 = (6/p− 1)H0,

S ′pG = (12/p− 3)G, S ′p�V � = −�S ′p/(p−2)V �.
(2.5)

The L2-scaling derivative plays a crucial role via the virial identity

K2 := S ′2E = 2H0 − 3G− �S ′∞V �. (2.6)

The following functional is used for convexity of E in St
p:

I := E−K2/2 = G/2 + �S ′3/2V �/2. (2.7)

If there is a family of solitons ω �→ ϕω ∈ H1 differentiable in ω ∈ R, then we have

∂ωE(ϕω) = 〈E′(ϕω)|ϕ′ω〉 = 〈−ωϕω|ϕ′ω〉 = −ω∂ωM(ϕω). (2.8)

For the potential part, we will frequently use the following bound

Lemma 2.1. Let V ∈ (L2 + L∞0 )(R3). Then for any ε > 0, there is C > 0 such

that

H1(R3) 
 ∀ϕ, |�V �(ϕ)| ≤ min(ε‖ϕ‖24 + C‖ϕ‖22, ε‖ϕ‖22 + C‖ϕ‖24). (2.9)

Proof. Let V = V2 + V∞ where V2 ∈ L2 and V∞ ∈ L∞0 . For any h > 0, we have

|�V2�(ϕ)| ≤ ‖V2‖L2(V >h)‖ϕ‖24 + h‖ϕ‖22, (2.10)

where ‖V2‖L2(V >h) → 0 as h→∞, so the right hand side is in the form of (2.9), choosing

h > 0 such that ‖V2‖L2(V >h) ≤ ε or h ≤ ε. For any R > 0,

|�V∞�(ϕ)| � ‖V∞‖L∞(|x|<R)‖ϕ‖24R3/2 + ‖V∞‖L∞(|x|>R)‖ϕ‖22, (2.11)

where ‖V∞‖L∞(|x|>R) → 0 as R→∞, so the right hand side is also in the form of (2.9),

choosing R > 0 such that ‖V∞‖∞R3/2 ≤ ε or ‖V∞‖L∞(|x|>R) ≤ ε. Adding the above two

estimates yields the conclusion. �
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2.2. Small solitons.

For small mass, the ground state is the bifurcation from zero, generated by the

ground state φ0 of H. The following precise statement can be extracted from [10, Lemma

2.1]

Lemma 2.2. There exists 0 < zb  1 and a C1 map

(Φ,Ω) : Db := {z ∈ C | |z|2 < 2zb} → H1
r (R

3)× R, (2.12)

such that (ϕ, ω) = (Φ[z],Ω[z]) is a soliton for each z ∈ Db, with a decomposition

Φ[z] = zφ0 + γ[z], Ω[z] = −e0 + o(z), γ[z] ⊥ φ0, ‖γ[z]‖H1 = o(|z|2), (2.13)

satisfying the gauge covariance (Φ[eiθz],Ω[eiθz]) = (eiθΦ[z],Ω[z]), and M(Φ[z]) = |z|2/2
+o(|z|4) is an increasing function of |z|. Moreover, there is an open set in H1

r (R
3) which

contains Φ[Db] but no other soliton.

Let μb > 0 be the maximal mass among those solitons:

μb := supM(Φ[Db]). (2.14)

Then the monotonicity implies that

[0, zb) 
 z �→M(Φ[z]) ∈ [0, μb) (2.15)

is an increasing bijection. Let z0 : [0, μb)→ [0, zb) be the inverse function, so that

M(Φ[z0(μ)]) = μ. (2.16)

The following lemma shows that the above solitons are the ground states for small

mass. It will be crucial also for identifying the first excited state.

Lemma 2.3 (Small mass dichotomy). For any ϕ ∈ H1(R3) satisfying K2(ϕ) 
M(ϕ)−1 and M(ϕ) 1, we have one of the following (i)–(iii)

(i) H
0(ϕ) � M(ϕ),

(ii) M(ϕ) � H
0(ϕ) ∼ E(ϕ) ∼ K2(ϕ),

(iii) s = + and G(ϕ) � H
0(ϕ) � M(ϕ)−1,

Moreover, in the case (iii), we have

|�V �(ϕ)|+ |�S ′pV �(ϕ)|+ |�S ′pS ′qV �(ϕ)|  H
0(ϕ) (2.17)

for any p, q > 0. In particular, G in (iii) can be replaced with 2I.
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Note that the first two regions overlap each other, but the last one is separated.

Thus the above lemma gives a dichotomy into (i)–(ii) and (iii). The case (ii) can be

removed if K2(ϕ)M(ϕ), which is mostly satisfied when the above lemma is used.

Proof. Let μ := M(ϕ) and h := H
0(ϕ). Using Gagliardo–Nirenberg, we have

|G(ϕ)| � ‖ϕ‖44 � h3/2μ1/2,

|�W �(ϕ)| � ‖W‖L2+L∞(μ+ h3/4μ1/4) (W = V,S ′pV,S ′pS ′qV ).
(2.18)

Splitting into three cases: (1) h � μ, (2) μ  h  μ−1, and (3) μ−1 � h, we may first

dispose of (1)=(i). In the case of (2), the above estimates imply

|2h−K2(ϕ)| = |�S ′∞V �(ϕ)− 3G(ϕ)| � μ+ h3/4μ1/4 + h3/2μ1/2  h, (2.19)

and the same estimate works for |H0(ϕ)−E(ϕ)| = |�V �(ϕ)−G(ϕ)|, leading to (ii). In the

case of (3), we have h � μ−1 � 1. Then using K2(ϕ) μ−1 � h and μ+ h3/4μ1/4  h

in (2.18), we obtain (2.17) and

h � 2h−K2(ϕ)− �S ′∞V �(ϕ) = 3G(ϕ), (2.20)

leading to (iii). �

The above lemma enables us to identify the solitons in Lemma 2.2 with S0:

Proposition 2.4. There exists 0 < μd ≤ μb and 0 < zd ≤ zb such that

{ϕ ∈ S0 |M(ϕ) < μd} = {Φ[z] | |z| < zd},
0 < μ < μd =⇒ E0(μ) = E(Φ[z0(μ)]) ∼ e0μ < 0.

(2.21)

Proof. Since K2 = 0 on S , we can apply the above lemma to any ϕ ∈ S with

M(ϕ) < μd  1, leading to either (i) or (iii). Taking μd > 0 small ensures that the

region (i) is in the uniqueness region of Φ[Db] in Lemma 2.2, as well as that the region

(iii) is far away. Then every ϕ ∈ S with M(ϕ) < μd is either in Φ[Db] or in the region

(iii). In the latter case, ϕ is an excited state, as Φ gives a soliton with the same mass and

negative energy. Thus we obtain the first identity in (2.21). The second one is its obvious

consequence. The behavior of E0 follows from (2.8) together with the differentiability of

Φ from Lemma 2.2. �

2.3. Focusing case s = +.

Next we investigate the first excited state of small mass in the focusing case. The

small mass dichotomy Lemma 2.3 allows us to ignore the potential effect, leading to the

same variational characterization as V = 0 in the higher energy region.

Proposition 2.5. Let s = +. There exists 0 < μe ≤ μd such that for 0 < μ < μe

E1(μ) = inf{E(ϕ) | ϕ ∈ H1
r , M(ϕ) = μ, K2(ϕ) = 0, G(ϕ) ≥ 1}

= inf{I(ϕ) | ϕ ∈ H1
r , M(ϕ) ≤ μ, K2(ϕ) ≤ 0, G(ϕ) ≥ 1}
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= μ−1
M(Q)E0(Q)(1 + o(1))� 1 (μ→ 0), (2.22)

where inf is attained by some ϕ ∈ S1, and E1(μ) is decreasing in μ. Moreover, there is

a continuous function κ : (0, μe) × (0,∞) → (0, 1/2) such that for any δ > 0 and any

ϕ ∈ H1
r satisfying M(ϕ) < μe, E(ϕ) ≤ E1(μ)− δ and ‖∇ϕ‖2 ≥ 1, we have

|K2(ϕ)| ≥ κ(M(ϕ), δ). (2.23)

The above minimization is well known in the case V = 0 without the restriction

on G. Some restriction to higher energy is needed in the case V �= 0, since those inf in

(2.22) would become E0(μ) without G ≥ 1.

Proof. First, the ≥ part of (2.22) is obvious from K2 = 0 on S , the dichotomy

Lemma 2.3, and I = E−K2/2. The second infimum is obviously decreasing in μ.

To show the ≤ part of the second equality, let ϕ ∈ H1
r , M(ϕ) < μ, K2(ϕ) ≤ 0 and

G(ϕ) ≥ 1. Consider the one-parameter scaling v(t) := St
3.5ϕ for t ≤ 0. The dichotomy

implies G(ϕ) � μ−1 � 1. Since S ′3.5M = −9M/7 < 0, there exists T < 0 such that

M(v(T )) = μ. Moreover, since

S ′3.5I =
3

14
G− 1

2
�S ′7/3S ′3/2V �, S ′3.5K2 =

5

7
K2 +

6

7
G+ �S ′3/2V �, (2.24)

we have, using Lemma 2.1,

S ′3.5I(v) � μ−1, S ′3.5K2(v) > 5(K2(v) + 1)/7 (2.25)

as long as K2(v) ≤M(v) ≤ μ. The second inequality of (2.25) implies that if K2(v) ≥ −1,
K2(v) is decreasing as t decreases. Therefore K2(v) < 0 and (2.25) are preserved for

0 > t > T , hence the infimum is reduced to the case M(ϕ) = μ.

Next consider the one-parameter scaling v(t) := St
2ϕ for t ≤ 0. Since

S ′2I = 3G/2− �S ′∞S ′3/2V �/2, S ′2K2 = 2K2 − 2S ′2I, (2.26)

a similar argument as above implies that I(v) is decreasing and K2(v) is increasing as t

decreases, as long as K2(v) < 0, while G(v) ≥ 1 is preserved by the dichotomy. Thus the

infimum is further reduced to the case K2(ϕ) = 0, which means the second equality in

(2.22).

To prove the existence of minimizer as well as the lower bound (2.23) on |K2|, take
any sequence ϕn ∈ H1

r satisfyingM(ϕn)→ μ ∈ (0, μe), K2(ϕn)→ 0, G(ϕn)+‖∇ϕn‖2 ≥ 1

and E(ϕn) → E∞ ≤ E∗(μ), where E∗ is the infimum in (2.22). Using Lemma 2.1 with

Gagliardo–Nirenberg, we have

H
0 = 3E−K2 − �S ′1V � ≤ 3E−K2 + CM+H

0/2. (2.27)

Hence ϕn is bounded in H1
r , and so, we may assume, passing to a subsequence, that

ϕn → ∃ϕ ∈ H1
r weakly. Since K2 = 2H0 − 3G− �S ′∞V �, disposing of the potential part

as above, we deduce that G(ϕn) � 1 and ‖∇ϕn‖2 � 1 are equivalent for large n, and
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then the dichotomy implies H0(ϕn) ∼ G(ϕn) � μ−1.

Since G and the potential functionals are weakly continuous on H1
r , we have

I(ϕ) = E∞, G(ϕ) ≥ 1, M(ϕ) ≤ μ, K2(ϕ) ≤ 0, (2.28)

hence E∞ = E∗ and ϕ is a minimizer of (2.22). Moreover, the above argument implies

that M(ϕ) = μ and K2(ϕ) = 0. Since the dichotomy implies G(ϕ) � μ−1 � 1, we have

Lagrange multipliers ω, α ∈ R such that

E
′(ϕ) + ωM′(ϕ) = αK2(ϕ). (2.29)

Differentiation along the curve St
2ϕ at t = 0 yields

0 = K2(ϕ) = S ′2E(ϕ) = αS ′2K2(ϕ) = −2αS ′2I(ϕ), (2.30)

where S ′2I(ϕ) �= 0 by (2.26) with the dichotomy, hence α = 0. This means that ϕ ∈ S
and so E1(μ) = E∗(μ), as well as the lower bound (2.23) on |K2|.

Finally, we prove the asymptotic formula. In the second infimum in (2.22), put

ψ(x) := μϕ(μx) and Vμ(x) := μ2V (μx). Then

μE1(μ) = min
ψ∈Aμ

{
G(ψ)/2 + �(S ′3/2V )μ�(ψ)

}
,

Aμ := {ψ ∈ H1
r |M(ψ) ≤ 1, K

0
2(ψ) ≤ �(S ′∞V )μ�(ψ), G(ψ) ≥ μ}.

(2.31)

Since ‖Vμ‖L2+L∞ ≤ μ1/2‖V ‖L2+L∞ , we have for p > 0

|�(S ′pV )μ�(ψ)| � μ1/2(‖ψ‖24 + ‖ψ‖22). (2.32)

Hence if ψ ∈ H1
r satisfies M(ψ) ≤ 1 and K

0
2(ψ) ≤ −1, then ψ ∈ Aμ for 0 < μ  1.

Therefore as μ → 0, the minimizer ψ is bounded in L4
x. Since G(ϕ) � μ−1, we obtain

G(ψ) ∼ 1 and |�(S ′pV )μ�(ψ)| ≤ O(μ1/2). On the other hand, for any ψ ∈ H1
r satisfying

M(ψ) ≤ 1 ∼ G(ψ) and K
0
2(ψ) = 0, we deduce from (2.26) that for 0 < μ 1 there exists

t = O(μ1/2) such that St
2ψ ∈ Aμ, using the implicit function theorem around t = 0.

Therefore

lim
μ→0

μE1(μ) = inf{G(ψ)/2 | ψ ∈ H1
r , M(ψ) ≤ 1, K

0
2(ψ) ≤ 0, ψ �= 0}. (2.33)

To see that the above equalsM(Q)E0(Q), we may first replace K0
2(ψ) ≤ 0 with K

0
2(ψ) = 0,

since on the curve R 
 t �→ St
2ψ ∈ H1

r for any ψ ∈ H1
r \ {0}, M is constant, G is

increasing, and K
0
2 changes its sign exactly once and from positive to negative. Next,

since G(St
3ψ) = etG(ψ), M(St

3ψ) = e−t
M(ψ) and K

0
2(St

3ψ) = etK0
2(ψ), we may remove

M(ψ) ≤ 1 by replacing the minimized quantity G/2 with MG/2, which may further be

replaced with (G/2 +M)2/4, because

inf
t∈R

(G/2 +M)(St
3ψ) = inf

t∈R
[etG(ψ)/2 + e−t

M(ψ)] = 2
√

M(ψ)G(ψ). (2.34)
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Since G/2 = E
0 on K

0
2 = 0, we thus obtain

(2.33) =
[
inf{(E0 +M)(ψ) | ψ ∈ H1

r \ {0}, K
0
2(ψ) = 0}/ 2]2. (2.35)

It is well-known that the above infimum is attained by the ground state Q (see, e.g.,

[18, Lemma 2.1]). Using that K
0
2(Q) = 0 = ∂α=1(E

0 +M)(αQ), it is elementary to see

that the above equals M(Q)E0(Q). �

2.4. Defocusing case s = −.

In the defocusing case, the variational structure is much simpler, and so we can

determine the entire set of solitons S without the mass constraint. In this subsection,

we prove the following

Proposition 2.6. Let s = −. Under the assumptions on V in Section 1.5, the

equation (1.12) has a unique positive solution ϕω for each ω ∈ (0,−e0), and

S = {eiθϕω | 0 < ω < −e0, θ ∈ R}. (2.36)

The function (0,−e0) 
 ω �→ M(ϕω) ∈ (0,∞) is C1, decreasing and bijective. Let ω0(μ)

be its inverse function. Then for all μ > 0,

e0μ < E0(μ) = E(ϕω0(μ)) < 0 <∞ = E1(μ), ω′0(μ) < 0. (2.37)

Since H ≥ e0, multiplying (1.12) with ϕ

0 = 〈(H + ω)ϕ|ϕ〉+ ‖ϕ‖44 = ‖∇ϕ‖22 + ω‖ϕ‖22 + 〈V ϕ|ϕ〉+ ‖ϕ‖44 (2.38)

implies that ω < −e0 is necessary for existence of a non-trivial solution.

If ω ≤ 0, then putting ψ := rϕ we have from (1.12)

ψrr + ωψ = (V + |ϕ|2)ψ, lim inf
r→∞ {|ψ(r)|+ |ψr(r)|} = 0. (2.39)

Rewriting the above into an integral equation from r =∞, we obtain

|ψ(s)| ≤
∫ ∞

s

(r − s)|(V + |ϕ|2)ψ|dr ≤ ‖ψ‖L∞(r>s)‖r(V + |ϕ|2)‖L1(r>s), (2.40)

where the last norm is vanishing as s → ∞ by the assumption V/|x| ∈ L1(R3) and

ϕ ∈ L2(R3). Hence taking s→∞ and then solving the ODE, we deduce that ϕ = 0.

Therefore 0 < ω < −e0 for every non-trivial ϕ ∈ S . Moreover, using Lemma 2.1

with ε = ω/2, we deduce that ϕ ∈ S is uniformly bounded in H1(R3) on any interval of

ω away from 0, while ϕω → 0 in H1(R3) as ω → −e0 − 0.

For each ω ∈ (0,−e0), we have a solution ϕω of (1.12) which is a global minimizer

(E+ ωM)(ϕω) = inf{(E+ ωM)(ϕ) | ϕ ∈ H1} < 0. (2.41)

The proof is easy and omitted. The positivity is also standard. The uniqueness of the
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solution ϕω for each ω, modulo the phase eiθ, follows from a general argument:

Lemma 2.7. Let H be a self-adjoint operator on L2 with non-degenerate eigenvalue

e0, and assume the rest of the spectrum of H is contained in [e1,∞) for some e1 > e0.

Let f : [0,∞)→ [0,∞) be a strictly monotone function such that f(a)a is non-decreasing.

Then the nonlinear eigenvalue problem

(H + f(|ϕ|))ϕ = ωϕ

can have at most one non-trivial solution (up to the phase symmetry) for each ω < e1.

The same conclusion holds for ω = e1 if f(a)a is strictly increasing.

The above lemma may be known, but a proof is given below for the sake of com-

pleteness.

Proof. Let f(z) := f(|z|) for z ∈ C. Let ϕ and ψ be two non-zero solutions, and

let φ0 be an eigenfunction of H for e0. We must have (φ0|ϕ) �= 0, or else

(e1 − ω)‖ϕ‖22 ≤ (ϕ|(H − ω)ϕ) = −(|ϕ|2|f(ϕ)), (2.42)

which contradicts either ω < e1 or ω = e1 with strictly increasing f(a)a. Thus we can

find β ∈ C \ {0} so that (φ0|βϕ + ψ) = 0. Using the invariance of the equation for

ϕ �→ eiθϕ, we may take β > 0 by appropriate complex rotation of ϕ. Then

(e1 − ω)‖βϕ+ ψ‖22 ≤ 〈βϕ+ ψ|(H − ω)(βϕ+ ψ)〉
= −β2〈f(ϕ)||ϕ|2〉 − 〈f(ψ)||ψ|2〉+ 2β〈ϕ|(H − ω)ψ〉
≤ 2β

[
|〈ϕ|(H − ω)ψ〉| −

√
〈f(ϕ)||ϕ|2〉〈f(ψ)||ψ|2〉

]
. (2.43)

First consider the case where f is non-decreasing. Then using Schwarz,

|〈ϕ|(H − ω)ψ〉| =
{
|〈ϕ|f(ψ)ψ〉| ≤√〈f(ψ)||ϕ|2〉〈f(ψ)||ψ|2〉,
|〈f(ϕ)ϕ|ψ〉| ≤√〈f(ϕ)||ϕ|2〉〈f(ϕ)||ψ|2〉. (2.44)

So we arrive at

〈f(ψ)||ϕ|2〉 ≥ 〈f(ϕ)||ϕ|2〉, 〈f(ϕ)||ψ|2〉 ≥ 〈f(ψ)||ψ|2〉, (2.45)

and hence 〈f(ϕ)− f(ψ)||ϕ|2 − |ψ|2〉 ≤ 0. Since f is non-decreasing, this implies that

f(ϕ) = f(ψ) (a.e.).

Next consider the case where f is non-increasing. By Schwarz, we have

|〈ϕ|f(ψ)ψ〉| ≤
√
〈f(ϕ)||ϕ|2〉〈f(ψ)2|ψ|2|1/f(ϕ)〉,

|〈f(ϕ)ϕ|ψ〉| ≤
√
〈f(ϕ)2|ϕ|2|1/f(ψ)〉〈f(ψ)||ψ|2〉.

(2.46)

Hence (2.43) implies that
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〈f(ψ)2|ψ|2|1/f(ϕ)〉 ≥ 〈f(ψ)2|ψ|2|1/f(ψ)〉,
〈f(ϕ)2|ϕ|2|1/f(ψ)〉 ≥ 〈f(ϕ)2|ϕ|2|1/f(ϕ)〉, (2.47)

and so, 〈f(ϕ)2|ϕ|2 − f(ψ)2|ψ|2|1/f(ϕ)− 1/f(ψ)〉 ≤ 0. Since 1/f(a) and f(a)a are both

non-decreasing, we have f(ϕ) = f(ψ) or f(ϕ)|ϕ| = f(ψ)|ψ| (a.e.). If e1 > ω, then

ψ = −βϕ, otherwise the above must be a strict inequality, contradicting the monotonicity

of f(ϕ) and f(ϕ)|ϕ|. If e1 = ω, then f(z)|z| is strictly increasing, so we get f(ϕ) = f(ψ),

and then going back to (2.43),

0 = (e1 − ω)‖βϕ+ ψ‖22 ≤ 〈βϕ+ ψ|(H − ω)(βϕ+ ψ)〉
= −〈f(ϕ)||βϕ+ ψ|2〉 ≤ 0. (2.48)

The strict monotonicity of f(a)a implies that at each x, f(ϕ(x)) = 0 implies f(ψ(x)) = 0

and ϕ(x) = 0 = ψ(x). Hence ψ = −βϕ (a.e.).

Thus we obtain ψ = −βϕ anyway. Then the equation for ϕ and ψ implies that

(ω −H)ϕ = f(ϕ)ϕ = −f(ψ)ψ/β = f(βϕ)ϕ. (2.49)

Since f is strictly monotone, this implies β = 1 or ϕ = 0 a.e. �

Once we have the uniqueness of ϕω for ω, it is easy to prove continuity and then

differentiability in ω. Differentiating the equation

(H + ω + 3ϕ2
ω)ϕ

′
ω + ϕω = 0, ϕ′ω := ∂ωϕω (2.50)

and multiplying it with ϕ′ω yield

∂ωM(ϕω) = 〈ϕω|ϕ′ω〉 = −〈(H + ω + 3ϕ2
ω)ϕ

′
ω|ϕ′ω〉 ≤ −2‖ϕωϕ

′
ω‖22 < 0, (2.51)

where we used H + ω + ϕ2
ω ≥ 0, because ϕω > 0 is the ground state in the kernel of

this Schrödinger operator. Hence M(ϕω) is decreasing in ω. Moreover, M(ϕω) → ∞ as

ω → +0, since otherwise the weak limit yields 0 �= ϕ0 ∈ H1
r satisfying Hϕ0 + ϕ3

0 = 0,

which is impossible. Using (2.8) as well, we conclude the proof of Proposition 2.6.

3. Blow-up below the excited energy.

We are now ready to prove the blow-up part of Theorem 1.1, using the above char-

acterization of S1 together with the estimate on K2, namely Proposition 2.5.

Let u be a solution of (1.7) with s = +, satisfying (1.26) as well as M(u) =: μ < μe

and E(u) < E1(μ), where μe is the small mass condition of Proposition 2.5. Fix δ > 0

such that E(u) ≤ E1(μ)− δ. Suppose for contradiction that u exists on 0 < t <∞. Then

Proposition 2.5 and Lemma 2.3 together with the continuity of u(t) in H1
x imply that

(1.26) is preserved for all t > 0, and also from (2.23)

K2(u(t)) ≤ −κ(μ, δ). (3.1)
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We have the saturated virial identity from [20]

∂t〈RfRu|iur〉 = 2K2(u)−
∫
[2|ur|2f0,R +R−2|u|2f1,R + |u|4f2,R]dx

−
∫
(1− fRR/r)|u|2x · ∇V dx, (3.2)

where fR(x) = f(x/R) with R� 1, and fj,R(x) = fj(x/R) are derived from f by

f0 = 1− fr ≥ 0, f1 = Δ(∂r/2 + 1/r)f, f2 = −3/2 + (∂r/2 + 1/r)f, (3.3)

while f(x) = f(|x|) is chosen to be smooth radial satisfying

f(r) =

{
r (r ≤ 1),

3/2 (r ≥ 2).
(3.4)

The |u|4 integral is bounded by the radial Sobolev inequality

‖u‖4L4(|x|>R) � R−2‖u‖3L2(|x|>R)‖ur‖L2(|x|>R). (3.5)

Then we obtain

−
∫
[2|ur|2f0,R +R−2|u|2f1,R + |u|4f2,R + (1− fRR/r)|u|2x · ∇V ]dx

� R−4‖u‖6L2(|x|>R) + o(1)‖u‖2L2(|x|>R), (3.6)

as R → ∞. See [20], [19, Section 4.1], for the detail. Note that the potential part was

treated by (1.33), using 1− fRR/r = 0 for |x| < R. Hence, for large R, we have

∂t〈RfRu|iur〉 < −κ(μ, δ) < 0. (3.7)

Since ‖u‖L2
x
is conserved, it implies that ‖ur‖2 →∞ as t→∞. Then as t→∞,

K2(u) = 3E(u)−H
0(u)− �S ′1V �(u) ∼ −‖∇u‖22. (3.8)

The rest of the proof is the same as in the case without the potential, see [20]. Thus we

obtain the “if”-part for (1.26) of the blow-up in Theorem 1.1.

Next we show the “only if”-part of (1.26), namely the global existence when it is

not satisfied. If s = −, then we have a priori H1 bound by conservation of the energy

and mass, disposing of the potential part by Lemma 2.1, which leads to the global well-

posedness in H1(R3).

Hence we may restrict to the case s = +, M(u) = μ < μe and E(u) < E1(μ). By

the persistence of (1.26) proved above, if (1.26) is initially not satisfied, neither is it

at any other time. If K2(u(t)) < 0 and ‖∇u(t)‖2 ≤ 1, then Lemma 2.3 implies that

‖u(t)‖2H1 � μ  1. If K2(u(t)) ≥ 0, then (2.27) yields a priori bound on H1
x by the

mass-energy conservation. Hence the solution u is global and bounded in H1
x for all

t ∈ R. Moreover, we have the scattering to the ground states by [10] if H0(u(t)) � μ,
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and it is preserved for all t ∈ R.

Thus we have obtain the global existence part of Theorem 1.1.

Lemma 3.1. For any u(0) ∈ H1
r satisfying M(u(0)) = μ ≤ μe and E(u(0)) = ε <

E1(μ), the corresponding solution u of (1.7) is global in time if and only if (1.26) fails.

Then it is never satisfied at any t ∈ R. Moreover, the global solution u satisfies one of

the following

(i) ‖u(t)‖2H1
x
� μ for all t ∈ R, scattering to S0.

(ii) μ � ‖u(t)‖2H1
x
� ε+ μ and K2(u(t)) ≥ κ(μ,E1(μ)− ε) for all t ∈ R,

where κ > 0 is the same as in (2.23).

The rest of this paper is devoted to the scattering in (ii).

4. Modulation and linearized equations around the ground state.

Here we recall the coordinate in [10] around the small ground state, and observe

that it can be applied to large solutions as long as the mass M(u) is small, including the

excited solitons. For any μ > 0, denote

H1[μ] := {ϕ ∈ H1
r (R

3) |M(ϕ) < μ}. (4.1)

Let Φ : Db → H1
r be the small ground states as in Lemma 2.2. We have the following

nonlinear projection to them.

Lemma 4.1. There exist 0 < μp < μb and a unique mapping H1[μp] 
 ϕ �→ (z, η) ∈
Dp ×H1[μp], where Dp := {z ∈ C | |z|2 < 2μp}, such that

ϕ = Φ[z] + η,

η ∈ Hc[z] := {ψ ∈ H1(R3) | 〈iψ|∂jΦ[z]〉 = 0 (j = 1, 2)}, (4.2)

where ∂j denotes the derivative with respect to the real and imaginary parts of z =

z1 + iz2. Moreover, the map ϕ �→ (z, η) is smooth and injective from H1[μp] to C×H1
r .

Furthermore, the orthogonal projection Pc to the continuous spectrum subspace

Pcϕ := 1− φ0(ϕ|φ0) (4.3)

is bijective from Hc[z] onto

Hc[0] = PcH
1(R3) = {ϕ ∈ H1(R3) | 〈iϕ|φ0〉 = 0 = 〈iϕ|iφ0〉}, (4.4)

for any z ∈ Dp, and

R[z] := (Pc|Hc[z])
−1 (4.5)

is a compact and continuous perturbation of identity in the operator norm on any space

between H2 ∩W 1,1 and H−2 + L∞.
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In [10], the above coordinate was defined on a small ball of H1(R3). However, it

is easy to see that the smallness in L2 suffices, since z is determined by solving the

orthogonality conditions

〈ϕ− Φ[z]|i∂jΦ[z]〉 = 0 (j = 1, 2), (4.6)

by the implicit function theorem. The derivative of the left hand side equals

〈ϕ− Φ[z]|i∂k∂jΦ[z]〉 − 〈∂kΦ[z]|i∂jΦ[z]〉, (j, k ∈ {1, 2}). (4.7)

The second term is a non-degenerate 2×2 matrix of O(1), while the first term is bounded

by ‖ϕ− Φ[z]‖2 � √μp  1, thereby the implicit function theorem works, leading to the

conclusion. The L2 bound follows from the orthogonality

M(ϕ) = M(Φ[z]) +M(η). (4.8)

The operator R[z] is linear, so it does not need any smallness condition. Actually, the

above lemma holds without even assuming that the function is in H1. Hence every

solution u in H1[μp] can be written as

u(t) = Φ[z(t)] +R[z(t)]ξ(t) = Φ[z(t)] + η(t), (4.9)

uniquely, and the equation for u can be rewritten for (z, ξ) as, regarding C � R
2,{

ż − iΩ[z]z = N(z,R[z]ξ) := M(z,R[z]ξ)−1〈N(z,R[z]ξ)|DΦ[z]〉,
iξ̇ +Hξ = B[z]ξ + Ñ(z, ξ),

(4.10)

where M(·) is a 2× 2 matrix and N(·, ·) is a scalar defined by

Mj,k(z, η) := 〈i∂jΦ[z]|∂kΦ[z]〉 − 〈iη|∂j∂kΦ[z]〉,
N(z, η) := s

{
2Φ[z]|η|2 +Φ[z]η2 + |η|2η

}
,

(4.11)

B[z] is the “potential part” by the small soliton, namely

B[z]ξ := sPc{2|Φ[z]|2R[z]ξ +Φ[z]2R[z]ξ}, (4.12)

which is R-linear but not C-linear, and Ñ(·, ·) is the quadratic part

Ñ(z, ξ) := Pc{N(z,R[z]ξ)− iDΦ[z]N(z,R[z]ξ)}. (4.13)

We introduce some notation for the linearized solutions. For any s ∈ R and any set

X, the set of X-valued functions defined around s is denoted by

X{s} := {u : I → X | s ∈ ∃I ⊂ R}. (4.14)

For any interval I ⊂ R, z ∈ C(I;C), s0 ∈ I and u ∈ H1{s0}, the linear solution v of
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iv̇ +Hv = B[z]v, v(s0) = u(s0) (4.15)

is denoted by

u[z, s0] := v ∈ C(I;H1). (4.16)

Note that this depends on u(s0) but not on u(t) at the other time t �= s0. Indeed, there

is no point for u to depend on t in the definition, but this convention avoids writing the

same time s0 twice. We can apply it to time-independent u as well. Obviously

∀s1 ∈ I, u[z, s0][z, s1] = u[z, s0], (4.17)

while the solution without the potential B[z] is given by

u[0, s0] = ei(t−s0)Hu(s0). (4.18)

The associated Duhamel integral is denoted by

Df [z, s0](t) :=
∫ t

s0

f [z, s](t)ds, (4.19)

so that v := Df [z, s0] satisfies

iv̇ +Hv = B[z]v + f, v(s0) = 0. (4.20)

Hence for any ϕ ∈ H1, z ∈ C{s0} and f ∈ H1{s0}, the solution of

iξ̇ +Hξ = B[z]ξ + f, ξ(s0) = ϕ (4.21)

is uniquely given by

ξ = ϕ[z, s0] +Df [z, s0]. (4.22)

Another notation

u[z, s0]> :=

{
u(t) (t < s0)

u[z, s0] (t > s0)
(4.23)

is convenient to “turn off the nonlinearity” after some time. Indeed if u solves

iu̇+Hu = B[z]u+ f (4.24)

and s0 < s1, then we have{
u = u[z, s0] +Df [z, s0],
u[z, s1]> = u[z, s0] +D1t<s1f [z, s0].

(4.25)
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Next a few (semi)norms are introduced for space-time functions. For s ∈ R, put

Stzs := L∞t Hs
x ∩ L2

tB
s
6,2, Stz∗s := L1

tH
s
x + L2

tB
s
6/5,2, st := L4

tL
6
x. (4.26)

Stzs is the full Strichartz norm for Hs solutions, and Stz1/2 ⊂ L4
tB

1/2
3,2 ⊂ st by interpo-

lation and Sobolev.

The next semi-norm is a bit more involved. It is needed for long-time perturbation

argument for the radiation part ξ, whose equation contains quadratic terms. For −∞ ≤
T0 < T1 ≤ T2 ≤ ∞, z ∈ C((T0, T2);C) and u ∈ C((T0, T1);H

1),

‖u‖[z;T0,T1;T2] := sup
T0<S<T<T1

‖u[z, T ]> − u[z, S]>‖st(S,T2) (4.27)

is a semi-norm vanishing exactly for solutions of the linearized equation with the param-

eter z, namely

‖u‖[z;T0,T1;T2] = 0 ⇐⇒ iu̇+Hu = B[z]u on (T0, T1). (4.28)

If T0 > −∞, we can fix S → T0 to get an equivalent semi-norm

‖u‖[z;T0,T1;T2]′ := sup
T0<T<T1

‖u[z, T ]> − u[z, T0]>‖st(T0,T2)

≤ ‖u‖[z;T0,T1;T2] ≤ 2‖u‖[z;T0,T1;T2]′ , (4.29)

where the first inequality follows from the continuity as S → T0 + 0, while the second

one is obvious by the triangle inequality.

This semi-norm measures how much u deviates from the linear evolution between

T0 and T1 and its influence until t < T2. If u solves (4.24) on (T0, T1), then

‖u‖[z;T0,T1;T2] = supT0<S<T<T1
‖D1t<T f [z, S]‖st(S,T2),

‖u‖[z;T0,T1;T2]′ = supT0<T<T1
‖D1t<T f [z, T0]‖st(T0,T2).

(4.30)

Since we use only the Strichartz type estimates, i.e. Lp
t norms, the right hand side will

be estimated in the same way as ‖Df [z, T0]‖st(T0,T1). It will be used mostly to bound

(for T0, T1 ∈ R)

‖u‖[z;T0,T1;T2] ≥ max(‖u− u[z, T0]‖st(T0,T1), ‖u[z, T1]− u[z, T0]‖st(T1,T2)). (4.31)

The idea of long-time perturbation in this type of norms, together with the use of non-

admissible Strichartz (as in Lemma 4.4 below), was introduced in [16] to treat quadratic

and sub-quadratic nonlinearity.

An advantage of (4.27) compared with the equivalent form is the monotonicity:

T0 ≤ T ′0 < T ′1 ≤ T1, T ′2 ≤ T2 =⇒ ‖u‖[z;T ′
0,T

′
1;T

′
2]
≤ ‖u‖[z;T0,T1;T2], (4.32)

which is obvious by the definition. It is also subadditive for gluing intervals.
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Lemma 4.2. For T0 < T1 < T2 < T3, z ∈ C((T0, T3);C) and u ∈ C((T0, T3);H
1),

‖u‖[z;T0,T2;T3] ≤ ‖u‖[z;T0,T1;T3] + ‖u‖[z;T1,T2;T3]. (4.33)

The subadditivity holds also for the equivalent form, which is left for the reader.

Proof. The left side is the supremum of ‖u[z, T ]> − u[z, S]>‖st(S,T3) over T0 <

S < T < T2. If T0 < S < T < T1 or T1 < S < T < T3, then it is trivially bounded by

the first or the second term on the right. If T0 < S ≤ T1 ≤ T < T3, then we have

‖u[z, T ]> − u[z, S]>‖st(S,T3) ≤ ‖u[z, T ]> − u[z, T1]>‖st(S,T3)

+ ‖u[z, T1]> − u[z, S]>‖st(S,T3)

≤ ‖u‖[z;T0,T1;T3] + ‖u‖[z;T1,T2;T3], (4.34)

using the continuity of u[z,R]> in st(S, T3) as R→ T1. �

Now we derive the standard Strichartz estimates for the linearized equation, with

uniformly small z.

Lemma 4.3. Let I = (T0, T1) be an interval and z ∈ C(I;C) with ‖z‖L∞(I)  1.

Then for any s0 ∈ I, ϕ ∈ PcH
1(R3), f ∈ C(I;S ′), T ∈ (T0, T1) and θ ∈ [0, 1],

‖ϕ[z, s0]‖Stzθ(I) � ‖ϕ(s0)‖Hθ ∼ inf
t∈I
‖ϕ[z, s0](t)‖Hθ ∼ sup

t∈I
‖ϕ[z, s0](t)‖Hθ ,

‖DPcf [z, s0]‖Stzθ(I) � ‖f‖Stz∗θ(I), ‖DPcf [z, s0]‖[z;T0,T ;T1] � ‖f‖Stz∗1/2(T0,T ).
(4.35)

Moreover, if sup I = ∞ then we have the scattering of u := ϕ[z, s0] + DPcf [z, s0] as

t → ∞, namely the strong convergence of e−itHu(t) in H1, and furthermore, u(t) → 0

in L6
x. The same holds for t→ −∞.

Proof. Let ξ := ϕ[z, s0] + DPcf [z, s0]. Then the Strichartz estimate for eitHPc

yields

‖ξ‖Stzθ(I) � ‖ϕ(s0)‖Hθ + ‖B[z]ξ + Pcf‖Stz∗θ(I), (4.36)

where the term B[z]ξ is bounded by

‖B[z]ξ‖L2
tB

θ
6/5,2

(I) � ‖z‖2L∞
t (I)‖ξ‖L2

tB
θ
6,2(I)

 ‖ξ‖L2
tB

θ
6,2(I)

, (4.37)

and absorbed by the left. This yields the three inequalities in (4.35).

If sup I =∞, for any increasing sequence tn →∞, we have

[e−itHξ(t)]t=tn
t=tm =

∫ tn

tm

e−isH(B[z]ξ + Pcf)ds, (4.38)

and using the Strichartz as above,

‖[e−itHξ(t)]t=tn
t=tm‖H1

x
� ‖ξ‖L2

tB
1
6,2(tm,tn) + ‖f‖Stz∗1(tm,tn), (tm < tn) (4.39)
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where the right side tends to 0 as tm → ∞, since the norms consist of Lp
t with p < ∞.

Hence e−itHξ(t) converges as t → ∞ strongly in H1. Then the decay in L6
x follows

from the L6/5 → L6 decay estimate, the Sobolev embedding H1
x ⊂ L6

x and the density

argument.

For the norm equivalence, let u := ϕ[z, s0] and u0 := ϕ[0, s0]. Then by the same

Strichartz as above,

‖u− u0‖Stzθ(I) � ‖B[z]u‖L2
tB

θ
6/5,2

(I)  ‖u‖L2
tB

θ
6,2(I)

, (4.40)

and so the right hand side is equivalent to (since ϕ ∈ PcH
1)

‖u0‖L2
tB

θ
6,2(I)

� ‖u0(s0)‖Hθ ∼ ‖〈HPc〉θ/2u0(s0)‖L2 ∼ ‖u0‖L∞
t Hθ

x(I)
, (4.41)

which implies the first estimate in the lemma. �

As an immediate consequence, the semi-norm [z; · · · ] is bounded by the full

Strichartz norm

‖u‖[z;T0,T1;T2] � ‖u‖Stz1(T0,T1), (4.42)

since we have for any S, T ∈ (T0, T1), using the Strichartz estimate for the linearized

equation,

‖u[z, T ]> − u[z, S]>‖st(S,T2)

≤ ‖u− u[z, S]‖st(S,T ) + ‖u[z, T ]− u[z, S]‖st(T,T2) � ‖u‖Stz1(T0,T1). (4.43)

We also need non-admissible Strichartz estimates.

Lemma 4.4. Let (p0, q0), (p1, q1) ∈ (1,∞) × (2, 6] and σj := 2/pj + 3(1/qj − 1/2)

satisfy

σ0 + σ1 = 0 > σj − 1/pj , |σj | ≤ 2/3. (4.44)

Then there exists C > 0 such that under the assumptions of the above lemma,

‖DPcf [z, s0]‖Lp0
t L

q0
x (I) ≤ C‖f‖

L
p′1
t L

q′1
x (I)

. (4.45)

If (p0, q0) = (4, 6), then for T0 < T ≤ T1,

‖DPcf [z, s0]‖[z;T0,T ;T1] ≤ C‖f‖
L

p′1
t L

q′1
x (T0,T )

. (4.46)

Proof. This set of estimates for the free Schrödinger equation was proved by

Kato [12] for qj < 2∗, and by Foschi [8] and Vilela [28] for qj = 2∗. It is transferred to

the time independent equation eitHPc by Yajima’s argument of bounded wave operators

[29]. More precisely, the condition |σj | ≤ 2/3 is not needed in Kato, but only in the

double endpoint case q0 = q1 = 6 by Foschi and Vilela, in the form p0 = p1 ∈ [6/5, 6].

The above lemma is infected by this condition including non-endpoint cases, because we
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use the double endpoint estimate to treat the time-dependent potential part as a small

perturbation. Let u := DPcf [z, s0]. Then by the above estimates on eitHPc,

‖u‖(Lp0
t L

q0
x ∩Lp2

t L6
x)(I)

� ‖B[z]u‖
L

p2
t L

6/5
x (I)

+ ‖f‖
L

p′1
t L

q′1
x (I)

, (4.47)

where p2 := 2/(σ0 + 1) ∈ [6/5, 6]. The potential term is bounded by

‖B[z]u‖
L

p2
t L

6/5
x (I)

� ‖z‖2L∞
t (I)‖u‖Lp2

t L6
x(I)

 ‖u‖Lp2
t L6

x(I)
, (4.48)

and thus we obtain the desired result as in the previous lemma. �

5. Linearized profile decomposition.

Now we develop a profile decomposition for the linearized equation of the radiation

part in (4.10). For that purpose, we need a similar notation to the above for sequences.

For any sequences a, b, c, . . . , the sequence in the form

N 
 n �→ X (an, bn, cn, . . . , ) (5.1)

for any expression X (as long as it is well defined), is denoted by

X (a, b, c, . . . , ) := {X (an, bn, cn, . . . , )}n. (5.2)

The same convention applies when the sequence is defined only for large n ∈ N. When

X = {Xn}n is a sequence of sets, then it is regarded as the product set:

x ∈ X ⇐⇒ ∀n ∈ N, xn ∈ Xn. (5.3)

The same convention is applied to lim, sup, etc., for any sequence X = {Xn}n:
X → limX := lim

n→∞Xn, SupX := sup
n

Xn,

lim supX := lim sup
n→∞

Xn, lim infX := lim inf
n→∞ Xn,

(5.4)

unless the limit is explicitly associated with another parameter. “Sup” is capitalized to

avoid possible confusion.

The set of open intervals is denoted by

I := {(a, b) ⊂ R | a < b}. (5.5)

For any I ∈ I N, the set SBC(I) of sequences of uniformly small, bounded and continuous

functions is defined by the following. For any z ∈ C(I;C)

z ∈ SBC(I) (5.6)

if and only if supn∈N supt∈In |zn(t)|  1 and
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∀ε > 0, ∃δ > 0, ∀s, ∀t ∈ I, Sup |s− t| < δ =⇒ Sup |z(s)− z(t)| < ε. (5.7)

The smallness requirement can be determined by V . Since it can be fixed throughout

the paper but does not play any role, we leave it unspecified.

For any I ∈ I N, any z ∈ C(I;C) and any z∞ ∈ C(R;C), we say that z → z∞ locally

uniformly on I if and only if for all 0 < T <∞
lim
n→∞ sup

t∈[−T,T ]∩In
|zn(t)− z∞(t)| = 0. (5.8)

Let I N 
 I 
 s, C(I;C) 
 z and H1{s} 
 u. Note that they are all sequences by

the above convention. Suppose that limPcu(s) is weakly convergent in H1. Then the

sequence v ∈ C(I;H1) solving

∀n ∈ N, iv̇n +Hvn = B[zn]vn (on In), vn(sn) = lim
k→∞

Pcuk(sk) (5.9)

is denoted by

u[z, s](∞) := {vn}n =

{
lim
k→∞

Pcuk(sk)

}
[z, s]. (5.10)

Let s′ ∈ I be another sequence of times, then

u[z, s](∞)[z, s
′] = u[z, s](∞). (5.11)

In the autonomous case z ≡ 0, the above object can be defined by translation:

∀t ∈ R, u[0, s](∞)(t) = ei(t−s)H lim
k→∞

Pcuk(sk), (5.12)

which trivializes the limiting behavior as n → ∞. The presence of z disables such a

precise description. However, we do not need so much to prove the scattering result, but

uniform integrability in the Strichartz norms will suffice, which is given by the following

lemma.

Lemma 5.1. Let s ∈ I ∈ I N, z ∈ SBC(I) and u ∈ PcH
1{s} be sequences such

that Sup ‖u(s)‖H1 <∞. Then after extracting a subsequence, there exist ϕ ∈ PcH
1 and

z∞ ∈ C(R;C) such that u(s) ⇀ ϕ weakly in H1, z(s + t) → z∞ locally uniformly on

I − s, and

‖u[z, s](∞) − ϕ[z∞, 0](t− s)‖Stz1(I) → 0. (5.13)

Moreover, for any 0 < T <∞,

‖u[z, s]− u[z, s](∞)‖L∞
t (|t−s|<T ;L4

x)
→ 0. (5.14)

If the convergence u(s)→ ϕ is strong in H1, then

‖u[z, s]− u[z, s](∞)‖Stz1(I) → 0. (5.15)
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Proof. First, the uniform continuity of SBC allows us to extend zn to R so that

we may assume I = R
N without losing generality. The uniform boundedness in H1 allows

us to pass to a subsequence such that u(s) ⇀ ∃ϕ. Let

t �→ ζ(t) := z(t+ s) ∈ SBC(RN),

t �→ v(t) := ϕ[ζ, 0](t) = u[z, s](∞)(t+ s) ∈ C(R;PcH
1)N.

(5.16)

Since ζ ∈ SBC, Ascoli–Arzela implies that, after extracting a subsequence, ζ → ∃ζ∞ in

C(R;C) with ‖ζ∞‖L∞(R)  1. Let v∞ = ϕ[z∞, 0] ∈ C(R;PcH
1). Then we have

iv̇ +Hv = B[ζ]v, iv̇∞ +Hv∞ = B[ζ∞]v∞, ∀n, vn(0) = ϕ = v∞(0). (5.17)

We have the full Strichartz estimates on v∞ by Lemma 4.3, and

lim
T→∞

‖v∞‖L2(|t|>T ;B1
6,2)

= 0. (5.18)

Since ζ → ζ∞ in L∞(|t| ≤ T ) for any T < ∞, B[ζ] → B[ζ∞] in the operator norm of

B1
6,2 → B1

6/5,2, uniformly on |t| ≤ T . Hence by the Strichartz estimate on eitHPc, and

using H1
6/5 ⊂ B1

6/5,2,

‖v − v∞‖Stz1(|t|<T ) � ‖B[ζ]v −B[ζ∞]v∞‖L2
t (|t|<T ;H1

6/5
)

� ‖ζ − ζ∞‖L∞(|t|<T )‖v∞‖L2
t (|t|<T ;H1

6 )

+ ‖(ζ, ζ∞)‖L∞(|t|<T )‖v − v∞‖L2
t (|t|<T ;H1

6 )
. (5.19)

Thus, the last term being absorbed by the left, we obtain

‖v − v∞‖Stz1(|t|<T ) → 0. (5.20)

Applying the same estimate to the Duhamel with eitHPc from t = ±T , we obtain

‖v − v∞‖Stz1(|t|>T )

� ‖v(±T )− v∞(±T )‖H1
x
+ ‖B[ζ]v −B[ζ∞]v∞‖L2

t (|t|>T ;H1
6/5

)

� o(1) + ‖(ζ, ζ∞)‖L∞(|t|>T )(‖v∞‖L2
t (|t|>T ;H1

6 )
+ ‖v − v∞‖L2

t (|t|>T ;H1
6 )
), (5.21)

where the last term is absorbed by the left. Thus we obtain

lim sup ‖v − v∞‖Stz1(R)  ‖v∞‖L2
t (|t|>T ;H1

6 )
. (5.22)

Sending T →∞, we see that the right side is zero, namely (5.13).

To prove (5.14), let w(t) := u[z, s](t + s) and γ := (v − w)[0, 0]. Then by the

Strichartz estimate on eitHPc,

‖(v − w)− γ‖(L∞
t L2

x∩L2
tL

6
x)(|t|<T )

� ‖B[ζ](v − w)‖
L2

tL
6/5
x (|t|<T )

 ‖v − w‖L2
tL

6
x(|t|<T ), (5.23)
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so it is bounded by ‖γ‖L2
tL

6
x(|t|<T ), which tends to 0, because γ → 0 in L∞t L4

x(|t| < T )

and bounded in L2
tH

1
6 . Interpolating with the uniform bounds on v and w, we get

v − w − γ → 0 also in L∞t L4
x(|t| < T ), hence for v − w as well.

The proof of (5.15) is similar but easier. We add one derivative to the Strichartz

norms and extend to the real line, such as L2
tH

1
6 (R). Then γ = eitHγ(0) → 0 in this

norm, since γ(0)→ 0 strongly in H1. So v − w is also vanishing. �

The linearized equation does not preserve either the mass or the energy, because B[z]

is not even C-linear, but the next lemma suffices for the profile decomposition. Since

H > 0 on PcH
1, its fractional power is defined. For any θ ∈ [0, 1], the inner product is

defined by

Hθ(ϕ, ψ) :=
1

2
〈HθPcϕ|ψ〉, Hθ(ϕ) := Hθ(ϕ, ϕ), (5.24)

such that M(ϕ) = H0(ϕ) and H(ϕ) = H1(ϕ) for all ϕ ∈ PcH
1.

Lemma 5.2. Let s ∈ I ∈ I N and z ∈ SBC(I). Let v0, v1 ∈ C(I;PcH
1) be two

sequences of linearized solutions, i.e. vj = vj [z, s] for j = 0, 1. Suppose that v0(s) strongly

converges in H1 and that v1(s) ⇀ 0 weakly in H1. Then

∀θ ∈ [0, 1], ‖Hθ(v
0, v1)‖L∞

t (I) → 0. (5.25)

Proof. It suffices to show Hθ(v
0, v1)(s′)→ 0 for any s′ ∈ I, along a subsequence.

We use the unitarity

ṽj := ei(s−t)Hvj =⇒ Hθ(v
0, v1) = Hθ(ṽ

0, ṽ1) (5.26)

and the Duhamel formula

ṽj(t) = vj(s) +Dj(t),

Dj(t) :=

∫ t−s

0

e−it′HB[z(s+ t′)]vj(s+ t′)dt′.
(5.27)

v0(s)→ ∃ϕ strongly in H1 by the assumption. Extracting a subsequence, we may assume

s′ − s→ ∃s′∞ ∈ [−∞,∞] and z(t+ s)→ ∃z∞(t) locally uniformly on I − s. Then

D0(s′)→
∫ s′∞

0

e−itHB[z∞]ϕ[z∞, 0]dt, (5.28)

strongly in H1, by Lemma 5.1, (5.13), after passing to a subsequence. For D1, we use

the Lp decay estimate on eitHPc. Fix 0 < δ  1 such that 1/q± := 1/6± δ ∈ [1/p, 1/2).

Then for any 0 < T <∞,

‖D1‖L∞
t (I;(Lq++Lq− )x) �

∫
|t−s|>T

|t− s|−1−3δ‖B[z]v1(t)‖
L

q′−
x

dt
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+

∫
|t−s|<T

|t− s|−1+3δ‖B[z]v1(t)‖
L

q′
+

x

dt

� T−3δ‖v1‖L∞
t L2

x
+ ‖v1‖L∞

t (|t−s|<T ;L4
x)
, (5.29)

and the last term is vanishing by Lemma 5.1, (5.14). Since T > 0 is arbitrary, we deduce

that D1(s′) ⇀ 0. Hence ṽ1(s′) ⇀ 0, while ṽ0(s′) is strongly convergent. Thus we obtain

Hθ(v
0, v1)(s′)→ 0 as desired. �

Using the above lemmas, we are ready to prove the profile decomposition for the

linearized equation for ξ.

Lemma 5.3. Let s ∈ I ∈ I N and z ∈ SBC(I). Let ψ ∈ (PcH
1)N be a bounded

sequence. Then passing to a subsequence, there exist J∗ ∈ N ∪ {∞} and sj ∈ I for each

N0 
 j < J∗ with the following properties. Let ν := ψ[z, s] ∈ C(I;PcH
1).

(i) s0 = s and |sj − sk| → ∞ for each j �= k < J∗.

(ii) For j < J∗, ν(sj) ⇀ ∃ϕj
∞ ∈ H1 weakly. Put λj := ν[z, sj ](∞) = ϕj

∞[z, sj ]. Then

λj(sk) ⇀ 0 weakly in H1 for j �= k, and ϕj
∞ �= 0 for j > 0.

(iii) For each finite J ≤ J∗, put γJ := ν −∑
0≤j<J λj. For j < J , γJ(sj) ⇀ 0 weakly

in H1, and for all θ ∈ [0, 1],∑
0≤j<J

‖λj‖2
L∞

t (I;Ḣθ
x)

+ ‖γJ‖2
L∞

t (I;Ḣθ
x)
∼ ‖ψ‖2

Ḣθ + o(1). (5.30)

Hθ(λ
j , λk), Hθ(λ

j , γJ)→ 0 for k �= j < J and θ ∈ [0, 1], uniformly on I.

(iv) For 0 ≤ θ < 1,

lim
J→J∗

lim sup ‖γJ‖[L∞
t L4

x,Stz
1]θ(I) = 0. (5.31)

We call the decomposition given by the above lemma

ψ[z, s] =
∑

0≤j<J

λj + γJ , λj := ψ[z, s][z, sj ](∞), (5.32)

the linearized profile decomposition.

Proof. The sequence sj ∈ I is defined inductively as follows. First, let s0 := s.

Passing to a subsequence, we may assume ν(s0) ⇀ ∃ϕ0
∞. Then λ0 := u[z, s0](∞) and

γ1 := ν − λ0 are defined with γ1(s0) ⇀ 0. The boundedness (in H1) of ψ implies that ν

and λ0 are uniformly bounded, so is γ1.

Let J ∈ N and suppose that uniformly bounded γJ ∈ C(I;H1) and sj ∈ I have been

defined for j < J such that γJ(sj) ⇀ 0. Since ‖γJ‖L∞
t (I;L4

x)
is bounded, we can define

sJ ∈ I such that

‖γJ‖L∞
t (I;L4

x)
= ‖γJ(sJ)‖L4

x
+ o(1). (5.33)
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If the left hand sequence tends to 0, put J∗ = J and the definition is terminated.

Otherwise, put λJ := γJ [z, sJ ](∞) and γJ+1 := γJ − λJ . Passing to a subsequence,

we may assume γJ(sJ) ⇀ ∃ϕJ
∞ �= 0 in H1 and z(t + sJ) → ∃zJ∞(t) ∈ C(R;C) locally

uniformly on I − sJ . Then γJ+1(sJ) ⇀ 0 is obvious. Since γJ(sj) ⇀ 0 for j < J , we

have γJ → 0 in L∞t (|t − sj | < T ;L4
x) for any T < ∞, by Lemma 5.1, (5.14). Hence

|sJ − sj | → ∞. Then from Lemma 5.1, (5.13), together with the Strichartz bound on

ϕJ
∞[zJ∞, 0], we deduce that λJ(sj) ⇀ 0, and so γJ+1(sj) ⇀ 0. The same argument implies

that λj(sJ) ⇀ 0 as well.

Hence we can iterate the same procedure. In this way, after the diagonalization

argument, we obtain the sequences sj with the properties that |sj − sk| → ∞ for j �= k,

γJ(sj) ⇀ 0 for j < J , λj(sk) ⇀ 0 for j �= k, z(t + sj) → zj∞(t), and the decomposition

(5.32).

Since λj(sj) = ϕj
∞ while λk(sj) ⇀ 0 for k �= j, Lemma 5.2 implies Hθ(λ

j , λk)→ 0,

Hθ(λ
j , γk)→ 0 for j < k and θ ∈ [0, 1]. Hence

Hθ(ψ) = Hθ

⎛⎝ ∑
0≤j<J

λj(s) + γJ(s)

⎞⎠ =
∑

0≤j<J

Hθ(λ
j(s)) +Hθ(γ

J(s)) + o(1). (5.34)

The equivalence Hθ(ϕ) ∼ ‖ϕ‖2Ḣθ on PcH
1 and Lemma 4.3 imply (5.30).

It remains to prove (5.31). By the definition of sj , cf. (5.33), we have

‖γJ‖L∞
t L4

x
= ‖ϕJ

∞‖L4
x
+ o(1) � ‖λJ‖L∞

t H1
x
+ o(1). (5.35)

Since the right hand side is vanishing by (5.30),

lim
J→J∗

lim sup ‖γJ‖L∞
t L4

x
= 0, (5.36)

and then by interpolation with the uniform Strichartz bound, we obtain (5.31). �

6. Nonlinear perturbation estimates.

In order to use the linearized profile decomposition to approximate the nonlinear

solutions, we need a few perturbation lemmas for the nonlinear equation of ξ

iξ̇ +Hξ = B[z]ξ + Ñ(z, ξ) (6.1)

regarding z as a given time-dependent function. Since our global knowledge on z is very

poor (cf. Section 1.3), we should avoid perturbing z for long time. It leads us to prepare

the following two lemmas for perturbation: Lemma 6.3 for long time intervals where ξ is

small, and Lemma 6.4 for bounded time intervals where ξ may be large.

The first lemma is a perturbation of 0, or construction of dispersed solutions.

Lemma 6.1. Let −∞ < T0 < T1 ≤ ∞, z ∈ C([T0, T1);C) and ϕ ∈ H1(R3). Put

Nθ := ‖z‖L∞(T0,T1) + ‖ϕ‖Hθ (6.2)
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for θ ∈ [0, 1] and assume N0  1.

(I) If ‖ϕ[z, T0]‖st(T0,T1)N 3
1/2  1, then (6.1) has a unique solution ξ satisfying

ξ ∈ C([T0, T1);H
1), ξ(T0) = ϕ, ‖ξ‖st(T0,T1) � ‖ϕ[z, T0]‖st(T0,T1). (6.3)

(II) Let ξ ∈ C([T0, T1);H
1) be a solution of (6.1) with ξ(T0) = ϕ satisfying

‖ξ‖st(T0,T1)N 3
1/2  1. (6.4)

Then for any T ∈ (T0, T1) and all θ ∈ [0, 1],

‖ξ[z, T ]> − ϕ[z, T0]‖Stzθ(T0,T1) � Nθ‖ϕ[z, T0]‖st(T0,T )(N0 + ‖ϕ[z, T0]‖st(T0,T )), (6.5)

and ‖ξ‖[z;T0,T ;T1]  ‖ξ[z, T0]‖st(T0,T ) ∼ ‖ξ‖st(T0,T ).

Proof. Let ξ0 := ϕ[z, T0] and ‖ξ0‖st(T0,T1) =: δ0. The solution ξ is obtained by

the iteration argument. If ξ is a solution, then by the Strichartz estimate: Lemma 4.3,

‖ξ − ξ0‖Stzθ � ‖ξ‖Stzθ‖ξ‖st(‖ξ‖st + ‖z‖L∞) (6.6)

for θ ∈ [0, 1]. Using the non-admissible Strichartz: Lemma 4.4,

‖ξ‖st ≤ ‖ξ0‖st + C‖Ñ(z, ξ)‖
L

8/3
t L

4/3
x

� δ0 + ‖ξ‖st‖ξ‖L8
tL

4
x
(‖ξ‖L∞

t L3
x
+ ‖Φ[z]‖L∞

t L3
x
)

� δ0 + ‖ξ‖3/2st ‖ξ‖1/2Stz1/2
(‖ξ‖Stz1/2 +N0). (6.7)

Suppose that ‖ξ‖Stz1/2 ≤ CN1/2 and ‖ξ‖st ≤ Cδ0 for some constant C � 1 on some

shorter interval. Then

‖ξ‖Stz1/2 � N1/2 + C2δ0(δ0 +N0)‖ξ‖Stz1/2 ,
‖ξ‖st � δ0 + C2(δ0N 3

1/2)
1/2‖ξ‖st.

(6.8)

Since δ0 + N0 � N1/2, we have δ0(δ0 + N0) � (δ0N 3
1/2)

1/2. Hence, if δ0N 3
1/2  1 then

‖ξ‖st � δ0 and ‖ξ‖Stzθ � Nθ for all θ ∈ [0, 1]. Then by the continuity for extending the

interval, these bounds holds on the whole (0, T ).

If we assume ‖ξ‖st(T0,T1)N 3
1/2  1 instead of ξ0, then we obtain ‖ξ0‖st(T0,T ) �

‖ξ‖st(T0,T ) in the same way, starting from T = T0 + 0. In both cases, repeating the

Strichartz estimate on Hθ as above, we obtain (II). �

Remark 1. Since Ḣ1/2(R3) is the scaling invariant norm for the NLS without the

potential, N1/2 is in general large, when we use the above lemma. In the focusing case,

N1/2 ∼ 1 on S1, while there is no upper bound on N1/2 in the defocusing case. However,

we can expect that st is small for dispersive solutions, by which the assumptions in the

above lemma can be satisfied. Note also that the estimate cannot be closed if we use

only the admissible Strichartz Stz1/2 as in (6.6), because of the quadratic terms.
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If the above solution is obtained for t→∞, then it scatters.

Lemma 6.2. Let T0 ∈ R, (z, ξ) ∈ C([T0,∞);C × PcH
1) solve (6.1) on (T0,∞)

satisfying

‖z‖L∞(T0,∞) + ‖ξ‖L∞
t (T0,∞;L2

x)
 1, ‖ξ‖L∞

t (T0,∞;H1
x)

<∞. (6.9)

Then the following (i) and (ii) are equivalent.

(i) ∃ϕ ∈ H1(R3) such that ‖ϕ[z, T0]− ξ‖H1
x
→ 0 as t→∞.

(ii) ‖ξ‖st(T0,∞) <∞.

In this case, we say that ξ scatters with z as t→∞. Moreover, as T →∞,

‖ξ[z, T ]− ϕ[z, T0]‖Stz1(T0,∞) + ‖ξ − ξ[z, T ]‖Stz1(T,∞) → 0, (6.10)

and for any z̃ ∈ C([T0,∞);C) satisfying ‖z̃‖L∞
t
 1,

‖ξ‖[z̃;T,∞;∞] + ‖ξ[z̃, T ]‖L2B1
6,2(T,∞) + ‖ξ‖L2B1

6,2(T,∞) → 0, (6.11)

uniformly with respect to z̃. A sufficient condition of scattering is

‖ξ[z, T0]‖st(T0,∞)

{
‖z‖L∞(T0,∞) + ‖ξ(T0)‖H1/2

x

}3

 1. (6.12)

The scattering with z as t → −∞ is defined in the same way, which has the same

property as above.

Proof. Assume (i) and let ξ+ := ϕ[z, T0]. Then by Lemma 4.3, ‖ξ+‖Stz1(T0,∞) <

∞ and so in particular ‖ξ+‖st(T,∞) → 0 as T →∞. By (i) and the Strichartz estimate,

‖ξ+ − ξ[z, T ]‖st(T,∞) � ‖ξ+(T )− ξ(T )‖H1/2 → 0. (6.13)

Hence for sufficiently large T , the previous lemma implies ‖ξ‖st(T,∞) � ‖ξ[z, T ]‖st(T,∞).

Assume (ii) and let T > T0 so large that we can apply the previous lemma on (T,∞)

to get ‖ξ‖Stz1(T,∞) � ‖ξ[z, T ]‖Stz1(T,∞). Then for any T2 > T1 > T , by the Strichartz

estimate: Lemma 4.3,

‖ξ[z, T2]− ξ[z, T1]‖Stz1(T0,∞) � ‖Ñ(z, ξ)‖Stz1∗(T1,T2)

� ‖ξ‖Stz1(T1,∞)[‖ξ‖st(T1,∞) + ‖ξ‖2st(T1,∞)]→ 0 (6.14)

as T1 → ∞. In particular ξ[z, T ](T0) is Cauchy in H1
x as T → ∞, hence convergent to

some ξ+ ∈ H1
x. Then

‖ξ+[z, T0](T )− ξ(T )‖H1
x
≤ ‖ξ+[z, T0]− ξ[z, T ]‖Stz1(T0,∞)

� ‖ξ+ − ξ[z, T ](T0)‖H1
x
→ 0 (T →∞) (6.15)



1384 K. Nakanishi

and so (i). Thus in either case, we have ‖ξ[z, T ]‖st(T,∞) → 0 as T → ∞, hence the

previous lemma implies

‖ξ − ξ[z, T ]‖Stz1(T,∞) �
{‖z‖L∞

t (T0,∞) + ‖ξ‖L∞
t (T0,∞;H1

x)

} ‖ξ[z, T ]‖st(T,∞) → 0 (6.16)

as T →∞. Hence ‖ξ‖L2
tB

1
6,2(T,∞) → 0. Let ξ0 := ξ[z, T ] and ξ1 := ξ[z̃, T ]. Then

ξ1 = ξ0 +D(B[z̃]−B[z])ξ1[z, T ] (6.17)

and by the Strichartz estimate: Lemma 4.3,

‖ξ1‖Stz1(T,∞) ≤ ‖ξ0‖Stz1(T,∞) + C‖z‖2L∞
t (T0,∞)‖ξ1‖L2

tB
1
6,2(T,∞). (6.18)

After the last term is absorbed by the left, we obtain, as T →∞,

‖ξ[z̃, T ]‖L2
tB

1
6,2(T,∞) ≤ 2‖ξ[z, T ]‖L2

tB
1
6,2(T,∞) → 0, (6.19)

which is uniform with respect to z̃. By the previous lemma, we also have

‖ξ‖[z̃;T,∞;∞]  ‖ξ[z̃, T ]‖st(T,∞) ∼ ‖ξ‖st(T,∞) → 0. (6.20)

The sufficiency of (6.12) for scattering is now obvious by Lemma 6.1. �

The next two lemmas are concerned with difference of two solutions. For the sake

of brevity, the following notation is introduced for differences. For any expressions X
and a, b, c, . . . ,

�X (a
, b
, c
, . . . , ) := X (a0, b0, c0, . . . , )−X (a1, b1, c1, . . . , ). (6.21)

The first lemma of difference estimates treats perturbation of dispersed solutions.

It will be used either with z0 = z1 or on a short interval. We need the non-admissible

Strichartz for difference of quadratic terms.

Lemma 6.3. Let −∞ < T0 < T1 < T2 ≤ ∞, z0 ∈ C([T0, T2);C), z1 ∈
C([T0, T1];C), and ξ0, ξ1 ∈ C([T0, T1];H

1) solve

∀t ∈ (T0, T1), iξ̇j +Hξj = B[zj ]ξj + Ñ(zj , ξj). (6.22)

Put Nθ := ‖zj‖L∞
t (T0,T1) + ‖ξj‖L∞

t (T0,T1;Hθ
x)

for θ ∈ [0, 1], and suppose that for some

0 < δ � δ̃ satisfying N0 + δ̃N 3
1/2  1,

‖ξ0[z0, T0]‖st(T0,T1) ≤ δ̃, ‖� ξ
[z0, T0]‖st(T0,T1) + ‖�z
‖L4(T0,T1) ≤ δ. (6.23)

Then we have

‖� ξ
‖[z;T0,T1;T2] � (N0N1)
3/7δ̃4/7δ1/7. (6.24)
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Proof. The previous lemma 6.1 applies to both (zj , ξj), which implies

‖ξj‖Stzθ(T0,T1) � Nθ, ‖ξj‖st(T0,T1) � δ̃. (6.25)

Now apply the non-admissible Strichartz estimate, Lemma 4.4 to Duhamel

� ξ
 = � ξ
[z0, T0] +D{�Ñ(z
, ξ
) + �B[z
]ξ1}[z0, T0]. (6.26)

Choose

(p0, q0) = (4, 24/7), (p1, q1) = (2, 24/5), (p2, q2) = (4, 24/9) (6.27)

so that σ0 = −1/8, σ1 = σ2 = 1/8 and we can apply the lemma. Then

‖� ξ
 − � ξ
[z0, T0]‖L4
tL

24/7
x

� ‖�Ñ(z
, ξ
) + �B[z
]ξ1‖L2
tL

24/19
x +L

4/3
t L

24/15
x

� {‖� ξ
‖L4
tL

24/7
x

+ ‖�z
‖L4
t
}(‖ξ0‖st + ‖ξ1‖st){1 + ‖ξ0‖st + ‖ξ1‖st}, (6.28)

where the linear and quadratic (in ξ0, ξ1) terms are estimated in L2
tL

24/19
x , while the

cubic terms are in L
4/3
t L

24/15
x . The factor 1 comes from the term �B[z]ξ1, and it also

includes the smallness factor N0  1. For the cubic term with �z
, we used

‖�R[z
]ξj‖H1
x
� |�z
|‖ξj‖L2

x
≤ |�z
|N0. (6.29)

Thus, using the smallness of ‖ξj‖st(T0,T1) and ‖�z
‖L4(T0,T1), we obtain

‖� ξ
‖L4
tL

24/7
x (T0,T1)

� ‖� ξ
[z0, T0]‖L4
tL

24/7
x (T0,T1)

+ δ̃δ. (6.30)

Applying the same estimate to the Duhamel formula

� ξ
[z0, T1]> = � ξ
[z0, T0] +D1T0<t<T1{�Ñ(z
, ξ
) + �B[z
]ξ1}[z0, T0], (6.31)

we also obtain

‖� ξ
[z0, T1]> − � ξ
[z0, T0]‖L4
tL

24/7
x (T0,T2)

� δ̃‖� ξ
[z0, T0]‖L4
tL

24/7
x (T0,T1)

+ δ̃δ, (6.32)

and this norm is related to st = L4
tL

6
x by interpolation and Sobolev as

‖f‖st � ‖f‖4/7
L4

tL
24/7
x

‖f‖3/7
L4B0

∞,2
� ‖f‖4/7

L4
tL

24/7
x

‖f‖3/7
Stz1

,

‖f‖
L4

tL
24/7
x

≤ ‖f‖1/4st ‖f‖3/4L4
tL

3
x
� ‖f‖1/4st ‖f‖3/4Stz0

.
(6.33)

Injecting these to the above and using the Strichartz bound, we obtain

‖� ξ
[z0, T1]> − � ξ
[z0, T0]‖st(T0,T2) � [δ̃δ1/4N 3/4
0 ]4/7N 3/7

1

= (N0N1)
3/7δ̃4/7δ1/7, (6.34)
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as desired. �

The second lemma of difference estimates treats perturbation of large solutions with

finite Strichartz. It will be used only on a bounded interval of time.

Lemma 6.4. Let −∞ < T0 < T1 < T2 ≤ ∞, z0 ∈ C([T0, T2);C), z1 ∈
C([T0, T1];C), and ξ0, ξ1 ∈ C([T0, T1];H

1) solve

∀t ∈ (T0, T1), iξ̇j +Hξj = B[zj ]ξj + Ñ(zj , ξj). (6.35)

Put for θ ∈ [0, 1]

Nθ := ‖zj‖L∞
t (T0,T1) + ‖ξj‖L∞

t (T0,T1;Hθ
x)
, N2 := ‖ξ0‖st(T0,T1), (6.36)

and assume N0  1. For any ε > 0, there is δ∗(N1,N2, ε) > 0, continuous and decreasing

for each Nj, such that if

‖� ξ
[z0, T0]‖st(T0,T1) + ‖�z
‖L4(T0,T1) ≤ δ∗ (6.37)

then we have

‖� ξ
‖[z0;T0,T1;T2] ≤ ε. (6.38)

Proof. For any N ∈ N, (T0, T1) is decomposed into subintervals I0, . . . , IN such

that

∀j = 0, . . . , N, ‖ξ0‖st(Ij) ≤ 2N−1/4N2 =: δ̃. (6.39)

Let Ij =: (Sj , Sj+1). If δ̃N 3
1/2  1, then we can apply Lemma 6.1 starting from Sj , and

we obtain

‖ξ0[z0, Sj ]‖st(Ij) ∼ ‖ξ0‖st(Ij) ≤ δ̃. (6.40)

Suppose that for some δ0 > 0,

‖� ξ
[z0, S0]‖st(S0,T1) + ‖�z
‖L4(S0,T1) ≤ δ0 ≤ δ̃, δ̃N 3
1/2  1. (6.41)

Then ‖ξ1[z0, T0]‖st(S0,S1) � δ̃ and we can apply Lemma 6.3 on I0. Then

‖� ξ
‖[z0;S0,S1;T2] ≤ C(N0N1)
3/7δ̃4/7δ

1/7
0 . (6.42)

Let δ1 := δ0 + C(N0N1)
3/7δ̃4/7δ

1/7
0 , then

‖� ξ
[z0, S1]‖st(S1,T1) + ‖�z
‖L4(S1,T1) ≤ δ1. (6.43)

Hence if δ1 ≤ δ̃ then we can repeat the same thing on I1. Define the sequence δj for

j = 0, . . . , N inductively from δ0 by
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δj+1 := δj + C(N0N1)
3/7δ̃4/7δ

1/7
j . (6.44)

Given N1 and N2, we can determine δ̃ and N such that

2N−1/4N2 ≤ δ̃  N−3
1 ≤ N−3

1/2. (6.45)

Then there is δ∗ = δ∗(N1,N2, ε) > 0 such that

δ0 ≤ δ∗ =⇒ δN+1 < min(δ̃, ε). (6.46)

Then for δ0 ≤ δ∗, we can iterate the above estimate for all j to get

‖� ξ
‖[z0;T0,T1;T2] ≤
N∑
j=0

‖� ξ
‖[z0;Sj ,Sj+1;T2]

≤
N∑
j=0

C(N0N1)
3/7δ̃4/7δ

1/7
j = δN+1 − δ0 < ε, (6.47)

where we used the subadditivity for consecutive intervals by Lemma 4.2. �

7. Nonlinear profile decomposition.

We are now ready to develop a profile decomposition for NLS (1.7) in the (z, ξ)

coordinate, i.e. the equation (4.10). Let I ∈ I N and u ∈ C(I;H1[μp]) be a sequence of

solutions of (1.7) in the mass region of the (z, ξ)-coordinate. Put

In =: (Tn, Tn) (7.1)

for each n ∈ N. We can uniquely write u = Φ[z] + R[z]ξ by Lemma 4.1, where (z, ξ) ∈
C(I;C×H1) is a sequence of solutions for (4.10). Suppose

N1 := Sup
{‖z‖L∞

t (I) + ‖u‖L∞
t (I;H1)

}
<∞, (7.2)

where the z part is uniformly bounded by
√
μp, so that we can omit it. Then we have

z ∈ SBC(I), since the smallness of |z| is already in Lemma 4.1, while (5.7) follows from

a uniform bound on |ż| (depending on N1), easily observed in the equation (4.10) using

‖η‖H1 � N1, H
1
x ⊂ L6

x, and the compactness of Dp ⊂ Db for the z dependence. By the

L2 conservation

N0 := Sup
{‖z‖L∞

t (I) + ‖u‖L∞
t (I;L2)

}
� √μp  1. (7.3)

Similarly for θ ∈ [0, 1], put

Nθ := Sup
{‖z‖L∞

t (I) + ‖u‖L∞
t (I;Hθ)

} ≤ N 1−θ
0 N θ

1 . (7.4)

For any s ∈ I, we can apply the linearized profile decomposition: Lemma 5.3 to the
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sequence ξ(s). Passing to a subsequence, we have for each J < J∗,

ξ[z, s] = λ[0,J) + γJ , λj := ξ[z, s][z, sj ](∞), (7.5)

where the following abbreviation is used: for any interval I,

λI :=
∑

j∈I∩Z
λj . (7.6)

Extracting a subsequence if necessary, we may assume

sj − s→ σj∞, ∃σj ∈ {+,−} (7.7)

for each 0 < j < J∗, and, since (4.10) implies that (z, ξ) is weakly equicontinuous,

(z, ξ)(sj + t)→ ∃(zj∞, ξj∞)(t) in C× w-H1, (7.8)

locally uniformly on I − sj . Put

Ij∞ := lim inf(I − sj), Ij := Ij∞ + sj . (7.9)

(7.7) implies Ij∞ ⊃ {−∞ < σjt ≤ 0} for j > 0. For j = 0, we have I0∞ ⊃ [0,∞) if

T − s → ∞ and I0∞ ⊃ (−∞, 0] if T − s → −∞. Note that if |In| is bounded then the

decomposition is trivial, i.e. J∗ = 1. In either case, Ij 
 sj , s0 = s. By the property of

SBC, we can extend zj∞ to SBC(R). By the subcritical nature of NLS, it is easy to see

that the weak limit (zj∞, ξj∞) is a solution of (4.10) in C(Ij∞;C×PcH
1). In other words,

uj
∞ := Φ[zj∞] +R[zj∞]ξj∞ (7.10)

is a solution of (1.7) on Ij∞. Using that R[z] − 1 is compact on H1, together with the

weak convergence of the linearized profiles, we have

u(s) = Φ[z0∞(0)] +R[z0∞(0)]ξ(s) + o(1)

= u0
∞(0) + λ(0,J)(s) + γJ(s) + o(1) in H1, (7.11)

and, using the orthogonality as well,

M(u) = M(u0
∞) +

∑
0<j<J M(λj(s)) +M(γJ(s)) + o(1),

E(u) = E(u0
∞) +

∑
0<j<J H

0(λj(s)) +H
0(γJ(s)) + o(1).

(7.12)

The nonlinear profile Λj ∈ C(Ij ;PcH
1) is defined by

Λj(t) := ξj∞(t− sj). (7.13)

Also put
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ϕj
∞ := lim ν(sj) = λj(sj) ∈ PcH

1, λj
∞ := ϕj

∞[zj∞, 0] ∈ C(R;PcH
1),

zj(t) := z(sj + t), zj(∞)(t) := zj∞(t− sj), λj
(∞)(t) := λj

∞(t− sj),
(7.14)

such that zj = zj∞ + o(1) in C(R), and using Lemma 5.1, (5.13),

λj = ϕj
∞[z, sj ] = λj

(∞) + o(1) in Stz1(I), (7.15)

while (zj(∞),Λ
j) is a sequence of solutions of (4.10) on Ij .

The nonlinear remainder ΓJ ∈ C(I;H1) is defined for each J by the same sequence

of equations as ξ, with the same initial data as γJ :

iΓ̇J +HΓJ = B[z]ΓJ + Ñ(z,ΓJ), ΓJ(s) = γJ(s). (7.16)

Since lim
J→J∗

lim sup ‖γJ‖st(I) = 0, Lemma 6.1 ensures the unique existence of ΓJ
n for large

J and large n, satisfying

‖ΓJ
n‖Stzθ(In) � Nθ, ‖ΓJ

n − γJ
n‖st(In) + ‖ΓJ

n‖[zn;sn,Tn;Tn]
 ‖γJ

n‖st(In). (7.17)

We have γJ(sj) ⇀ 0 for each j < J . Moreover, for large J and for 0 ≤ j < J ,

ΓJ(sj) ⇀ 0, 0 < ∀τ <∞, ‖ΓJ‖st(|t−sj |<τ) + ‖γJ‖st(|t−sj |<τ) → 0. (7.18)

Proof of (7.18). Let Xj be a sequence of weighted norms on I defined by

‖f‖Xj := sup
t∈I
〈t− sj〉−δ‖f(t)‖(L4+Lp)x(R3), (7.19)

where δ > 0 is fixed such that 0 < δ < 1/2 − 3/p. By Lemma 5.1, (5.14), we have

‖γJ(t)‖L4
x
→ 0 locally uniformly around t = sj , which implies ‖γJ‖Xj → 0, thanks

to the decaying weight. Suppose that σj = +, namely sj − s0 → ∞. Put F J :=

B[z]ΓJ + Ñ(z,ΓJ). Then by the Lp decay estimate on eitHPc, we have at any t ∈ In
satisfying t > sn,

‖ΓJ
n(t)− γJ

n (t)‖L4
x+Lp

x
�

∫ t

s0n

f(t− t′)‖F J
n (t

′)‖
L

4/3
x ∩Lp′

x
dt′,

f(t) := min(|t|−3(1/2−1/p), |t|−3/4), (7.20)

and, by Hölder and Sobolev,

‖F J
n ‖L4/3

x ∩Lp′
x

� ‖ΓJ
n‖L4

x+Lp
x
(|zn|2 + ‖ΓJ

n‖2L4
x∩L2

x
)

� {N 2
0 + ‖ΓJ

n‖2L∞
t L4

x(In)
}‖ΓJ

n‖L4
x+Lp

x
. (7.21)

By Lemma 6.1, we have

‖ΓJ
n‖L∞

t L4
x(In)

≤ ‖γJ
n‖L∞

t L4
x(In)

+ CN3/4‖γJ
n‖st(In)(N0 + ‖γJ

n‖st(In)) (7.22)
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Taking J and n larger if necessary, we may assume that the right hand side is bounded

by N0  1. Inserting this to the above estimate and then to (7.20) yields

‖ΓJ
n(t)− γJ

n (t)‖L4
x+Lp

x
� N 2

0 ‖ΓJ
n‖Xj

n

∫
R

f(t− t′)〈t′ − sjn〉
δ
dt′

� N 2
0 ‖ΓJ

n‖Xj
n
〈t− sjn〉

δ
, (7.23)

where in estimating the integral in t′, our choice of δ implies −3(1/2 − 1/p) + δ < −1,
which ensures the integrability for t′ → ±∞. The estimate in the cases t < sn and

σj = − is the same, as well as for j = 0. Thus we obtain

lim ‖ΓJ‖Xj � lim ‖γJ‖Xj = 0, (7.24)

for large J . By the uniform H1 bound, this is equivalent to ΓJ(t) ⇀ 0 weakly in H1,

locally uniformly around sj . Interpolation with (7.17) yields the other part. �

Let us now concentrate on the estimate on the time interval t > sn, assuming

Tn − sn →∞, (n→∞) (7.25)

since otherwise uniform Strichartz bound for ξn on t > sn is trivial. The restriction to

t > sn allows us to ignore the profiles with sj − s0 → −∞.

Fix a finite J ≤ J∗, so large that (7.18) holds. After neglecting those profiles with

sj − s0 → −∞, and reordering the profiles1, we may assume for 0 < j < J

sj − sj−1 →∞. (7.26)

Since J is now fixed, we can no longer gain a small factor by sending J → ∞. Instead

another parameter 0 < τ →∞ is introduced, decomposing the time intervals

(s, T ) =
⋃

0≤j<J

(sj−, s
j
+) ∪ (sj+, s

j+1
− ), (7.27)

where sj± ∈ R
N are defined for each j by

sj− := max(sj − τ, s), sj+ := min(sj + τ, T ), sJ± := T . (7.28)

Henceforth, oτ denotes any sequence of real numbers satisfying

X(τ) = oτ ⇐⇒ lim
τ→∞ lim sup

n→∞
Xn(τ) = 0. (7.29)

By the uniform integrability (7.15) of the linearized profiles, and their separation sj −
sj−1 →∞, we have for 0 ≤ j < J

1This reordering can not be performed before fixing J < ∞, since more and more linear profiles
may well appear between the previous profiles as J → ∞, which is a typical dispersive behavior of the
remainder γJ .
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j<k<J

‖λk‖st(s0,sj+) +
∑

0≤k<j

‖λk‖st(sj−,T ) = o(1),

‖λj‖st(s0,sj−) + ‖λj‖st(sj+,T ) = oτ .

(7.30)

The following is the main property of the nonlinear profile decomposition.

Lemma 7.1. In the above setting, let 0 ≤ l ≤ J and suppose that ξj∞ is scattering

with zj∞ as t→∞ for 0 ≤ j < l. Let � := min(l, J − 1). Then

(i) For 0 ≤ j < J , we have

‖ξ − Λj‖[z;sj−,sj+;T ] + ‖ΓJ‖[z;sj−,sj+;T ] = o(1). (7.31)

(ii) For 0 ≤ j ≤ �, we have

‖(ξ − ΓJ)[z, sj−]− λ[j,J)‖st(sj−,T ) + ‖Λj [z, sj−]> − λj‖Stz1(I) = oτ , (7.32)

‖Λj‖[z;s0,sj−;T ] = oτ . (7.33)

(iii) For 0 ≤ j < l, we have

‖ξ − ΓJ‖[z;sj+,sj+1
− ;T ] + ‖Λj‖[z;sj+,T ;T ] = oτ . (7.34)

(iv) For 0 < j ≤ �, we have ‖ξj∞ − λj
∞‖Stz1(−∞,−τ) → 0 as τ →∞. In other words, ξj∞

scatters as t→ −∞ and the scattering profile is λj
∞.

Moreover, ξ is bounded in Stz1(s, sl+).

Proof. For the first term of (i), the locally uniform convergence of (z, ξ)(t+sj)→
(zj∞, ξj∞) implies, using Lemma 5.1, (5.14),

‖z − zj(∞)‖L4
t (s

j
−,sj+) + ‖ξ[z, sj−]− Λj [z, sj−]‖st(sj−,sj+) = o(1). (7.35)

Then by Lemma 6.4, we obtain

‖ξ − Λj‖[z;sj−,sj+;T ] = o(1). (7.36)

For the second term of (i), using (4.31), Lemma 6.1 and (7.18), we obtain

‖ΓJ [z, sj−]− ΓJ [z, sj+]‖st(sj+,T ) ≤ ‖ΓJ‖[z;sj−,sj+;T ]  ‖ΓJ‖st(sj−,sj+) = o(1). (7.37)

(7.33) follows from (7.32), since using (4.28) and (4.42), we have

‖Λj‖[z;s0,sj−;T ] ≤ ‖Λj − λj‖[z;s0,sj−;T ] + ‖λj‖[z;s0,sj−;T ]

� ‖Λj − λj‖Stz1(s0,sj−) ≤ ‖Λj [z, sj−]> − λj‖Stz1(I). (7.38)
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The second term of (iii) is bounded using Lemma 6.2, (6.11) with the scattering of ξj∞
as t→∞

‖Λj‖[z;sj+,T ;T ] ≤ ‖ξj∞‖[zj ;τ,∞;∞] = oτ . (7.39)

The remaining estimates are proved by induction on j. For j = 0, (7.32) = 0 by the

definition and s0− = s0. Assume (7.32) for some j < l as an induction hypothesis. By

the scattering of ξj∞ for t→∞, Lemma 6.2 implies

‖Λj [z, sj+]‖st(sj+,T ) = ‖ξj∞[zj , τ ]‖st(τ,T−sj) = oτ . (7.40)

Combining it with (7.32), (7.37) and (i), using (4.31), we obtain

‖(ξ − ΓJ)[z, sj+]− λ[j+1,J)‖st(sj+,T )

≤ ‖(ξ − ΓJ)[z, sj−]− λ[j,J)‖st(sj+,T ) + ‖Λj [z, sj−]− λj‖st(sj+,T )

+ ‖ΓJ [z, sj−]− ΓJ [z, sj+]‖st(sj+,T ) + ‖Λj [z, sj+]‖st(sj+,T )

+ ‖(ξ − Λj)[z, sj−]− (ξ − Λj)[z, sj+]‖st(sj+,T )

≤ oτ + ‖ξ − Λj‖[z;sj−,sj+;T ] = oτ . (7.41)

Restricting it and using (7.30), we obtain

‖(ξ − ΓJ)[z, sj+]‖st(sj+,sj+1
− ) = oτ . (7.42)

This and the smallness of ΓJ
n in (7.18) allow us to apply Lemma 6.3 to the difference of

ξn and ΓJ
n for large τ and large n, with the same soliton part zn. Then the above decay

of the linearized solutions leads to the estimate on the first term of (iii):

‖ξ − ΓJ‖[z;sj+,sj+1
− ;T ] = oτ . (7.43)

If k := j + 1 < J , then combining the above with (7.41), using (4.31), we obtain

‖(ξ − ΓJ)[z, sk−]− λ[k,J)‖st(sk−,T )

≤ ‖(ξ − ΓJ)[z, sj+]− λ[k,J)‖st(sk−,T ) + ‖ξ − ΓJ‖[z;sj+,sk−,T ] = oτ , (7.44)

which is the first term of (7.32) for k. Restricting the interval to (sk−, s
k), we may discard

λ[k+1,J) by (7.30), as well as ΓJ [z, sk−] by (7.18), where we are allowed to linearize ΓJ by

[z, sk−] thanks to Lemma 6.1(II). Thus we obtain

‖ξ[z, sk−]− λk‖st(sk−,sk) = oτ . (7.45)

Since ξ(sk−)− λk(sk−) ⇀ ξk∞(−τ)− λk
∞(−τ), by Lemma 5.1, (5.14), we obtain

oτ = ‖(ξk∞(−τ)− λk
∞(−τ))[z, sk − τ ]‖st(sk−τ,sk)
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= ‖(ξk∞ − λk
∞)[zk,−τ ]‖st(−τ,0). (7.46)

Taking the limit and using Lemma 5.1, (5.13) with zk → zk∞,

lim
τ→∞ ‖ξ

k
∞[zk∞,−τ ]− λk

∞‖st(−τ,0) = 0. (7.47)

Since λk
∞ ∈ st(−∞, 0) by Lemma 4.3, there is τ∗ > 0 such that

‖λk
∞‖st(−∞,−τ∗) + sup

τ>τ∗
‖ξk∞[zk∞,−τ ]− λk

∞‖st(−τ,0)  N−3
1/2. (7.48)

For τ > τ∗, we can apply Lemma 6.1 to ξk∞ from t = −τ , thereby obtain

‖ξk∞‖st(−τ,−τ∗) ≤ 2‖ξk∞[zk∞,−τ ]‖st(−τ,−τ∗)  N−3
1/2. (7.49)

Sending τ →∞ implies ‖ξk∞‖st(−∞,−τ∗) <∞, so by Lemma 6.2, ξk∞ scatters with zk∞ as

t→ −∞. Hence there exists ϕk
− ∈ H1 such that

lim
τ→∞ ‖ξ

k
∞[zk∞,−τ ]− ϕk

−[z
k
∞, 0]‖Stz1(−∞,0) = 0. (7.50)

Adding this and (7.47) yields

‖(ϕk
− − λk

∞)[zk∞, 0]‖st(−∞,0) = 0, (7.51)

which implies ϕk
− = λk

∞(0), hence ‖ξk∞−λk
∞‖Stz1(−∞,−τ) → 0 as τ →∞. Thus we obtain

(iv). Since ξk∞ = Λk(t+ sk) and λk
∞ = λk(t+ sk) + o(1) in Stz1(I − sk), we obtain

‖Λk[z, sk−]> − λk‖Stz1(I) � ‖Λk − λk‖Stz1(s0,sk−) = oτ , (7.52)

which is the second term of (7.32) for k = j+1, hence the induction is complete, finishing

the proof for (ii)–(iv).

Since the profiles Λj and the remainder ΓJ are vanishing oτ in each other interval,

we obtain, using the subadditivity: Lemma 4.2, as well as the monotonicity (4.32),

‖ξ − Λ[0,�] − ΓJ‖[z;s,sl+;T ]

≤
∑

0≤j≤�

‖ξ − Λj‖[z;sj−,sj+;T ] +
∑

0≤j<l

‖ξ − ΓJ‖[z;sj+,sj+1
− ;T ] + oτ ≤ oτ . (7.53)

Since the left hand side is non-decreasing in τ , we deduce that

ξ̃� := Λ[0,�] + λ(�,J) + ΓJ =⇒ ‖ξ − ξ̃�‖[z;s,sl+;T ] = o(1), (7.54)

where the linearized solution λ(�,J) is added for free, thanks to (4.28). Using (iv) together

with (7.15), as well as the definition of ΓJ and γJ , we have

ξ̃�(s) = λ[0,�](s) + o(1) + λ(�,J)(s) + γJ(s) = ξ(s) + o(1) in H1. (7.55)
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Hence (7.54) with (4.31) implies

‖ξ − ξ̃�‖st(s,sl+) ≤ ‖ξ − ξ̃�‖[z;s,sl+,T ] + o(1) = o(1), (7.56)

so we obtain, using (7.30) as well,

‖ξ‖st(s,sl+) ≤
∑

0≤j≤�

‖Λj‖st(s,sl+) + ‖ΓJ‖st(s,T ) + o(1), (7.57)

where each term on the right is bounded by

‖Λ0‖st(s,sl+) ≤ ‖ξ0∞‖st(0,∞) <∞,

1 ≤ j < � =⇒ ‖Λj‖st(s,sl+) ≤ ‖ξj∞‖st(R) <∞,

j = � = l < J =⇒ ‖Λj‖st(s,sl+) ≤ ‖ξl∞‖st(−∞,τ) <∞,

‖ΓJ‖st(s,T ) ≤ 2‖γJ‖st(s,T )  1.

(7.58)

Therefore ξ is bounded in st(s, sl+). It is easily upgraded to a uniform bound in Stz1(s, sl+)

as follows. Let s = t0 < t1 < · · · < tN = sl+ such that ‖ξ‖st(ta−1,ta) ≤ δ and Nδ ≤
‖ξ‖st(s,sl+) + 1 for some small δ > 0. By the Strichartz estimate, we have for each a

‖ξ‖Stz1(ta,ta+1) � ‖ξ(ta)‖H1 + ‖Ñ(z, ξ)‖L2
tH

1
6/5

(ta,ta+1), (7.59)

and the nonlinear term is estimated as before by Hölder

‖Ñ(z, ξ)‖L2
tH

1
6/5

(ta,ta+1) � ‖Φ[z]‖L∞
t L3

x
‖ξ‖L4

tH
1
3
‖ξ‖st + ‖ξ‖L∞

t H1
x
‖ξ‖2st

� (N0δ + δ2)‖ξ‖Stz1(ta,ta+1). (7.60)

Hence choosing δ > 0 small enough, we obtain

‖ξ‖Stz1(ta,ta+1) ≤ C‖ξ(ta)‖H1 ≤ C‖ξ‖Stz1(ta−1,ta) (7.61)

for some absolute constant C > 1, which leads by induction to

‖ξ‖Stz1(s,sl+) ≤ CN‖ξ(s)‖H1 ≤ C
C‖ξ‖

st(s,sl
+

)N1 (7.62)

where the right hand side is bounded as shown above. �

The same argument works on the other time direction (T , s), under the scattering

assumption of ξ∞j with z∞j as t → −∞ for σj = − and j = 0. In order to consider the

whole interval (T , T ), we should assume the scattering of ξ∞j as t → σj∞ for σj = ±,
and of ξ∞0 as t→ ±∞. A more precise statement is as follows.

Theorem 7.2. Let s ∈ I ∈ I N and C(I;H1[μp]) 
 u = Φ[z]+R[z]ξ be a sequence

of solutions for (1.7), written in the coordinate in Lemma 4.1. Suppose that u(s) is

bounded in H1
x and let
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ξ[z, s] =
∑

0≤j<J

λj + γJ , λj = ξ[z, s][z, sj ](∞) (7.63)

be the linearized profile decomposition in Lemma 5.3 (for a subsequence). If a finite

J ≤ J∗ is fixed large enough, then we have the following.

Suppose that supn supt∈I′
n
‖un(t)‖H1

x
< ∞ for a sequence of subintervals I ′n ⊂ In

satisfying s ∈ I ′, and let (after passing to a further subsequence if necessary)

t ∈ Ij∞ :=
⋃
n∈N

⋂
m≥n

(I ′m − sjm) =⇒ (zj∞, ξj∞)(t) := lim
n→∞(zn, ξn)(s

j
n + t) (7.64)

be the weak limit in C×H1
r . Assume that ξj∞ scatters with zj∞ as t→ σ∞ for each j < J

and σ ∈ {+,−} satisfying σIj∞ ⊃ [0,∞) and limσ(s− sj) ≤ 0.

Then supn ‖ξn‖Stz1(I′
n)

< ∞. Moreover, for each j < J and σ ∈ {+,−} satisfying

0 ∈ Ij∞ and σ(s− sj)→∞, ξj∞ scatters with zj∞ as t→ σ∞ and

lim
n,T→∞

‖ξj∞ − λj
n(t+ sjn)‖Stz1(σ(T,∞)∩(I′

n−sjn))
= 0. (7.65)

The above statement has nothing to do with the excited state energy, and it is

applicable even if some nonlinear profile is not scattering, if the subintervals I ′n are

chosen appropriately. Note also that I ′n can be chosen depending on the linearized profile

decomposition, after fixing J . See the next section.

8. Scattering below the excited energy.

We are now ready to prove the scattering to the ground states. For each μ > 0 and

A ∈ R, let GS(μ,A) be the totality of global solution u of (1.7) satisfying

M(u) ≤ μ, E(u) ≤ A. (8.1)

Let

ST (μ,A) := sup{‖ξ‖st(0,∞) | Φ[z] +R[z]ξ ∈ GS(μ,A)},
X := {(μ,A) | ST (μ,A) <∞}. (8.2)

Introduce the following partial orders in R
2

(μ1, A1) ≤ (μ2, A2) ⇐⇒ μ1 ≤ μ2 and A1 ≤ A2,

(μ1, A1) (μ2, A2) ⇐⇒ μ1 < μ2 and A1 < A2.
(8.3)

The definition of X implies that for any (μj , Aj) ∈ (0,∞)× R,

(μ1, A1) ≤ (μ2, A2) and (μ2, A2) ∈ X =⇒ (μ1, A1) ∈ X . (8.4)

The goal of this section is to prove that for 0 < μ 1 and A ∈ R,

(μ,A) ∈ X ⇐⇒ A < E1(μ). (8.5)
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=⇒ is trivial in the defocusing case, obvious by the excited states S1 in the focusing

case. So the question is the ⇐= part.

For small H1 data, we have the scattering to S0 by [10], together with a uniform

bound on the Strichartz norms of ξ in terms of ‖u(0)‖H1
x
. In fact, Lemma 6.2 implies

that H
1/2
x smallness is enough. In particular, using Lemma 3.1 and interpolation, we

deduce that (μ,A) ∈ X for sufficiently small A for each fixed μ, and for sufficiently small

μ for each fixed A. Hence X contains a neighborhood of both {μ = 0} and {A = 0}.
Suppose that there exists (μ0, A0) ∈ (0,∞)2 \X satisfying A0 < E1(μ0) and μ0  1.

Put

E∗ := sup{A < A0 | (μ0, A) ∈ X}, M∗ := sup{μ < μ0 | (μ,E∗) ∈ X}. (8.6)

Then

0 < M∗ ≤ μ0, 0 < E∗ ≤ A0 < E1(μ0) ≤ E1(M∗), (8.7)

and (M∗, E∗) is minimal on ∂X in the sense that

(μ1, A1) < (M∗, E∗) (μ2, A2) =⇒ (μ1, A1) ∈ X , (μ2, A2) �∈ X . (8.8)

In particular, there is a sequence (R2)N 
 (M,E)→ (M∗, E∗) and a sequence of solutions

u = Φ[z] +R[z]ξ ∈ GS(M,E) such that

M ≤ μ0 + o(1), E < E1(M), ‖ξ‖st(0,∞) →∞ (8.9)

See (5.2) for the notation of sequences without index. The mass-energy constraint to-

gether with Lemma 3.1 implies that u is bounded in H1
x, so is ξ, while |z| � μ0  1.

The linearized profile decomposition: Lemma 5.3 yields

ξ[z, 0] =
∑

0≤j<J

λj + γJ , λj = ξ[z, 0][z, sj ](∞), (8.10)

for each J < J∗. Let

(zj∞, ξj∞) := lim(z, ξ)(t+ sj), uj
∞ := Φ[zj∞] +R[zj∞]ξj∞ (8.11)

be the weak limits, solving respectively (4.10) and (1.7). The weak convergence implies

M(uj
∞) ≤M∗, E(uj

∞) ≤ E∗. (8.12)

Fix a finite J ≤ J∗ so large that we can use Theorem 7.2. Since ‖ξ‖st(0,∞) → ∞,

the assumption of Theorem 7.2 must fail for I ′ := [0,∞)N 
 s := 0. Hence there exists

l < J such that sl ≥ 0 and ‖ξl∞‖st(0,∞) =∞. We may choose the minimal l in the sense

that sj − sl →∞ for all j �= l satisfying sj ≥ 0 and ‖ξj∞‖st(0,∞) =∞.

Then (8.12) together with the minimality of (M∗, E∗) implies that ul
∞ is a minimal

solution which does not scatter to S0 as t→∞,



Dynamics for NLS with a potential 1397

(M∗, E∗) = (M(ul
∞),E(ul

∞)), (8.13)

and so the convergence is strong in H1
x for ξ(t+ sl)→ ξl∞(t) and u(t+ sl)→ ul

∞(t). In

particular, if l = 0 then u(0)→ u0
∞(0) strongly in H1

x.

If l > 0, then sl → ∞ and the minimality of l implies that for each j �= l, either

sj → −∞, sj − sl → ∞ or ‖ξj∞‖st(0,∞) < ∞, thereby we can apply Theorem 7.2 to

I ′ := [0, sl]. Then by (7.65), we have

M∗ = M(ul
∞) = M(Φ[zl∞(−sl)]) +M(λl(0)) + o(1),

E∗ = E(ul
∞) = E(Φ[zl∞(−sl)]) +H

0(λl(0)) + o(1),
(8.14)

using that R[z]− 1 is compact on H1 and that the scattering ξl∞ is weakly vanishing in

H1 as t→ −∞. Then the smallness of the ground states implies

H
0(λl(0)) ≥ E∗ − Cμ0 + o(1). (8.15)

The same argument as above works if the assumption ‖ξ‖st(0,∞) → ∞ is replaced

with ‖ξ‖st(0,T ) → ∞ for some sequence T → ∞. Similarly, if it is replaced with

‖ξ‖st(T,0) → ∞ for some sequence T → −∞, then the same argument works in the

negative time direction.

Next we prove the precompactness of the orbit of a minimal solution. Henceforth, the

index n of sequences is made explicit in order to avoid confusion. Let u = Φ[z] +R[z]ξ ∈
GS(M∗, E∗) be a global solution satisfying

(M(u),E(u)) = (M∗, E∗), ‖ξ‖st(0,∞) =∞. (8.16)

Then for any sequence 0 < tn → ∞, the above argument applies to un := u(t + tn)

on In := (−tn,∞) → R, both with I ′n := (−tn, 0] and with I ′n := [0,∞), because

‖ξn‖st(−tn,0) = ‖ξ‖st(0,tn) →∞ and ‖ξn‖st(0,∞) = ‖ξ‖st(tn,∞) =∞.

If u0
∞ becomes the minimal element in either case, then un(0) = u(tn) is strongly

convergent. Otherwise, we get (8.15) for some l = l0 > 0 in I ′n = (−tn, 0] and for another

l = l1 > 0 in I ′n = [0,∞), while u0
∞ is scattering to S0 as t→ ±∞. Then E(u0

∞) can be

negative only by the soliton component, hence E(u0
∞) � −μ0. Putting them into (7.12)

yields

E∗ ≥ E(u0
∞) +H

0(λl0(0)) +H
0(λl1(0)) + o(1) ≥ 2E∗ − Cμ0 + o(1), (8.17)

so E∗ � μ0, contradicting the small data scattering if μ0 is small enough. Hence u(tn)

converges strongly in H1
x after extracting a subsequence. In other words,

{u(t) | t ≥ 0} ⊂ H1
r (R

3) (8.18)

is precompact for such a minimal solution u.

By Lemma 3.1, we have a lower bound K2(u(t)) ≥ κ∗ := κ(M∗,E1(M∗) − E∗) > 0.

The precompactness implies that there is R� 1 such that
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sup
t>0

∫
|x|>R

[|∇u|2 + |u|2 + |u|4]dx κ∗. (8.19)

Then the saturated virial identity as in Section 3 implies

∂t〈RfRu|iur〉 > κ∗ > 0, (8.20)

for all t > 0, which obviously contradicts the boundedness of 〈RfRu|iur〉 in t > 0. This

concludes the scattering to the ground states S0 in (ii) of Lemma 3.1, and so the proof

of Theorem 1.1.

Appendix A. Decay of the potential.

Here we prove that V, x · ∇V, (x · ∇)2V ∈ L2 + L∞0 for the radial function V (x) =

V (|x|) implies |V (r)|+ |rVr(r)| → 0 as r →∞.

Decompose V = V2 + V∞ such that

‖V ‖L2+L∞ ∼ ‖V2‖L2 + ‖V∞‖L∞ , lim
R→∞

‖V∞‖L∞(|x|>R) = 0. (A.1)

For any ε > 0, there is R > 0 such that ‖V∞‖L∞(|x|>R) < ε. Let χ : R→ R be a smooth

function satisfying χ(t) = t for |t| ≥ 3, |χ(t)| ≤ |t| and 0 ≤ χ′(t) ≤ 10 for all t, and

χ(t) = 0 for |t| ≤ 2. Put

V(ε) := εχ(V/ε), (A.2)

Then V(ε)(r) �= 0 implies |V (r)| > 2ε and so |V(ε)(r)| ≤ |V (r)| ∼ |V2(r)| for r > R. Hence

for r > R,

|V(ε)(r)|2 ≤ 2

∫ ∞

r

|V(ε)(r)| · |r∂rV(ε)(r)|r
2dr

r3

� ‖V(ε)‖L2(|x|>R)‖|x|−3‖L2∩L∞(|x|>R)‖r∂rV(ε)‖(L2+L∞)(|x|>R)

� ‖V2‖L2(|x|>R)R
−3/2‖r∂rV ‖L2+L∞ → 0 (A.3)

as R → ∞. Since |V | ≤ |V(ε)| + 3ε, we deduce that V (x) → 0 as |x| → ∞. The same

argument implies that r∂rV (x)→ 0.
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Appendix B. Table of Notation.

Besides the following list, see (5.2)–(5.4) for notation of sequences without index.

symbols description defined in

s sign of nonlinearity (1.7)

H, V Schrödinger operator and the potential (1.7), Section 1.5

e0, φ0 unique eigenvalue and ground state of H (1.8)

p Lp
x-exponent where the wave operator is bounded Section 1.5 (iv)

Q ground state without V (1.5)

E,M,K2 energy, mass and virial (1.14), (1.22)

�·�, G, H, I some functionals (2.1), (2.7)

E
0, H0, K0

2 functionals without V (2.2)

S , Sj , Ej all solitons, j-th bound states and their energy (1.13), (1.16), (1.15)

(Φ,Ω) coordinates of ground states Lemma 2.2

zb, Db, μb size of the above coordinates Lemma 2.2, (2.14)

μd, zd size of parameterized ground states (2.21)

μp, Dp size of ground state projection Lemma 4.1

μe small mass to characterize E1 Proposition 2.5

Lp
x, H

s
p (Hs=Hs

2), B
s
p,q Lebesgue, Sobolev and Besov spaces on R

3 Section 1.4, (1.10)

H1
r , H

1[μ] radial Sobolev and its subset with small mass (4.1)

Lp
tX(I) B-space valued Lp space on interval Section 1.4

(·|·), 〈·|·〉 inner products on L2(R3) (1.32)

St
p, S ′p Lp-preserving scaling and its generator (2.3)–(2.4)

κ lower bound on |K2| Proposition 2.5

Hc[z], R[z] normal subspace of S0 and its coordinate (4.2), (4.5)

B[z], Ñ(z, ξ) terms in the equation around S0 (4.11), (4.12), (4.13)

·{s} functions defined around s (4.14)

u[z, s] solution of the linearized equation (4.16)

Df [z, s] Duhamel form of the linearized equation (4.19)

u[z, s]> solution with nonlinearity turnoff (4.23)

Stzs, Stz∗s, st Strichartz norms (4.26)

[z;T0, T1;T2] semi-norm to measure deviation from u[z, T0] (4.27)

I totality of intervals (5.5)

SBC uniformly small, bounded and continuous functions (5.6)–(5.7)

u[z, s](∞) linearized solution with limit initial data (5.10)

Hθ fractional power of HPc (5.24)

J∗, sj the number and centers of profiles Lemma 5.3

λj , λI , γJ linear profiles and their sum, and remainder Lemma 5.3, (7.6)

� · · ·
 difference (6.21)

Λj , ΓJ nonlinear profiles and remainder (7.13), (7.16)

sj± times around profiles for decomposition (7.28)

oτ vanishing terms as n→∞ and τ →∞ (7.29)

GS(μ,A) global solutions below some mass and energy (8.1)

X mass-energy region with uniform Strichartz bound (8.2)

(·, ·) ≤, product orders (8.3)
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